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ete” ANNIHILATION INTO HADRONS AT LOW ENERGIES
AND 7 DECAY IN THE NONPERTURBATIVE APPROACH
TO QUANTUM CHROMODYNAMICS

A. N. Sissakian, I. L. Solovtsov and O. P. Solovtsova

Bogoliubov Laboratory of Theoretical Physics,
JINR, Dubna, Moscow region, 141980, Russia

Abstract

We formulate a systematic, nonperturbative expansion in quantum chro-
modynamics using a new small parameter. We consider the process of ete~
annihilation into hadrons at low energies applying the "smearing” method
to compare the obtained theoretical prediction with experimental data. The
method is applied to the inclusive semileptonic decay of the r-lepton.

The solution of many physical problems is based on approximation of a quantity
under consideration by a finite number of terms of a certain series. In quantum field
theory this is conventionally an expansion into a perturbative series. This approach
combined with the renormalization procedure is now a basic method for computa-
tions. As is well-known, perturbative series for many interesting models including
realistic models are not convergent. Nevertheless, at small values of the coupling
constant these series may be considered as asymptotic series and could provide a
useful information. However, even in the theories with a small coupling constant, for
instance, in quantum electrodynamics there exist problems which cannot be solved
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by perturbative methods. Also, a lot of problems of quantum chromodynamics -
require nonperturbative approaches.

Many approaches have been devoted to the development of nonperturbative
methods. Among them is the summation of a perturbative series (see reviews [1] and
monograph [2]). The difficulty is that the procedure of summation of asymptotic
series is not unique as it contains a functional arbitrariness. A correct formula-
tion of the problem of summation is ensured by further information on the sum
of a series [3]. At present information of that kind is known only for the simplest
field-theoretical models [4].

There have been approaches that are not directly based on the perturbative
series. Many of nonperturbative approaches make use of a variational procedure
for finding the leading contribution. However, in this case there is no always an
algorithm of calculating corrections to the value found by a variational procedure,
and this makes difficult to answer the question how adequate is the so-called main
contribution to the object under investigation and what is the range of applicabil-
ity of the obtained estimations. Therefore, useful approaches to the study of the
nonperturbative structure of quantum field theory are the methods that combine an
expansion of a given quantity in a series that defines the algorithm of calculating
the correction with an optimizing procedure.

More accurate results obtained in Ref. [5] for the R(s)-ratio for the process of
ete™ annihilation into hadrons stimulated further theoretical study of that ratio
[6-9]. Higher orders of perturbation theory for starting from the three-loop or-
der become dependent on the renormalization scheme. Therefore, for the correct
application of perturbative results it is necessary to use a certain procedure of op-
tirnization, for instance, the principle of minimal sensitivity [10]. On the one hand,
the dependence of a physical quantity on the renormalization scheme thus arising
can be considered as a regrettable fact; on the other hand, there appears an extra
degree of freedom that can be used for constructing an optimal expansion that has
a wider range of applicability in a particular scheme as compared to perturbation
theory. Along this line, as shown in Ref. {7}, it has been possible to advance towards
the low-energy region.

In this paper, to consider the processes of e*e~ annihilation and the inclusive 7
decay we will apply a non-perturbative method proposed in Ref. [11]. This approach
based on a new small expansion parameter a connected with the initial coupling
constant g by the following equation [11]

- g? 1
A=W=_C—(l—-a)3’ (1)
where C is a positive constant. The Green function can be written as follows
6 = LYt § 1
~(n—k)!° 0« KU (1 + k(¢ = 1))

e k=0

X / Dqco (---) [93 (A, 4,0)]* exp{i[So(A, 0,9) + g2 S4(A)]}, (2)
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where

= > = ! c)
[1+&((1-a)™ —1)]? 1+ k((1-a)2=1)""

g3

and we will set & = 1 after all calculations. The term S; is the free action functional,
S3 and S, generate, respectively, three-line and four-gluon vertices. As follows from
(1), at any values of the coupling constant g, the new expansion parameter a obeys
the inequality 0 < a < 1. For small values of the coupling constant. g, the Nth—partial
sum of the new series reproduces the Nth order of standard perturbation theory to
within O(g™V+!). In the nonperturbative region, when the running coupling constant
of QCD becomes large and perturbation theory does not work, the new expansion
parameter a remains small and the method remains still valid.

We apply these results to describe the process of ete™ annihilation into hadrons
using the renormalization scheme in which the pole quark masses are fixed. The
corresponding consideration in the MS-scheme has been performed in Ref. [12].
We will consider the range of Q = /s from 0 to 6 GeV ( like in Ref. [7] ) and
compare with experiment by using the smearing method [13]. The renormalization
scale dependence of the running expansion parameter a = a(u?) is defined by the

following equation [14]
2\ (e
sl -G e

where pp is some normalization point, ap = a(p2), I(u?/m?) is well known one-loop
integral, and the function U(a) has the following form

U(a):;15_%—121na+%ln(l—a)+%ln(1+3“)' (5)

C [U(a) — Ulao)] = 11 & —

2
2
Ko

[JLN R )

According to Ref. [13], we consider the following smeared quantity

A foo R(s)
RA(Q) - ;/0 ds (S — Q2)2 + A2 . (6)
For comparison with experimental data, we will also use the function
d Ra(g%) 1 [ D(¢* +iA) D(¢® — id)
2
= — = -7 - 7
Wal(g') dg? 21 | g2 + 1A ey (M

whéte D(g?) is the Adler function.

In Fig. 1, the smeared quantity (6) obtained in the first nontrivial order of our
approximation is shown for A = 3 GeV? (solid line). For the quark masses we use
the following values: m, = my = 0.330 GeV, m, = 0.510 GeV, m. = 1.35 GeV,
my = 4.5 GeV and m; = 174 GeV, and the parameter C = 39 that comes from meson
spectroscopy [14]. The experimental curve is taken from Ref. [7] (short-dashed line);
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we also report the theoretical results from this paper (long-dashed line). In Fig. 2
we show the analogous results for the quantity (7) with A = 4 GeV2. As can be seen,
our result obtained in the first order quite well reproduces the experimental curve.
It is of interest that the ratio we have derived almost coincides with the relevant
result of [7] obtained on the basis of optimization of the third order of standard
perturbation theory.

The 7 decay process with hadronic final states represents an important test of
quantum chromodynamics. Due to the inclusive character of the process, the ratio
R, is a very convenient quantity both for a theoretical investigation and for the
definition of the QCD coupling constant a,(M?). A detailed theoretical analysis of
this problem has been given in Ref. [15] ( see also Refs. [16-19], in which different
aspects of the problem are discussed ).

The starting point of the theoretical analysis is the expression

M? g 2 25\ =
y F(1—34—) (1+-A%3)R($),, @

where
Rs) = %[H(sﬁe) ~ (s —ie)]
I(s) = Y [Vagl'(Tugv(s) + Muga(s)) - (9)

g=d,s

The normalization factor N is defined so that in zeroth order perturbation theory
R,(,(l)n = 3. In the framework of standard perturbation theory the integral (8) can-
not be evaluated directly since the integration region in (8) includes small values of
momentum for which perturbation theory is invalid'. Instead of Eq. (8), the expres-
sion for R, may be rewritten, using Cauchy’s theorem, as a contour integral in the
complex s-plane with the contour running clockwise around the circle |s| = M2. It
seems that this trick allows one to avoid the problem of calculating the nonpertur-
bative contribution, which is needed if one uses Eq. (8). However, the application
of Cauchy’s theorem is based on specific analytic properties of II(s) or the Adler D
function

D(¢*) = ¢ (- g%;)NH(qz)- (10)

The function D(¢?) is an analytic function in the complex ¢?-plane with a cut along
the positive real axis. It is clear that the approximation of the D—function by
perturbation theory breaks these analytic properties. For example, the one-loop ap-
proximation for the QCD running coupling constant has a singularity at Q% = A%C D»
the existence of which prevents the application of Cauchy’s theorem. Moreover, to
define the running coupling constant in the timelike domain, one usually uses the

1n Ref.[20], the integral (8) has been calculated within the method of optimized perturbative
series [21].
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dispersion relation for the D function derived on the basis of the above-mentioned
analytic properties. In the framework of perturbation theory, this method gives
the so-called w?-term contribution which plays an important role in the analysis
of various processes [22-26]. However, the same problem arises: the perturbative
approximation breaks the analytic properties of A**(¢?) which are required to write
the dispersion relation. In addition, there is the problem of taking into account of
threshold effects. As follows from Eq. (8), the initial expression for R, “knows”
about the threshold. But all the threshold information is lost if one rewrites Eq. (8)
as a contour integral and uses a fixed number of flavours for the calculation of R(s)
on this contour. _

Here we will concentrate on both aspects of the problem. In the framework of
our approach there exists a well-defined procedure for defining the running coupling
in the timelike domain which does not conflict with the dispersion relation [27]. We
will use the following definitions: A*f = aqcp/(47) is the initial effective coupling
constant in the t—channel ( spacelike region ) and A¥ is the effective coupling con-
stant in the s—channel ( timelike region ). ;From the dispersion relation for the
D—function we obtain

’\eﬂ = / (s_sz) eﬂ( ) - (11)

Thus, the initial running coupling constant A*¥(¢?) is an analytic function in the
complex ¢?-plane with a cut along the positive real axis. This function does not
exist for real positive ¢2, so the definition of the running coupling constant in the
timelike domain is a crucial question. Here we use the standard definition of A% (s)
in the s—channel based on the dispersion relation for the Adler D-function. In this
case, parametrization of timelike quantities, for example Re+.-(s) or R(s), by the
function A (s) is similar to parametrization of spacelike processes by the function
A (g%).

The inverse relation of Eq. (11), given the analytic properties of A*f(q?), is of

the form

1 s+ie

X = — o= |

2mi

da?
L (12)
where the contour goes from the point ¢ = s — ie to the point ¢ = s + ie and
lies in the region where A (q2) is an analytic function of ¢®. Equation (12) defines
the running coupling constant in the timelike region which we must use to calculate
R(s) in Eq: (8).

To write Eq. (12), it was important that the function A*f(¢?) had the above-
mentioned analytic properties. For example, to use the one-loop approximation, one
needs to modify its infrared behavior at Q% = A? in an ad hoc manner so that the
sipgularity at @Q® = A? is absent in the new expression for A(Q?) . A self-consistent
formulation of the analytic continuation problem is, however, possible within the
scope of a systematic non-perturbative approach. Within this approach we can

.
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maintain the mentioned above analytic properties [27,28]. Taking the experimental
value R, = 3.552 [29] as an input, we obtain a,(M?) = 0.37 and a(M?) = 0.40.
The values of the coupling constant in the s- and t-channels are clearly different
from each other; the ratio is a,(M2)/a(M?) = 0.92.

The experimentally measurable quantity R, can be parametrized both by the
function a,(s) defined in the time-like region and entering into the initial expressién
for R, and by the running coupling constant a(¢?) used in the contour integral.
The perturbative expansion does not allow one to perform the integration in Eq.(8)
directly because it involves a non-perturbative region. Instead, one usually uses the
perturbative formula to evaluate the contour integral. However, we believe this to
be inconsistent because the analytic properties which are required to write down
the Cauchy integral are not respected by the perturbative formula. The method
proposed allows one to evaluate both the initial integral for R, and the expression
' obtained by the use of Cauchy’s theorem. Of course, as it should be, they are equal.
We have also demonstrated that the distinction between the functions a,(s) and
o(q?) is not simply a matter of the standard 72 terms, which may be important for
understanding certain discrepancies [30] arising in the determination of the QCD
coupling constant from various experiments.

The authors would like to thank A.L. Alekseev, B.A. Arbuzov, D. Ebert, H.F. Jo-
nes, A.L. Kataev, D.I. Kazakov, V.E. Rochev, and A.A. Vladimirov for interest in
the work and useful comments. This investigation was supported in part by RFFR
( project 93-02-3754 ).
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SOME METHODS OF MINIMIZATION OF‘
CALCULATIONS IN HIGH ENERGY PHYSICS

A. L. Bondarev!

National Scientific and Educational Center of Particle and High Energy Physics
attached to Belarusian State University 220040 Minsk, Belarus

Abstract

Two approaches to calculations’ minimization in High Energy Physics are
considered. The first one is the method of covariant calculations for the am-
plitudes of processes with polarized Dirac particles. The second one connects
with the possibility to reduce the expressions for the traces of products of ten
and more Dirac y-matrices.

1 Introduction

It is well known that the high order calculation of the observables within the pertur-
bative theory turns to the serious difficulties (especially, if we take into account the
polarization effects). The reason is in necessity to evaluate the traces of products
of great number of Dirac 7y-matrices. So the problems arise in the both cases of
analytical and numerical calculations of the different physical quantities (for cum-
bersomeness of their expressions). It is clear that direct calculation of the processes’
amplitudes (see Section II) is one of the chanses to turn over such a problem.

In Section III the possibility to reduce the expressions for the traces of products
of ten and more Dirac y-matrices is disscussed.

Some details can be found in the papers [1]-[3].

te-mail: bondarev@hep.belpak.minsk.by
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