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The nonperturbative Gaussian effective potential is derived in the 2~04-theory as the first nontrivial order of variational 
perturbation theory. In the framework of the proposed approach the algorithm of calculating corrections is determined 
from the very beginning. Various ways of constructing the variational procedure for the action functional and questions 
about the convergence of the variational perturbation theory series are discussed. The series convergence for the 
anharmonic variational perturbation theory functional is proved. 

The method of  the Gaussian effective potential (GEP) belongs to the most wide-spread nonperturbative 
methods [ 1-4]. Like other nonperturbative approaches, within the GEP method the important question arises of 
the stability of  the obtained results. In other words, it is not at all always obvious in nonperturbative approaches 
to what extent the main contribution calculated, for example, by using the variational procedure, adequately 
describes a searched quantity. It is also not obvious what the region of  reliability of  the obtained results is. The 
difficulty is that, as a rule, the small initial parameter is absent in nonperturbative tasks. Thus there is not a 
parameter in powers of  which the explored quantity could be expanded. Hence, no judgement about the stability 
of  the results can be made. Moreover, in the majority of  nonperturbative approaches finding the algorithm for 
calculating corrections is obstructed in principle. In view of  this the GEP method is advantageously distinguished 
[5,6]. It should be noted, however, that only the possibility of  calculating corrections is still not enough to 
conclude about stability. Of  special importance are here the properties of  convergence of  the series. Indeed, if a 
small parameter, the coupling constant, is present in the theory, then even divergent perturbative series regarded 
as asymptotic can give useful information concerning the region of  small coupling constant. Quite a different 
picture arises when such a small parameter is absent from the very beginning and does not emerge in a certain 
effective way. Here we may hope to derive reliable results only when we deal with convergent series. Thus, 
in nonperturbative approaches the tasks of  calculating corrections to the main contribution and analyzing the 
properties of  series convergence have to accompany each other. 

In the present work we shall consider the nonperturbative method - variational perturbation theory (VPT) [7-  
9] in the 2~4-theory in n-dimensional space. Within this approach the investigated quantity from the beginning 
is written in the form of  a series, which determines the algorithm of  calculating corrections up to any order. It 
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is important technically that one manages here to construct the VPT series so that the nth order of  the VPT 
approximation uses only the Feynman diagrams which compose the same Nth order of  the standard perturbation 
theory. Thus only the form of the propagator and the structure of  the series alter. The presence within the method 
of  free parameters allows one, through their choice, to influence the VPT series convergence. 

The present work will be performed in view of  the connection between the VPT and GEP methods. A few 
procedures of  obtaining GEP from VPT will be proposed. Under all these procedures the GEP emerges as the 
first nontrivial order of  VPT. The series corresponding to different variants display, however, essentially different 
convergence properties. The essential point of  this article is to show that there exists a VPT procedure (we call it 
"anharmonic")  that gives rise to series convergence and hence provides the stability property of  the VPT series. 
Thus, only within this procedure may truncation of  the series be well founded for any value of  the coupling 
constant. 

Let us first implement the VPT method for obtaining the variational correction to the quasiclassical approx- 
imation. We consider the ~04-theory in n-dimensional space with the pseudo-Euclidean signature. The action 
functional reads 

S[~] = So[Q]- 1m2S2[~]- 234[¢p], (1) 

where 

1/ 
S0[~0] = ~ dx (0~0) 2, (2) 

s,[~] = f dxC. (3) 

In the following, we shall have in mind dimensional regularization setting n = d - 2e, where d is an integer 
number. We separate the classical contribution in the generating functional of  the Green functions W[J] by 
writing 

= fD, exp{i[S[~o] + (J~}]}  = exp{i[S[~pc] + W[J] (J~oc) ] }D[ J], (4) 

where 

= exp(- iP[~0]) ,  D[J] (5) 

P[~p] = f d x  [½~0 (02 + m 2 + 122~0c z) ~o + 42q~cq~ 3 + ~0 4] (6) 

and the function (pc satisfies a classical equation of  motion OS/6~oc = -J.  
In the standard classical approximation one would retain only terms quadric in the fields in expression (6) for 

the quantity P [ ~ ] .  In this case the functional integral for D[ J] becomes Gaussian and for W[ J] the ordinary 
one-loop representation arises. 

To calculate D [ J ]  by the VPT method we shall first apply *~ the harmonic variationalprocedure. We represent 
the functional P[~0] in the form 

P[~o] = f d x  [½~p (02 + z2)~0 + 2(4~0c~o 3 + ~04 - -  
½Z2 2)], (7) 

where z 2 = m 2 + 122~p~ z + 2Z 2. Then the VPT series is written as 

#1 A similar procedure for GEP construction was explored in refs. [5,6]. 
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0 2 "l- Z 2 - 1 / 2  ( _ i 2 ) n  ~4 _ e x p  [- ½i(j3j)]j=o, (8) D[J] = det 02 n! dx (4¢pc~ 3 + ½)~2q~2 
n = 0  

where A (p) = ( p 2  _ 7.2 + i0 ) - l ,  q~ ( X )  = i c~/c~j (x). Let us restrict ourselves to the first two terms in (8). Their 
contributions to the effective potential equal, respectively, 

Vo = ( l / n )  Z2ZJ0(Z2), (9) 

Vl = 2  [3Jo2(Z 2) - ½Z2Jo(Z2)], (10) 

where 

( 1  - n/2) (z2)n/2_1 jo(z 2)=~2,F _)7~. (11) 

is the Euclidean propagator d (x = 0, z 2) written with the help of  dimensional regularization. The optimization 
condition d(Vo + V~ )/dz 2 = 0 gives rise to the equation for the variational parameter  z 2, 

z 2 = m z + 122(p 2 + 12230(z2). (12) 

Making use of  (12) for the effective potential in the considered VPT order we find the expression 

V~fr(~0) = V~I+V0+VI = ½m2~02+2~04+( l /n )z2d0(zZ)+½(m2-z2)do(z2)+21332(zZ)+6q~zA0(z2) ] .  (13) 

It is easy to see that expression (13) coincides with GEP in n-dimensional space [10], if one takes into account 
the optimization condition (12). 

Let us now calculate the quantity D [ J ]  by using the anharmonic variation of  the action functional. We choose 
the VPT functional in the form R 2 [ ~0 ], where R [q~ ] = ( Z / 2 ~  1/2) f dx ~o 2 (x). The space volume s'2 appears here 
because Gfr is derived from the effective action by using the constant-field configurations. Thus, the parameter  
Z, optimizing the VPT series, does not depend on g2. 

As a result, we get 

= n' IDa°  [2/dX(~O4+4~Oc(O3)-R2[~] 
n = 0  

x e x p { - i [ l / d x ~ o ( O 2 + m 2 +  122~0c2)~o + R2[(o]] }. (14) 

Any power of  R2 [~0] in (14) can be obtained by the corresponding number  of  differentiations of  the expression 
exp(- ieR2[~o])  with respect to e, putting e = 1 at the end. As to the term R2[~] in the exponential, giving 
rise to a non-Gaussian form of  the functional integral, the problem is easily solved by implementing the Fourier 
transformation, due to which only the first power of  R [~0] emerges in the exponential. 

As a result, the VPT series takes the form 

j ( D[J] = Z ( - - 1 ) n ~ 2 ~  (--i)n-k ( d ' ~ n - k  02 + M z ' ~  -1/2 
( n - ~ . n !  \ d - e J  v ~  dv exP(¼if2v2 _ ¼in) det -fir j 

n = 0  k = 0  - o o  

x[2/dx(4~Oc(~3+(o4)lkexp(-½i(jAj))j= o, (15) 

where M 2 = m z + 122¢ 2 + xfgZv. The integral over v in (15) contains the large parameter  £2 and, hence, can 
be evaluated by using the stationary phase method. Then, the effective potential in the first nontrivial VPT order 
looks as 
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1 ~ 2  /~2 1 . 2 , , 2  32A~. 1 M2Ao ~z ~o, VI + (16) Veer = Va + V0 + Vl, V0= n - -  - -  = - - ~ Z  / ' 0  

Here M 2 is the massive parameter taken at e = 1 and v = v0, where v0 is the stationary phase point in the 
integral (15). The corresponding equation reads 

M 2 = m 2 + 122(02 + Z2Ao(M2). (17) 

One can apply now the following optimization versions (see refs. [7,8]): (i) The requirement min IVl [ (here 
there exists a solution to the equation V~ = 0); (ii) Oveer/Ox 2 = 0. It is easy to find out that these different 
versions give rise to the same optimal value of  the parameter X2: Z 2 = 122. As a result, the effective potential 
(16) with the condition (17) yields the GEP. 

We shall now derive the GEP by using another approach that, instead of  utilizing the representation (4), directly 
operates with the initial functional W [ j ] .  We consider the two-parameter, anharmonic-type VPT functional: 

£2[(ol -- (a2/~2)S2[~p] + (b4/sQ3)S~[~o]. (18) 

The VPT series for the generating functional of  Green functions looks as follows: 

1 ~ b 4  ~ 4  
W[j] = Z ~ . I  D ( o ( g 2 - 2 S 4 ) n e x p  i S o - m Z S 2 - e  S~-~-~5~ t +(j(o) . (19) 

n = 0  

The parameters e and 0 are introduced here to allow us to get in a factor before the exponential, the terms 
connected with S~ and $2, by differentiation with respect to these parameters (they are to be set to 1 at the end). 
Then only the interaction action/I, S4 remains in a factor in front of  the exponential in the functional integral. The 
expression in the exponential in (19) is reduced to a form quadric in the fields by using Fourier transformation. 
As a result, (19) is rewritten in the form 

f dP f d q e x p [ i f 2 ( p x - q y - p 2 - q 4 ) ]  W[j] = £22 dx ~ dy 

- o c ,  - o o  

~ . - k  i,,_ k ['0 ~rn{ o'~n-k-m( 02"[-M2~ -1/2 
x ~m! (n - -_ -~_m) !~ i~ -~ )  ~ i~-o)  det ~- i ] Wk[J, M2l, (20) 

n = O  k = 0  rn=0 

where M 2 = m 2 + ~ a x, J = j + 0 l/4 b y, and Wk [ J, M 2 ] are the ordinary perturbative expansion coefficients 
for the generating functional of  Green functions W [ j ] .  To evaluate Wk, the standard Feynman rules with a 
massive parameter M 2 in the propagator can be used. 

In the first nontrivial order we get for the generating functional of  connected Green functions Z[j] = 
(i~2)- l In W [j  ] the expression: 

Z(l) = J x - ½ m 2 x 2 +  (½-1/n)m2yAo(m2y)-½m2Ao(m2y)-A[3AZ(mZy)+6Ao(m2y)x2+x4], (21) 

where x = J/M 2, y = M2/m 2. The optimization condition OZ(~)/Ox = 0 gives rise to the equation 

m2x + 42x(3Ao + x 2) = j. (22) 

By analogy, requiring OZ(')/Oy = 0 we obtain 

m2(y -  1) = 122(Ao + x2). (23) 

Making use of  (22) and (23) we find (o = dZ(l)/dj = OZ(I)/Oj = x. For the effective potential Veer = j~0 - Z 
we get 
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Veft 1. 2.2 = Un ~, + (1/n - ½)MZ~J0(M 2) + ½mZdo(M 2) + 213A02(M 2) + 6LJ0(M2)cp 2 + ~04]. (24) 

It is easy to show that (24) coincides with the GEP. 
The above-considered procedures of  constructing the VPT series were chosen so that the first nontrivial order 

should lead to the GEP. However, despite the same result in the first order, other properties of  the series are 
different. Let us exemplify this statement by considering the Euclidean vacuum nz functional 

W[0]  = f D r p  e x p { -  [S0[~0] + ~S4[~o]]}. (25) 

The terms of  the VPT series look as follows: 

1 f (S[~0]-2S4[~0])~exp{-(S0[~0]  +S[~0] )} ,  (26) Wk = ~ D~0 

where S[~o] is a certain VPT functional. The asymptotic behaviour of  remote terms of  the VPT series can be 
found by using the k-saddle-point method [ l 0,12 ]. Then the main contribution to the functional integral comes 
from the field configurations proportional to a positive power of  the large saddle-point parameter k. 

In the case of  the harmonic variationalprocedure, when S [ ~0 ] is a functional quadric in the fields, the expression 
2S4 [~0 ] dominates in the leading order in k in a factor before the exponential in (26). Thus, a situation analogous 
to the case of  ordinary perturbation theory arises and the VPT series proves to be divergent. The harmonic 
method, nevertheless, can be used to improve the perturbation theory. It concerns situations when there is a 
small parameter in the theory, which allows us to regard the VPT series as asymptotic. By consideration of  the 
examples of  a zero-dimensional analog and a quantum-mechanical oscillator, it has been shown that VPT with 
the harmonic variational procedure permits one to extend the region of  the stable behaviour of  the series sum 
to some larger values of  the coupling constant as compared with perturbation theory. However, we cannot gain 
sensible advancement into the nonperturbative region by using the harmonic method. This comes about because 
for large constants even the first terms of  the VPT series get sensitive to the asymptotic nature of  the series and 
it becomes problematical to judge about the stability of  the results because of  the emergence of  specific "beats" 
in the partial sums. This can be clearly seen from the zero-dimensional example 

= f d x ,  dx2exp{-[x~ + x ] - g ( x  4 + Z[g]  X4)] },  

represented in fig. 1 for g = 1. In the case of  the harmonic variational procedure the situation for g >> 1 becomes 
even more drastic. 

Quite a different situation occurs in the case of  the anharmonic VPTfunctional. Here the functionals S[~0] 
and $4 [~0] have the same powers in the fields ~0 and hence both of  them exert equal influence on the remote 
terms of  the series. Thus, the hope arises that there is a region of  variational parameters where the VPT series 
proves to be convergent. So, let us choose the VPT functional of  the anharmonic type: 

S[~o] = 2A2[~o], A[~o] = 0So[~O] + ½zSz[~o]. (27) 

After the change ~o ~ k~/4~o the term of  the VPT series Wk is written as 

wk = ak kk Dcp exp (-kSe~f [¢p ] - k~/2So[~O]), (28) 

where 

#2 The introduction of a source and also a mass does not alter the arguments concerning the convergence. 
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Fig. 1. Zero-dimensional example. N-dependence of the Nth partial sum (sum of the first N terms of the VPT series) for 
the cases of the harmonic and anharmonic variational procedures for g = 1. 

Seff[fP] = )-A2[~0] - lnD[~0], D[~0] = A2[cp] - 8 4 [ ~ 0 1 .  (29) 

The main contr ibut ion to the integral (28) comes from the field configurations ~00 (x)  which minimize the 
effective action functional Seff. The corresponding equation reads 

- 02~po + a~Po - bcp~ = 0 ,  ( 3 0 )  

where 

a = Z/0 ,  b = 2 [0A[~oo l (1 -2D[~oo l ) ]  -1. (31) 

It is convenient  to pass to the function f ( x )  that satisfies the equation [ - 0 2  + 1 ] f ( x )  - f 3 ( x )  = 0 and is 
connected with the function ~Oo (x)  as ~oo (x)  = v 'a /b  f ( v~X) .  We define a constant 

co = f dx y4(x), (32) 

which depends on the space dimension [ 12 ]. Here, however, we do not care for the numerical  value of  C,.  With  
the help of  (32) the functionals $4[~0o] and A 2 [tOo] are rewritten as $4[~00] = oz/b 2, A 2 [¢P0] = ~22"/b2. Here we 
have defined the parameters  c~ = Cna 2-n/2, z = 02/4. As follows from (31), the three parameters  c~, b and r 
are connected by the relation err(1 - 2D[cpo]) = 1, where D[cpo] = a(c~z - 1 )/b 2. In the leading order  in k we 
get for the integral (28) the relation 

Wk ",, k -'/2 2 k D k [(ool e x p { - k  [2A 2 [q~0l - 1] }. (33) 

The range of  values of  the parameters  at which the VPT series is convergent is determined by the inequali ty 
I).D [~0o]1 < exp (2A 2 [~00] - 1). The best choice of  parameters,  at which the contr ibution of  the remote terms of  
the VPT series is minimal  (the so-called asymptotic optimization of  the series) implies the condit ion D[~0o] = 0 
giving rise to the following relation between the parameters:  az  = I. Thus, only one independent  parameter  
remains which can also be fixed by opt imizing the first few terms of  the VPT series which we deal with in practice. 
The asymptotic  opt imizat ion condit ion for the initial parameters  0 and Z reads 

Z = (16/0"C~) 1/(4-"). (34) 

In particular,  in the one-dimensional  case Cl = 16/3 and the condit ion (34) transforms into the opt imizat ion 
condit ion for the anharmonic  oscil lator [7]. 
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Thus, in theories without a small parameter  it is preferable to calculate corrections by using the VPT series 
where the VPT functional behaves at large fields like the initial interaction action. This again can be illustrated 
through the zero-dimensional  case (fig. 1 ). We see that with the anharmonic  variat ional  procedure, contrary to 
the harmonic one, we obtain stable results for corrections of  any order (in this connection see ref. [9] ). 

Let us give a br ief  resumk. 
One should realize that in order to est imate a physical quanti ty it is not at all enough to construct a procedure 

just  giving a leading contr ibut ion and some algorithm of  correction calculation. Of  fundamental  importance 
is the question of  the possibili ty to perform a well-founded series truncation. A well known example is the 
quasiclassical loop expansion. The direct physical interpretat ion of  the minima of  the one-loop effective potential  
is in contradict ion with the higher order  corrections. This is a clean example where the "pro forma" improvement  
obtained by including the next order  corrections can lead to wrong physical conclusions (the two-loop potential  
has no min imum but the three-loop potential  has the same min imum as the one-loop potential  and so on).  

Let us stress that the results obtained in 0 +  1 dimensional  space cannot be directly relevant for the quantum 
field-theoretical case due to the renormalizat ion effect. In 3 + 1 dimensions the renormalizat ion effects become 
essential. In this case the remarkable result has been obtained [ 14,15 ] that the simple one-loop effective potential  
and GEP are equivalent  up to some uninteresting renormalizat ion of  the bare parameters  which does not affect 
the relations between the physical quanti t ies in the limit of  infinite cutoff. It has been argued [ 15] that the 
massless q~a-theory can exhibit  asymptot ic  freedom and a new treatment  of  the "tr iviali ty" of  the (a4-model has 
been given. In this connection the investigation of  the corrections to GEP becomes important .  We have shown 
that there exist a set of  VPT procedures giving the GEP as a leading contribution.  However,  the problems of 
stabili ty and VPT series t runcation arise again and one should prefer the anharmonic VPT procedure, which 
leads to a convergent series. 

The authors are indebted to Prof. V.G. Kadyshevsky, Drs. D.I. Kazakov, G.V. Efimov, Yu.L. Kalinovsky and 
also L.D. Korsun and C. Roberts for their interest in this work and valuable discussions of  the obtained results. 
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