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1 Introduction

As is known [1, 2], in the three-dimensional space of constant positive curvature there
exist 6 orthogonal systems of coordinates admitting a complete separation of variables in
the Hamilton-Jacobi equation or in the Helmholtz equation. These are hyperspherical,
cylindrical, sphero-conical, two elliptic cylindrical and the ellipsoidal systems of coordi-
nates. The most complex of these systems of coordinates is the ellipsoidal one, which
contains all the rest five in the limiting case [3]. The present paper is devoted to the solu-
tion of the Helmholtz equation on the three-dimensional sphere in the ellipsoidal system
of coordinates. '

2 The ellipsoidal coordinates
The algebraic form of the ellipsoidal system of coordinates is (1]
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where 0 < a; < p; < g3 < py € g5 < p3 < a4. The coordinate surfaces on which
pPi = const. are obtained as a result of intersection of the three-dimensional unit sphere
} + 23 + 23 + zJ = 1 with three families of conic surfaces
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and represent complete families of confocal nonruled, ruled and nonruled ellipsoids [1].
Relation (1) connecting the Cartesian and ellipsoidal coordinates are not in the one-to-
one correspondence as p; depend only on (z?,z3, z3, z2) and, consequently, take the same
values at 16 points (+zj, +24, £z3, tz,). To obtain a one-to-one correspondence between
the Cartesian and ellipsoidal coordinates, as in the case of elliptic system of coordinates on



the two-dimensional sphere [4], one can introduce uniformised variables v, 4, v determin
the position of the point on the three-dimensional sphere by the following relations:

pr=a1+ (a2 —ai)cos’ 4, pr=as+ (a3 —a)sin’v, p3=a3+(as—az)sin’y,

As a result, the ellipsoidal system of coordinates can be written down in the trigonome:
form as
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az — Gy a3 — a3 a4 — ag

K= B="— EH+E+=1

K= 3
- ) 2
T a—aq ay—ay’ ay— a;

As is seen from the definition (4), the ellipsoidal system of coordinates is determi
by three parameters and the binding condition (5). It is the most general system
coordinates which turns into simpler coordinates at particular values of the parameter:
(3]. In particular cases k? = 0 and k2 = 0 the ellipsoidal system of coordinates turns i.
ellipso-cylindrical systems of coordinates of type I and II, respectively. Further vanish
of the parameter kZ or k% may result, respectively, in the spherical or cylindrical syst
of coordinates. Then, if we let k? and k} tend to zero simultaneously and the ra
k?/(k? + k2) is put finite equal to k? , one can easily see that the ellipsoidal system
coordinates degenerates into the sphero-conic one and upon substitution k% = 0 or £? -
turns into the spherical system of coordinates. In more detail these transitions are gi
in the table.

3 Separation of variables and integrals of motion

The Helmholtz or Schrédinger equation for a particle motion on the three-dimensio
sphere of the unit radius can be written down as

AV +J(J+2)¥ =0, J=0,1,2,---
where A is the Laplace operator determined as follows:
A=—(L*+NY
and L; and N; are six generators of the group O(4)
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Table: The degenerations of the ellipsoidal coordinate system
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which obey the commutation relations

(Li, Lj] = ieiuLj, [NiyNj] = ieiieLy, [Li, Nj) = ieijuN;,

Ifin the Helmholtz equation (7) one passes to the ellipsoidal system of coordinates, after
the substitution ¥(py, ps, p3) = (p1)¥2{ p2)¥a{ps) and introduction of ellipsoidal separa-
tion constants A, A; one arrives at three identical differential equations

4 P(p;)dim\/‘P(p".-‘)j—ffL+{J(J+2)p?—Alp;—xz}w.:o, i=1,23  (10)

where P(p) = (p—a1)(p—a3)(p—as)(p—a,). Equation (10), derived by separating variables
in the ellipsoidal system of coordinates, is the generalized Lame’ equation and falls into
2 class of equations of the Fuchsian type with five singularities [5] {a;,az,as,aq,00};
moreover, (ay, as,a3,a4) are elementary singularities with indices (0,1/2 ) and a point at

infinity is regular.




Each of the separated equations (10) contains besides hypermoment J also two con-
stants A; and ); depending in the general case on four dimensional parameters ay, a3, a3, a,
or ki, ky, k3 determining singularities of the given equation. Therefore, unlike the standard
one-dimensional spectral problem, the main difficulty consists in calculating simultane-
ously (or quantizing) the energy spectrum of both the ellipsoidal separation constants.

Let us explicitly write down the operators (ellipsoidal integrals of motion) A, and A,
whose eigenvalues are the ellipsoidal separation constants A; and Aj;. Eliminating the
hypermomemt J from the system of equations (10), we derive for A; and A; as functions
of the parameters a = (a,, a2, a3, a4), the following expressions in the ellipsoidal variables

pi:
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Passing from the variables p; to the Cartesian ones, we arrive at the following expression
for the ellipsoidal integrals of motion

Ai(a) = (ay+ag)L}+ (a2 + a)L3 + (a3 + a,)L3
+ (a2 + a3)N} + (ay + a3)N] + (a1 + a;) N} (13)
Az(a) = —a104L} — aya,L2 — aza L2 — azas Nt — aya3N? — a1a;N? (14)

Instead of the system of operators (10) and (14) it is more convenient to use new operators
X and i, that depend on three parameters kf, k3, k3, (only two of them being independent,
according to (5)) and are connected with the old A; and A; according to

A= (ag—a1)" {As(a) - 20,4}, ji = (ag—ay)? {agAl(a) +Ax(a) —ajA}.  (15)

Thus, the ellipsoidal basis is the system of three operators {£ = —A, }, fi} where

ALK, K5) = KLY+ (K + KDI3 + L3+ KINY — N2 + (B — KDL (16)
Akt k2, k3) = k(k3 + K3)L] — k5(k] + K3)L3 + K}K3 N
From the system of operators (16) one can easily derive for particular values of the parame-

ters k7, k3 and k3 all possible, or equivalent to them, sets of diagonal operators {L,L:,L,},
corresponding to different bases for free motion on the three-dimensional sphere.

L The case k — 0, k2 + k? = 1. Ellipso-cylindrical basis I.
Ly = M0k, k) = KL* + k3(LE - N2) + KL,



II. The case k] — 0, k? + k3 = 1. Ellipso-cylindrical basis II.

Lo = A(kA0,K) = L? + KX(N? - L}) - KL,
L = A(k,0,K) = KEL? (18)

I11. The case kf = k3 — 0, k7 = 1 Cylindrical basis.

Ly
L,

A(0,k2,0) = £ + L2 - N2,
ﬁ(o’ k;’ 0) = _Lg (19)

IY. The case k7 = kI — 0, k2 =1 k¥/(k + k%) = k*. Sphero-conical basis.

Ly = A0,0,k2) = L2,
e AR K KD
L= Im e

2_,
k3—0

= kL2 - kL2 : (20)

Y. The case k} = k2 = 0, k3 =1 k?/(k} + k}) = 0. Spherical basis.

Ly = A0,0,k) = L2,

. p(ki k3, k3
&= i M - @1
k2 -0

Thus, by means of different limiting conditions of the parameters (kZ, k2, kZ) we have
obtained all five nonequivalent sets of operators corresponding to separation of variables in
the Helmholtz equation on the three-dimensional sphere in simpler systems of coordinates.

4 Solution of the ellipsoidal equation

Let us construct solutions of the generalized Lame’ equation. Search for the ellipsoidal
wave function 1(p) as an expansion in series round one of the singularities a,

a4 — 4y

Ho = (o= )2 o - e (o - e Fip - 20¥ b (2==) (22)

where o, = a;. Substituting (22) into the generalized Lame’ equation (22) we derive
three-term recurrence relations for the expansion coefficients b,
Bibers + {p — 1 }oe+ {A = 6:}bioy +wibin = (23)

where

A= (ay - al)“[2a;J(J +2) = A, p= (00— a)*a? I (T +2) — arhy — Ay

(487 + (42 + 1) (03 + o) + 2000 K2k2 + [42% + (4L + 1) (0 + a3)
+ 20003)ki (k3 + k3) — (48 + (4t + 1)(@2 + o) + 20000 K2(K? + k2)
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B = [A(t+1)(t+az+ 1/2)E]KS(K + k)

Now we consider polynomial solutions of the ellipsoidal equation (10). Let all the
coefficients of the four-term recurrence relation (23) starting from by,; be zero at any
integer N, i.e.

bN+l = bN+2 = bN+3 = oeveeennan = 0 (24)

Then, from the recurrence equation (23) under substitution ¢ = N + 2 and from the
condition by # 0, we have

J=2N+) a ' (25)
As a result, a polynomial solution of the ellipsoidal equation (10) can be written down as

¥(p)=(p—a))¥(p~a2) ¥ (p - a3) F(p - ay) Zb ( 4—"1) )

t=0

where b, obeys the following four-term recurrence relation:

Bibeyr + {ll ""/t}b: + {A - 61}51-1 +4N—-t+ 2N+t -1+ Za;]bg_z =0 (27

Now we have to solve the problem of eigenvalues of the constants A, u. Let us write
down the four-term recurrence relation (27) as a system of homogeneous equations

(ro—m)bo + Bobr =0
(6 — Mbo + (m—wbh + Brb, =0
wiby + (62— A)by + {(v2—wb + B2b; =0

()

wyoibyes 4+ by —A)bv_z + (IN-r —p)bno + Bnaaby =0
wnbn_s + (On = Aby_y +  (w—plby =0
wntbnar + by = A)by =0

As is scen from (28), the homogeneous system obtained is a redetermined one since the
number of equations N +2 is larger than the number of unknowns, and the corresponding
matrix is rectangular. As concerns a homogeneous system of equations of this type, it is
known that a necessary and sufficient condition for the existence of a nentrivial solution
is equality to zero of all determinants of order (N +1) [6]. However, as it is proved in the
appendix, for a system of equations of the type (28) it is sufficient that two determinants,
resulting from the system (28) by eliminating the last and the next to last rows, be equal
to zero.
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Now let ¢;,q2,¢2 be integers equal to the number of zeroes of the ellipsoidal wave
function (28) in the intervals (a),a;), {(a2,a3) and (as,as). As the general number of
zeroes of the polynomial (23) in the interval (a1, a4) equals N, the ellipsoidal quantum
numbers ¢1, g2, g3 are connected with each other by a simple relation

‘11+¢12+¢13=N, Qi=0y1,---N, ("=1’273) (29)

and can be chosen to enumerate ellipsoidal wave functions and ellipsoidal separation
constants {, #1}. As a result, we get that at a fixed N there exist (N +1)(N +2)/2 pairs
of different values of {}, u}, and depending on parity of the hypermoment J, the following
sixteen polynomials are given as an ellipsoidal wave function: )

uEpne(pia) = i BN p —az)', T =2N
r
cEX i (pa) = S EOOp—ag) /2 T =2N+1
t=0N
sEdva(pia) =  Vo—ay K0 -a), J=2N+1
T
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. t=0

N
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N
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9019293
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N
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t=0
N
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t=0
N N
sPEpi(pa) = ip—a)p—an) 3 6" p-a), J=2N+2
t=0
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t=0
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cspEY 43 (p; a;)
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cdpE;N (p; ;)

919293

N
Vie—as)(p—a) Y """V —a)*2 J=2N+3
t=0

sdpE; > (p; ai)

N
Vie-a)lp—as)(p—a 3 "™ (p-a))t,  J=2N+3
t=0 )

E2N+4

N
csdpEqia(pia) = Vip—a)p—as)p—ad) Y 6" (o a2 J=2N 44
=0

5 Ellipsoidal basis

According to the afore-said in sect.4, the ellipsoidal basis is divided into sixteen classes

‘I,ss:l;);?;g,)qa = C(o.o.o,o)uE;):m (p1; ai)uE:l’:,% (pria:)uEl o(P3:03),
J=2N, D= (N+1)2(N+2) _ (J+2)8(J+4)
\I’S,':,’?,;g ?qa = C(l,o.o,o)squ:m: (p1; a.’)SE:,’::;i (ps; a.')sE':l’m: (p3; ai),
J=2N+41, D= (N+1)2(N+2) _ (J+1)8(J+3)
Unaaens = COMOOCE (py; a)eBIH (p3; ) EXNE (o35 ),
J=2N+1, D= (N+l)2(N+2) _ (J+1)8(J+3)
U = COPMIAEIN (p1;0,)dENH (py; ) dEZH (ps;ay),
J=2N+1, D= (N+1)2(N+2) _ (J+1)8(J+3)
Yo = COOODEINH (5 0 )pEINH (0 a)pEIN (p5: o),
J=2N+1, D= (N+1)2(N+2) _ (J+l)8(J+3)
Ui = COMOOeS BN o1; 0:)es EXN (pa; a:)es EXN42 (po; ),
J=2N+2, D= (N+1)2(N+2) _ J(J8+2)
Wit = OO B (o1 0) A s ) sd B (),
n=2N+2, D= (N+1)2(N+2) _ J(J8+2)
U = COMD B (5 a) cdEXN2 pas 00) ed BN py; ),
J=2N+2, D= (N+1)2(N+2) _ J(J8+2)
Wananns = COMD EIN (py; 0.) cpENI (o3 0:) cp BN (pg; 01),
J=2N+2, D= (N+1)2(N+2) _ J(J8+2)
Nowimks = CU000 spE2N4 (5, ) spEL 2 (p2; a:) spENT2 (g ay),

(N+1)(N+2) _ J(J +2)
2

J=2N+2, D= 8



RO = GOSN dpE oy ) dpEZNAE (paia0) dPEINA o a1,
J=2N+2, D=(N+1)2(N+2)=J(J8+2) .

Wrio, = COMO cod BN (pr; 0i) csdElpesi(prio:) esdEppese (s ),
J=2N+3, D= (N+l)2(N+2) _ (J—l)é]+1)

‘I’x,';,'?;:?,,, = CUMON espEIN (p1;0;) cspE g (P23 8i) cSPEq et (p3; i),
J=2N+3, D= (N+l)2(N+2) _ (J—1)8(J+1)

PO = O Cp B gy ) cdpEINES 3 0:) cdpEXNES s ),
J=2N+3, D= (N+l)2(N+2) _ (J_1;(,1+1)

Wit = OO sdpELUS (pr;ac) sdpELLL IS (pai ) sdp gyl (i ),
J=2N+3, D= (N+l)2(N+2) _ (J—l)éJ+1)

Ganl) = UMY csdpEINA3(py; ;) csdpE e (P23 @i) esAPEY ¥ (p3; ai),

J=2N+4, D= (N+1)2(N+2) - J(J8—2)

Here D is the number of states at a given value of the hypermoment J. The multiplicity
of degeneracy of energy levels is determined by a sum of all states of even or odd fixed J
and is correspondingly equal to (J + 1).

The coefficients C"#*4) where 3,5, k,I = 0,1 are determined from the normalization
condition of the ellipsoidal basis

Y A N T 2 (pa = p1)(es = p2)ls = 1) _
8 /ul /; /ﬂ3 [‘I’N,q:.qzm(ﬂl,l’z» Pa)] /=Pl Plr) P dpy dpydp; =1 (30)

6 Mathematical supplement

Let us find out conditions for the existence of solutions of the homogeneous system (22)
which satisfy the requirement by # 0. Rewrite the system (22) in the matrix form having
in advance divided the jth equation into w; # 0; j = 0,1,---, N + L. For this purpose
we introduce a rectangular matrix P = ||p;;||, where i =0,---,N+1; j=0,---,N and

pi = (v—p)wi, i=0,1,---,N;
Piiy1 = Pifwi, i=0,1,--- N -1 (31)
piica = (&= ANfwiy, i=1,--- N+1;
Piicz = 1, i=2,--- N+

Pi; =0,at i < j—2and i > j + 3. We derive the equation

i



10

where b = (by, by,---, by)7.
Denoting by P the matrix obtained from the matrix P by eliminating the first row,
we get the first condition for the existence of nontrivial solutions of the system (32)

detP, =0 (33)

To get the second condition and to solve the system ( 31), let us consider the latter
without the first two equations and transfer the elements of the last column to the right-
hand side. We derive the following inhomogeneous system of cquations

Pb=f (34)

where P - is the matrix obtained from P by ehmma.t.mg the first two rows and the
last column b = (blhbh bN l) ’ (flvav 7fN) ft = 0’ t= 1a 7N _3
fi=piaanby; i=N-2,N-1,N. Note that P, - is the upper triangle matrix, which
has units on its principal diagonal. Let us consider minors of the matrix P with the
corresponding signs

Piv1i Pitri+r 0 Pitrj-1
5 = (1| P P T P (33)
Pii Piit1 " Pij-1

at 0 <2< 3 < N+1. Itisto be mentioned that since p;; =0ati<j—2andi>j+3,
and p;;_, = 1, the following relations hold:

Sij = —Pjj-18ij-1 — Pi-1,-15ij-2 = Pj-2j-15ij-3 (36)

Sij = —Pir1iSi+1j — Pit1i+18i42,) — Pit1,i+25143,5 (37)

Let us treat the upper triangle matrix S; = P;'. It follows from the lemma below
that the elements of this matrix, which are above the principal diagonal, satisfy relatlons
(36) and the principal diagonal of the matrix has units.

Lemma. Let A = ||a;;||7._, be an upper triangle matrix with units on the principal.
Then B = A~! = ||b,,”
diagonal, and at : < j

t]—l

ij=1 is also an upper triangle matrix with units on the principal

Giiyr  Gig42 " Qi a;;
g= (| S T T )
0 0 - 1 a1

Proof of the lemma. For ¢ < j we have
i .
Z apby; = 6;; (39)
k=i
Hence for i < 5
J
b= — Z aicbyj (40)

k=i+1
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In the same manner the recurrence formula is derived from the expansion of the
determinant (38) over the last column. Since formulae (38) and (40) coincide at J + 1,
the lemma is proved.

Thus,

b=Sf (41)

Choosing as by an arbitrary nonzero number, we obtain from (41) a vector b that
satisfies all the equations of the system (32) starting from the third one. By virtue of (41)
the vector b thus chosen also satisfies the second equation of the system (32). We get

N

N
Poo Y s1;fi+po Y 92ifi =0, (42)

1=t j=1

. which is equivalent to the equality

Poo(s1,N-2PN-1.N + SIN1PNN + S1LNPNHLN)
+po1(s2,N—2PN-1,N + S2N-1PNN + S2NPN4LN)

Using the recurrence relation (36) we get

PooS1,N+1 + Po1S2,N+1 = 0 (43)

Theorem. For the system (28) to have solutions, for which by # 0, it is necessary
and sufficient to satisfy the conditions (33) and (43). If these conditions are fulfilled, the
system (28) for any by # 0 has a solution determined by formula (41).

Thus, to determine eigenvalues of the ellipsoidal separation constant {), 1} one has
to solve the system of two algebraic equations

detPl = 0,
PooS1N+1 + Pursz,N: = 0.
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