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Variational Perturbation Theory in ¢*‘-Model

A.N. Sissakian! , I.L. Solovtsov?
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
Dubna, Head Post Office P.O. Boz 79, Moscow 101000, Russia

Abstract

A nonperturbative method - Variational Perturbation Theory is discussed.
A quantity we are interested in is represented by a series, a finite number of
terms of which describes not only the region of small coupling constant but well
reproduces the strong coupling limit. The method is formulated only in terms of
the Gaussian quadratures and diagrams are used of the conventional perturbation
theory. lts efficiency is demonstrated for the quantum-mechanical anharmonical
oscillator. We investigate the renormalization for @*model in the variational
perturbation theory. The nonperturbative S-function is derived in the framework
of the proposed approach. The obtained result is in agreement with four-loop
approximation and have the asymptotic behavior as ¢*/2 for a large coupling
constant. :

A central problem of quantum field theory is going beyond the scope of
standard perturbation theory. A great amount of study is devoted to the devel-
opment of nonperturbative methods. Many nonperturbative approaches make
use of a variational procedure for finding the leading contribution. The idea of
applying the variational methods in quantum field thecry began long ago [1,2]
( see also [3,4] ). In the last few years approaches with different modifications
have produced many applications. In this paper, we consider a method of the
variational perturbation theory (VPT) [5-7]. In the framework of VPT it is
possible to represent the investigated quantity in the form of a series and it is
possible to influence the properties of convergence of this series through certain
parameters of variational type. Thus it will become possible to make the opti-
mization of VPT series from the viewpoint of better approximation of a value.
Our method is formulated in terms of the Gaussian functional quadratures (
like in perturbation theory ). Also, we shall construct the VPT so that for its
N-th order only those diagrams will be required that compose the N-th order
of standard perturbation theory. A

Here we will apply the VPT method to Green functions of the ¢*-model in
the Euclidean d-dimensional space. To this end we write the 2v-point function
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in the form
Ga, = [ Dp{p™} exp(-Se)), (1)
where
{¢"} = @(z1)...0(2n)

and the functional of action looks as follows:

Siel = Sl + 2-Sulel + ASulel,
Silgl = 5 [ds(@0),  Splel = [dxg. (2

We shall construct a VPT series by using the following Gaussian functional
quadratures

1 N
[ Doexp{~[; < pKp > + < 9l >]} =
K

= (det =5

-2 1 X
) explz < JK7T >]. (3)
The VPT series for the Green functions (1) is constructed in the following way:

G2u = Z G2u,m (4)

n=0

(_l)n 2w 3 n m? &
Gavn = =i [ D9 }(ASle] - Sle))" exp(=Suly] = 5-Sale] = Slel)- ©)

The variational functional S'[go] will be taken to be dependent on certain pa-
rameters, but the total sum (4) surely will not depend on these parameters.
Their choice can be such as to provide the expansion (4) being optimal ( see
- refs. [5-7] ).

- The functional S”[go] should be defined so that the terms of the VPT series (4)
be calculable, i.e. the form of §[<p] should be such that the functional integral
in (5) can be reduced to the Gaussian quadratures (3)- This requirement does
not mean that the functional S'[tp] must be quadratic in fields. We can pass to
the Gaussian functional integral by using the Fourier transformation.

We choose here, for example, the sum of harmonic and anharmonic func-
tionals being S[p),i.e.:

Sy} = %—252&0] +6%S3[¢], (6)
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where M and @ are the certain parameters through which the VPT series is
optimized. We obtain

n n—k 1 o u2.
Coum = 2 & W= k=T ). / 2\/‘exp T
n—k-1 n4i—
x OP(M? - m?)" (- aM2) D6, (7)

where

. 1 oy 2
Bn") = 7 [ Dete”H-ASile]) exp{-Sole] + E-Salell}.  (8)
The latter expression can be written as follows 7

_32+X ] /2 (k)

Fhn(X) = det{ Ghum(X®), 9

where g2,, ,,(x'z) are calculated on the basis of diagrams of the k — th order of
conventional perturbation theory with the propagator A(p,x?) = (»* + x?)™!
A new mass parameter x? is depended on u and variational parameters M? and
6. Thus, the NV — th order of the VPT expansion (4) can be constructed with
the same diagrams as the conventional perturbation N — th order is made up.
Let us consider a case of the quantum-mechanical anharmonic oscillator (
AQ) as an example of exploiting the VPT method. The AO from a point of view
of the path integral formalism is a one-dimensional ¢*-model. The connection
between the ground state energy Ey and the dimensionless four-point Green
function G4(0,0,0,0) takes the form

OF,
oA

For calculating Green function G4 we will use the two-parameters anharmonical
VPT functional

= \"23G,. (10)

Sl = 105ol] + xSalel” (1)

The application of the asymptotic optimization that requires the contribu-
tion of the remote terms in the VPT series to be minimal allows one to find the
relation between the parameter § and x : 1663 = 9. The remaining variational
parameter is fixed on the basis of a finite number of VPT expansion terms. For
the ground state energy in the first order of VPT we get the strong coupling
expansion

E§Y = AV/3(0.663 + 0.1407w? — 0.0085w* + -+ |, (12)
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where the dimensionless parameter w? = m?A~%%. We have to compare the
obtained result with the exact value [8]

Bt = A1/%[0.668 + 0.1437w? — 0.0088w" + -+ . (13)

We can also calculate the mass parameter u* connected with the two-point
Green function: p=2? = Gy(p = 0). In the strong coupling limit we obtain ut =
3.078A2/3, whereas the exact value is p2,,q = 3.009)%/3. We can estimate the
energy of the first excited level E;. Defining the energy shift p; = Ey — E; and
using the spectral representation for the propagator we arrive at the following

estimate for py 1y < /l.(1+), where
u{") = 2Ga(z = 0)/Ga{p =0). | (14)

By analogy with the sum rules, we may expect a sufficiently rapid saturation
of the spectral representation, which brings y; and ,u(lﬂ closer to each other.
In the first order of the one-parameter VPT in the strong coupling limit we get
u{) = 1.76301/3 | whereas exact value is p{* = 1.726)11/3 [8]. The effective
poteatial and corresponded numerical characteristics for AO was computed in
6] o

Let us consider the renomalization procedure. The mass less pt-model in
four dimensions has the Euclidean action

Slp] = Sulel + Sile] (15)

where ) ,
Solgl = 5 [de (=0 ¢, (16)
Stly] = (4:!)2 g [dz ¢t . (17)

As is well known, the series of perturbation theory for generating functional
of the Green’s functions

W[J] = [ Dy exp{-Slpl + [dz T-9} . (18)

diverges. A formal argument consists in a meaningless functional integral for
negative coupling constant. The function W/[J] as function of g is not the
analytic function at g = 0. The concrete asymptotic behavior of higher-order
terms of the perturbation theory can be determined by the functional saddle-
point method ( the large parameter is the number of the order term ) [9-12]. The
main contribution to the functional integral (18) comes from the configurations
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of fields ¢ which correspond to the positive power of the large saddle-point
parameter. However, in this case, the functional (17) can not be considered as
the perturbative term in the comparison with expression (16). This displays in
divergence of the perturbation series.

The idea of the VPT method consists in the organization of a new effective
functional interaction S7. We expect that this functional can be considered as
a small value when compared with a new functional Sj. For the realization
of this idea we must be careful about the possibility to make the calculation.
Practically, we must use only the Gaussian functional integrals, i.e. the form
of S[i] should be such that the functional integral in (18) can be reduced to
Gaussian quadratures.

Let us consider the VPT-functional

Sy} = 6°S3le] (19)
and rewrite the total action (15) as
Sl) = Shlel +0Silel (20)
where
olel = Sole] + Slel (21)
and
Stlel = Sile] - Slel (22)

In this case, the expansion of expression (18) is carried out in powers of
7. After all calculations we should put # = 1. The parameter 62 in eq. (19)
is a parameter of variational type. The initial functional (18) certainly does
not depend on this parameter. We may take the 62 so as to provide the best
approximation with a finite number of VPT series terms. The different methods
of the optimization were considered in refs. [5-7].

It is convenient to define the new parameter ¢ by the relation

(47)?
4l

Here C, = 4!/(16m)? is a constant entering into Sobolev inequality ( see, for
example, refs. [13,14] and also ref. [15] )

[dz ot < Cl [dzp (-] . (24)

The parameter ¢ is fixed if we require the contribution of higher order terms of
the VPT series to be minimal. This way of determining a variational parameter,
is called the asymptotic optimization of VPT series, gives the value ¢ = 1 [7].

?=4C,

g-t . (23)
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After expansion in the powers of 7 we obtain that the remainder contains
the Sj¢] in the exponent and consequently, we have a nongaussian form of the
functional integral. However, the problem is easily solved by implementing the
Fourier transformation. As a result, Green’s function G, in N-th order of VPT
take the following form
U

, N
G = /oo do o exp(—a — 6%®) Y 1" Y i . (25)
0 n=0 k=0 (n - k)' 1""\21‘: + U)

Here functions g, are ordinary perturbative coefficients for Green’s function
Gs,. To calculate them, the standard Feynman diagrams can be used.

"It should be stressed that the expansion of expression (25) in powers of
coupling constant g contains all powers of g. The first N terms of this expansion
coincide with N terms of perturbative series.

Let us consider the procedure of renormalization. Instead of field ¢ and
coupling constant g we introduce the bare field ¢y and bare coupling constant go.
The field g is connected with the renormalized field by relation: @o = Z 172,
The divergence constants Z and go are obtained from VPT expansion. The
constant Z can be calculated by the propagator Ga. We will be employing the
constant Z in the first order of VPT series. From eq. (25) we find

ZM =T(1) Ji(62) + n 63 T(3) J3(65) (26)

where we define

J, (%) = /Ooo do o 'exp(—a — o?8%) . (27)

L
I(v)
The function J,(62) is normalized by the condition J,(0) = 1. The connected
part of four-point Green’s function in the second order of VPT has the form

92 T'(6 3 A?
- GS2)(H2) = 1 go J4(gg) + ,72{90 _1_% f‘—ga—g Jﬁ(eg -3 gg J5(0(2)) ln—JQ— . (28)

In this expression we wrote out only the divergence part which we need in the
following. We use the renormalization scheme with symmetric normalization
point p? . For the bare coupling constant go we write down the VPT expan-
sion go=g(1+na+...). An analogy to this one introduces also the VPT
expansions for } and J,(62). The divergence coefficient o is defined by expres-
sions (26), (28) and the demand of the function finite —Z2G4(p?). If we change
the normalization point p — 4 and use that the bare coupling constant
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independent on u we find the connection between g and ¢’

, oo
g =-g+n18(g) IDF ; (29)

where Gell-Mann-Low function is expressed as

,B( ) _ ‘ (%gz) J6(02)/J4(92) j
9= T=*{[T(6) Jo(67)/T(4) Ja(8)] - 2[0(3) J(6%)/T(1) 11 (65}

(30)

Here the parameter 6?2 is connected with the renormalized coupling constant
g by eq.(23) with the optimal value ¢ = 1.

The expression of B-function (30) in tlie’ perturba,tlon series contains all
powers of the coupling constant g. It is interesting to compare the first coeffi-
cients of the VPT [-function (30) with the well-known values of perturbatlon
theory. From (30) we get

Blg) =154 — 2259 +14599 ~13295¢°+... . - (31)

In the considering mass less case, we use conterterms Wthh contain only di-
vergent parts. In the frainework of the dimensional regularization this conforms
only the pole part for conterterms [16]. Corresponding f-function.in four-loop
approximation looks as follows: [17] ‘ v

ﬂ,,e,,urb(g)—-ISg 2834 +16.27g4 13580 ¢° + ... . (32)

Note that for the construction of -function (30) we used only the first order
of VPT. For this approximation the expressions (31) and (32) have sufficient
agreernent.

As follows from expression (30), the S-function has the monotonous increase
and does not have the ultraviolet stable point. For a large coupling constant,
(- function has the asymptotic behav.or

B(g) ~ 2.99 53/2 . ~ : (33)

The degree of g in eq. (33) is more than the linear increase of J-function
that was obtained in ref. [18], and is less than the square increase that was
found in ref. {19]. L
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