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Abstract.  A new measurement of  ~ is obtained from the 
distributions in thrust, heavy jet mass, energy-energy cor- 
relation and two recently introduced jet broadening var- 
iables following a method proposed by Catani, Tren- 
tadue, Turnock and Webber. This method includes the 
full calculation of ~y(~2) terms and leading and next-to- 
leading logarithms resummed to all orders of  as. The 
analysis is based on data taken with the DELPHI  detector 
at LEP during 1991. I its found that the inclusion of  the 
resummed leading and next-to-leading logarithms re- 
duces the scale dependence of ~s and allows an extension 
of the fit range towards the infrared limit of  the kine- 
matical range. The combined value for ~ obtained at the 
s c a l e / / = M  2 is: 

~ ( M z  2) =0.123 •  

1 Introduction 

During the last two years accurate measurements of the 
running coupling constant, as, of quantum chromody- 
namics at e+e - colliders have been obtained from the 
analysis of  event shape distributions measured in had- 
ronic Z 0 decays [1-3]. In these publications, distributions 
in infrared and collinear safe observables are compared 
to QCD predictions in fixed order perturbation theory. 
The dominant uncertainty in the measurement of  ~s re- 
suits from the renormalization scale dependence of the 
coefficient of the second order term in as. 

Recently a resummation of leading and next-to-lead- 
ing logarithmic contributions (NLLA) has been per- 
formed to all orders of perturbation theory for the dis- 
tributions in thrust, heavy jet masses and jet broadening 
variables, and for the back-to-back energy-energy cor- 
relation [4-7]. In consequence the uncertainty of ~ due 
to the renormalization scale is reduced. Also the quan- 
titative comparison between data and theory can be ex- 
tended towards the 2-jet region, where gluons are emitted 
close to the directions of the produced quarks (infrared 
limit) and where the statistics are high. For  some of  the 
distributions studied in this paper, the resummed ex- 
pressions have been applied to LEP data [2, 8, 9]. 

In the following analysis as is determined using two 
methods. Method 1 concentrates on the 2-jet region where 
the cross-section can be reliably expressed as a power 
series in ~s containing only the leading and next-to-lead- 
ing contributions of large logarithms. Values of as are 
determined from the distributions in thrust, heavy jet 
mass and jet broadening variables. Method 2 extends the 
comparison with theory into the region dominated by 3- 
jet events. Here the resummed expression has to be 
matched with the full ~ (~s  2) expression for the different 
distributions. The corresponding ~s values, including the 
one from the analysis of  the energy-energy correlation, 
are compared to the results of method 1. 

In this paper Sect. 2 briefly describes the DELPHI  
detector while Sect. 3 introduces the relevant event shape 
variables and describes the data selection and corrections. 
In Sect. 4 the theoretical expressions used to determine 
as are evaluated. Section 5 describes the hadronization 
correction. Also the sources of different systematic un- 
certainties and fit results are discussed, and finally the 
procedure to obtain a combined result for c% including 
the correlation of the individual results is presented. 

2 The detector 

A detailed description of the DELPHI  apparatus has been 
presented in [ 10]. Here the components relevant for this 
analysis are briefly described. 

The main part of  the tracking system is a 2.7 m long 
time projection chamber (TPC) which measures the tracks 
of charged particles with a resolution of about 250 rtm 
in the Rq%projection (transverse to the beam direction) 
and 0.9 mm along the z direction (beam direction). The 
space between the TPC and the beam pipe contains the 
inner detector (ID) and a silicon microstrip vertex detec- 
tor (VD). Each 15~ sector of  the ID consists of  a 24 wire 
jet chamber surrounded by a 5 layer proportional cham- 
ber. The vertex detector is built from three concentric 
shells of 24 silicon microstrip detector modules each 24 cm 
long. In the barrel region (polar angle 0 relative to the 
beam axis between 43 ~ and 137 ~ ) the quality of tracking 
is further improved by the outer detector containing 5 
layers of drift tubes. Each layer measures the Rq~-coor- 
dinate with a resolution of  about 110 lxm. Three layers 
also provide an approximate z measurement. 
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In the forward and backward regions (0 in the range 
11-33 ~ or 147-169 ~ ) two additional drift chamber sys- 
tems improve the tracking. Forward chamber A (FCA) 
consists of three pairs of  wire planes rotated by 120 ~ with 
respect to each other, in order to resolve ambiguities in- 
ternally. Forward chamber B (FCB) consists of 12 wire 
planes twice repeating the orientation of FCA and po- 
sitioned directly in front of  the forward electromagnetic 
calorimeter (FEMC). 

Electromagnetic clusters are measured in the barrel 
region (0 between 43 ~ and 137 ~ by a high density pro- 
jection chamber (HPC), and in the forward region (0 
in the range 10-36.5 ~ or 143.5-170 ~ by the FEMC, a 
matrix of  4522 lead glass blocks. The HPC consists of  
144 modules arranged in 6 rings around the beam axis. 
It is finely grained in 3 dimensions and thus allows a 
good two-shower separation and some particle identifi- 
cation from the shower shape. 

3 Data analysis and corrections 

For  this analysis charged particles were used if they ful- 
filled the following criteria: 

�9 momentum larger than 0.4 GeV/c;  
�9 over 30 cm measured track length; 
�9 polar angle 0 between 20 ~ and 160~ 
�9 projection of impact parameter relative to the fitted 
main vertex below 4 cm in the plane transverse to the 
beam direction, and below 10 cm along the beam direc- 
tion. 

Photon showers were included if they were detected in 
the HPC or the FEMC with an energy larger than 0.4 GeV 
and if their polar angle was between 20 ~ and 160 ~ . 

Hadronic events were selected by requiring 5 or more 
charged particles, a total energy of all selected charged 
particles larger than 12% of the centre-of-mass energy, 
and larger than 3% in each hemisphere. To ensure that 
the event was well contained in the detector it was re- 
quired that the angle between the sphericity axis and the 
beam axis exceeded 40 ~ A total of 177 925 events sur- 
vived these selections for the 1991 data. 

All distributions have been obtained from the analysis 
of  charged and neutral particles except for the distribu- 
tion of  the back-to-back energy-energy correlation (EEC) 
where only charged particles were used. In order to cor- 
rect the measured distributions for detector effects such 
as losses of charged and neutral particles, measurement 
errors and secondary interactions, events were generated 
with the JETSET 7.3 patton shower program [11] com- 
bined with the DYMU3 event generator [12] to simulate 
initial state photon radiation (QED), and followed by a 
detailed simulation of  the detector (DELSIM) [13]. The 
simulated data were processed in the same way as the 
real data. For  a quantity X the correction factor C x was 
calculated bin-by-bin as: 

 doVOO O 
Cx - \ d x - x / g  . . . . .  ted \ d X /  ( 1 )  

d(T~ DELsIM ( d a )  QED 

d X  . . . . . . .  truote  

where 'generated' includes all particles with a lifetime 
larger than 10-9S without detector simulation, and 're- 
constructed' indicates the full detector simulation and 
reconstruction of  the simulated raw data. 

In this analysis experimental distribution for six quan- 
tities are presented, namely for thrust T, two different 
definitions of normalized heavy jet mass squared p, two 
jet broadening measures B, B w and back-to-back energy- 
energy correlation EEC. For  these distributions leading 
and next-to-leading logarithms have been resummed to 
all orders of ~s in [4-7]. The definitions of these event 
shape variables are: 

~, I pi'nthr I 
T =  max i 

Z IPll 
i 

Ev~s �9 max 

(2) 

p , p (3) 
> 0  p~. < 0  

where i runs over all final state particles, nth r is the thrust 
axis, and Evi s the total energy of all visible particles with 
four-momentum p~. In (3) charged particles are assumed 
to have the pion mass while neutrals are assumed to be 
massless. 

Among all possible ways to divide the particle system 
into two groups a and b the one which mimimizes the 
sum of the squared invariant masses M~ 2 + M~ was se- 
lected in order to get the alternative jet mass p(M) [ 14]: 

1 
p(m) _ -max (M~, M~).  (4) 

EvZ~s 

In [7] two new e+e - event shape variables were intro- 
duced which measure the jet broadening by summing up 
the transverse momenta of  the final state particles relative 
to the thrust axis. The total jet broadening B and wide 
jet broadening B w are defined as follows: 

B = B +  + B_ (5) 

B w = max(B+,  B_)  (6) 

with 

Z [ P i X  Othr [ 
B •  • (7) 

2 Z [Pil 

where i again runs over all final state particles. 
The back-to-back energy-energy correlation is defined 

from the distribution of angles Z between all particle pairs 
in an event weighted by their energies: 

1 1 N Nparticles 

E E C ( Z ) - N  AX Z 
events , �9 

AX 
E i E j  x+~- 

• Ev]s I O(X--ZiJ )dX (81 
AX X - - -  
2 
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where X is taken larger than 90 ~ and AX is the bin width 
of the histogram. 

4 QCD predictions in NLLA 

Pure second order QCD predictions can describe the dis- 
tribution of an infrared and collinear safe shape variable 
only in a limited kinematic region dominated by the 3- 
jet rate, where higher order effects are negligible. On the 
other hand in the 2-jet region higher order terms grow 
in the case of exponentiation [15] like lnn+lye7 as the 
shape variable y is close to its infrared limit y ~ 0 .  There- 
fore in this region any fixed order expansion of the cross- 
section must fail. To extend the range towards the infra- 
red limit it is essential to calculate at least the leading 
higher order terms. The expansion of the integrated cross- 
section 

1 
R (37, ~ ~) = - -  cr (y < 37) (9) 

O" tot 

at the scale Q2=-s can be written in the form [4-7]: 

cR(y,O~s(Q2))=(1 § ClOts (Q 2) 

+ C2~2 (Q 2) + ...).27(L,~(Q2)) 

§ Fa (y) ~ (Q2) § F2 (y) ~2 (Q2) § (10) 

with 

L = l n y  (11) 

I l" T,p (r),p(M),B,Bw 

e=  2: back-to-backEEC 
(12) 

where the C i are constant and the F,.(y) vanish in the 
infrared limit y ~ 0 .  Here y stands for (1 - T), p(r), p(M), 
B, B w or (1 + cosx)/2, respectively. All logarithmic div- 
ergencies can be included in the function 27 (L, es (Q2)). 
In the case of exponentiation which holds for thrust, heavy 
jet masses, jet broadening variables and back-to-back 
energy-energy correlation, the logarithm of the function 
27 can be written in the form: 

In (27 (L, ~))  = (G12 Z 2 § G~I L) ~s 

+ (G23 L 3 + G22 L 2 § G21 L) ~2 

§ (G34L 4 § G33L 3 §  3 

§  (13) 
LL N L L  

Once exponentiation is established the leading and next- 
to-leading terms, denoted in (13) as LL and NLL, can 
be resummed to all orders o f ~ .  Logarithms weaker than 
next-to-leading, such as the (G2~L)e~ term, are called 
subleading. At present subleading terms higher than 
~Y(e~) remain uncalculated and have to be estimated or 
neglected. A transition from the scale Q2 to a scale tt z 
induces a f = t t 2 / Q  2 dependence of the next-to-leading 
terms, i.e. ln27 explicitly depends on f 

Apart from the combination of the second order cal- 
culation and the resummed logarithms as suggested in 
(10), alternative matching schemes have been proposed 
[8, 16], which differ in terms of the order ~(e31n2y). If 
the first and second order coefficients A and B, which 
can be taken from reference [14] or computed by using 
the EVENT program [14, 1 7], are defined through 

cR (y, ~ )  = 1 + A (y) as + B (y) ~ (14) 

and the functions gl and g2 as 

gl (L ) = G12 L2 § Gll L (15) 

g2 (L) = G 2 3  L 3 § G22 L 2 § G21 L (16) 

the following matching schemes can be defined: 

In R-matching scheme. This scheme follows from [4, 5]: 

In cR (y, es) = In (27 (L, COs) ) + H 1 (y) ~ 

§ n2 (y)o~ 2 
with 

(17) 

H 1 (y) = A (y) - gl (L) (18) 

1t2 (Y) = B (y) -- 1A 2 (y) _ g2 (L). (19) 

R-G21-matching scheme. This scheme follows from (10) 
and is suggested in [6]: 

cR(y,~s)=(1 + Cl~s+ C2~2)27 (L,~s) 

+ F, (y)~s + F2 (y)ct~ (20) 
with 

F 1 (y) = A (y) -g~ ( L ) -  C 1 (21) 

F 2 (y)  = B (y)  - i g2 ( L )  - g2 ( L )  

- -  Cl gl  ( L )  -- C 2 (22) 

where the coefficient 6 2 1  is known from the full second 
order calculation [14, 18]. 

R-matching scheme. This scheme also follows from (10), 
but now with g2 and ln27 in NLLA only, i.e. without the 
G21 L term. 

In this analysis the ambiguity introduced by these dif- 
ferent matching schemes is used for evaluating one source 
of theoretical uncertainties. From a theoretical point of 
view the In R- and R-G21-schemes are preferred, since in 
both schemes all known logarithms are exponentiated, 
while the R-matching suffers from the fact that the known 
logarithmic term G21L is only included in second order 
and not exponentiated. This leads to large differences 
between the In R- or R-G21-scheme and the R-scheme if 
this term is large. Nevertheless the R-scheme can be used 
in a restricted fit range to estimate the influence of un- 
calculated terms. This is discussed in more detail in the 
next section. 

When combining second order theory with resummed 
logarithms one has to take into account that the re- 
summed terms do not vanish at the upper kinematic 
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boundary. Therefore the resummed logarithms are re- 
defined in the following form [16]: 

L = l n ( 1 / y -  l /Ymax 4- 1).  (23) 

Here Ymax is the upper kinematic boundary for each var- 
iable and is listed in Table 7. 

As a consequence of the explicit inclusion of higher 
order terms in the theoretical prediction a reduced scale 
dependence is expected. The small scales found in former 
pure second order ~s measurements [2, 3], which were 
necessary to compensate unknown higher order terms, 
are not needed in the resummed calculation and are even 
forbidden, since such small scales introduce additional 
terms of the type l n " f  to all orders of as. This would 
lead to some double counting of the higher order terms. 

5 Confrontation of QCD in NLLA and data 

Before theoretical expressions describing parton distri- 
butions can be compared with the experimental data, 
corrections must be made for hadronization effects, i.e. 
effects resulting from the transition of the parton state 
into the observable hadronic state. For the global event 
shape variables, thrust, jet broadening and heavy jet 
masses, it is assumed that hadronization effects can be 
described by a correlation matrix C which connects the 
parton state with the hadronic final state: 

A a = A a (24) 
ZlYi H a d r o n  Z Cij ~YiYi Patton" J 

In the case of the back-to-back energy-energy correlation, 
which is defined for each pair of charged particles, had- 
ronization effects are described by a linear bin-by-bin 
correction vector C,.: 

AR(J~i) H a d r ~  = C i Ag(xi--) I ( 2 5 )  
ZI  X i Z X i P a t t o n  

These corrections were determined using I 000 000 Monte 
Carlo events produced with JETSET 7.3 tuned to the 
DELPHI data [ 19]. In addition to this Monte Carlo sam- 
ple, different tunings and models were used for the had- 
ronization correction yielding an estimate of the system- 
atic uncertainty of this correction, as detailed later. 

For  the confrontation of QCD with data and the de- 
termination of ~s two approaches have been used: 

1. Following the suggestion of [7, 20] to consider two 
distinct theories, each applicable in certain kinematic 
regions (namely the resummed leading and next-to-lead- 
ing logarithms (NLLA) on one side, and pure ~ ( ~ )  
theory on the other side), ~s is extracted from one meas- 
ured bin in the extreme 2-jet region, where y is small, 
using pure NLLA without combination with second order 
theory. Figure la shows the ratio a~ of the resummed 
logarithms (first two columns of (13), denoted as 
I n  z ~  ( N L L A )  and the non-exponentiating second order con- 
tributions: 

In 27 (NLLA) 
09 -- H1 ~Xs 4- H2 ~2" (26) 

In the extreme 2-jet region where the ratio co becomes 
large, the theory should be completely dominated by the 
resummed logarithms signalling the reliability of this ap- 
proach. This method, which will be denoted as method 1, 
is complementary to pure second order as determinations 
using data in the 3-jet region. It offers the possibility of 
comparing a theory which is known to all orders of as in 
NLLA with the data. However, this approach is not ap- 
plicable to the back-to-back energy-energy correlation 
due to the fact that here the ratio ~o (Fig. 2a) does not 
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Fig. 1. a Ratio of the resummed 
leading and next-to-leading 
logarithms to / /1  as + H2a~ of (18) 
and (19) versus 1 - T. For low 
values of 1 - T, where this ratio 
becomes large, the theory is 
dominated by resummed 
logarithms, b Ratio of the next-to- 
leading logarithms to the leading 
logarithms. If  this ratio is small 
NLLA should be reliable, e Ratio 
of the only known subleading 
logarithm G21 In y and G22 In 2 y. If 
this ratio is small one expects a 
small matching scheme ambiguity 
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Fig. 2. As Fig. 1 but for the back- 
to-back energy-energy correlation 
EEC 
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Fig. 3. Upper plot: Measured thrust distribution corrected for ac- 
ceptance and initial state radiation. The histogram presents the 
result of  a fit to the data of  the combined theory with In R-matching 
scheme at p2=MZ z as described in the text. Middle plot: Bin-by- 
bin detector correction including effects due to initial state radia- 
tion. Lower plot: Size of  the hadronization correction. The width 
of  the band indicates the uncertainty of  the correction 

become sufficiently large in the accessible range, w h i c h  
is limited towards small y-values by the pole in the re- 
summed next-to-leading logarithms as visible in Fig. 2b 
[6]. 
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Fig 4. As Fig. 3 but for the heavy jet mass (thrust definition) 

2. While the first method aims to measure 0( s to all orders 
in NLLA, the second method tests a combined N L L A  
and G(c(~) theory over a wide kinematical range includ- 
ing the 3-jet region. Therefore expressions (24-25) are 
confronted with the experimental distributions by means 
of a least square fit supplying a measurement of A~-x 
w h i c h  can be translated into c(s(MzZ). For  th e  f i t  only 
statistical errors are considered. Figures 3 to 8 show the  



28 

! 102~ . . . .  I ' ' ' 

I D E L P H I  

,D 

15' 

15 2 

�9 o Data 

QCD Fit 

Vs= 91.3 OeV 
A~=317,84- 8.6 MeV 

a,(Vs) =0.1244-0.001 

f= 1 .ODD 
X~/NDF= 10.5/I 2 

c 1(~3 ~ ~ + ~ q ~ : : < ' - -  Fit Range --~! 

- i  - o 

1 . . . . . . . . . . . . . . . . .  - 

" 0 . 8  
1.5 

Ol.25 :: 

2:0.75 

0.5 
0 0.1 0.2 0.3 0.4 

p~ 

Fig. 5. As Fig. 3 but for the heavy jet mass (mass definition) 

. . . .  r . . . .  I ' - - '  ' ' I . . . .  I . . . .  i r ,  

DELPHI �9 o Data 

.~ QCD Fit 

Vs= 91.3 GeV 

10 ~ #~=261.9:t; 6.3 MeV 
os(-/s)=0,121 • 

eL.~ f=1,000 

o 

1 

::<--- Fit Range ---k vLQ_ 

1.2 i 

e -a  

~ 

:=0.75 
0.5 ~ , , , i i , , , I , , t L I J , , ~ I , , = J , , , ~  

0 0.05 0.1 0.15 0.2 0.25 03  
8 

Fig. 6. As Fig. 3 but for the total jet broadening variable 

DELPHI . o  Data 
o~ QCD Fit 

~ ~/s= 91,3 GeV 
10 Lt ] A~=144.0i 4,4 MeV 

a,(./s)=O�9 110• 
f=l,0OO 

1 = , 5  

i " i i<-- Fit Range --~i 
1(~ 1 

o 1.2 
o 
"6 1 Q 

0.8 
c 1,5 
8.1.25 

"r0.75 

0.5 
0 0.05 0,1 0,15 0.2 0,25 0.3 

8, 

Fig. 7. As Fig. 3 but for the wide jet broadening variable 

- o  
o 

C .  

3 
,.q 
w 

1 

15 ~ 

1,2 (J 

0,8 

d 
c 0.9 

i 

0 . 8  

, , ,  , i  , , , , t , , , , i  ,, ~ [ , ,  , , i , , , , i ,  , , , i ,  , , , i ,  ,, 

DELPHI 

�9 o Data 
o 

- -  QCD Fit o 

VS= 91,3 GeV S 
A~=506,34- 5,1 MeV _ ~  

a,(Vs)=O.134+0.001 �9 J 

f= 1.000 . 7  
x'/NDF=131 .e/15 

4-" Fit Range 
!====l= =;==Jl ' '~ l ' ' ' ' l==' .= ' ,=: '~ ' r  :: r ==' , i= l l l=  == 

-- i I ', I 'r ', I I I I I I I ~ I I I i I I I I I ' 
- i 

-,,,~l, ,,l*,,,l,i,,l .... I .... I .... li,,,f,, 

gO 100 110 120 130 140 150 160 170 180 

X 

Fig. 8. As Fig. 3 but for the back-to-back energy-energy correlation 
EEC 



29 

hadron data compared with the fit result of the In R- 
matching scheme at the renormalization scale p2 ___ Q2 = s. 
The fit range is chosen in such a way that: 

�9 Acceptance corrections are below about 20% and had- 
ronization corrections below about 40%. 
�9 One keeps away from the pole of the ratio of the next- 
to-leading logarithms and the leading logarithms (Fig. lb 
and 2b) at small y values. Otherwise subleading terms 
cannot be neglected. 
�9 The data can be well described by the theoretical pre- 
diction. 

These criteria lead to the following fit ranges 

( l - T ) :  [ 0.06, 0.30] 

p(T): [ 0.03, 0.24] 

p(M): [ 0.02, 0.15] 

B: [ 0.06, 0.24] 

B w:  [ 0.04, 0.20] 

2:EEC: [ 104.4~ 162.0~ 

(27) 

For all variables the fit ranges have been extended 
towards the infrared limit in comparison to the more 
restricted fit ranges used for the determination of e~ in 
~ (~s  2) [3]. Below the lower limit of the fit range, had- 
ronization corrections increase strongly for 1 -  T, p(r), 
p(M), B and B w . For the R-scheme, which is used in this 
analysis only to estimate the theoretical uncertainty, a fit 
range restricted to the 3-jet region is used. This is nec- 
essary due to the one logarithmic divergent term G21 L, 
which is not exponentiated in the R-scheme and so leads 
to an unphysical divergency of the predicted cross-section 
in the 2-jet limit. The size of  this term can be seen from 
Figs. lc and 2c, where the ratio G21 In y /G22 ln2y is plot- 

Table 1. Thrust distribution corrected for detector acceptance and 
initial state photon radiation 

T 
1 da  

a,ot A-T 5: (stat) 5: (exp) 

0.605 0.012 • 0.007 5:0.007 
0.615 0.006+0.0035:0.003 
0.625 0.0105:0.004• 
0.635 0.021 5:0.006 5:0.007 
0.645 0.07 5:0.01 5:0.02 

T 1 A~5: (stat) + (exp) 
O'to t A ~ '  

0.805 0.775:0.045:0.02 
0.815 0.89• 
0.825 1.075:0.04• 
0.835 1.135:0.045:0.05 
0.845 1.32 • 0.05 5:0.03 

0.655 0.07 5:0.01 5:0.03 
0.665 0.10 +0.01 5:0.01 
0.675 0.12 5:0.01 5:0.01 
0.685 0.15 5:0.02 5:0.02 
0.695 0.18 • • 
0.705 0.23 • • 
0.715 0.27 • +0.03 
0.725 0.33 • • 
0.735 0.36 5:0.03 • 
0.745 0.40 5:0.03 5:0.03 
0.755 0.48 5:0.03 5:0.02 
0.765 0.51 5:0.03 5:0.02 
0.775 0.55 +0.03 5:0.03 
0.785 0.62 5:0.03 5:0.03 
0.795 0.76 • • 

0.855 1.42 5:0.05 5:0.03 
0.865 1.71 5:0.06 5:0.05 
0.875 1.92 5:0.06 5:0.03 
0.885 2.28 • 0.06 5:0.04 
0.895 2.71 5:0.07• 
0.905 2.99 5:0.07 • 0.06 
0.915 3.905:0.08• 
0.925 4.62 5:0.09 5:0.11 
0.935 5.7 5:0.1 5:0.1 
0.945 7.4 5:0.1 5:0.2 
0.955 9.7 5:0.1 5:0.4 
0.965 13.6 • :t:0.2 
0.975 16.2 • • 
0.985 10.1 • • 
0.995 1.405:0.045:0.14 

Table 2. Heavy jet mass distribution (thrust definition) corrected 
for detector acceptance and initial state photon radiation 

p(T) 1 A a  
Otot Ap(r ) + (stat) 

• (exp) 

0.005 1.84• 
0.015 15.2 • 5:1.3 
0.025 20.2 5:0.2 5:0.5 
0.035 14.1 5:0.2 • 
0.045 9.9 +0.1 5:0.5 
0.055 7.1 5:0.1 5:0.4 
0.065 5.5 • +0.3 
0.075 4.30 • 0.09 -t- 0.22 
0.085 3.47 • 0.08 • 0.17 
0.095 2.78 • 0.07 • 0.16 
0.105 2.305:0.07• 
0.115 1.995:0.065:0.09 
0.125 1.69 5:0.06 5:0.05 
0.135 1.37• 
0.145 1.18• 
0.155 1.05 • 0.05 • 0.06 
0.165 0.89•177 
0.175 0.775:0.045:0.06 
0.185 0.675:0.045:0.02 
0.195 0.545:0.035:0.03 

1 Aa 
P(T) - ,r, 5:(stat) 

O'to t / I p '  " 

• (exp) 

0.205 0.47 • 0.03 5:0.04 
0.215 0 .39 ~-0.03 5:0.02 
0.225 0 .34  5:0.03 5:0.03 
0.235 0 .29 5:0.02 5:0.02 
0.245 0.23 5:0.02 5:0.02 
0.255 0 .18 5:0.02 +0.02 
0.265 0.166 • • 
0.275 0 .13 • +0.01 
0.285 0.088 • 5:0.006 
0.295 0.062 • 0.009 5:0.003 
0.305 0.048 :t:0.008 5:0.012 
0.315 0.035 5:0.007 5:0.005 
0.325 0.024 • • 
0.335 0.022 5:0.006 • 
0.345 0.011 • 5:0.002 
0.355 0.007 • 5:0.003 
0.365 0.006 • 5:0.001 
0.375 0.002 5:0.002 5:0.002 
0.385 0.002 5:0.002 • 
0.395 0.00145:0.0015• 

Table 3. Heavy jet mass distribution (mass definition) corrected for 
detector acceptance and initial state photon radiation 

p(M) 1 Aa 
O'tot Ap(M ) 5: (stat) 

+ (exp) 

0.005 1.87 • 0.05 • 0.58 
0.015 15.5 5:0.2 +1.4 
0.025 20.6 5:0.2 + 0.7 
0.035 14.4 5:0.2 5:0.9 
0.045 10.0 5:0.1 5:0.6 
0.055 7.2 5:0.1 +0.4 
0.065 5.5 +0.1 +0.2 
0.075 4.34 • 0.09 • 0.29 
0.085 3.54+0.08+0.20 
0.095 2.90 5:0.07 5:0.12 
0.105 2.405:0.075:0.12 
0.115 2.095:0.065:0.08 
0.125 1.70• 
0.135 1.47•177 
0.145 1.26 + 0.05 • 0.07 

p(M) 1 Aa 
atot Ap(M ) + (stat) 

5: (exp) 

0.155 1.11 +0.05 5:0.10 
0.165 0.86 +0.04 5:0.06 
0.175 0.64 5:0.03 • 
0.185 0.56 • i0.04 
0.195 0.41 +0.03 i0.03 
0.205 0.35 470.03 -~0.03 
0.215 0.23 5:0.02 5:0.02 
0.225 0.20 5:0.02 5:0.02 
0.235 0.1055:0.0145:0.009 
0.245 0.044 5:0.008 5:0.015 
0.255 0.034 • 0.009 • 0.003 
0.265 0.008 • 0.003 • 0.006 
0.275 0.003 5:0.002 5:0.002 
0.285 0.004 5:0.004 5:0.002 

ted for thrust and for back-to-back energy-energy cor- 
relation. This ratio is one order of  magnitude larger for 
EEC than for thrust, indicating the large matching scheme 
ambiguity of  the EEC. 

The data can be described well by the combined theory 
over a wide kinematic region. Note that the value of  
x 2 / N D F  is evaluated from statistical errors only. These 
are very small, in particular in the case of the EEC. 

5.1 Sys t emat i c  uncertainties 

To estimate the systematic error of ~s, three sources of  
uncertainties are investigated: 
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T a b l e  4. Total jet broadening distribution corrected for detector 
acceptance and initial state photon radiation 

B 
1 da  

• (stat) • (exp) 
o'to t AB 

0.015 0.044-0.01 • 
0.025 0.30 • 0.02• 0.09 
0.035 1.95 •177 
0.045 5.66•177 
0.055 9.4 • • 
0.065 10.6 • • 
0.075 10.0 • • 

B 1 Act •177 
o'to t AB 

0.165 2.53 • 0.07 • 0.05 
0.175 2.24• 0.06 • 0.07 
0.185 2.0l • 0.06 • 0.05 
0.195 1.79•177 
0.205 1.60 • 0.05 • 0.04 
0.215 1.41 •177 
0.225 1.21 •177 

0.085 8.2 • • 
0.095 7.1 • • 
0.105 5.86•177 
0.115 5.32•177 
0.125 4.49•177 
0.135 3.88 • 0.08 • 0.11 
0.145 3.34• • 
0.155 3.07 • • 

0.235 1.03 • 0.04 • 0.03 
0.245 0.90 • 0.04 • 0.03 
0.255 0.79 • 0.04 • 0.03 
0.265 0.65 • • 
0.275 0.61 • 0.03 • 0.06 
0.285 0.50 • 0.03 • 0.03 
0.295 0.40•177 

Table 5. Wide jet broadening distribution corrected for detector 
acceptance and initial state photon radiation 

Bw 
1 A~r 

~ ABw • (stat) 
• (exp) 

0.005 0.017 • 0.007 • 0.013 
0.015 0.88 • • 
0.025 8.9 • • 
0.035 15.9 • • 
0.045 13.7 • • 
0.055 10.3 • • 
0.065 8.3 • • 
0.075 6.65 • • 
0.085 5.51 • • 
0.095 4.65 • • 
0.105 3.91 • • 
0.115 3.36 • • 
0.125 2.80 • • 
0.135 2.34 -t-0.06 • 
0.145 2.02 • • 

Bw 
1 A~r 

�9 . • 
O'to t / I / ~  1, V 

• (exp) 

0.155 1.77 • -t-0.06 
0.165 1.47 +0.05 • 
0.175 1.28 • • 
0.185 1.10 -t-0.04 -t-0.04 
0.195 0.87 +0.04 • 
0.205 0.69 • • 
0.215 0.61 -t-0.03 +0.04 
0.225 0.49 • • 
0.235 0.34 • • 
0.245 0.25 • • 
0.255 0.16 • • 
0.265 0.11 • • 
0.275 0.043 • 0.007 • 0.011 
0.285 0.018 • 0.005 • 0.005 
0.295 0.009 • 0.004 • 0.002 

1 Experimental uncertainty. Several data samples with 
different selections were used to calculate the acceptance 
corrections and to estimate all other experimental uncer- 
tainties. In addition an analysis using only charged par- 
ticles was performed with events selected to be fully con- 
tained in the barrel part of DELPHI.  The bin-by-bin 
systematic experimental errors are quoted in Tables 1 to 
6. 

2 Hadronization correction. In addition to the JETSET 
7.3 Monte Carlo sample, yielding the central value of  the 
analysis, the H E R W I G  5.4 and A R I A D N E  3.1 models 
tuned to LEP data [21] were used to evaluate the had- 
ronization correction. All three models differ in parton 
state generation. Although JETSET and H E R W I G  both 
follow the parton shower model, they differ in some de- 
tails: 

�9 JETSET includes the full C(0~s) matrix element for 
hard gluon radiation, 

T a b l e  6. Distribution of the back-to-back energy-energy correlation 
corrected for detector acceptance and initial state photon radiation 

ZEEC EEC (ZEEC) • (stat) + (exp) 

91.8 0.0785 • 0.0007 • 0.0020 
95.4 0.0800 • 0.0007 • 0.0015 
99.0 0.0814 • 0.0008 • 0.0015 

102.6 0.0839 • 0.0008 • 0.0010 
106.2 0.0863 • 0.0008 • 0.0018 
109.8 0.0899 • 0.0008 • 0.0009 
113.4 0.0956 + 0.0009 • 0.0012 
117.0 0.1001 • 0.0009 • 0.0017 
120.6 0.1061 +0.0009 • 0.0016 
124.2 0.115 • • 
127.8 0.124 • • 
131.4 0.137 • • 
135.0 0.152 +0.001 +0.001 
138.6 0.169 3-0.001 • 
142.2 0.194 • • 
145.8 0.225 • • 
149.4 0.264 • • 
153.0 0.317 • • 
156.6 0.390 +0.002 • 
160.2 0.492 +0.003 +0.004 
163.8 0.632 • • 
167.4 0.832 • • 
171.0 1.086 • • 
174.6 1.269 +0.007 • 
178.2 0.750 • • 

�9 H E R W I G  takes into account interference phenomena 
within the shower to full leading order. 

While JETSET and H E R W I G  formulate the QCD shower 
in terms of  partons, A R I A D N E  used the colour dipole 
formalism. For fragmentation JETSET and A R I A D N E  
both use the JETSET string fragmentation, while HER- 
W I G  incorporates cluster fragmentation. 

To estimate the uncertainty originating from the pa- 
rameter tuning, two alternative tunings of JETSET, per- 
formed by the DELPHI  collaboration, were used in ad- 
dition. Furthermore the parton virtuality Qo = 1 GeV 
which limits the shower evolution in JETSET, was varied 
between Qo = 0.2 and 5.0 GeV. The systematic hadroni- 
zation error is then estimated as the variance of the fitted 
e~ values obtained by using all hadronization corrections 
as mentioned above. 

3 Theoretical uncertainties. To estimate the theoretical 
uncertainties, fits at different values of ~2/Q2 ranging 
from 0.5 to 2.0 were performed. In addition for method 
1 the bin selected for the determination of es was slightly 
shifted towards the 3-jet region. For method 2, two dif- 
ferent fit ranges were used for each variable. One of these 
fit ranges was shifted towards the 2-jet region and the 
other towards the 3-jet region. A further uncertainty of 
method 2 originates from the selection of the matching 
scheme, and was estimated by evaluating e~ with the R- 
scheme instead of the In R-scheme. The variance of the 
e~ values obtained yields an estimate for the theoretical 
uncertainty. 



5.2 Results 

Table  8 presents  the bin  edges and  bin contents  used for  
m e t h o d  1 and  the results ob ta ined  at  scale #2 = Mz< F o r  
each var iable  the bin  selected for  the eva lua t ion  o f  0q is 
chosen in such a way,  tha t  the ra t io  p lo t t ed  in Fig.  l a  
becomes  as large as a l lowed by  the data .  Here  larger  
had ron i za t i on  and  acceptance  correc t ions  are  accepted  
than  for  the fit range o f  m e t h o d  2. 

The  results found  with m e t h o d  2 f rom X 2 fits to the  
pa r t i cu la r  var iables  at  the scale p2 = M z  2 using the dif- 
ferent  ma tch ing  schemes as def ined in Sect. 4, are sum- 
mar ized  in Tab le  9. The  errors  quo ted  there  a re  the full 
exper imenta l  and  theoret ica l  er rors  eva lua ted  as de-  
scribed in Sect. 5.1. The fits in the In R- and R-G2Fschemes 
are  pe r fo rmed  over  the full range including the 2-jet re- 
gion,  while for  the fits in the R-scheme a range  res t r ic ted 
to the 3-jet reg ion  is used as deta i led  in Sect. 5. The  values  
found  with the In R- and  the R-G21-schemes agree well. 
Rega rd ing  the larger  difference between the results  f rom 
these two schemes and  the R-scheme one has also to  no te  
the different  fit  range used for  the fits in the la t te r  scheme. 

Table 7. Upper kinematic boundary limits. For the jet broadening 
variables the limits were estimated numerically with a Monte Carlo 
simulation 

Variable Ym~ 

1 - T  
p ( r )  1 

:z 

p(M) 1 

B 0.5 
B w 0.33 
(1 +cosz)/2 ~- 

Table 8. Bin edges and contents used for method 1 and results for 
~s at the scale p2 = Mz< The quoted errors of the data points include 
statistical and experimental uncertainties, and the errors of the cq 
values include theoretical uncertainties additionally 

1 d a  
Variable Bib A y ~ 

O'to t Ay 

1 - T 0.02... 0.03 16.2 + 0.8 0.122 • 0.008 
p(r) 0.02... 0.03 20.2 + 0.5 0.117 • 0.008 
p(~) 0.02...0.03 20.6 • 0.7 0.119 • 0.007 
B 0.05... 0.06 9.4 • 0.3 0.116 • 0.007 
B w 0.04... 0.05 13.7 • 0.4 0.113 • 0.010 
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N~ 0,16 

0.15 

0.14 

0.13 

0.12 

0.11 

0.1 
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~ I ~ '  " 1  I ' 
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Fig. 9. Upper plot: Values of cq(Mz z) obtained at different scales 
g2/M2 from fits to the distributions in thrust, heavy jet masses, jet 
broadening variables and back-to-back energy-energy correlation. 
All fits are performed by using the In R-scheme. Lower plot: Com- 
bined ~s values as a function of the scale la:/M 2 using the In R- 
scheme. The width of the band corresponds to the full experimental 
and theoretical error of the combined value 

The  results  o f  m e t h o d  1 (Table  8) and  those o f  m e t h o d  2 
(Table  9) agree i f  the In R- or  the R-G21-scheme are  used 
in m e t h o d  2. D u e  to  the unphys ica l  d ivergency o f  the  R- 
scheme the In R-scheme is chosen to be the centra l  ma tch -  
ing scheme in m e t h o d  2. This  scheme is prefer red  also in 
[4, 5]. The  uppe r  p lo t  o f  Fig.  9 shows the dependence  o f  
~s on the scale p 2 / Q 2  of  each pa r t i cu la r  var iab le  inves- 
t iga ted  in m e t h o d  2. W i t h  the except ion  o f  the  E E C  and  
the wide je t  b r o a d e n i n g  B w ,  all var iab les  agree well  and  
behave  similarly.  

5.3 Combined result 

To combine  the results  f rom the fits to the  ind iv idua l  
var iables ,  s ta t is t ical  cor re la t ions  are  t aken  into  account .  

Table 9. Results of method 2 for the scale p2 = Mz z. The quoted errors are the total errors including theoretical uncertainties as found in 
an analysis using each event shape variable separately. For the R-scheme, which is used in this analysis only to estimate the systematic 
uncertainty, a restricted fit range is used 

Variable Fit range ~s(lnR) ~s(R-G21) Fit range cq(R) 

1 - T  0.06... 0.30 0.122+0.006 0.123• 0.10... 0.30 
p(r) 0.03... 0.24 0.123 • 0.124• 0.08... 0.24 
p(U) 0.02... 0.15 0.124-t-0.007 0.126-t-0.009 0.08... 0.15 
B 0.06... 0.24 0.121-t-0.009 0.117+0.009 0.10... 0.24 
B w 0.04... 0.20 0.110 • 0.008 0.107 + 0.008 0.08... 0.20 
EEC 104.4~ 162.0 ~ 0.134 + 0.007 0.135 • 0.007 104.4~ 136.8 ~ 

0.128 + 0.006 
0.125 + 0.009 
0.128 + 0.011 
0.133+0.013 
0.122-1-0.008 
0.126+0.007 
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Therefore a covariance matrix 6, which itself is the sum 
of  four matrices, is calculated: 

6 = ~(s ta t )  ~_ 6 (exp) ~_ ~ (hadr) _~_ (~ (theo) . (28) 

0 (stat) is obtained by splitting the full data sample in 10 
subsamples. To each subsample and each variable a fit 
is performed yielding 10•  values a~Ok), i = 1  .. . . .  6; 
k =  1 . . . . .  10, from which, 6 (star) is computed: 

1 N=10 
~ (stat) __ 

ij -- N ( N - -  1) ~ (0q(;k)--~s(;)) 
k = l  

x (~sOk) - ffso)) (29) 

with 
1 N =  10 

~ = ~-  ~ ~s(ik). 
k = l  

(30) 

r ~(haOr) and r are  obtained similarly but now 
with the a s values obtained in the estimation of the ex- 
perimental, hadronization and theoretical systematic un- 
certainties, respectively, instead of the values obtained 
from the data subsamples. Since correlations of system- 
atic uncertainties are hard to work out reliably, in these 
latter categories the non-diagonal covariances are set to 
zero. Once the covariance matrix ~ has been calculated, 
a combined average value for as and the errors can be 
computed. 

The combined result obtained at the scale p 2 =  Mz2 
with analysis method 1 is: 

~s = 0.118 + 0.002 (stat + exp) • 0.003 (hadr) 

• 0.006 (theo).  

The first error quoted is the experimental uncertainty, 
which includes the statistical error and the uncertainty of 
the detector simulation. The second error is due to had- 
ronization correction and the third error is an estimate 
of  all theoretical uncertainties. 

For  method2,  combined ~s-values using the lnR- 
scheme are quoted for several values of the renormali- 
zation scale, as shown in the lower plot of Fig. 9. The 
band corresponds to the total error of the combined val- 
ues. Since the correlation matrices are expected to be scale 
independent, they were calculated only at the scale 
p 2 =  Mz2 but applied to all investigated renormalization 
scales. 

The value obtained with analysis method 2 at p 2 =  
Mz 2 is: 

as = 0.123 + 0.002 (stat + exp) • 0.002 (hadr) 

where the errors are again the combined statistical and 
experimental error, and the uncertainty due to hadroni- 
zation correction. From the remaining scale dependence 
(estimated using the range 0.5 <p2/Q2<= 2.0) and match- 
ing ambiguits, the theoretical uncertainty of  method 2 is 
estimated to: 

It should be pointed out that this theoretical error is 
estimated as an "one standard deviation error". The un- 
certainty due to a certain arbitrariness in the choice of  
the fit range is estimated to: 

Aa s = + 0.002 (fit range). 

This yields a total theoretical error of: 

A~s=  •  

6 C o n c l u s i o n s  

From 178 000Z ~ hadronic decays collected in 1991 with 
the DELPHI  detector at the LEP collider, a new meas- 
urement of  the strong coupling constant as has been per- 
formed, using the next-to-leading logarithm approxima- 
tion (NLLA) of  QCD. 

Using theoretical expressions including resummation 
of leading and next-to-leading logarithms to all orders of 
as, which describe parton distributions for thrust, heavy 
jet mass, jet broadening and back-to-back energy-energy 
correlation, as was determined following two different 
approaches. The first method concentrates on the extreme 
2-jet region where the resummed logarithms dominate, 
and is in some sense complementary to a pure second 
order ~s determination which is restricted to the 3-jet 
region. This method can only be applied to thrust, the 
heavy jet mass and the jet broadening measures. 

The second method confronts the combined N L L A  
and G(e~)  calculation with data. The values of  as ob- 
tained from both methods agree within errors if the In R- 
or R-G21-matching schemes are used for method 2. While 
the first approach should be reliable to determine ~s only 
from the 2-jet region, the second tests whether a combined 
calculation is able to describe the experimental distri- 
butions over a wide kinematical range including the 3-jet 
region. Therefore the result obtained with method 1 is 
considered as a consistency check, and the final result: 

cq=0.123 +0.006 at the scale ~ t2=Mz 2 

is based on method 2 only. 
If in method 2 the R-G21-scheme is chosen instead of 

the lnR-scheme, the final value is ~s=0.122•  In 
a previous paper [3] based on cY(a 2) perturbation theory, 
a value of  ~s (M2) = 0.115 • 0.007 was determined. This 
result was obtained from a combined analysis of eight 
distributions of event shape variables, where hadroniza- 
tion corrections were performed by using parton shower 
models. Within errors the results of the G(~  2) and the 
N LLA  analysis are consistent. 

Acknowledgements. We are greatly indebted to our technical col- 
laborators and to the funding agencies for their support in building 
and operating the DELPHI detector, and to the members of the 
CERN-SL Division for the excellent performance of the LEP col- 
lider. We would like to thank S. Catani, G. Turnock and 
B.R. Webber for useful discussions. 

A~ s = • 0.005 (scale + matching ambiguity). 
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