
Physics Letters B 321 (1994) 381-384 PHYSICS LETTERS B 
North-Holland 

fl-function for the 4-model in variational perturbation theory 
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We consider the renormalization procedure for the (o4-model in the variational perturbation theory. The nonper- 
turbative fl-function is derived in the framework of the proposed approach. The obtained result is in agreement with 
the four-loop approximation and has an asymptotic behaviour as g3/2 for a large coupling constant. 

A central problem of quantum field theory is to go beyond the scope of standard perturbation theory. A great 
amount of  study is devoted to the development of  nonperturbative methods. Many of the latter are based on 
the variational procedure for finding the leading contribution. The idea of applying the variational methods in 
quantum field theory has a long history [1,2] (see also [3,4] ). In the last few years approaches with different 
modifications have found many applications. In this paper, we shall consider a method of the variational per- 
turbation theory (VPT) [5-7 ]. In the framework of VPT it is possible to represent the investigated quantity in 
the form of a series and it is possible to influence the properties of convergence of this series through certain 
variational parameters. Thus it becomes possible to optimize of the VPT series from the viewpoint of a better 
approximation. Our method is formulated in terms of Gaussian functional quadratures (like in perturbation 
theory). Also, we shall construct the VPT so that for its Nth order only those diagrams that compose the Nth 
order of standard perturbation theory will be required. 

The massless ~4-model in four dimensions has the Euclidean action 

S[~0] = S0[~0] + S ~ [ ~ ] ,  (1 )  

where 

= ½ i d x  ~0(-0 2) ~0, (2) s0[¢1 

(47t)2 f ¢ 
SI[~O] - 4! g d x  . (3) 

As is well known, the series of  perturbation theory for the generating functional of  the Green's functions 

. ' , , , : io.  ). ,4> 

diverges. A formal argument consists in a meaningless functional integral for the negative coupling constant. The 
function W [ J ] as a function of g is not analytic at g = 0. The concrete asymptotic behavior of higher-order 
terms of perturbation theory can be determined by the functional saddle-point method (the large parameter 

1 E-mail address: solovtso@theor.jinrc.dubna.su. 

Elsevier Science B.V. 381 
SSDI 0370-2693 (93)E1572-F 



Volume 321, number 4 PHYSICS LETTERS B 3 February 1994 

is the number of the series term) [8-11 ]. The main contribution to the functional integral (4) comes from 
the configurations of the fields ~o which correspond to the positive power of the large saddle-point parameter. 
However, in this case, the functional (3) can not be considered as the perturbative term in the comparison with 
expression (2), which appears as divergence of the perturbation series. 

The idea of the VPT method consists in the construction of a new effective functional interaction S~. We expect 
that this functional can be considered as a small value when compared with a new functional S~. In realization 
of this idea we should ensure the possibility of the calculations. Practically, we must use only the Gaussian 
functional integrals, i.e. the form of S[~o ] should be such that the functional integral in (4) can be reduced to 
Gaussian quadratures. 

Let us consider the VPT-functional 

~[~0] = 02s2[~01 (5) 

and rewrite the total action ( 1 ) as 

S[~o] = S~[~] + ~/S~[~o], (6) 

where 

s~[~0] = s0 [q ]  + g[~0], (7) 

and 

s~[~]  = s~[~0] - g[~0]. (8) 

In this case, the expansion of expression (4) is carried out in powers of q. After all calculations we should put 
~/ = 1. The parameter 02 in eq. (5) is a parameter of variational type. The initial functional (4) certainly does 
not depend on this parameter. We may take 02 so as to provide the best approximation with a finite number of 
VPT series terms. Different methods of the optimization were considered in [ 6]. 

It is convenient to define the new parameter t by the relation 

(47t) 2 
02 = 4Cs ~ g . t .  (9) 

Here Cs = 4!/( 167t)2 is a constant entering into the Sobolev inequality (see, for example, refs. [ 12,13 ] and 
ref. [14]) 

fdx '<.  10) 
The parameter t is fixed if we require the contribution of higher order terms of the VPT series to be minimal. 
This way of determining a variational parameter called the asymptotic optimization of VPT series gives the value 
t =  1 [7]. 

After expansion in powers of r/we obtain that the remainder contains the S[~o] in the exponental and con- 
sequently, we have a nongaussian form of the functional integral. However, the problem is easily solved by im- 
plementing the Fourier transformation. As a result, the Green's function G2v in the Nth order of VPT takes the 
following form: 

j N ~ ( 0 2 ) n - k  gk (11) 
~(N) da a ~'-t e x p ( - a  - 020t 2) E ~]n ot2n 
~2~ = ~----~! F(2k + v ) '  

0 n=0 k=0 

where the functions gk are ordinary perturbative coefficients for the Green's function G2~. To calculate them, 
the standard Feynman diagrams can be used. 
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It should be stressed that the expansion of  expression ( 11 ) in powers o f  the coupling constant g contains all 
powers of  g. The first N terms of  this expansion coincide with N terms of  a perturbative series. 

Let us consider the procedure o f  renormalization. Instead of  the field ~0 and the coupling constant g we 
introduce the bare field ~00 and the bare coupling constant go. The field ~00 is connected with the renormalized 
field by the relation: (00 = Z~/2~o. The divergent constants Z and go are obtained from the VPT expansion. The 
constant Z can be calculated by using the propagator G2. We will employ the constant Z in the first order of  the 
VPT series. From eq. ( 1 1 ) we find 

Z (1) = r ( 1 )  Jl (0 2) -I- qo~r(3) Js(O2), (12) 

where we define 

1 f OLv_ 1 J"(O2) -- F ( u )  da  e x p ( - a  - a202).  (13) 

0 

The function J .  (02) is normalized by the condition d~ (0) = 1. The connected part of  the four-point Green's 
function in the second order of  VPT has the form 

_ v4a(2)(/z2 ) = rlgoJ4(O 2) + ?/2 go 0°21! F(6)F(4) J6(02) - -32 g2J6(002) In ~ -  . (14) 

In this expression we wrote out only the divergent part we need in the following. We use the renormalization 
scheme with a symmetric normalization point /z  2. For the bare coupling constant go we write down the VPT 
expansion go = g ( 1 + r/a + . . .  ). The VPT expansions for 0 2 and Z,(002) are introduced in a similar manner. 
The divergent coefficient a is defined by expressions (12), (14) and the requirement for the function - Z 2  G4 (/z 2 ) 
being finite. I f  we change the normalization point/z ~ /z' and use the bare coupling constant being independent 
of/~ we find the connection between g and g '  

/t ~2 
g '  = g + n # ( g )  In - -  (15) /z2 , 

where the Gel l -Mann-Low function is expressed as 

J6(O2)/j4(02) (16) 
f l (g)  = 3g2 1 - 0 2 { [ F ( 6 )  J6(O2)/F(4) J4(02)] - 2 [F (3 )  J3(O2)/r(1) J~(02)]} 

Here the parameter 0 2 is connected with the renormalized coupling constant g by eq. (9) with the optimal 
value t = 1. 

The expansion of  the fl-function (16) in the perturbation series contains all powers of  the coupling constant 
g. It is interesting to compare the first coefficients of  the VPT fl-function (16) with the well-known coefficients 
o f  perturbation theory. From (16) we get 

f l(g) = 1 . 5 g 2 - 2 . 2 5 g  3 + 14.63g 4 -  134.44g 5 + . . . .  (17) 

In the considered massless case, we use counterterms containing only divergent parts. In the framework of  
the dimensional regularization this conforms only to the pole part for counterterms [15]. The corresponding 
fl-function in the four-loop approximation looks as follows [16 ] 

flverturb.(g) = 1.5g 2 -  2 .83g  3 + 16.27g 4 -  135-80g 5 + . . . .  (18) 

Note that in constructing the fl-function (16) we used only the lowest order of  VPT. For this approximation 
the expressions (17) and (18) are in agreement. 

383 



Volume 321, number 4 PHYSICS LETTERS B 3 February 1994 

2 5O0 

2OO0 

1500 

1000 

500 

0 
0 25 50 75 100 Fig. 1. The behaviour of the B-function [eq. (16)]. 

As follows from expression (16), the p-funct ion is monotonously increasing and has no the ultraviolet stable 
point  (fig. 1 ). For  a large coupling constant, the p-  function has the asymptot ic  behaviour  

3 V/~ g3/2. (19) 
f l ( g ) -  10 ~ - 1  

The degree o f  g in eq. (19) is larger than the l inear increase of  the fl-function obtained in ref. [ 17 ], and is 
smaller than the square increase found in rcf. [ 18 ]. 
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