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ABSTRACT

Path integral formulations for Smorodinsky-Winternitz potentials on the two-dimensional hy-
perboloid are presented. This paper is the third in a sequel, and we try to generalize the notion
of super-integrable potentials as known from flat space to the case of spaces of constant negative
curvature. We find five potentials of the sought type, and in each case we state the correspond-
ing path integral formulation. Whereas in several coordinate systems an explicit path integral
calculation is not possible, we list in the soluble cases the path integral solutions explicitly in
terms of the propagators, the Green’s functions, and the spectral expansions into the wave-
functions. Some special care is taken for the proper generalization of the harmonic oscillator on
the hyperboloid, i.e. the Higgs-oscillator, and the Kepler-Coulomb problem.






1 Introduction.

In this paper we continue our study of potential problems in quantum mechanics in spaces of
constant curvature which are separable in more than one coordinate system. For this kind of
potential systems we have introduced the notion Smorodinsky- Winternitz potentials, because
the first systematic investigation of such systems was undertaken by Smorodinsky, Winternitz
and co-workers in Refs. [9, 43, 56]. In IR* there are four potentials of the sought type [9] which
all have three constants (integrals) of motion (including energy), i.e., there are two more oper-
ators commuting with the Hamiltonian and with each other. In IR® there are five maximally
superintegrable potentials with five integrals of motion [6, 20] and 10 minimally superintegrable
potentials with four integrals of motion [6, 20, 22]. On the two-dimensional sphere we have
found two superintegrable potentials, and on the three-dimensional sphere three maximally and
five minimally superintegrable potentials [21, 22]. Generally, in D dimensions maximally super-
integrable potentials have 2D — 1 integrals of motion, respectively observables, and minimally
superintegrable potentials 2D — 2 integrals of motion (this means that the notion minimally
superintegrable and integrable cannot be distinguished in two dimensions).

Let us briefly discuss the physical significance of the consideration of separation of variables
in more than one coordinate system. The free motion in some homogeneous space is, of course,
the most symmetric one, and the search for the number of coordinate systems which allow the
separation of the Hamiltonian is equivalent to the investigation of how many inequivalent sets of
observables can be found, and there are D integrals of motion. The incorporation of potentials
usually removes at least some of the symmetry properties of the space. Well-known examples are
spherical systems, and they are most conveniently studied in spherical coordinates. For instance,
the isotropic harmonic oscillator in three dimensions is separable in eight coordinate systems,
namely in cartesian, spherical, circular polar, circular elliptic, conical, oblate spheroidal, prolate
spheroidal, and ellipsoidal coordinates. The Coulomb potential is separable in four coordinate
systems, namely in conical, spherical parabolic, and prolate spheroidal II coordinates (for a
comprehensive review with the focus on path integration, e.g., [20]).

The separation of a quantum mechanical problem in more than one coordinate systems has
the consequence that there are additional integrals of motion and that the discrete spectrum,
if it exists, is degenerate. The Noether theorem connects the particular symmetries of the
Lagrangian, i.e., the invariances with respect to the dynamical symmetries, with conservation
laws in classical mechanics and with observables in quantum mechanics, respectively. In the
case of the isotropic harmonic oscillator one has in addition to the conservation of energy and
the conservation of the angular momentum, the conservation of the quadrupole moment; in
the case of the Coulomb problem one has in addition to the conservation of energy and the
angular momentum, the conservation of the Pauli-Runge-Lenz vector. In total, these conserved
quantities add up to five integrals of motion in classical mechanics, respectively observables in
quantum mechanics. It is even possible to introduce extra terms in the pure oscillator and
Coulomb-, respectively Kepler-problem, in such a way that one still has all these integrals of
motion, however, somewhat modified [6].

In our paper [21] we extended the notion of “super-integrability” to spaces of constant pos-
itive curvature. One knows that the corresponding Higgs-oscillators (as discussed by, e.g. Gra-
novsky et al. [10], Higgs [29], [keda and Katayama [31], Katayama [37], Leemon [41], Pogosyan
et al. [51], and Nishino [47]), and Kepler problems (c.f. Granovsky et al. [11], Hietarinta [28],
Ikeda and Katayama [31], Katayama [37], Kurochkin and Otchik [40], Nishino [47], Otchik and
Red’kov [49], and Vinitsky et al. [54]) in spaces of non-vanishing constant curvature do have
additional constants of motion: the analogues of the flat space. For the Higgs-oscillator it is the
Demkov-tensor [3, 47], and for the Kepler problem it is the analogue of the Pauli-Runge-Lenz
vector in a space of constant curvature, c.f. [11, 40, 47]. It is also found that the Higgs oscilla-



tor and the Kepler problem are the only central systems [31]. However, additional non-central
superintegrable potentials might exist.

In our investigation the path integral turns out to be a very convenient tool to formulate and
solve the Smorodinsky-Winternitz potentials on the hyperboloid, and it provides the natural
way in which the analytic structure of the solutions is manifest. Separation of variables in each
problem can be done in a straightforward and easy way. There are already some studies of the
oscillator problem and the Coulomb problem in spaces of constant curvature. The oscillator
problem, including the case where additional radial dependences are taken into account, are
basically path integral problems which are related to the Pdéschl-Teller and modified P&schl-
Teller path integral. The Coulomb problem is somewhat more involved, and has been discussed
by means of path integral in spherical coordinates by Barut et al. [1] and [15]. In the present
investigation these earlier results will be used in the calculations, and no detailed derivations
will be given in these cases. The path integral calculation of the Coulomb problem on the
hyperboloid in elliptic-parabolic coordinates is completely new, and its turns out that some
results of the calculation for the free motion can be used in its solution [19].

However, all former studies have taken into account only central systems and their solutions
in spherical variables, which is obvious. Neither a systematic search for alternative descriptions
in other coordinate systems has been done, nor a search for further separable potentials. In
particular, the Holt potential with a linear term is important, because it allows the incorporation
of electric fields. The case of magnetic fields on the two-dimensional hyperboloid has been
considered by means of path integrals in [14], and it has been found that in spherical, horicyclic
and equidistant coordinates a separation of variables is possible, i.e., in coordinate systems which
have one ignorable coordinate [36], and the corresponding solutions are circular, respectively
plane waves in this (ignorable) coordinate. Depending on the strength of the magnetic field a
finite number of bound states can exist. Such investigations play an important réle in the theory
of tensor-weighted Laplacians, automorphic forms, determinants of Laplacians and zeta-function
regularization, and quantum field theory on (super-) Riemann surfaces, e.g. [19] and references
therein.

The contents of this paper are as follows. In the next section we give a short summary of
the path integral technique we are using, including for completeness to make the paper self-
contained the path integral solutions of the Poschl-Teller and modified Poschl-Teller potential.
In the third section we give an introduction to the formulation and construction of coordinate
systems on the two-dimensional hyperboloid. This includes an enumeration of all the coordinate
systems according to [19, 33, 34, 48], which separate the Schrédinger equation, respectively the
path integral. Furthermore, we list for all coordinate systems the corresponding observable, the
Stackel-matrix, the Hamiltonian, and the general form a potential must have to be separable in
the coordinate system, together with its observable.

In Section IV we present the path integral formulations of the Smorodinsky-Winternitz
potentials on the two-dimensional hyperboloid. The two most important ones are the Higgs-
oscillator and the Coulomb problem. We find three more potentials with the required properties.
One of them, the potential V3 is an analogue of the Holt potential [30], the fourth is a centrifugal
potential which does not have an analogue on the sphere or in flat space, and the fifth models
a potential which is linear in the flat space limit.

In the fifth Section we summarize and discuss our results. Here we also make some remarks
about the problem of ambiguities of the generalization of flat space potentials to spaces of con-
stant curvature. We also present a little table to illustrate the correspondence of superintegrable
potentials in two dimensions.



2 Elementary Path Integral Techniques.

2.1 Defining the Path Integral.

For the construction of the path integral in a curved space, we proceed in the canonical way
according to Feynman and Hibbs [7], Refs. [19, 24], Schulman [52], and references therein. In the
following x denote D-dimensional cartesian coordinates, q D-dimensional arbitrary coordinates,
s coordinates on a sphere, u = (ug, uy, us) coordinates on the two-dimensional hyperboloid, and
x,y, z etc. are one-dimensional coordinates. We start by considering the classical Lagrangian
corresponding to the line element ds? = g,;,dq*dq® of the classical motion in some Riemannian

space
. M ds\? M o
Lei(q,4) = —(—) = V(@) = —-gu(@)iq" = V(a) . (2.1)
2 \dt 2
The quantum Hamiltonian is constructed by means of
R’ 19 7
H = — A - _ ab — 2.2
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as a definition of the quantum theory on a curved space. Here are g = det(ga;), (¢*°) = (gap) ™",
and Arp = ¢g='/20,9%%¢'/?0, is the Laplace-Beltrami operator. The scalar product for wave-
functions on the manifold reads (f,¢) = [ dq./gf*(q)g9(q), and the momentum operators which
are hermitian with respect to this scalar product are given by
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-3 2 “ 0q°
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In terms of the momentum operators (2.3) we can rewrite H by using an ordering prescription
called product-ordering, where we assume g, = hg.h.; other lattice formulations like the im-
portant midpoint prescription (MP) which corresponds to the Weyl ordering in the Hamiltonian,
we do not discuss. Then we obtain for the Hamiltonian (2.2)

hz 1 ac cb
H = _mALB +V(q) = mh Papeh® +V(q)+ AV(q) , (2.4)

and for the path integral we have

a(t")=qa"

K(q",q5T) = / Dq(t)y/g(a)exp {%/j [ghw(q)hcb(q)q’aq’b — Vi) - AV(Ol)] dt}
a(')=q’
ND/2 N—1
= lim <2i‘ih) U /qu\/g(qk)
X exp i i %hbc(qj)hac(qj_l)Aq]‘?Aq]’? —V(q;) — AV (q;) . (2.5)
i = [26

AV denotes the well-defined quantum potential

hz ab ab ab ’

AV(q) = i [g ULy +2(9%Th) 0 + 9 ,ab] + i
Here we have used the abbreviations € = (¢ —¢')/N =T /N, Aq; = q; —qj_1, §; = 5(q; +q;-1)
forq; = q(t’ +je) (t; =t +¢€j,j =0,...,N) and we interpret the limit N — oo as equivalent
to € — 0, T fixed. The lattice representation can be achieved by exploiting the composition
law of the time-evolution operator U = exp(—iHT/h). Then the discretized path integral

(Qhachbcyab _ hacyahbcyb _ hacybhbcya) . (2.6)



emerges in a natural way, and the classical Lagrangian is modified into an effective Lagrangian
via L.pp = Lo — AV, Note that the factorization of the metric according to gu = haches
characterizes the h,. as Lamé coefficients [46], see below.

Concerning the space-time transformation technique we do not repeat the relevant formulae
once more again, and would like to refer to the literature instead, c.f. [5, 24]-[27, 38], and
references therein.

2.2 The Poschl-Teller Potential.
As we shall see, we encounter particularly in the case of the Higgs oscillator, the Péschl-Teller and
the modified Poschl-Teller potentials in our path integral problems. The path integral solution
of the Poschl-Teller potential reads as follows (Béhm and Junker [2], Duru [4], [19, 26, 27],
Fischer et al. [8], Inomata et al. [32], Kleinert and Mustapic [39], 0 < 2 < 7/2)
i M B -t 71
Dax(t - —i? - — 4 A dt
x()eXp{h/ﬂ [296 2M(sin2x —I—Coszx)

x(t”):x”

z(t)=x'

= 3 I NNgNa") (27)
n€lNg
dr _,
= Te_IET/hGgT’ﬁ)(x”,x';E) . (2.8)
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The bound state wave-functions and the energy spectrum are given by

(@) () = nT(a+pB+n+1) 1/2
P (x) = [2(a+ﬂ+2n+1)F(a—|—n—|—1)1“(ﬂ_|_n_|_1)

x (sin )* 2 (cos 2 )2 PP (cos 2z) | (2.9)

h 2
E, = m(?n—l—a—l—ﬁ—l—l) . (2.10)

The P{*#) are Jacobi polynomials [12, p.1035], and the wave-functions ¢{*#)(z) are normalized
to unity according to

/2
[ i =1 (2.11)
0

The Green’s function G5 (E) has the form

o i g— Ly — Lp)l(Lp +mi +1)
G( Bt /. Fy= — ! "
pr (2 2" E) 2h? mr(ml +my + 1)I(my — ma + 1)

" (1 —cos2z’ 1 — cos 296”)(”“_”“)/2(1 + cos 2z’ 1 + cos 2x”)<m1+m2)/2

2 2 2 2
1 —cos2z.
Xl | — Lg +my, Lp+my + 1;my —m2+1§f
1 —cos2z-
XzFl —LE+m1,LE+m1+17m1+m2+17f ) (212)

where my» = (Bt a), Ly = 1(V2M E/h —1); 2Fi(a, b; ¢; ) is the hypergeometric function [12,
p.1039], and z-, 2. denotes the larger, respectively smaller of 2/, 2.



2.3 The modified Poschl-Teller Potential.
The case of the modified Péschl-Teller potential is given by [2, 8, 19, 26, 27, 32, 39]

i M R (-1 AL
Dr(t = —’2——< L 4) dt
r()exp{h/ﬂ [QT 2M \sinh”r coshzrl }

r(t')=r"

r(t)=r’
Nmaz

— Z e_iEnT/hlb,(f’A)*(T/)lb,gn’)\)(ru)‘|‘/0 dpe—iEpT/h/l)bZ()K,A)*(T/)¢;K,A)(T//) \ (2‘13)
n=0
dr .
= —,e_lET/hGg,fI’S\T)(r”,r';E) . (2.14)
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The bound states are given by

PN (r) = NN (sinh 7)Y 2 (cosh r)" A Y2, By (=0, A — ny 14 Ky tanh®r) |, (2.15)
1 2AN—k—=2n—DI(n+ 14 &)I(A—n)]"?

NEA) —
" I'(1+ &) I'(A =k —n)n! ’
h’ 5

Here denote n = 0,1, ..., Nypaw = [5(A—£—1)] > 0, and only a finite number of bound states can
exist depending on the strength of the attractive potential trough and the repulsive centrifugal
term as well. Here [z] denotes the integer part of the real number . The continuous states are

Ad+k+1—ip k=—A+1—1ip
2 ’ 2

NN = 1 psinhﬂpr</\—|—m—|-1—ip)r<,{_,\_|_1_ip) |
: I'(1+ k) 272 2 9

sz()“”\)(r) = N;K’A)(Cosh )P (tanh ) 2, 1y ( ;1 + &; tanh? T)

(2.17)

and E, = h’p?/2M. The Green’s function GE:P’\T)(E) has the form

M F(m1 — L)\)F(L)\ + my + 1)
G(n)\) //7 /; Ey= ——
mPT(T " ) 2h2 F(ml + ms + 1)F(m1 — My + 1)
x(cosh 7' cosh /)~ =m2) (tanh ¢/ tanh /)™ +me+1/2

><2F1<—L>\—|—m1,L>\—|—m1—|— Lymy —ms + 1§72)
cosh” r.

X ok ( — Ly +my, Ly 4+ my 4 1;my + ms + 1;tanh® 7‘>) , (2.18)

where we have set m;, = L(k £+ V—-2ME/h), Ly = +(A — 1). We make extensively use of the

2
solutions of the Poschl-Teller and the modified Péschl-Teller potentials, respectively.

3 Separation of Variables and Coordinate Systems on the
Hyperboloid.

In this section we discuss separation of variables in the Schrédinger equation, respectively in the
path integral, and list the coordinate systems on the two-dimensional hyperboloid A(»),



3.1 Separation of Variables in the Schrodinger Equation and the Path
Integral.

Let us consider the time-independent Schrodinger equation in a Riemannian space

2
H\IJE—;LWALB-FV:E\IJ , (3.1)
where Apg is the Laplace-Beltrami operator as defined in the previous section. Observing that
the line-element for an orthogonal coordinate system o = (¢1,...,0p) can be written according
to
D
ds* = th(d@i)z , (3.2)

i=1

A;p can be cast into the form

= 3 1 9 £:1hk(9) 9
s ;Hlehj(g)agi( hi(e) agi) ' (3.3)

As was shown by Moon and Spencer [45] the necessary and sufficient condition for simple
separability of the Helmholtz equation, in a D-dimensional Riemannian space with an orthogonal
coordinate system p, is the factorization of the Lamé coeflicients h; according to

D D
e i), It (3.4)
such that
D D
M1,y 0i150i415 -+, 0D) = ;Tfl = fiz((i))) ) % :Efi(gi) ) hzghi(g) )
where § is the Stéckel determinant [46] )
®11(01)  ®Pi2(e1) ... Pip(or)
S = | T Bl e Swled 1 (36)
Spi(0p) Gvslop) .. Boplon)

and M, is called the cofactor of ®,;.
For the separation of the Schrodinger equation a potential V' must have the following form

V=3 ”l(li’) , (3.7)

and the separated equations are (¥ = 105...90p)

L d [ d -
7. o (fld—gz) + (Zk: Doy — ?Ji) ;=0 . (3.8)

K3

Here a; = QM'E/FL2 and a,,as,...,ap are the separation constants. By using these equations
one can construct the full set of commuting operators for each coordinate system. In [53] it was
proven that if in the coordinate system (g1, ..., 0p) the Schrédinger equation (3.1) admits simple
separation of variables that there exists D — 1 linearly independent second degree operators Iy,



k=23,...,D —1 commuting with the Hamiltonian H and with each other, and having the
form

- [ (1) +o]

i=1
The separation constants as, as---ap are the eigenvalue of these operators, i.e.,

Superintegrable systems have the property that they admit not only separation of variables
in one coordinate system, but in at least two. This has the consequence that the system has
additional integrals of motion, and that the discrete spectrum has accidental degeneracies.

The theory of separation of variables allows us the formulation of the corresponding separa-
tion formula for the path integral. Introducing the (new) momentum operators P; = 2(d,,+1T;),
I'; = f!/f;, we then can rewrite the Legendre transformed Hamiltonian as follows [23]

hz
n-r = _mALB_E
= 0 d
= ——=Y M5 +1i=—)-F
s )
oS & T 2m PTsMm
1 1, R W,
- gZ::M' [%Pi ———Z% i 92)+—(F +2F) : (3.11)

We then obtain according to the general theory by means of a space-time transformation the
following identity in the path integral (g = []h?)

Q(t”):g”

D . " .
S i oM 67
= | PewIly; exp{ﬁ [ [Z535 - avite) dt}

— (S S//) 1(1- D/Z)/ 5 h —1ET/h/ ds //H MM// 1/4
T

i=1
Q’L(s ):Q D 2

X / Doi(s)exp {h/ [—QZ + %Z a;®,(0;) — ;W(FZZ + QF;)] ds} . (3.12)

0i(0)=¢]

Therefore we have achieved complete separation of variables in the g-path integral.

3.2 Coordinate Systems on A%,

In this subsection we consider the coordinate systems of the two-dimensional hyperboloid defined
by
ur —ui —uy =ul —u’ = R*, ug > 0 (3.13)



which separate the Schrédinger equation, respectively the path integral on A(*). The notion
ug > 0 means that we consider only one sheet of the double-sheeted hyperboloid uZ — u* = R
The enumeration includes the definition of the coordinates, the characteristic operator I, i.e., the
operator which commutes with the Hamiltonian, the Stickel-matrix 5, the momentum operators
pi, the Schréodinger operator (Hamiltonian) H, and the general form of the potential which
separates in the corresponding coordinates, together with its observable (V). In the notation of
the coordinate systems we follow [48] and [55]. The Hamiltonian on A‘®) can be written as

h? ©) 1
H=H,+V(u), Hy= AP = e

- (K24 K3 -13),  (314)

where K 5 are (hyperbolic) angular-momentum operators defined by
h 0 J h J J
K= —{uy=— — Ky = —wo=— — 1
t 1 (uo 8U2 + 2 GUO) ’ ‘o 1 (uo 8u1 + U1 GUO) ’ (3 5)

and Lz is the angular momentum operator corresponding to rotations about the wug-axis, i.e.,

h 0 0

K,, K are the generators of the Lorentz transformations, and L3 is the generator of (spatial)
rotations in three-dimensional Minkowskian space. The Schrodinger equation the Eigenvalue
problem for the free motion on the two-dimensional hyperboloid has the form

hZ

() = B(u) = (p2 + %)\Il(u) . p>0. (3.17)

The spectrum is purely continuous with largest lower bound E, = h”/8SM R? [19].

For the classification of the coordinate system on the two-dimensional hyperboloid we need
the Hamiltonian H and another second-order differential operator I which commutes with H.
In the following we call the operator I corresponding to this quantum number (characteristic)
observable, respectively the characteristic operator.

In the sequel we only consider orthogonal coordinate systems on the two-dimensional hyper-
boloid. u € A® is expressed as u = u(g), where g = (01, 05) are two-dimensional coordinates
on A®. The metric tensor g, for a coordinate system can be constructed by means of

Ju; Ouy,
Gab = Zlea—gaa—gb ) (3.18)

ik

where (7;;, is the ambiente metric on A®) given by (Gi;) = diag(1, -1, —1).
The nine possible coordinate systems on A>) now are the following:

1. The first coordinate system is the (pseudo-) spherical system:
g = Recoshr | u; = RsinhTcosp |, Uy = Rsinh 7sin ¢ | (3.19)
(1> 0,9 €[0,27)). The characteristic operator is
Is =12, (3.20)

which means that in the flat space limit we obtain the polar system in IR”. The Stickel-
determinant is given by
RZ 1

sinh’T
0 1

5= =R, (3.21)




and f, = sinh7, f, = 1. For the metric we have (g,) = R*diag(1,sinh®7), i.e., hy =
R,hy = Rsinh 7, and therefore the momentum operators are given by

hro 1 h 0
th = . .22
Pr = (87’ + sco T) 9 Py i 899 (3 )
The Hamiltonian has the form
h? 0? 0 1 0?
Hy = —— th
0 2MR2<32+C0 Tor +smh 7'399)
E— <2+ . )+ - (1 ! ) (3.23)
— omrE\P T g e 8M R? sinh®r/ '
A potential separable in spherical coordinates must have the form
V
Vir, ) =Vi(1) + .Z(f) : (3.24)
sinh” 7
and the corresponding constant of motion, respectively observable, is
h 82
137 = - Lz : 2

Note that the corresponding observable on the two-dimensional sphere 5(*) has exactly
the same form. In the following the prefix “pseudo” is omitted.

. The second system is the equidistant system. It has the form
g = Rcosh i coshry | u; = Rcoshr sinh 7y | uy = Rsinh (3.26)
(11,72 € IR). The operator corresponding to this system is
Ipg = K3 (3.27)

which characterizes this system as “cartesian”-like, i.e., in the flat space limit we obtain

cartesian coordinates, and the K; operators, i = 1,2, yield the usual p; = —ihd,, momen-

tum operators. The Stickel-determinant is

RZ _ 1
cosh® 7y

0 1

5 = =R, (3.28)

and fi = coshr, f, = 1. The metric tensor is given by (gq,) = R*diag(1,cosh® 1), i.e.,
hy = R,hy = Rcosh 7, and the momentum operators have the form

hy o 1 h 0
Pr = T<8—T1 + _tanth) ) Pr, = i 87’2 ' (329)
For the Hamiltonian we obtain
n’ 0? 0 1 0?
Hy = —— tanh _—
0 2M R? (8 z Tl g on + cosh? 7, 37’22)
E— (2+ ! 2)+ " <1+ ! ) (3.30)
— M rRE\ P T ot ial Pz, 8M R? cosh® 1,/ '
A potential on A separable in equidistant coordinates must have the form
Va(T
V(r,m) = Vi(n) + 2(22) : (3.31)
cosh™
and the corresponding observable is given by
I —ma—Tzz + VQ(TQ) QM]XZ + VQ(TQ) . (332)



3. The third coordinate system is called the horicyclic system:

2 2 1 2 2 _ 1
T Rw \ = R% \ Uy = Rf (3.33)
2y 2y y
(y > 0,2 € R). The characteristic operator is given by
IHO - (I(l - L3)2 - 1(12 -I— Lg - {](1,[/3} 5 (334)

where {X,Y} = XY + Y X is the anti-commutator of two operators X and Y. In the flat
space limit this system gives cartesian coordinates. For the Stickel-determinant we get

0 -1
2
% 1

RZ

7 (3.35)

S =

and f; = fo = 1. The metric is (gq) = (R?*/y*)1, i.e., hy = hy = R/y, and the momentum
operators have the form

h 0 h(o 1
Pe = 19z Py = T(é?_y - 5) : (3.36)
Therefore we obtain for the Hamiltonian
h 2?9 1
Hy=——y* | — 4+ — | = 2 2 . .
°= "omr?’ (axz + 8@/2) QMRzy(pf +1)u (3.37)

Note that we have in this case no quantum potential AV which is due to the fact that the
metric is proportional to 1,. A potential separable in horicyclic coordinates must have the
form

Vso(z
V9) = Vily) 4 yVale) = Vily) + R (3.35)
(uo — u1)
and the corresponding observable is given by
h 97 1
vy _ _ -
IHO = —mw + V2($) = m([&l - L3)2 + V2($) . (339)

4. The fourth coordinate system is the elliptic coordinate system. In algebraic form it is

defined as

wl = R2(91 aB)(Qz - 03) 7
’ (ay — az)(az — az)
u% — RZ(Ql - a2)(92 - a2) , (340)
(ay — as)(az — az)
wl = R2(91 —ay)(ay — 09)
? (ay —as)(a; — az)
(az < as < P2 < ay < p1). The Stdckel-determinant has the form
ety —r |__w
. P(o1 P(o1 _ -0 A1
5= R 0o 1 4 Po1)P(os) (3-41)
4 Plos)  Ploo)
fi=+VP(o1), fo =+/—P(o2), and P(p) = (0 — a1)(0 — az)(0 — as). After putting
01 =a; — (a; — a3)dn2(a,k) , 00 = ay — (ay — ay)sn*(B, k') , (3.42)
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and

o2 g TG (3.43)
a, — a3 a1 — as
with the property k2 + &'* = 1, we get
o = Rsn(a, k)dn(5, k") ,
uy = iRen(a, k)en(5, k') (3.44)
K

(8
Uy = iRdn(a, k)sn(f
k

Here a € (iK’,iK'+2K),3 € [0,4K"), and sn(u, k), cn(u, k), dn(u, k) are the Jacobi elliptic
functions [12, p.910] with modulus k, and K = K (k) and K’ = K (k') are the complete
elliptic integrals with & and £’ the elliptic moduli. In the elliptic system the characteristic

operator has the form
Ip = Li+sinh” K2, (3.45)

with sinh® f as in (3.46), and 2f is the distance between the foci. Analogously as for
the elliptic system on the two-dimensional sphere we can introduce a rotated elliptic (also
called elliptic II') system [21]. Instead of a trigonometric rotation as for the case on the
sphere we must consider in the present case a hyperbolic rotation. We define

- k* a; —a 1
il :al 02:_ n2r= 3 _ 1 4
sinh” f G B cosh” f G R (3.46)
and the rotated elliptic system is then obtained by
ug cosh f sinh f 0 Ug ug cosh f + wy sinh f
wy, | = | sinhf coshf 0 uy | = | wosinh f + uy cosh f . (3.47)
Ul 0 0 1 Uy Us
Explicitly this yields
, R
Uy = 0y — O (\/(91 —az)(02 — as) + \/(91 — as)(02 — (12))

= k[t b5, K) +ien(a,ken(s 4] |

W = R (\/01 - az(gl — as)(00 — az) + \/611 - a3(91 —asz)(0s — (12)) (3.48)

Gy — a3

K N /
= R [Esn(a, E)dn(s, k") + ECH(O[’ k)en(3, k )] ;

_ (91—(11)(a1—92)_i A /
u = R\/(a1—az)(a1—(13)_ Rdn(a, k)sn(3, k') .

In the rotated elliptic system we get
Ip = cosh2fL; — Lsinh2f{K;, L3} . (3.49)

In the flat space limit the elliptic system gives elliptic coordinates in IR, and the rotated
elliptic system elliptic IT coordinates in IR*. If no confusion can arise we do not distinguish
in the following the rotated elliptic system by priming the coordinates. For short-hand
notation we also omit the moduli.

The metric tensor in each case is given by (gu) = R*(E*cn’a + K en?f) 1, ie., h? =
R2(K?cn’a 4 k*cn?f3), i = 1,2. For the momentum operators we obtain

h(i_ k?’snacnadna ) h(i_ k?snfBcenBdnf
da  kren’a 4 E’en2p/) Py 08  k2cn’a+ k' cn?p

Pao

-0 =1 ) L (3.50)
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and for the Hamiltonian we have

R’ 1 > 0
H, = - 2 2 2t 552
2M R” k2cna + k' “en?2B \ Do B
1 1 5 5 1
— 3 (pa + pﬁ . (351)
2MR \/kzcnza + k’zcnzﬁ \/kzcnza + k’zcnzﬁ
A potential separable in elliptic coordinates must have the form
V; V. V; 1%
V(a, ) = : 1(2a)-|- /22(5)2 _ 1(@1)1‘ 2(02) ‘ (3.52)
k*en?a + k'“cn?f 01— 02
The observable then is given by
IJ(E‘V) = Qz\/P Ql \/P Ql -I- Ql\/ P(Qz)i\/_P(Qz)i
2M 01— 02 002 002
n 0:Vi(o1) + 01Va(02)
01— 02
= L2 sinn? pry) 4 2Vile) TaVales) (3.53)

2M 01 — 02

Note that the corresponding observable on the two-dimensional sphere has the form

2 1 02V1(01) + 01Vo(02)
157 = (124 kL) + : 3.54
= gL 4 2R (3.51)
with 1, 05 elliptic coordinates on S [21].
. The fifth coordinate system is the hyperbolic system:
2 _ Rz(@l az)(az — 0)
’ (a1 — az)(az — az)
u% — RZ(Ql - a3)(a3 B Q2) , (355)
(a1 — as)(as — as)
W= R2(91 —ai)(a1 — 0)
’ (a1 — az)(ar — as)
(02 < a3 < ay < ay < p1). The Stéckel-determinant is given by
Tty ey |
_ P(o1 Ploy) |_ 7 01— 02
5= R 0o 1 4 Po1)P(os) (3.56)
4 Plos)  Plo2)
and fi = \/P(o1), fo = /—P(02). After putting [55]
01 = as — (ay — ag)en®(p, k) 00 = as + (ay — as)en’(n, k') (3.57)
and ay — a a, — a
=22 =2 (3.58)
a; —das a; —as

where p € (iK',iK'+2K),n € [0,4K"), we get

ug = —Ren(p, k)en(n, k')
wy = iRsn(p, k)dn(n, k') , (3.59)
us = iRdn(p, k)sn(n, k') .
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The characteristic operator is given by
Iy = K2 —sin”all , (3.60)

where sin’a = (a; — as)/(a; — as) and 2a is the angle between the two focal lines. In
the flat space limit the hyperbolic system gives cartesian coordinates. The metric tensor
has the form (g,) = R*(k%en’pu + K en’n)ly, ie., h? = h3 = R*(K*en’u + k'?en’n), the

momentum operators are

h(o k*snpucnpdnp h(o k*snncnndng
e . = = - o (3.61)
op k2en?p + k'“cn?n dn  kZen?p + k' en?n

and for the Hamiltonian we obtain

R 1 9 0
HO = — 5 3 [ _I_ R
2M R k2en?p + K cn2p \Op? — On?
1 1 5 5 1
= 7 (P, +p;) : (3.62)
MR \/kzcnz,u + ken’y g ! \/kzcnz,u + ken’y
A potential separable in hyperbolic coordinates must have the form
V(,u, 77) — Vl(:u) + V22(77) — V1(Q1) + V2(Q2) , (3.63)
kZen?p 4 E'cen?n 01— 02
and the corresponding observable is
| 0 0
Vo= P P( P(o2)7—+/—P(o2) 7
H oM 01 — 0, (92\/ (Ql \/ (01)5— ‘|‘ Ql\/ (Qz)agz\/ (Qz)agz)
n 0:Vi(o1) + 01Va(02)
01— 02
1 0:Vi(01) + 01Va(02)
= K2 —sin®al2) + . 3.64
T )4 AL (3.01)
. The sixth coordinate system is the semi-hyperbolic system:
o B (1 o= P Pl = P50, (0= ada—es) |
T2 s =P+ 7 (a1
2o L e =)+ &l(e2 —7)* +68°] (e —a)a—0s) (3.65)
o2 \¢ (a 7)2+52 [(a —7)? +67] ’
ul = R2(91 —a)(a — 0)
(=) 5
(02 < a < g1,7,0 € IR). The characteristic operator has the form
Isg = {Ky, L3} —sinh2fK} | (3.66)

where sinh 2f = (a —v)/6 and 2f is the distance between the focus of the semi-hyperbolas
and the basis of the equidistants. In the flat space limit the case of sinh2f — 0 gives
parabolic coordinates, and the case sinh 2f — oo cartesian coordinates. For the Stickel-
determinant we obtain

é? ! - 6 ) R?

14+ ,u P M1+ pia

5 = 2 SR S B 3.67

1 T P P(a) (3.67)
Yl Plps)



and fi = /P(u1), f2 = /P(p2). The special choice of the parameters a = v = 0,6 = 1
together with oy = py > 0, —02 = pz > 0 yields

2

it = (SO ) )+ 1)
- Jf [\/(1 —ipn)(1 —ips) - \/(1 +ipg ) (1 + iuz)r :

U = %2(\/(1+u?)(1+u§)—u1u2 1) (3.68)
- Jf VO =)0 i) 0 ) (1= i)
= Ry .

The characteristic operator then has the form
Isg = {Ky, L3} , (3.69)

which shows that the coordinate system (3.68) yields in the flat space limit parabolic
coordinates. Note also the relation wou; = R*(u; — p2)/2. In the following we only
consider this special choice of parameters. The metric tensor reads as (P(u) = p(1+ p*))

(gab) — Rzlul 1‘ 2 diag<P(Ll),—P(Lz)) 5 (3.70)

h? = gi, i = 1,2, the momentum operators are

h o 1 1 P’(ui))
_h 4 1 , 3.71
=3 <3m 20+ p2) A4 P() 3.7)

and for the Hamiltonian we obtain

h’ 4 0 Pl(#l)) ( 0 P'(Mz))
H, = - Plu) | 2 ¢ 2V puoy (L 4
’ 2MR? iy +uz( (“1)<3u% 2P(1,) W2\ Gz T 2P ()
_ 1 ¢ AP(u) ¢ P(w) | ¢—4P<u2>p2 ¢—4P(uz>
2M R? p A+ e M+ e p A+ e PN+ s
n’ 1 3Pl2(#l) 3Pl2(ﬂz)
+—— P - P — . (372
2MER ju + po ( = (k2) AP(p) 4P(p2) ( )

A potential separable in semi-hyperbolic coordinates must have the form

Vi(p) + Va(pa)
1+ po

Vg, pa) = (3.73)

The corresponding observable is given by

h’ 1 0 0
vy _ /p /p / /
ISH - 2“#1 + 1o ( Mo :ul :ul + P(lu2)alu2 P(MZ)a,uz)

szl(lh) - Mle(Hz)
1+ o

_I_

szl(lh) - Mle(Hz)
i + o '

L
= m{fith} + (3.74)
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7. The seventh coordinate system is called the elliptic-parabolic system. It has the form

R( (01 — a:)(a; — 05)
(

= 9\ (e = a2)*?\/(01 — a2)(02 — a2)

2
) — @2 (91 - az)(@z - az)
+\/(91 - az)(@z - az) * ¢ a; — Qs ) ’
uy = E( (01— a1)(a1 — 02) (3.75)
2 (01 - 02)3/2\/(91 - az)(@z - az)

) — @2 _ (91 - az)(@z - az)
+\/(91 - az)(@z - az) ¢ a; — Qs ) ’
R\/(Q1 - al)(ﬂh - 92)

) — Gy

Uy =

(az < p2 < a; < p1). The characteristic operator is given by
Ipp = K+ (a) —ay)K3 + L — {K,,Ls} . (3.76)

Making the special choice a; = 0,a, = —1 together with o; = tan®¥,p, = —tanh’a
(V€ (—7/2,7/2),a € R), we obtain

cosh? a + cos2 ¥
2 cosh a cos ¥
sinh” @ — sin” ¥ (3.77)

b

Uy = ’

Uy =

! 2 cosh a cos ¥
uy, = Rtandtanha .

In this case the characteristic operator has the form

Ipp=K2+ K2+ L2 — {K,, L} = —h*R*Arp + 212 — {K,, L3} , (3.78)

which shows that for this choice of the parameters the coordinate system may be charac-
terised as a polar-parabolic system. The Stickel-determinant then has the form

. C(}zspz u -1 _ g cosh” a — cos? 9

z
1 cosh” a cos? ¥

(3.79)

and f; = fo = 1. In the flat space limit we obtain parabolic coordinates. The metric
tensor is given by

2 2
B chosh a — cos” v

(9as) 2 (3.80)

and h? = g;;, 1 = 1,2. For the momentum operators we have

2
cosh” a cos? ¢

B E (i sinh @ cosh a ~tanl a) B E (i sin ¥ cos 9 ©tan 0) (3.81)
Pa = i\da cosh®a — cos? ¥ »Po = i\ 0¥ cosh®a — cos2 T
and the Hamiltonian reads
K? cosh®’acos?d [ 92 0?
Mo = =53 con? o T a0
2M R* cosh” a — cos? ¥ \ da o9
1 cosh a cos ¢ cosh a cos ¥
= (P2 +Pj) (3.82)

2M R* \/cosh2 a — cosZ ) \/cosh2 a—cos?d
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A potential separable in elliptic-parabolic coordinates must have the form

cosh? a cos? ¥
Via,9) = — [Vi(a) + Va(9)] -
cosh”™ @ — cos? ¥

(3.83)
The observable then is
n’ 1 d? d? cosh® aVi(a) + cos® IVa(9)
w0 h2a 29 Y% 1 2
bp 2M cosh®a — cos? (COS a@az - cos 09?2 + cosh®a — cos? 9
1 h? 29V, (09
= (KP4 K24 12— {K,, L)) + = “Vl(f) o cos” IVa(0) (3.84)
2M cosh” a — cos2 9

8. The eighth coordinate system is called the hyperbolic-parabolic system. It has the form

o = E( (01— a)(ar — 02)
2 (01 - 02)3/2\/(91 - az)(az - 92)

) — @2 (91 - az)(az - 92)
+\/(91 — as)(as — 02) * ¢ ) ’

ap — Qs
u = R (01 —ai)(a — 02) (3.85)
2 (01 - 02)3/2\/(91 - az)(az - 92)
n ) — @2 _ \/(91 - az)(az - 92)
(01 — az)(az — 02) ap — ay 7
Uy = R\/(Ql - al)(ﬂh - 92)
ap — az
(02 < ag < a; < p1). The characteristic operator is given by
Igp = K7 —(ay — as) K3+ L3 — {K,, L3} . (3.86)
Making the special choice a; = 0,a;, = —1 together with o cot® ¥, 0, = —coth’b
(¥ €(0,7),b> 0), we obtain
Rcosh2 b+ cos® ¥
Uy =
0 2 sinh b sin ¥
sinh” b — sin® 9 (3.87)
Uy =R—
! 2sinh bsind
s = Rcotdcothb .
In this case the characteristic operator has the form
Iyp = K? — K} + L2 —{K,, Ls} . (3.88)
For the Stickel-determinant we have
RZ
. -1 inh”b + sin” ¥
2 sin sin
5 = | sinh'b =R, 3.89
Rj 1 sinh® b sin” ¥ ( )
sin” ¢

and f; = fo = 1. In the flat space limit we obtain cartesian coordinates from this system.
The metric tensor is given by

sinh? b + sin? ¥
) =R———————— 1, , 3.90
(9r) sinh? bsin” ¥ : ( )
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and h? = g;;, 1 = 1,2. For the momentum operators we have

i ( Jd sinh b cosh b
Po

9 h( Jd sin ¥ cos ¥
0b ' sinh?b + sin®

G MUY otw) , (3.91
319+sinh2b—|—sin219 «© ) ( )

= - —COthb) s Py = —
1 1

and for the Hamiltonian we get

HO =

E*  sinh®bsin® 9 ( 0? N 0? )
2M R” sinh® b + sin® 9 \ 9b> = 0v?
1 sinh b sin ¥ 5 o sinh b sin ¥

= Pyt P . 3.92
2M R* Vsinh? b + sin’ 19( ’ 2 Vsinh? b + sin” 9 ( )
A potential separable in elliptic-parabolic coordinates must have the form
sinh® b sin” ¥
V(b,9)= —————|Vi(b) + V5(V)]| , 3.93
(b,9) = e Vi) + Va(9) (3.93)
and the corresponding observable is
n’ 1 0* 0* sinh® bV3(b) + sin® 9V, ()
v h?p 2 1sin?e 1 2
HP 2M sinh? b + sin® ¥ (sm ab? +sin av? sinh? b 4 sin® ¥
1 sinh” bV (b) + sin® 9Va(9)
= (K} KI+I1:-{KL - : 94
QM( x1 XZ—I_ 3 { X17 3})+ Sinhzb—l—sin219 (39 )
. The ninth and last system is the semi-circular parabolic coordinate system:
(01— 02)° 1 (&4 n*)*+4
=R — — — =R~
" l% ~aa - g 3Vl Wl ST
(01— 02)° 1 (& +n*)?—4
" l% o gpraVie e ST
_ _ 2 _ g2
wy= B Joma  jae _p—¢
2 @ — 0 01— a 28n

(02 < a < p1), and we have made the choice a = 0, g, = —1/5% 0, = 1/€%, £,7 > 0. The
characteristic operator has the form

Iscp = {K, Ky} — {K,, L3} . (3.96)
The Stackel-determinant is given by
RZ
= -1
S: 522 :R2£2+772 \
R £2n?

2

Ui

(3.97)

and f; = fo = 1. In the flat space limit this coordinate system gives cartesian coordinates.
The metric reads

£+n
(ga) = R? el (3.98)
and h? = g;;, 1 = 1,2. The momentum operators are
h/o £ 1) h( 0 n 1)
= =4+ S = =4+ -—, 3.99
b 1<8€ E+n € P\ T e (3.99)
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Table 1: Coordinate Systems on the Two-Dimensional Hyperboloid

Coordinate System Coordinates Separates | Limiting
Observable T Potential | Systems
1. Spherical g = Rcoshr Vi, Vo Polar
7> 0,0€[0,27) u; = Rsinh 7cos ¢ Y=o
I1=13 s = Rsinh 7sin ¢
1I. Equidistant g = R cosh 7 coshmy Vi, Va, Vs | Cartesian
T2 € R #y, = Rcosh 7 sinh 7,
I=K: Uy, = Rsinhmy
III. Horicyclic Uy = %(wz +y?+1) Va, Vi, Cartesian
y>0,zr€R ulz%(xz—l—yz—l)
I = (I(l - L3)2 Uy = Rx/y
IV. Elliptic ug = Rsnadnf Vi, Vs Elliptic
a€ (IK',iK' 4+ 2K) u; = iRcnacnf yie=o
g €0,4K") uy = iRdnasnf3
I =1L}+sinh® fK?
I' = cosh2fL% — Lsinh 2f{ K, L3} Elliptic II
V. Hyperbolic ug = —Renpeny Vi Cartesian
p e (iK' iK' 4+ 2K) u; = iRsnudnn Y=o
n € [0,4K") us = iRdnusnn
I=K2—sin"al?
VI. Semi-Hyperbolic Uy = %(\/(1 + )1+ p@3) + s + 1)M2 |V, Cartesian
o> 0 = B TF ) = s = V2| V| Parabolic
I ={K,,Ls} uy = R\ /1 fis
2 2
VII. Elliptic-Parabolic Uy = C%S?os%jz_cc(;)ss 1919 V3, V, Parabolic
_ psinh’a —sin® ¥
a € R,V €(-7/2,7/2) u = RS
I=(K,— Ly)*+ K? u, = Rtandtanha
VIII. Hyperbolic-Parabolic Uy = RCOSh2 b+ cos’ ) V. Cartesian
- HYP o= 2 sinh b sin 9 4
b>0,9¢€(0,7) w = sinh® b — sin* ¥
’ ’ L= " 2coshbsind
I=(K,— L3)* - K} Uy = Rcotdcothd
o : (& +n") +4 :
IX. Semi-Circular-Parabolic uy = R 3N Vs, Vs Cartesian
24972 _ 4 e
&n>0 w=plEET) =4 56 V=
- - n’ =&
I:{]Xl,]XQ}—{]Xz.LE;} UQIR 8577

* after rotation
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and for the Hamiltonian we have

h2 2,2 92 92
HO _725777 (_ + _)
2MR” €2+ n2\0&*  On?
1 n 2 2 n
= —_— 3.100
R Ve ) e (3.100)
A potential separable in semi-circular parabolic coordinates must have the form
&n?
V(&)= 1 [W(f) + Vz(n)] ) (3.101)
and the corresponding observable is given by
V) _ h’ 1 , 07 , 0 EVi(€) = n*Va(n)
Iser = —suara\Tam Sag) PR
M &+ n* \ " O 73 £+
1 . . Vi(€) — V-
= m({]&1,]&2} - {]ﬁzaLS}) - 5 1(§3 T Zz 2(77) . (3.102)

This concludes the enumeration of the coordinate systems on the two-dimensional hyperboloid.

In the table 1 we list the coordinate systems on A(®) which separate the Schrédinger equation,
together which potentials are separated by which coordinate systems, and the limiting cases for
R — 0.

d

4 Path Integral Formulation of the Smorodinsky-Winternitz
Potentials on A%,

In table 2 we list the Smorodinsky-Winternitz potentials on the two-dimensional hyperboloid
together with the separating coordinate systems, and the corresponding observables. The cases
where an explicit path integration is possible are underlined.

4.1 The Higgs-Oscillator.
We consider the potential (k; » > 0)

M wltui o R (kI-1  kI-—1
V. N ZRZ 1 2 e ( 1 4 2 4) 4.1
which in the four separating coordinate systems has the form
Spherical (1 > 0,¢ € (0,7/2)):
M h? 1 (k-1 k-1
Vi(u) = —-w’R? tanh’ (1 Ly = 4) 4.2
1) 2~ anhiT ¥ 2M R” sinh” 7 \ cos? ¢ + sin” ¢ (42)

Fquidistant (11,79 > 0):
M 1 h? ki -1 k3 — %
= — R2 (1 - ) ( 4 1 ) 43
2 ¥ cosh? 7, cosh? + 2M R* \ cosh? 7, sinh? + sinh? 7, (4-3)
Flliptic (v € (IK',iK' + K),8 € (0, K")):

M 1 h? k-1 k3 - %
:—w2R2<1— )+ ( L4 4 7 4) (4.4)

2 sn?adn’j 2M R* \cn2acn?f  dn’asn?f
Hyperbolic (i € (iK',iK’ 4+ 2K),n € (0, K')):
M 1 hz kZ 1 kZ 1
:—w2R2<1— - 2)+ 2( it 42). (4.5)
2 en?ucn?n 2MR” \sn?pdn”n — dn”usn?n
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The constants of motion for the potential V; are the following

1 = s (K7 o K = 12) + Vi)
I(Vl):LL2+h_2<k%_i ké—i)
’ 2M 7 2M \cos?¢  sin® /)’ (4.6)
U O ST
2M 2 cosh®my  2M sinh”

We have for V| the path integral representations (in the elliptic system we explicitly state the
separated path integral formulation, v* = M2w?R*/h* + 1/4):

KV (" u';T)

Spherical:
T tll :TII tll — 1 "
1() ‘ e(t")=e DT 2 2
= 2 / Dr(t)sinh T / Dp(t)exp ﬁ/ ?R (7% 4 sinh” 7¢" — w” tanh” 1)
T(t)=7! w(tH=yp' ¢
R’ Lo/k=1 k-1 1y 1
- - = — | |dt 4.7
2M R* (sinh27'<(:05299 * sin® ¢ 4) +4 (4.7)
Equidistant:

i (t")=1) 72(t" =74

= % / Dry(t) coshr / Dry(t)

T1(t)="1,; Ta(t')=7}

A 7 e s 2_ .2 2 1
X exp {ﬁ‘/t/ [7R (Tl + cosh S E (1 a COSh2 1 COSh2 7—2)

n’ 1 k-1 1) k2-1 1
B I A R A 4.8
IM R? (cosh2 T (sinh2 Ty + 4 * sinh® 7y - 4 (4:8)

Elliptic:

1 a(tll):all /@(tll):/@ll
= / Da(t) / D)k en’a + K en’p)

a(tl):al /@(tl):/@l
i tll M /2 . . 1
o {ﬁ / [71‘* ((’“chza et g+ ) - o (1 - Tﬂ))
Ol S
dt 4.
+2MR2 (cnzacnzﬂ * dnzasnzﬁ) (49)

e—iMw2R2T/2h i 00 . oo V(s”):y” 77(8”)277”

= ﬁ/o dT elET/ﬁ/O ds" / Du(s) / Diy(s)
v(0)=v' n(0)=n'

9 2M sn’a dn’p

+(k} — i)(ci:a + ijﬂ) — (k3 — i)(% - ﬁ))]ds} (4.10)

L ) 2 2
XeXp{%/ [%(dz—I—ﬂz)—I—Rz(kzcnza—l-klzcnzﬂ)E-l- h_((l/z_ i)< 1 k )
0

Hyperbolic:
1 u(tll):ull n(tll):nll
= / Dul(t) / Dy(t)(k*en’p + K cn’n)
p(t)=p’ n(tH=n’'
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it m 2 2.2 122 02 o2 2( 1 )
Xexp{h/ﬂ [QR((kcn,u—l—k en'm)(p”+ 7)) —w (1 o jeny

h? K — % k2 — 1+
+ 2( 4+ ) dt s . (4.11)
2MR” \sn?udn™n  dn”pusn2y

We solve the first two path integrals explicitly. The two remaining ones are two complicated to
allow an explicit solution.

The two path integral formulations of the Higgs-oscillator have a simple structure involving
Poschl-Teller (2.7) and modified Pdschl-Teller path integrals (2.14). We start with the pure
oscillator case, denoted by K“)(T), in order to demonstrate the relevant techniques involved in
the solutions.

4.1.1 Pure Oscillator Case.

Spherical Coordinates. For the oscillator in spherical coordinates the (-integration is easily
separated [19], and we obtain by using the path integral representation of the modified Péschl-
Teller potential (2.14) the following solution (v* = M?wW?*R*/h* + 1/4)
T(tll):TII Lp(tll):wll

/ Dr(t)sinh T / Dp(t)

(1= elt))=¢

L D h’ !
X exp {ﬁ /t’ [7}22(72 +sinh® 7¢? — w? tanh’® 1) — SR (1 — m)] dt}
i 5 Y
B €xp |: %LT<8MR2 —I_ R2 2):| eij(‘P”_LPI)

2 172
(R?sinh 7/ sinh T”) / w2

1

K@ ;T) = VB

7(t")y=7"

i M N T A
Dr(t — —R%*? - ( 4 _ ) dt
X / (1) exp {h /t/ [ 2 i 2M R?*\sinh?7  cosh?t

T(t)=7!

o Z [Z \Il(w /)\IJE:;)(TH,QOH) e—iENT/h +A dpe_iEpT/h\Ilz(;;) ( )\IJ( )( , )

JEZ n=0

(4.12)
The wave-functions and the energy-spectrum of the discrete contributions have the following

form (we introduce the principal quantum number N = 2n + |j| = 0,1, ... where appropriate)

(w) . Py — : —1/2 () ( . ij
v, (1,¢; R) = (2w sinh ) / Sfl )(T,R)e”’ , (4.13)
. : 1/2
]! R*T(v — [j] = n)n!

x (sinh 7)Y 2(cosh 7Y+ 277 Fy (=1, v — m; 1 4 |j]; tanh® 1) | (4.14)

with the discrete spectrum given by

h? 11, M
En=——|(N - 1) — = —w?R* . 4.15
v =g |V - - ]+ e (1.15)
Only a finite number exist with N,,.. = [v — |j| — 1] > 0. In the flat space limit we obtain for
the energy-spectrum

v hw(N +1) (4.16)
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The continuous wave-functions have the form

\IJZ(;;)(T, ¢; R) = (27 sinh T)_l/ZSZ(,")(T; R)ei% | (4.17)

1 [psinh7p (1/—|j|-|-1—ip) <|j|—l/—|-1—ip)
W(rR) = — r r
ST R = T aewe 2 2

' . Tl —ip il — 1 i
x (tanh 7)71¥1/2(cosh 1), Fy (V Flil+1=ip Jil=v 4 1p; 1+ |j]; tanh® T) , (4.18)

2 ’ 2

with the continuous energy-spectrum given by

R N M
E, = o)+ —wW'R . 4.19
In the limiting case w — 0 (v — 1/2) the potential trough vanishes (note that in this case
Eyn = 0 exactly), only the continuous spectrum remains, and we obtain the pure continuous
spectrum

n’ , 1

which corresponds to the case where just a radial part is present, and has the same feature as
the spectrum of the free motion on A,
Let us finally state the corresponding Green’s function G(Y*)(E) of the potential V; in this

case. It has the form (mlyz = (|jl £ V-2ME'R?/h), L, = L(v - 1), E' = E — h*/SMR? —
M Rw?/2)

M~ T(my — L)Ly 4+ ma + 1)
2h2 Jex 21 F(ml + ms + 1)F(m1 — My + 1)

X (cosh 7’ cosh r”)_(ml—m2+1/2)(tanh P tanh )t

G(Vl)(T//7 7_/7 99//7 99/§ E) —

1
><2F1<—L,,—|—m1,L,,—|—m1—|—1;m1—m2—|—1;—)

7
cosh’

X ok ( — L, +my, L, + mi + 1;my + my + 1; tanh? 7‘>) . (4.21)

Equidistant Coordinates. In the case of equidistant coordinates we can separate the cor-
responding path integrations in an analogous way, however, instead of a simple circular wave
dependence in the first step leading to a modified P6schl-Teller problem, we have in this case
two symmetric Rosen-Morse path integral problems [19, 39]. This yields (A = m, —v + 1, m; =
0,....,N, =v—1lma=0,....NZ =[A-1])

mae 2 mae

i (t")=7/ r2(t")=7y
1
KW 1) = / Dr(t) cosh / Dr(1)

T1(t")="7, Ta(t)=1}

. 4 M
X exp {i/ [—Rz(i—f + cosh® 7y 73)
hiJo |2

M 1 R’ 1
-—R 2(1— )— (1 ) dt
2 ¥ cosh? 7, cosh? 7 M R? + cosh? 1y

i h’ M pa 2

(R? cosh 7{ cosh r{)1/2
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2 ! v—1/2
ms=0 ma:

N@
mazx F 2 _
x { S (g — v — HyE YT I) s b2 P 2 g 7

1 (t")=7/

i 1 M ) hZ (mg—l/—l—l)z—l
X / Dri(t) exp [ﬁ /t/ (7R2T12 + 2M R? cosh? 72'1 ")

T1(t")="7,

/
R

W
cos? Tty 4+ sinh” 7k

1 (t")=7/

it (M. R kP41
. / Pr(t)exp [ﬁ/t (7R2T12_2MR2cosh2j'1 o

T1(t")="7,

Plik_l/z(tanh Té’)Plf_i’i/z(tanh Ty)

NG (Ve
=2 { S NI (2 1 R, (7.7 )

m3z=0 my=0
b [ dpem BN (o s B R)}
—I-/ dk/ dp e_iEPT/h\IJﬁ)(T{', Ty R)\I’;(;;)*(T{a o3 R) . (4.22)
0 0
The P¥(z) are Legendre functions [12, p.999]. The discrete wave-functions are given by
\115,;"1>m2(71,72; R) = (coshr) Y28, (713 R) o, (7)) (4.23)
F(QA —m ) mi1—A
Sml(Tl; R) = \/(ml —_— %)Wlll P/\_1/2+1/2(tanh Tl) 5 (424)
I'(2v —m s — v
Vo (T2) = ¢(m2 -V - %)% PV_1/2+1/2(tanh T2) (4.25)
and the discrete spectrum has the form
h’ 11 M
EN:_W[(N_V—I_l)z_Z +7W2R2 5 N:m1+m2 . (426)

The bound state energy-levels have exactly the same feature as for spherical coordinates, as it
must be. Note that the Legendre functions are actually Gegenbauer polynomials. The continu-
ous wave-functions consist of two contributions, first where the quantum number corresponding
to 75 is discrete, second where it is continuous. For the first set we obtain

\111(,22(7'1,7'2; R) = (cosh Tl)_l/ZSp(Tl; Ry, (1) (4.27)
1 psinh 7p :
S i R)= — pPY tanh 4.28
p(715 B) R¢cos2 A+ sinh®7p ’\_1/2( anh7) ( )
with the t,,,(72) as in (4.25), and the continuous spectrum is given by
R N M
E, = 24 —w?R? . 4.2
r QMRZ(p+4)+2“R (4.29)
The second set of the continuous wave-functions has the form
\IJEJ;,)(TDTQ; R) = (cosh Tl)_l/ZSp(Tl; R)r(7a) (4.30)
1 psinh 7p :
S (r;R) = — P (tanhm) | 4.31
(715 R) R\/cosh2 7k + sinh’ 7p 1k—1/2( anhm) ( )
ksinh 7k .
= P* o (tanhTy) | 4.32
Vel2) ¢cos2 Tv + sinh® 7k - p(tanhms) (4:32)
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with the same continuous spectrum as before. The discrete energy-spectrum in the flat space
limit yields again

Ey ~ho(N +1) , (4.33)

the continuous wave-functions vanish, and the discrete wave-functions yield Hermite polynomi-
als, i.e., the well-known result of the two-dimensional oscillator.
The corresponding Green’s function in equidistant coordinates finally has the form (F’ =

E —h’/SMR?* — M R*w*/2)

M
GVl B = —(cosh 7{ cosh )Tl

h

2 m2!

N
e (20 —
x { S (= v — 1y EELZ ) poracytf2 gt 1) s tan 1)

mo=0

1 1 1 1
XF(ﬁV —2MR?*E" — A\ + §)F<ﬁ\/ —2M R?*E/ + A—I— 5)

) P by, ) PO (< i)

/
R

- 2
cos? v 4+ sinh” 7k

Plik_l/z(tanh Té’)Plf_i’i/z(tanh T5)
1 1 1 1

X R;\_/l_/zszEl/h(tanh T1 < )R;\_/f/zzMRQEI/h(— tanh 7 5 )} . (4.34)

4.1.2 General Case.

In order to deal with the general case, we do not repeat the whole procedure once more. The
separation of variables in each case is performed in exactly the same way, and the evaluations
of the path integrals are similar in comparison to the simple oscillator case, the difference being
that the entire structure of the (modified) Péschl-Teller potential must be taken into account.
In particular, this has the consequence that we have to consider wave-functions with a definite
parity.

Spherical Coordinates. First we consider the path integral representation in spherical co-
ordinates and we obtain (N = m +n € IN is the principal quantum number, we have set
M o= 2md k4 ky + 1,07 = M?W?R*/R® + 1/4; the range of the coordinates is given by
T>0,p€[0,7/2]

[eS] Nmax
K(Vl)(u”,u’;T) — Z { Z e_iENT/h\IJ%;)(TH,QOH;R)\IJS;;)(T/,QO/;R)

m=0 n=0

—I—/O dpe_iEPT/h\IJZ(,Z;)(T”,cp”;R)\IJZ(,‘;;)*(T',@';R)} , (4.35)

and the corresponding discrete wave-functions have the form

VD7, @3 R) = (sinh 7)7/2G000 (7 R)glFr=*0) () | (4.36)
mil(m+ k) £k, +1) 12

Fl+mzk)I'(1+m=+ kz)]

1/2ik1P,§fk2’ik1)(cos 2¢) (4.37)

PERER) (o) = 21+ 2m £ ky £ ko + 1)

1/2:|:k2(

X (sin ) cos )
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1 |:2(Z/—A1 —2n— D)I(n+14A)(v —n)]"?
I'(1+A) RI(v — Ay —n)n!
x (sinh 7)1 (cosh )" T2V Fy (—n, v — ny 1+ Ay tanh® 1) . (4.38)

ST(LAI’V)(T; R) =

The discrete energy-spectrum is given by

hZ
2M R*

ENI—

> 11 M
[(QNiklikz—z/+2) —Z]Jr?w?R? o N = [Er=A—1)] . (4.39)

In the limit R — oo (¥ — MwR?/h) we obtain

which is the correct behaviour for the corresponding two-dimensional maximally super-integrable
Smorodinsky-Winternitz potential in IR* [20]. The continuous wave-functions and the corre-
sponding energy-spectrum are given by (the ¢(¥F2%k) () are the same as in (4.37))

1 . — 3 1,V + 2:|:
W (7,1 R) = (sinh 7) 71250075 R)GEEE=5 () (4.41)

1 psinhzp /v —XA +1—1ip M—v+1—ip
v R = 5o e 2 2

. M+ 1—ip A — 1—i
x (tanh 7)1/ 2(cosh )P, F (V T ;_ 1p7 L7 ;_ 1p; 14 Ay;tanh? T) , (4.42)

R’ N M

The corresponding Green’s function Y*)(E) of the potential V; in the general case has the
form (my 5 = (\ £ V=2METRZ/R), Ly, = L(v = 1), B = E = 1*/SM R* — M R**/2)

G(V“(T” ¢, ¢, E)
T(mi — L)T(L, +m; + 1)
(ko xk1)(, 1\ A(Lko,£k)(, 11 1 v v 1
T oon” m%;% P (') (¢ )r(m1 + mq + DI (my —my + 1)

X (cosh 7' cosh r”)_(ml—m2+1/2)(tanh # tanh T//)m1+m2

1
X2F1<_Ly+m17l/y+m1+1;m1 m2—|—1 Shz)

><2F1<—L,,+m1,L,,+m1+1;m1—|—m2+1;tanh 7‘>) . (4.44)

Equidistant Coordinates. Next we consider the equidistant coordinate system. Similarly as
in the pure oscillator case we obtain a discrete spectrum with energy eigenvalues (4.39), and a
set of two continuous wave-functions each with energy-spectrum (4.43), with principal quantum
number N = m4n, i.e., we have for the propagator (A, = 2m+k, £k, +1,0% = M2W>R*/h*+1/4,
and 7y 5 > 0)

N (NS,
KO Ty = Y { Y e BT ol R (e, 74 R)

m=0 n=0

+ [ dpe—iEpT/w;,mrf,r;;R)\vémr{,r;;R)}
[k [ ape BTG s R (L ) (4.45)
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Here denote N{1), = [$(vF ki —1)], N{2), = [3(A1 F k2 —1)] the maximal number of bound states

max max
for the wave-functions in 75 and 7, respectively. The discrete wave-functions have the form

UV (7, 13 R) = (cosh ) ~H/28 k22 (1 Ryp(ERL) (7)) (4.46)
1 [2(/\1 Thy—2n— DT(n+ 14 k)TN — n)] 1z
x (sinh 1) %2 *2(cosh )" T2 By (—ny Ay — ng L kgstanh® 1) L (4.47)
1 [Q(V:Fkl—Qm— 1)F(m+1ik1)F(V—m)]1/2
I'(1+ k) I'(v F ki — m)m!
x (sinh 75) 7 (cosh o)™ 27Y By (—my v — my 1 & kyjtanh® 1) o (4.48)

ST(Lik2’>\l)(T1; R) =

¢(ik1 y)( 2)

The first set of continuous states is given by

\Ilzgr;l)(ﬁﬂ'z% R) = (coshr)” 1/25(ik2 . )( )¢(ik1 V)( 2) s (4.49)

1 psinh p /\1:Fk2—|—1—ip) (:l:kz—/\l—l—l—ip)
(£k2,A1) . — T T
S B = wa g\ e ( 2 2

. AMtho+1—ip 1£ky— A =i
X(tanhﬁ)l/ZikQ(coshTl)lszl( 1 £ 2; 1p7 £ s 5 - lp;lj:kz;tanhzrl) , (4.50)

and the ¥{FF1")(1;) as in (4.48). The second set is given by

Tt (7, 73 R) = (cosh ) T2GERE) (0 Ryl (1) (4.51)

. 1 psinh p ik:}:kz—l—l—ip) (:l:kz—ik—l—l—ip)
(Lko,ik) . — T T
S B = s\ e ( 2 2

: iktkot+1—ip 14+ky—ik—i
X(tanh7'1)1/2ik2(COShT1)1p2F1(1 ks T ip 1k~ lp;lj:kz;tanhzﬁ) , (4.52)

2 ’ 2
(:I:kl,y)(T) 1 ksinh 7k (V:Fk1+1—ik)r<j:k1—y-|-1_jk)
g YT T+ k) 272 2 2
~ ki +1—ik 1£k —v-—ik
x(tamha)l/zi’“(coshw)”“zFl(Vi o sy nm;mnh%) . (4.53)

Let us remark that the wave-functions have been normalized in the domains ¢ € (0,7/2)
and 7 > 0 in the spherical and in 7, » > 0 in the equidistant system. The positive sign at the
k; has to be taken whenever k; > % (i = 1,2), i.e., the potential term is repulsive at the origin,
and the motion takes only place in the denoted domains. If 0 < |k;| < %, i.e., the potential term
is attractive at the origin, both the positive and the negative sign must be taken into account
in the solution. This is indicated by the notion £k; in the formulae. It has also the consequence
that for each k; the motion can take place in the entire domains of the variables on A, In the
present case this means that we must, e.g., in the equidistant system distinguish four cases: i)
T, T > 0,1i) 7 >0, 75 € R, iii) 7, € R, 75 > 0 and iv) (7, m) € IR*. In polar coordinates
the same feature is recovered by the observation that the Poschl-Teller barriers are absent for
k| < £

In elliptic coordinates this feature is taken into account in the following way: Due to a €
(iK’,iK’ + K), we have that sn(a, k),ien(a, k) > k' /k, idn(a, k) > 0, and we see that for

€ (IK',iK'+ K), p € (K',4K"), and ug > 0 the variables u;,u, change their signs in four
domains, i.e., § € (0, K'),5 € (K',2K"),5 € (2K',3K"), and g € (3K',4K’). We then have for

a#0

sn(0, k") = sn(24", ) =sn(4K",k')=0,
en(K',E') = cen(3K", k') =0, (4:54)
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and dn(3,k") > 0, § € [0,4K’). For convenience, we have made the choice § € (0, K’) in
the following. The situation is similar in the hyperbolic system, where we can choose p €
(iK' iK'+ K),n € (0,K").

This has the following consequences for the degeneracies of the Higgs oscillator on the pseu-
dosphere. If 0 < k;» < % we have for each N = n + m four possibilities of parities of the

2
levels, i.e. (£, 4); for the cases 0 < k; < Land ks > Lor0 < ky < Land#k > L we have for

each N two possibilities: (£); for k; 5 > g there is 01121y one possibilizty: (+). In2 all cases the
degeneracyisd=N+1=2j4+1(j =0, %, 1,...), coinciding with the dimensions of all relevant
discrete irreducible representations of the group SU(1, 1). In effect, the negative signs lower the
potential energies, and the respective spectrum as well. This is exactly the same behaviour as
in the two-dimensional singular oscillator in the flat-space case [9, 20, 21], and we will keep this
notion in the sequel for all following Smorodinsky-Winternitz potentials.

The Green’s function of the potential V; in equidistant coordinates can be constructed by
inserting the corresponding one-dimensional Green’s functions in the variable 7 into (4.22, 4.45).

We obtain (E' = £ — h*/SM R> — M R*w?/2)

GYO(rl 7l 1, 7l E) = (cosh 7! cosh /") ~1/?

N
’ { S e e () Gy (s E)
m=0
+/0 dke g (7)) z(cikl’y)*(Té)Gﬁfzf%’ik)(T{'aT{;E')} v (459)
in the notation of (2.14, 2.18).

4.2 The Coulomb Potential.

We consider the generalized Coulomb potential on the two-dimensional pseudosphere in the four
separating coordinate systems

M=ot )y it B bt (4.56)
)= —=|— - .
: R\ \Ju} + u? AMA/ui +ud \Vui +ud+uy  Jud +ud—

Spherical (1 > 0,9 € (0,7)):

h k-1 k-1
Vo(u) = —%(cothr - 1)+ ( . 2; + -2 4) (4.57)
2

8M R?sinh’ 7
Elliptic-Parabolic (a > 0,9 € (0,7/2)):
a [ cosh® a + cos? 9 R cosh®acos’d [(ki-+ k3—1
- R (cosh2 a—cos2d ) + 2M R? cosh® a — cos? ¥ ( sin®9  sinh? a)
Flliptic 11 (algebraic form, 0 < g5 < a; < p1):

_ \/(91 —ay)(01 — as) — \/(92 — ay)(0s — as) 1
R 01 — 02
— — 1 1
koL (a1 — ay)(ay a3)< . )
[(1 ? 2) 01— 02 ay— Q2 01—
—(k? - kz)\/(al — as)(a1 — a3) . V(02 — a)(0s — as) + /(01 — az)(01 — as)
' ’ Gy — a3 01— 02
FElliptic 11 (Jacobi elliptic function form, o € (iK',iK' + K ), € (0, K")):

a (kzsnacnﬂ — k'cnfdng 1)

(4.58)

2

i

] (4.59)

R Elen?a + k’zcnzﬁ
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k' k?snacna + KenfBdng

k2 — k23— 4.60
)+ - k)] kzcnzwk,zcm] (4.60)

h* k2 + k3 -1 ( k* 1
4M | k2cn?a + Een?B \dn’a  sn2f3
Semi-Hyperbolic (1, ps > 0):

__g(\/1+u%+\/1+u§ _1)

R p1 Tt o
h? 1 11 Vit 1442
o k2+k2—l<—+—)+ E? — k2 L_ 2 . (461
4MR2 qu _I_ILL2 [( 1 2 2) qu ,UJQ ( 1 2) qu ,UJ2 ( )

For the constants of motion for the potential V5 we get

1" =

(K K- 1)+ Vil
1 B (k2 -1 k21

I§V2):—L§—I-— ‘124_|_ 2 4 ,
2M 8M \ sin” £ cos? £

a fia/1+ pf — g1+ 3 (4.62)

I
Ig(;V2) — m{lglvl/?)} —

R p1 Tt o
AMR? |70 P\ b fir tis(pr + fiz)

The path integral formulations have the following form
KY2)(u" u';T)
Spherical:

t” — H t” — H
i sarre ) p(t")=p :

tll M
= / Dr(t)sinh T / Dp(t)exp {ﬁ / [7]%2(7;2 + sinh? ré?)
m(t)=r’ e(t)=y' K

hZ kZ 1 kZ
-I-%(cothr—l)— ( L4 2

_1 1
1 _—|dt 4.63
8M R2sinh® 7 \ cos? % + sin? % 4 ( )

Elliptic-Parabolic:

1 a(t”):a” ﬂ(t”):ﬂ” h2 9 19
COS a — COS
== / Dal(t) / Do(1)

a(t’):a’ ﬂ(t’):ﬂ’

it M h®a — cos® ¥ ; h’ 29
« exp {%/ [—Rz cosh”a — cos (@2 + 9%) + o (cos a4 cos”v 1)
tl

7
cosh” a cos? ¥

7 7
2 cosh” a cos? ¢ R\ cosh“a — cos? ¥

2 2 2 L2 _ L k2 _ 1
h cosh” a cos? ¥ ( [ 4)](%} (4.64)

" 2MR? cosh®a — cos? 9 \ sinZ 9 sinh? a

Elliptic II:
O((tll):all /@(tll):/@ll

1 /
= 2 / Da(t) / DH(1)(ken’a + K en’B)
a(t=ar s(e=p
iMoo, 2 . . a [ k*snacnf — K cnfdnf
o - kZ 2 k‘/ 2 2 2 - -1
Xexp{h/ﬂ lQR( cna+ k' en®p)(a -I-ﬂ)-l-R( ken’a + ken?

h* b+ k3 — 5 ( k" 1 ) o kz)ﬁ k?snacna + K cnfBdnf it
AMR? \ k2cn’a + k" cn?f \dn’a  sn2f3 ! 'k kZen2a + k?en?p

(4.65)
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Semi-Hyperbolic:

pa(t")=pl pa(t)=py

1 py + peo
N U Tt o

pa(t)=pq pa(t)=pq

< exp i_/t” Y Y O U S SN GV i VA T B
hiJu | 2 4 Plus)  Plp) R M1+ po
R’ 1 11 1+ 2 1+ 12
(0= p(e D)o (LR - YIEE))

AMER? M1+ o

M1 o H H2
n’ 1 3Pl2(,u1) 3Pl2(ﬂz)
P e— P - P - + dt ;. 4.66
2MR® iy + oo ( ) (hz) AP(p1) 4P(p2) ( )

4.2.1 Spherical Coordinates.

In order to solve the Coulomb problem in spherical coordinates we start by separating off the
@-path integration which yields (A = m 4 (1 £ ky £ ko))

]((V2)(7—” y 99” 99’-T) o ihT/8MR Z ¢(ik2 ih)( )(b(:l:kz ik1)<99_//)
oo R?(sinh 7/ sinh 77)1/2 £ 2 2

r(t'")=r"

i oM o B2 A2 1L
Dr(t - —R**4+ —(cotht — 1) — —=2 4 \qty . (4.
8 ()/ T()eXp{h/ﬂ [QRT TRl =) QMstinhZT] } (4.67)
T(t)=71'

Here denote the ¢{ff=%1) the Poschl-Teller wave-functions of (2.7)

m!T(m £ ky £ ky + 1) ]1/2

© 1/2+k, © 1/2%k
X (sin 5) (cos 5) PER2ERD) (005 0) (4.68)

The remaining 7-path integration, denoted by K{V2)(T) in the following, is of the form of the
Manning-Rosen potential, which in turn can be transformed into the path integral problem of
the modified Pdschl-Teller problem. This has been done in [1, 15], and will not be repeated
here. The corresponding non-linear transformation has the form

1

-
sinh” r

G2 (%) - [U +2m £ ky k1)

%(1 —cotht) = (4.69)
accompanied by the time-transformation dt = ds, with f(r) = R? tanh® 7. In some sense this
transformation can be seen as a one-dimensional realization of the Kustaanheimo-Stiefel transfor-
mation [5, 38] corresponding to a space of constant negative curvature. It maps the path integral
(4.67) via a space-time transformation into the path integral of the modified Pdschl-Teller po-
tential which can be transformed by a simple rearrangement into the path integral of the radial

Higgs-oscillator. The result has the form (N = 0,1,2,..., Npao = [VR/a =M — L],a = B*/Ma)
Nnax 00
K, 75T) = 3 e B s0 ) g [dpe T () 509 )
= (4.70)

with the discrete and continuous energy-spectrum, respectively, given by (N =N+ M+ %)

\T 1
SN2 L Ma?

—h -, (4.71)

E . (84
NTOR IMR?  9h2N2
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E, = " <2+1) (4.72)
v = oomrr\P T1) ‘

The bound state wave-functions have the form (ox = a/RN)

SYrR) =

9A1+1/2 o3 — N2 F(N + A4+ %)F(UN + A+ %) v
TR\ + 1) R2N? T(N = A)T(on — Ay)

' G 1 2
X (sinh T)’\l"'l/ze”("N_N)zFl ( —n, A + 3 +on;2M0 + 1; m) . (4.73)

The continuous wave-functions are (]5 = \/QMRz(Ep — a/R)/h)

20/2)(p=P)+ +1/2 [psinh p 1 i i
(Va) (7, = C{\+=+=(p- )F(A ——=(p )
SV (7 R) T ) VE <1+2+2(p p) 1+ 55 +p)
X (sinh 7')’\1"'1/2 exp [T (%(ﬁ +p)— A — %)]
xF(A s o i — ) (4.74)
241 1 9 2p P) A 9 2p P); 1 71—|—COthT . .

The complete wave-functions of the generalized Coulomb problem on the two-dimensional pseu-
dosphere in spherical coordinates are thus given by

V(g R) = (sinhr) S0 (s RyolE ) (2] (4.75)
Ve ) = (sinh ) S (s Ry (2) (4.76)

The Green’s function of the Coulomb problem has the form

o0 / 7
GV 2 S EY = (sinh ' sinh 7)1/ (ik2,1k1)<£) (ikQ,ikl)CP_)
(7", 7', ", " E) = (sinh 7' sinh 7"") mZ::qum 5 s 5
hz F(ml ‘I’ mo ‘I’ 1)F(m1 — My -I— 1)
( 2 2 )(m1+m2+1)/2<coth 7 —1 coth7t” — 1)(m1_m2)/2

cotht +1 " coth 7 +1 coth7 +1 " coth 7 +1

cothry — 1
><2F1<—LE—|-m1,LE—|-m1—|—1;m1—m2+1;m)
2
><2F1<—LE—|—m1,LE—I—m1 —|—1,m1—|—m2—|—1,m) 5 (477)

where Ly = L(\/-2MR2E/R® + 1/4/h — 1), and m1» = A = /—2mR*(2a/R + E) — 1/4/h.
This representation can be derived by means of the Green’s function of the modified P6schl-Teller
potential and the Manning-Rosen potential, c.f. [19] for some details and references therein.

Let us make some remarks concerning the pure Coulomb case. The calculation is almost
the same with only minor differences: The wave-functions ¢5nik2ikl>(§) are replaced by circular
waves, i.e., /¥ /y/21 with o = [0,27). This then has the consequence that the modified angular
momentum number has the form A; = |j|. Everything else remains the same.

4.2.2 Elliptic-Parabolic Coordinates.

In order to deal with the path integral (4.64) we perform a time substitution dt = ds(cosh”a —
cos®¥)/ cosh® a cos? ¥ds according to, e.g., [19, 26, 38] and references therein, such that the new
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pseudo-time s” can be introduced via the constraint fos” ds(cosh” @ — cos®¥)/ cosh” a cos® ¥ =
T =1"—t. We therefore obtain
JE - a(s'")=a" d(s')=0"
KEY2D(a" o' 0", 9;T) = _IET/E/ ds” / Da(s) / DY(s)
0

R 2Th
a(0)=a’ 4(0)=9’

i M ., Rk - pr-1 kI-L1 -1
_ T 192 _ 4 4 . 2 d n
Xexp{h/o [2 (6" +9%) 2M(sin219 + cos? 9 +sinh2a cosiZa 15 (4.78)
where §° = i - QMERZ/hzvl/Z = i + 2M R*(2a/ R — E)/h2 The analysis of this path integral

is rather involved and we first consider the pure Coulomb case, denoted by K(®(T).

Pure Coulomb Case. We observe that in the pure Coulomb case the path integral (4.78)
yields a symmetric Poschl-Teller potential path integral in ¥ € (—x/2,7/2), and a symmetric
Rosen-Morse potential path integral in ¢ € IR. The solution consists of two contributions
corresponding to the discrete and continuous spectrum, i.e.,

I((Q)(aﬂaalaﬂﬂvﬂ/;T) K o (a a 19// 19/ )—I_ ]‘cont (a//7a/719//719/;T) ? (479)

disc.

— Z e —i m1m2T/h\IJ(a) (a’,ﬂ’;R)\IJ(“) ((Z“,ﬂ“;R)

mimo mims
mimaz

+ /0 dk /0 dpe BTG (o 0 R)UE (9 R) . (4.80)

In order to obtain the discrete spectrum contribution to (4.78) we insert the spectral expansions
of the discrete spectrum of the symmetric Pdschl-Teller and and the symmetric Rosen-Morse
potential. This yields

K\ (a,a 0" ,9;T)

disc.

_ dE 1ET/h 1" h 1N\2|
e S [T e { = gapplimi+ 043 —m v 437}
2 1
cos ¥ cos 9" (my + B+ 3) Fm, —In_z 'ﬂ + )Pﬁ+ml(51n19 VPyon (sind”)
1
X(my — v — E)MPﬁi_/;H/z(tanha )P, m21/;+1/2(tanh a’ . (4.81)

m2!

Performing the s”-integration gives the quantization condition for the bound states:
(mo—v+3)=(m+5+1)7, (4.82)

and therefore the bound state energy-levels have the following form (N = (m; + m,)/2 is the
principal quantum number)
a SN+ 1) -2 Ma?

Ev=——-h —
YTR 2M R? 23N + 1)

(4.83)

Considering the residuum in (4.81) we obtain the bound state wave-functions

1 (MaR
2R2\ B*N?

mima m1! B-1/2

1/2
Ul (a,0;R) = [ - 1) (my — f— %)M] PP 2 (fanh a)

p-v

mao+tv

(sind) . (4.84)

m2!

I'2v+ms+1) v
xl(mz+v+%) B ]
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The analysis of the continuous spectrum is somewhat more involved. We proceed in a similar
way as in [19], where the same calculation was done for the free motion in elliptic-parabolic
coordinates on A®). We obtain by using the Green’s function representations of the symmetric
Péschl-Teller and and the symmetric Rosen-Morse potential [39]

a(t”) a’ l?(t” —y'

2 2
Da(t / Dt cosh a — cos 9

7
cosh” a cos? 9

a(t')= P(t))=0
i [ M cosh®a — cos?d a [ cosh? a + cos2 ¥
X - —R? 2 —1]|dt
exp{h/ﬂ [2 cosh? a cos? ¥ ( + )—I_R(coshza—coszﬂ )] }

a(s”):a” 19(5”):19”

_ dE —1ET/h ~ "

= | 9e /0 ds / Da(s) / DI(s)
a(0)=a’ 19(0)—19’

i $! M . hZ ﬁZ 1 1/2 _ 1
i 92 41d
X exp { R / [ 2 ( +97) - IM cos? 19  cosh? a] §
— 1 —1ET/E/ /// dE/e—iE's”/h
2 27rh 27

X?v cos V¥ cos V' T(f — Mg )\T(Mg: — 3+ 1)PJQZ,(— sin 0<)P&Z,(sin vs)

&0 dk ksinh 7k o
« / SlIl‘ T . Plk 1/2(€tanh a”)Py lﬁ/z(Gtanh a/) e—lhk s"[2M \
/o cos?wyv 4 sinh” 7wk
Ham1) . (155)
with Mg = =1+ + V2M E'/h, and we have written the kernel K E?gt (s”) according to
K Emzt (a//7 a/7 19//7 19/; 8//) — Ka(a”, a/; 8//) . ](19(19//, 19/; 8//)

1 dE'" i
= 5](a(a//7 a/; 8//) . - %e—lE s /7?,G119(19//7 19/7 E/)
1 dE' ...
R0 - [ SR IG (aa BY L (4.86)

and, of course, both contributions must be taken into account which turn out to be equivalent.
Note that (4.86) actually corresponds up to the additional dF-integration to the continuous
part of the Green’s function G(®)(F), whereas (4.81) corresponds to its discrete contribution.
The Green’s function expression (4.86) is evaluated by means of the relation for the Legendre
functions [42, p.170]

~ (v—p+1) 2 i
P B = PN - -~ (=
S = e [ ) osTie 20uy sy
Ty —p+ DsinmpP(y) + sin7v P (—y) (4.87)
T(v+p+1) sinm(v+ p) ‘

Thus we obtain for the ¥-dependent part along the cut 3 = —ip, where E = h*(p* +1/4)/2M R?

1 * / 1 . . 1 . /
eV, () o —[T(5 ik +Ip)T(3 = ik = ip) PE_, (= sin 0”) P o(sin )

TG+ ik =)D = ik 4 ip) P, o sin ") P, o(sin )|

psinh 7p

= cosh®rk + sinh® 7p Ezizl ik—1/2(€8in )P p1/z(€ sind') . (4.88)
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We must insert the representation (4.86) into (4.85), and we find that the ds”dE’-integration

gives ' = —h’k?/2M. Hence we obtain the following wave-functions and energy-spectrum of
the continuous spectrum (p* = —v?,p? = —f% ¢,¢ = +1)
1 inh 7pk sinh 7k

WEﬁ,}(a,ﬁ;R) _ 1 i p‘sm2 7pk sin 27r N

’ R\ (cosh” mk + sinh” wp)(cosh” 7k + sinh” 7 p)
xVeos v PF_ 1/2(€Sln19)]31p 1/2(€ tanha) | (4.89)

5 1

E, = T+ 4.90

Generalized Coulomb Case. To analyze the general case we proceed in an analogous way.
For the discrete spectrum we expand the d-path integration into Péschl-Teller potential wave-
functions ®{E#1#) (), and the a-path integration into the bound state contribution of the modi-
fied Péschl-Teller potential wave-functions 1{**2*)(a) of (2.14). The emerging Green’s function

representation G2) (E) of K42} (T) has poles which are determined by the equation

disc.
Cnit ki +8+1)° =C2nat ks —v+1)° . (4.91)

Solving this equation for F, ,, vields exactly the energy-spectrum (4.71), with the principal
quantum number N = ny +n, + 1+ %(:Hcl + ky). Taking the residuum gives the bound state
wave-functions.

For the analysis of the continuous spectrum we proceed again in an analogous way as for
the pure Coulomb case, the only difference being that we must insert now the entire Green’s
functions of the Pdschl-Teller (2.7) and modified Péschl-Teller problems (2.14), instead of the
corresponding symmetric cases. For this purpose one constructs the Green’s function G(V2)(E)
in elliptic-parabolic coordinates by considering the ds”-integration following from (4.78) with
the solutions of the Poschl-Teller and modified Péschl-Teller potential, respectively. It can be
put in the following form (c.f. also [19] for some more details concerning the proper Green’s
function analysis)

CTV(VQ)(Q//7 a/7 19//7 19/; E) Z Qb(:l:kQ y)( //)Qbr(l:l:k%y)(a/)GygD:I:Tkl,ﬁ)(19//7 19/; E/)

E'=h?(2n1tk14+6+1)?/2M R?

/ dk¢(ik2 1/) )le(c:tkg,l/)*(a/)ngﬂ/:Tkl,ﬁ)(ﬂ//719/;E/)

E'=—h2k2/2M R?

+ [approprlate term with ¢ and ¥ interchanged] , (4.92)

in the notation of (2.7, 2.12, 2.14) and (2.18), respectively. Analyzing the poles and cuts in a
similar way as for the pure Coulomb case we therefore obtain with £y asin (4.71) and £, as in
(4.72)

I((V2)((l//,(l/,19//,19/;T) — Z e—lENT/h\IJ(VQ ( //719//; R)\IJ(VQ) (alvﬂl; R)

nin2 nina
n1,n2

—I—/O dk/o dpe_iEPT/h\IJg;f)(a”,ﬂ”;R)W;‘;Q)*(a’,ﬂ’;R), (4.93)

where the bound state wave-functions are given by

1 (MR« Y
W 001 = 1 (2 1) uishe a2 0) (1.94)

1 [2(1/ T hy — 20y — DI (ny 4+ 1 £ ky)T(v — )] *?
(1j:k2) nz!F(V:sz—nz)

Qb(:l:kQ y)( )
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x (sinh @)/*£*2(cosh @)t /27, Fy(—=ny, v — ny; 1 £ kostanh®a) ,  (4.95)

'F(ﬁ j: kl -I— Tq -I— 1) 1/2
(Ek15) (4 + ey + 2my 1)
O (W) = 2B E byt 2m 4 DR T(ny £ ky + DT(n1 + 5 + 1)

X (sin 0)/ 28 (cos 9)P T2 P(ERL) (cos 299) (4.96)

The continuous states have the form

1 .
Ui (a, 05 R) = =D ()@ (0) (4.97)
i D[A(1 4 ko + i+ ik)D[E(L £ ko + i — ik)] [ksinh 7k
tha, 2 2 .
](“ k p)(a) = F(l:l:kzz) 272 (tanh.a)** v
x(cosh a)*, F} (1 £ ks —; Pt 1k, Ltk —ip 1k; 1 + ko; tanh® a) , (4.98)
1 Lo ;
(£h1p) Ll5(1 £k +ip+ik)]T [ (1+ ki +ip—ik)] [ksinhrk thio1)2
b, (V) = (& k) 52 (tanv)
. Itk +ip+ik 1 £k —ip+ik
x(cos ) PHiER, By ( £ s —; P! , thi—ipti ;14 ky; — sin” 19) . (4.99)

The special case of the pure Coulomb potential follow from the consideration of the corresponding
special cases in (2.7, 2.12, 2.14) and (2.18). This completes the discussion of the Coulomb
problem on the two-dimensional hyperboloid in the soluble cases. The cases of elliptic II and
semi-hyperbolic coordinates are not tractable by path integration.

4.3 The Potential V5.

We consider the potential V3 in its separating coordinate systems:

a M . R®>+ 44?2 Us
Va(u) = ———— 4+ —w’ 2 — A 4.100
3( ) (UO — U1)2 2 (UO — U1)4 (UO — U1)3 ( )
Horicyclic (y > 0,2 € R):
B %w 2427 + ) — Az (4.101)
TR y :
Semz-Czrcular-Pambolzc (&,m>0):
1 &? M
= ﬁfz e [a(£2 + 772) - %’\(774 - 54) + 7“2(56 + 776) . (4.102)

V3 corresponds to the Holt potential plus a linear term [20, 30], i.e., plus an electric field, in the
flat space limit IR*. The constants of motion for the potential V5 have the form

1) = (KT K2 — 1)+ V()

.
L = o (K = La) + ot 2Mu?e® = e

1 . . -
B9 = ()~ (L))
L LE2a 4 EXF M) — (20— n*A + M)
2 &+ |

(4.103)
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We obtain the following two path integral representations

K2 (u" u';T)

Horicyclic:
1 y(tll):yll ) x(tll): 1
Y
- L / Da(t)
y(t' )=y’ z(t)=z'
i t! M 2@2 1+ 3’/2 yz M ) ) )
X exp {ﬁ/ﬂ [7}2 R (a + - (a4 y°) — /\x) dt (4.104)
Semi-Circular-Parabolic:
) E(")=¢" n(t'")=n" €4

== [ e [ oaw
g)=¢' n(t)=n’'

it 2 . 2,,2 A M
XeXp{%/ﬂ [ 5 szgj‘;? (& +7°) - fRZ (a - 5(772 -+ 7w2(£4—|— n* —fznz))]dt}.

(4.105)

SUR

The path integral (4.105) in semi-circular parabolic coordinates is not solvable. The path integral
(4.104) is solved in the following way: We shift the variable z according to 2 — z = 2 — A /4Mw?.

The emerging path integral problem is the path integral of an harmonic oscillator yielding the
separation

K2 (u" u';T)

SR [T )l

y(t”)_ 1t

x / ngeHWJ%/ ( 2 g((wk+wy))ﬁ], (4.106)

y(t')=y’

with the quantity ¥, , » given by
22

SMw? -~
The H,,(z) are Hermite polynomials [12, p.1033]. A path integral like this was calculated in [17],
and we must distinguish two cases, first where £, , » > 0 and F,, » < 0. In the first case only
a continuous spectrum occurs, whereas in the second bound states can exist with the number of
levels given by n = 0,1,..., Npay = [Eaw /2w — 1/2]. From the explicit form of £, , » we see
that it can be arranged that at least some bound states exist. Therefore we obtain the following

path integral solution for V3 in horicyclic coordinates (v = —i\/QMRzE//*L2 —-1/4)

Epuwr= a4 2hw(m+3) - (4.107)

d_Ee—iET/h
R 27

Ix<v3 (v 05 T) Z¢m P (2")

[5(1—|—V—I—an,\/hw)] (Mw ) (Mw 2)
L2 W . M_p . yonena| =2 4.108
VY hwT(1 + v) Bajon/2hev /23 Tp= 8> Bown/2hww (2| TpTY< ( )

— Z [Z e—lE T/E\I;(Va ($ y R) (Va( ”,y”;R)

m=0 L n=0

~ CiB, T /R (Va) * ) Vs )
+/0 dp BT g () (x',y',R)w;mm“,y“,fz)] . (4.109)
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M, ,(z)and W, ,(z) are Whittaker functions [12, p.1059]. The bound state wave-functions have
the form

2n! Ea w how —2n —1 Mw |Ea,w,al/2hw—n—1/2
Un(y; R) = (|2 w2lf )y< yz)
R2D(|Eq 2| /hw — n) h
M Mw
HexP ( 2—; )M“Ea el in= ”( - @/2) : (4.111)

V() = <%)1/4Hm (@ (x - 8%)) exp (— %(x —~ 8%)2) . (4.112)

with the discrete energy-spectrum given by

2 2 2
£ = h _ h <|Ea,w,>\| oy — 1) . (4.113)

SMR> 2MR? hw

The continuous wave-functions and the energy-spectrum have the form

VO (@55 R) = o (@)(y; R) (4.114)
h psinh7p w A Mo
Up(y; R) = ”Mwmr[ (1-|-1P-|- ” )]W—Ea,w,x/Zhw,ip/2< 5 Z/) ., (4.115)
hZ
E, = ‘4 - 4.11
r 2MR2<p +4) ’ (4.116)

and the t,,(z) as in (4.112). The Green’s function GV*)(E) of the potential V5 can be read off
from (4.108). This concludes the discussion of V.

4.4 The Potential V;.

We consider the potential V, in its separating coordinate systems

Fquidistant (1, > 0,7 € IR):
M w? R kT -1
V = — _— 4 —
a(w) 2 (ug — uy)? + 2M  ul 2R? cosh? 1

Horicyclic (y > 0,2 > 0):

M W |
2 —_— 4.117
R s, D

h? k2—1
Wiy’ 1
“orV TonE (4.118)
Elliptic-Parabolic (b > 0,9 € (0,7/2)):
2
= o ? cosh® a cos® ¥ + SR (k* — 1) cot” J coth’ a (4.119)
FElliptic-Hyperbolic (b > 0,9 € (0,7/2)):
M 2
= o Zsinh” bsin® 9 + SR (k% — 1) tan? ¥ tanh® b (4.120)
Semi-Clircular-Parabolic (|k| = 1/2,£,7 > 0):
M
= W&g%ﬁ : (4.121)
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For the constants of motion of the potential V, we find

I{Va) — 2MR2 (K + K- 1L3) —|— Vi(u)
B? k21
(Va) __ -
o 12
Iéw) _ QMA2 + = 2 272 ]

We discuss the corresponding solutions in the five coordinate systems only shortly because
this potential seems not to be rather important. Also, the methods how to evaluate such path
integrals have been presented already in earlier investigations, c.f. [19, 23]. In particular, for
the elliptic-, hyperbolic-parabolic, and semi-circular parabolic we argue along the lines of Ref.
[19], where are also more details can be found. The path integral evaluations in equidistant and
horicyclic coordinates are easy to do.

4.4.1 Equidistant Coordinates.
We start with the path integral representation in equidistant coordinates. We consider

i (t")=7/ 72 (t")=74
1

= / Dry(t) coshr / Dry(t)

T1(t")="7, Ta(t)=1}

KEYD" o T) =

i 4 M ol s ) L w2e272
XeXp{ﬁ/ﬂ [7}2 (7'1 + cosh 7'17'2) - 7}22 cosh? 7,
K K —i I 1
— — 1 dt 4.123
2M R? sinh*r,  8M R2 ( * cosh” 7'1) ( )
o0 R ihT 9 1 (Va)s/ 1 s Va)y 11 _n
= o dk o dpeXp - 2 M R2 P+ Z \Ilpk ( Tis ZvR)\IJ ( 71 27R) (4124)

The path integral in the coordinate 7, is a path integral for the Liouville potential [23], and
the remaining path integral in 7, is again of the form of a modified Poschl-Teller potential
path integral (2.14). Therefore the separation procedure and the path integral evaluations
are straightforward. The spectrum is purely continuous and the wave-functions are given by

(k = mRw/h)

\IJZ(,‘,;“)(T“TQ; R) = (cosh Tl)_l/ZSp(Tl; R)pp(ms) (4.125)

1 psinh 7p ik—/@—l—l—ip) (H—ik—l—l—ip)
i R) = r r
Sl ) = s\ oo ( 2 2

o R
><(tanhn)”““(coshn)”’zFl(1 R St s 1p;1—|—m;tanh2ﬁ) , (4.126)

2 ’ 2

lbk(Tz) =

2k sinh 7Tl€ (ke“) ‘ (4.127)

)
K,(z) is a modified Bessel functions [12, p.952]. The corresponding Green’s function in these
coordinates is given by [in the notation of (2.18) with L, = £(ik — 1)]

GV (v’ u's F) / dk ksinh 7k K, (ke )Ix & (keT2 )

LM T(my = L)L+ ma + 1)
2h2 F(ml ‘|‘ mo + 1)F(m1 — My + 1)
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x(cosh 7 cosh 7/ )~ m=maH+1/2) (tanh 7/ tanh 7} )" Fma=1/2

1
><2F1<—L,\—|—m1,L>\—|—m1—|—1;m1—m2—|—1;7)

2
cosh™ 7 «

X9 ( — Ly +my, Ly +my + 1;my + ms 4 1; tanh?® 7'17>) . (4.128)

4.4.2 Horicyclic Coordinates.

In horicyclic coordinates we see that in the z-variable we have a radial path integral with a
repulsive centrifugal barrier. Therefore we obtain (k* = k? + M?R*w?/h°)

K9 (" u';T)

y(t”):y” x(t”):x”
D

1 y(t) / i / [M N N L L
= — Da(t - R - - dt
R / Y2 wWesey g 12 Y2 rZ MR T &2

y(t )=y’ z(t)=x'

(4.129)

= \/x’x“y’y“/ kdk J(ka")J,(ka')
2M dE o—1ET/h 7
X5 B2 % / I 1/2M1~22E/7i2+1/4(ky<) 1/2MR2E/712+1/4(ky>) (4.130)

”yy/ kdk Jo(kae')J, (ka")

3 T 2 1 - 71 - 7o
XF/O dp psinh Tpexp [— SMER? (p + Z)]]xip(ky)lxip (ky ) . (4.131)

The I,(z) and J,(2) are (modified) Bessel functions [12, pp.951]. In the path integral for the
horicyclic system we simply do the z-path integration (a radial path integral [24, 50]) and we find
that the remaining y-path integral looks exactly as for the free motion with just the separation
parameter k shifted by M?>R*w?/h”. A path integral like this has been already discussed in,
e.g. [19] and references therein, which is not repeated here, and the solutions (4.130,4.131) for
the Green’s function and the spectral expansion follow immediately.

4.4.3 Elliptic-Parabolic and -Hyperbolic Coordinates.

In the following two path integral representations we first state the solutions, and second give a
short description how these solutions can be obtained. In elliptic-parabolic coordinates we have
an explicit solution only for || = 1, and we obtain for that case (k, = M Rw/h)

a(t”):a” ﬂ(t”):ﬂ”
2
1 cosh” a — cos? ¥

” Dal(t) / D)
a(t)=a’ 9(t) =9

7 2 2
Xexp{%/ﬂ [%chosh a — cos 19( 497y - 22 cosh? a cos? 9

2
2 cosh” a cos? ¢

KY9 (" u;T) = .
cosh” a cos? ¢

hZ
" 2MR?

:—W/Cosﬂ’cosﬂ“ Z / dp51nh7rp/ : dk k sinh 7k NP+ 3)/2M R
0

/i cosh? mk + sinh? Tp)?

(k% — 1) cot® ¥ coth? a] dt} (4.132)

XSll;f (11)/2(€tanh a; 1k9)53§_(11)/;(6tanh a’; ikg)ps?]:_l/z(gl sin 9" —k;)psﬁil/z(ﬁ sin '; —k?)
(1.133)
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The ps#(2) and S#()(z) are spheroidal functions [44, pp.236,pp.289]. In hyperbolic-parabolic

coordinates we have an exact solution only for |s| = 1/2 and we obtain in this case (k, =
MRw/h)
b(t”):b” ﬂ(t”):ﬂ”
1 sinh?b + sin’ ¥
EYDW' o, T)= — / Db(t / DI(t) —————
(", s T) R? (t) ®) sinh”® bsin” ¥

Bt )=b’ D=0
it M . sinh?b + sin? 9 . . w? | .
— R ()’ +9%) — Z—sinh?bsin’®9
X exp {h ~/t’ l 5 R 2 b’ d (b +97) 7z Sinh” bsin
hZ

- W(mz — 1) tan® ¥ tanh® b] dt} (4.134)

1
= ﬁ\/sinh b sinh 0" sin ¥ sin 9

» Z e d o0 dk k sinh Tk 1 T (7 +4)/2M R
0 P o cosh’mk + sinh? 7p cosh T(p—k)
e=+1 P P

X Siiz(_ll)/z(cosh b ikQ)SiiZ(_ll);Z(cosh b's ikg)psﬁ_l/z(g cos 0" —k;)psﬁil/z(g cos?'; —k7) .
(4.135)

The path integral representation in these two coordinate systems for V, are similar to the
path integral representations of the free motion on A® in elliptic-parabolic and hyperbolic-
parabolic coordinates, respectively. Let us sketch the solution of the former. Performing a time
transformation yields a path integral which looks like the path integral in flat space in the oblate
spheroidal coordinate systems, i.e.,

a(s")=a" 9(s")=0"

dE . o
EVO(a", ' 9", 0 T) = [ S emiBT/ / ds" / Das) / D(s)
R 2rh 0
a(0)=a’ 4(0)=9’
X exp {%/ l% ((d2 + 9%) — w?(cosh? a — cos® 19))
0

WoR—t N3 i -

- - dsp 4.136
2M (sinh2 a cosh®a * sin” 9 * cos? 9 )] § ( )

where A = \/i — 2M R2E/K*. This path integral could be solved provided we knew the solution

of the path integral representation in prolate spheroidal coordinates in IR*. However, this is not
the case, and therefore we are restricted to the case |k| = 1/2 which is solvable using the result
of the free motion on A® in elliptic-parabolic coordinates. Because A is for E > h*/SMR?
purely imaginary we cannot apply the oblate spheroidal path integral identity of [19] in a simple
way. We must find a proper analytic continuation, and we construct this analytic continuation
heuristically. Since the (a,?)-path integration in (4.133) corresponds for w = 0 to the path
integral on A(® in elliptic-parabolic coordinates we look for those spheroidal wave-functions
[19, 44] which have for the parameter w = 0 the limit of the wave-functions of this system and

we find
psi(@i0) = Pi(e) (Rl <1) . SEO(50)=PAz) . lH=1.  (4137)

Putting everything together yields (4.133). The case of hyperbolic-parabolic system (4.135) is
done in an analogous way.
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4.4.4 Semi-Circular-Parabolic Coordinates.

In semi-circular parabolic coordinates the potential separates only for |k| = 1/2 and we obtain
(¢ = Mw/h)
KY9u” u';T)
é—(tll):é-ll n(tll):nll "
1 &+ iM [ 2N e w? 5 4
= — DE(t Dn(t — R - = dt
e O B e o B G SR

g)=¢' n(t)=n’'

(4.138)
1 o0 . . 4 _ 2,1 2
= Zi: W/o dpp(51nh7rp)2/0 dkk‘r 1+ k2/2q—|—1p)]‘ e TP +1)/2MR

XWik2/4q,ik/2(f]f//2)Wik2/4q,ik/2(f]f/2)Wik2/4q,ip/z(f]77”2)Wik2/4q,ip/2(f]77/2) . (4.139)

This path integral is solved in the following way: After a time-transformation we obtain

¢(s")=¢" 7(s'")=n"
KW ¢ 0" i T) = ﬁ_lm/h/ ds” / bels) / ()
£(0)=¢' n(0)=n’

X exp {% /0 [%((52 +7) —w?(€ + nz)) h? A;\_f (é + %)] ds} (4.140)
Mawg'e” )

R 27
Mw M 2 2 ,
ih sin ws” xp [_ 2—(5 + &) cotws ]I’\ (ih sin ws”
I[3(1+ A= E'/hw)] Mw Mo
2 T ) WE//zhw,A/2< 7 77>)ME//2hw >\/2< 7 77<) + (& =mn), (4.141)

where A\? = £ — 2M R*E /h”; we must take into account a term with ¢ and 7 interchanged. One
uses the path integral solution of the radial harmonic oscillator [50], where for the ¢-dependent
part we expand the propagator by means of

dppsinhmp .
QMRQ/ 2 2 1 2 _ ]‘ip(z) ?
T o h(p*+3)2MR?-FE

Sx(z) = (4.142)

and the integral representation [12, p.729]

2\/_t o0 atb v 2x

W, e(a)W, e(b) = / e~ T b | (Vabsinh v (coth—) dv .
X72( ) X72( ) F(H—_N_X)F(__X) N( ) 2

(4.143)

In the n-dependent part one uses the Green function for the radial harmonic oscillator (c.f. [24]

for the functional measure formulation)

o (1) =" y
l/ dT e ZT/n / Dr(t)ps[r*] exp IM/ (7? — w?r?)dt
hJo 2h

r(t)=r’

L[5+ A— E/hw)] (Mw ) (Mw
= Weanw a2 =75 | Me/on 2) : 4.144
ho DL+ A AT E[2he 2\ T (4.144)
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and the relation [12, p.1062]
I'(=2p)
L(3—p—A)

If we leave (4.141) as it stands we obtain the Green’s function GV9(£7 & 5 /s E), together
with the prescription £’ = —h”k?/2M. The final result (4.139) is then obtained by combining
on the one hand side where £’ = —k*h°/2M and reinserting R

_ I'(2u)
Wiu(z) = Tt

My (%) + My _u(2) . (4.145)

Mw [~ , ds’ ST Mo, e e ,,] (Mw{’{” )
7/0 ds sinws’ P [_ n E(f &) cotws Iy ih sin ws"
1 [ dppsinhmp 1 ) BN\ 9 9
=l [ (= )| Wt Wt 2140

and on the other (¢ = M Rw/h)

F[%(l +ip — k?/2q)
hwl'(1 +1ip)

Mk2/4q,ip/2(q77//2)

(i1 —ip—k?/2q
_ [2( / )Mk2/4q,—ip/2(q77//2)

hwl'(1 —ip)
Llro-8)

4.5 The Potential V5.

Wk2/4q,ip/2(q77/2) [

2

W2 agips2 (a7 YW i pagippa(qn’™™) . (4.147)

Mo
= ——sinh7p
wh’q

We consider the potential Vj in its two separating coordinate systems

Fquidistant (1,7, € R):

Us
V5(11) = O[Rm = aRtanh 1 (4148)
Semi-Clircular-Parabolic (£, > 0):
En? /11
=olhg e ) 0

The constants of motion for the potential Vy are the following

1o
I = o (K 4 K3 = L)+ Vs(n)
1 2aR
I = —({Ky, [} — {Ky, L)) + —— (4.150)
2 QM({ x17 x2} { x27 3})+ fz_l_nz bl

I = K2 .
We have the following two path integral representations

K9 (u" u';T)
Equidistant:
i (t")=1) 72(t" =74

— % / Dry(t) coshr / Dy(t)

T1(t)="1,; Ta(t!)=1}

iMoo, 0y h’ 1
XeXp{ﬁ/ﬂ [7}2 (71 4+ cosh” 7 75) — aRtanhm — SYE 1+ dtp (4.151)

2
cosh™
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Semi-Circular-Parabolic:
E(")=¢" n(t'")=n"

_ 1 Sl
= [ e [ onntg
§t)=¢’ n(t)=n’
i_ a % S T _ =&
Xexp{h/ﬂ [QR £y (& +97) ozR5 _I_n]dt}. (4.152)

4.5.1 Equidistant Coordinates.

After separating off the m-path integration we obtain a pure scattering Rosen-Morse potential,
a path integral problem which has been solved in [13, 39]. Therefore we obtain

—ihT/8MR?

R

e vz [ AR iy —ny)

K9 (" v T) =
R 21

(cosh | cosh 7")

i (t'")=7/

k4%
2M R? cosh? Ty

X / D7y (t) exp [%
T1(t")="7,

dk "
= (cosh 7] cosh 7/")~1/* ik (=75 )/ o iET/h
27r1
M T(my— L)l (Lk‘|’m1-|-1

X_
hz F(ml-l—mz-l—l) ( m2—|—1)
" (1 —tanh7 1 —tanh T{’)<m1_m2)/2<1 + tanh7{ 14 tanh T{,)(m1+m2)/2

tll M
/ [7}227"12 —aRtanh T — )dt] (4.153)
t/

2 ' 2 2 2
><2F1<—Lk—|—m1,Lk—|—m1—|—1;m1—|—m2—|—1;%)
szl(—Lk+m1,Lk+m1+1;m1—m2+1;%) (4.154)

_ /}de /Ooo dpe BTNV (r1 o RYGYS* (11 ot RY (4.155)

Here denote L, = —2ik — %, mi, = /m/2(vV/—aR—FE—Ey + VaR—E - Ey)/h, Ey =
h°/SMR?, and (4.154) is the Green’s function corresponding to the path integral (4.151). The
wave-functions and the energy-spectrum of the continuous states are (where + distinguishes

between incoming and outgoing scattering states, respectively)

\IJZ(,ZS)(TD 7953 R) = (27 cosh rl)‘1/25;i>(rl; R)e*™ | (4.156)
R, 1

1 VM sinh(w|m; & msl)/2
RI'(14+ my £ my)  Rlsinw(my 4+ L)
>< (M)WW (Lt B
2 2

S;,i)(rl;R) =

(4.158)

1 £ tanh 7'1)
— -

XzFl <m1 +Lk + 1,m1 —L]“l-l—ml j:m27
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4.5.2 Semi-Circular-Parabolic Coordinates.

In the semi-circular-parabolic system we obtain after a time-transformation (A, = 1/4 —

2M(ER> + aR)/R*)

E(SII):EII (s//): H
AVs) (1 1. dE —1ET/h ~ " ' '
KW (" s T) = M i ds DE(s) Dn(s)
£(0)=¢’ n(0)=n’

it My, OV RS SR
XeXp{ﬁA l7((£ ‘|'77 )_ 2MR2 52 - 772 ds

M? dFE _. © ds” dE" ..
_ = TN v —IET/h w —iE's"[h
ih3\/€£ ' /}R%he /0 e

s R 27i
M Vi
<ty, (vaErE S Y i, (Ve 2 Y e [ - S ) 0, (BEL) L (1159

The corresponding wave-functions are obtained in a similar way as in [19] for the free motion
on A® in semi-circular-parabolic coordinates by analyzing the Green’s function (4.159) on the

cut, which finally yields (p; 5 = —i\/p2 + 2MRa/h”)

1 CH gl gq o0 [e'e] .
Ko (u" u';T) = Ve / kdk/ dp psinh’® wpe B T/h
0 0

472

s [HL o) L ey g, (' g, (RE™) 4 B, () g (e ) (REV ()]

1p2 1po —1p1 1p1

(4.160)

with £, as in (4.157), and the even and odd wave-functions can be read off from the spectral-
expansion. The H((z) are Hankel functions [12, p.952].

5 Summary and Discussion.

In this paper we have performed an investigation about Smorodinsky-Winternitz potentials on
the two-dimensional hyperboloid. We have found that the two most important potentials, the
oscillator and the Coulomb potential, admit separation of variables in four coordinate systems.
Each problem is exactly solvable in two coordinate systems, the oscillator in spherical and
equidistant coordinates, the Coulomb problem in spherical and elliptic parabolic coordinates.
We have also stated the corresponding Green’s functions.

These particular features are not too surprising. In the flat space limit the spherical sys-
tem yields two-dimensional polar coordinates, and both problems in IR* are separable in this
coordinate system. The equidistant system yields in the flat space limit cartesian coordinates,
and the oscillator in IR” is separable in cartesian coordinates. The elliptic-parabolic system
yields parabolic coordinates (as the semi-hyperbolic system) and the Coulomb problem in R” is
separable in parabolic coordinates. The elliptic system on A®) gives the elliptic system in IR,
the oscillator is separable in this coordinate system, but does not admit an analytic solution in
terms of usually known higher transcendental functions. Actually, the solution of the harmonic
oscillator in IR* can be given in terms of Ince polynomials [35]. The hyperbolic system on A(?)
also yields the cartesian system.

Furthermore, the elliptic IT system on A gives the elliptic IT coordinate system in IR, and
the Coulomb problem in IR” is separable in this coordinate system. However, in both cases no
analytic solution is known.

We have seen that the situation concerning separation of variables of these two potentials in
the corresponding coordinate system is very similar in flat space [6, 9, 20], on the sphere [21],
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and on the hyperboloid. The most significant difference being that on the sphere there are less,
and on the hyperboloid more possibilities.

We have also stated explicitly the relevant Green’s functions of the potentials. This includes
the simple and general Higgs oscillator, the Coulomb potential, and for V3, V, and Vj in several
coordinate system representations. In particular, from the spectral expansions in horicyclic
coordinates, one can show with the integral representations [42, pp.732,819]

2 b2 2 4 b [e%)
Py_1/2 (%) = :T/za_ cosUT /0 dk K,(ak)K,(bk) cosck , (5.1)
a4+ b + 2 00 p' tanh mp’ a4+ b + 2
_ I —— = dy ———— i’ — I —— 2
Ql/ 1/2( 2ab ) /) P l/2—|—p/2 Pp 1/2( 2ab ) 9 (5 )

that the Green’s function for the free motion on the two-dimensional hyperboloid has the form
[16, 23]
m

G, v, F) = —

Q

"o 2 12 "2
(2" =2 +y" +y ) (5.3)

—1/2—1\/2MR2E/E2—1/4( 2’y

The Green’s function is a function of the invariant distance d(u”, u’) on A® only, i.e., G(u”,v'; )
= G(coshd(u”,u’); £). A similar consideration can be made for the corresponding path integral
representations of the free motion on A® in spherical [16, 18, 25] and semi-circular parabolic
coordinates [19].

Let us add some remarks concerning potentials which are separable in the semi-hyperbolic
coordinate system. We consider the potential (5 > 0)

M w2 R k21
Ve(u) = kugu; + 7&)2 (4 ]0%21 + u%) + BYYi 2u% . (5.4)
R Kk, , o M , 4 n’ 11
= —(p7 — pa)+ —w?(uf + +7k2—1<—+—) - (85
1+ s [2(:“1 :uz) 5 (lh :uz) QMRZ( 2 4) S ( )

The specific features of the potential characterize it as a Holt potential plus a linear term, i.e.,
with an electric field [20, 30]. From the flat space case [20] we know that a potential like this is
separable in cartesian and parabolic coordinates. On the hyperboloid (5.5) is separable in the
semi-hyperbolic coordinate system (3.68). The semi-hyperbolic system has two flat-space limits,
the cartesian and the parabolic coordinate system, however, on the hyperboloid they correspond
to two realizations of the same system.

The only potential which is separable in the equidistant and semi-hyperbolic system is

w=0 _
VI = Vi) = gt

(5.6)
and it turns out to be separable in eight coordinate systems, and is almost trivial. It can be
exactly solved in six coordinate systems, but the difference in comparison to the free motion on
A®) is insignificant, and we omit these solutions.

Another potential which is separable in the semi-hyperbolic system has the form (p; 5 > 0)

o ( Uy B 1) N 51\/\/ uiud + udR? + uou; + ﬁz\/\/u%u% + ulR? — uguy

Ve(u) = —=(—2
s(v) R\ Ju? + ul 2R\ uiu? + uiR?
(5.7)
Y VAT VA W S W R/ % e 2V (5.8)
R 11 + i R pitp '

45



We mention this potential because in the flat space limit it yields

o OWVETT ke B VIR -

which is separable in mutually orthogonal parabolic coordinate systems. Such a notion on the
hyperboloid does not make sense. Two of such systems can be transformed into each other by a
rotation, and hence they are equivalent. In the flat space limit, however, they yield two mutually
parabolic systems, as it must be. Therefore our findings of potentials on the two-dimensional
hyperboloid which are separable in more than one coordinate system can be stated as follows:

Vi(z,y) = — (5.9)

1. We have found the generalized oscillator and Coulomb systems which are each separable
in four coordinate systems.

2. We have found a Holt potential version on the hyperboloid, which is separable in horicyclic
and semi-circular parabolic coordinates. However, both coordinate system lead in the flat
space limit to the cartesian system.

3. The two other super-integrable potentials known from IR” could be formulated in terms of
coordinates on the hyperboloid and are each separable only in the semi-hyperbolic system.
They yield the proper flat space limit, where the semi-hyperbolic system gives parabolic
coordinates, and the missing separating coordinate systems emerge in this process.

4. We have found the simple potential Vi(u) which is separable in four, respectively five
(depending on the parameters) coordinate systems. The flat space limit of this potential
is trivial, i.e., V4 « 1/y* (R — o0), which is separable in all four coordinate systems in
IR”, let alone that the pure 1/u?-potential only alters the corresponding radial quantum
numbers in its eight separating coordinate system in comparison to the free motion.

5. We have found the potential V5 which is separable in horicyclic and semi-circular-parabolic
coordinates. Its flat space limit is the linear potential, i.e., V5 — az (R — o0), which is
separable in cartesian and parabolic coordinates.

6. The potentials (5.5, 5.7) are the proper generalizations of the Holt potential and the
modified Coulomb potential (5.9) of IR?, where both potentials are superintegrable, i.e.,
separable in cartesian and parabolic, respectively mutually parabolic coordinate systems.
However, on the hyperboloid A® they are only separable and the corresponding coordinate
systems are not distinguishable from each other. They are only distinguishable in the flat
space limit R — oc.

7. We cannot say for sure if we really have found all possible superintegrable potentials on the
hyperboloid. For a systematic search one must solve differential equations which emerge
from the general form of a potential separable in a particular coordinate system, and
changing variables. Because there are nine coordinate systems on the hyperboloid which
separate the Schrédinger equation, there are 8! = 40320 of such differential equations.
This is not tractable, and one has to look for alternative procedures, for instance physical
arguments. In this respect, we have found the relevant potentials which matters from a
physical point of view, and which are the analogues of the flat space limit IR*. This can be
summarized in the following small table, where the enumeration of the potentials in IR” is
according to [20], and the enumeration of the potentials on S*) according to [21].
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Table 3: Correspondence of Superintegrable Potentials in Two Dimensions

Vae(w) #Systems | Vip=(x) #Systems | Ve (s) #Systems
Vi(u) 4(3) Vi(x) 3 Vi(s) 2(3)
Vo) 40) Kslx) 3 Vi) 2(3)
Vs(u) 2(1) 7w2(4x2 +97) = Az |2 _
w=0 B oRP—1/4 h kY- 1/4

V4( )(u) 8(4) o a2 4 ﬁ43§ 2(4)
Vs(u) 2(1) az 2 -

Ve(u) 1(2) Va(x) 2 _

Va(u) 1(2) Vs(x) 9 _

In parenthesis we have indicated the number of limiting coordinate systems for R — oo,
and constants in this limit are not taken into account. We see that the correspondence for
the superintegrable systems on the hyperboloid and in flat space is complete, whereas the
correspondence with the sphere is not complete. Note that adding to Vs(u) the (constant!)

2
QJ\ZRQ (k* — 1/4) reproduces for R — oo the Holt potential V5(x)!

. Our discussion lacks a proper treatment of the alternative flat space limit, i.e., the limit of
the two-dimensional Minkowski-space, respectively the two-dimensional pseudo-Fuclidean
space. We do not know anything about superintegrable systems in this space. The free
motion has been discussed in [19], and the separation of variables of the Schrédinger equa-
tion, respectively the path integral, is possible in ten coordinate systems. It is therefore
desirable to construct and study appropriate superintegrable systems, an oscillator and a
Coulomb potential in particular, in this space. Studies along these lines will be the subject
of a future publication.

term

In a forthcoming publication we will deal with Smorodinsky-Winternitz potentials on the

three-dimensional hyperboloid. This will also include a detailed discussion of the relevant coor-
dinate systems and the constants of motion. Concerning maximally super-integrable potentials
like the oscillator and the Coulomb potential the situation is similar as in IR* and on the sphere,
however, there are more coordinate systems which admit separation of variables for these two
potentials. This property is due to the fact that on A® there exist 34 coordinate system which

admit separation of variables in the Schrédinger, respectively Helmholtz equation [48].

The situation is surprisingly different for minimally super-integrable potentials due to the
subgroup structure of SO(3, 1),i.e., we have SO(3,1) D S0(2,1),50(3,1) D F(3),and SO(3,1) D
SO(3). This means that all potentials which are maximally super-integrable in the correspond-
ing subspace are minimally super-integrable on A®®, and this property increases the number of

potentials considerably.
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