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Abstract. A nonperturbative method is suggested for cal- 
culating functional integrals. Its efficiency is demon- 
strated for the quantum-mechanical anharmonic oscilla- 
tor. A quantity we are interested in is represented by 
a series, a finite number of terms of which describes not 
only the region of small coupling constants but well re- 
produces the strong coupling limit. The method is formu- 
lated only in terms of the Gaussian functional quadra- 
tures and diagrams are used of the conventional pertur- 
bation theory. 

1 Introduction 

Nowadays, perturbation theory is a basic method of 
computations in quantum field theory. Applied together 
with the renormalization procedure to quantum electro- 
dynamics, the theory of electroweak interactions and 
quantum chromodynamics, it allows one to analyse a 
wide class of problems; at the same time it is known 
that this theory alone cannot provide an exhaustive 
study of the structure of a quantum-field model, which 
concerns not only theories with a large coupling constant 
but also theories with a small enough coupling constant, 
i.e. quantum electrodynamics. 

At present, a lot of approach exist which give a way 
of going out of the scope of perturbation theory. One 
of them is summation of the series of perturbation theory 
[1], in which higher-order terms are described by asymp- 
totic formulae that can be derived by the functional sad- 
dle-point method [2-4]. It is to be noted here that owing 
to the asymptotic nature of perturbative series, their 
summation is not unique and admits, in general, a func- 
tional arbitrariness. For a correct summation one should 
apply to an extra information, for instance, concerning 
the analytic properties of the sum of a series as a function 
of the coupling constant and its asymptotic behaviour 
at large coupling constants. Though for scalar models 
of field theory in one-and two-dimensional spaces, sum- 
mation of perturbative series can be made by the Borel 
method, for more complex models in spaces of higher 

dimensionality summation is of a hypothetical character. 
Other approaches that do not directly employ the series 
of perturbation theory were considered by many authors 
(see, e.g., [5 8]). More convenient for application of non- 
perturbative methods turns out to be the effective poten- 
tial. It is usually calculated by a quasiclassical method 
consisting in an expansion in the number of loops; how- 
ever it cannot be considered as a serious going beyond 
perturbation theory as it is based on the coupling con- 
stant being small. 

Recently, variational methods have found their exten- 
sive applications, the most popular of which is the Gaus- 
sian effective potential method (see [8, 10, 11]). Note 
is to be made that the variational methods as a rule 
do not provide a reliable estimation of the accuracy of 
the results obtained since it is difficult there to evaluate 
corrections to the "leading contribution"; in other 
words, it is difficult to answer the question: to what 
extent that contribution provided by a variational meth- 
od is actually the leading contribution.* 

In this paper we suggest a method for calculating 
path integral in quantum field theory beyond the scope 
of perturbation theory. Our method contains an element 
of the variational procedure, the so-called optimization 
principle, however, unlike the conventional variational 
method, our method expresses the quantity of interest 
as a series that, in principle, allows us to compute a 
required correction and thus to estimate the accuracy 
of results obtained and to analyse their stability. Series 
appearing in this approach will be called the series of 
variational perturbation theory. 

Our method is formulated in terms of the Gaussian 
quadratures (like in perturbation theory). In fact, we shall 
realize a functional integral with help of the Gaussian 
integral definition 

5 ~ (p exp { i [�89 I dx((~ q~)Z-- M2 (p2) + 5 ~ xJ ~o] } 
=[det  02+M2]  -1/2 ~ j  e x p [ - 2 ( J A J )  ], (1.1) 

* The problems of stability of the Gaussian parametrization was 
considered in [12] 
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where 

(JAJ) = ~ d x  dy  J(x) A (x-y) J(y) 

and 

(1.2) 

A(k)=(kZ M2+iO) 1 (1.3) 

is the poropagator in the momentum space. The polyno- 
mial in fields (p in the path integral (1.1) will be deter- 
mined by variational differentiation with respect to the 
current J (x). 

It is important to stress that we shall construct the 
variational perturbation theory so that for its Nth order 
only those diagrams will be required that compose the 
Nth order of standard perturbation theory. Therefore, 
for practical computations this approach is not more 
difficult than the standard perturbative methods. 

We shall only consider a quantum-mechanical anhar- 
monic oscillator, a one-dimensional model of field theory 
with interaction, that can easily demonstrate the effi- 
ciency of the method. The approach is based on a rather 
universal apparatus of the path integral, and at least 
formally, may be extended to spaces of high dimensiona- 
lity. In view of the extension of the method to quantum 
field theory, we shall analyse its validity for such objects 
as the effective potential and propagator and consider 
a simplifying role of the intermediate dimensional regu- 
larization. To start with, let us examine a simple numeri- 
cal example. 

2 A zero-dimensional analog 

Consider the integral* 

Z i g ] =  ; dx l  d x  2 exp[-(So+gS1)], 

where 

S o  = x 2 + x 2 = x 2, 

Sl=x~+x~.  

(2.1) 

(2.2) 

(2.3) 

So is a zero-dimensional analog of the free action, and 
$I is the action with interaction. 

We shall work only with the Gaussian quadratures, 
i.e. integrals of the form 

(2.4) ~dx ~(Xx, x2) exp(-S0),  

where ~ ( x l ,  X2) is a polynomial of two variables. Con- 
ventionally, the exponential in (2.1) is expanded in 
powers of the coupling constant 

Zig] = ~ g"C,, (2.5) 
n = 0  

* We consider a two-dimensional integral since from the following 
consideration it is clear that a one-dimensional integral is a trivial 
example for this method 

(--1)n ~ dxxdx2(x4+x~)  nexp[-(xaz+x2)]. (2.6) C . -  n! 

Expansion (2.5) with coefficients (2.6) represents a con- 
ventional asymptotic series of perturbation theory. Tran- 
sition from (2.1) to (2.5) is unique, however, the inverse 
problem of reproducing a function from its asymptotic 
series is arbitrary enough [13]. Therefore, without fur- 
ther information one cannot uniquely reproduce the 
function from the asymptotic expansion (2.5) and conse- 
quently the conventional perturbative series itself cannot 
provide a unique information on the nonperturbative 
region. 

As indicated above, this uniqueness can be provided 
by assuming auxiliary conditions on the sum (a condi- 
tion of that sort is given, e.g., by the Karleman' theorem 
[13]). However, in the case of quantum field theory it 
is impossible to ascertain a priori that a given function 
represented by a path integral obeys definite conditions 
guaranteeing the uniqueness of summation of perturba- 
tive series. This question requires an independent study 
and at present it has a solution only for some simple 
c a s e s .  

Here we will solve another task: how one can con- 
struct an expansion for Z[g]  different from a perturba- 
tive series by using only Gaussian quadratures? To what 
extent is this expansion valid for analysing the nonper- 
turbative region, in particular, the strong coupling limit 

Zig] ~ g -  1/2 F2(1/4)/4 = 3.2863 g-  1/2 (2.7) 
g--* oo 

is reproduced? 
If we rewrite the total action to the form 

S= So + g S,= S'o + S;, (2.8) 

where 

S~ = So + 0 S 2 , (2.9) 

S} = g St - 0 S 2 , (2.10) 

and 0 is an arbitrary parameter for the time being, then 
the new expansion for the function Z ig ]  looks as fol- 
lows: 

Z[g] = ~ Z.[-g, 0], (2.11) 
n = 0  

1 
Zn [g, 0] = ~ 5 d x (S~)" exp ( - S~). (2.12) 

It is intuitively clear that the expansion in powers of 
the new interaction S~ should improve the convergence 
of the series (2.11) as compared to the standard perturba- 
tive one (in what follows we will show this on a rigorous 
mathematical basis). Besides, in view of Z [g] being inde- 
pendent of the parameter 0, we may take the latter so 
as to provide the best approximation of the function 
ZEg] with a finite number of the terms of series (2.11). 
Thus, 0 plays the role of a variational parameter that 
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is determined from one or another principle of optimisa- 
tion. Series like (2.11) will further be called the series 
of variational perturbation theory (VPT). 

Consider various versions of the optimisation proce- 
dure. In the first version of optimisation (version 1) one 
chooses such a value of the variational parameter, 0 = 01, 
at which the absolute value of the last of the considered 
VPT expansion terms is minimal. For instance, in the 
first nontrivial VPT order examined in this paper, 

Z~ O] =Z0  [g, O] + Z l  [g, 0], (2.13) 

an optimal value of the parameter, 01, is found from 
the condition 

01 : rain I Z ,  [g, 011. (2.14) 
{0} 

The best value can be obtained when there exists a root 
of the equation 

Zl  [g, 0] =0. (2.15) 

Version 2 of the optimisation procedure uses the fact 
that the exact value of Z[g,  0] does not depend on the 
parameter 0, and consequently, 8Z[g,  0]/8 0=0 ;  there- 
fore the optimal parameter, 0=02, is determined from 
the equation* 

8 Z (m Eg, 0] = 0, (2.16) 
8O 

where Z (N) [g, 0] = ~ Z,  [-g, 0] is an Nth order of VPT. 
n - - 0  

And finally, in version 3 of the optimisation proce- 
dure the parameter, 0 = 03, is fixed if we require the con- 
tribution of higher order terms of the VPT series to be 
minimal. This way of determining variational parameters 
will be called the asymptotic optirnisation. 

As is known, the perturbative series (2.5) converges 
only at one point, g = 0, whereas for the VPT series (2.11) 
we have a finite domain of convergence, 

g<20 ,  (2.17) 

The asymptotic behaviour of the terms of series (2.12) 
at large n is as follows: 

2 1/ 0 n ~ exp(-__),l/~ Z,  (2.t8) 
n--+ oo 

for t >  1, where 

t = 2 0/g, 

and 

(2.19) 

- -  exp(-- n ~ ) ,  (2.20) 

at t = l .  

* When (2.16) has no root, it is natural to require the absolute 
value of the lhs to be minimal 

Thus, our approach allows us to pass from the asymp- 
totic series of perturbation theory convergent only at 
one point to series having a finite region of convergence. 
We stress also that at t =  1, which corresponds to the 
asymptotic optimisation, as seen from (2.18), the VPT 
series (2.11) becomes the Leibniz series, an alternating 
series with terms decreasing in absolute value. Series of 
that sort allow us to make lower and upper estimations 
of the series sum, which is important for physical applica- 
tions. In the case we are considering the Leibniz series 
arise only at one value of the parameter t owing to the 
most simple construction of the VPT series. If we con- 
struct, for instance, a two-parameter VPT, we have a 
whole region of change of parameters where the VPT 
series is the Leibniz series. Varying these parameters we 
may get the most exact upper and lower estimations 
on the series sum.* 

Now we turn back to series (2.11) with coefficients 
(2.12) to deal with some technical details. First, note that 
integral (2.12) is not Gaussian owing to the term 0(x2) 2 
being in the exponential. However, this integral may easi- 
ly be reduced to the Gaussian quadrature by the Fourier 
transformation 

exp(-- A2) = (exp(•  i uA)) 

= ; du  exp (_uZ /4•  (2.21) 

As a result, the terms of VPT series (2.12) may be repre- 
sented in the form 

Z.Eg, 0] 

=-(k~O (--O)"-k [ d k)! \dO] 
(1 + i u~/O) 2k+ ~/ '  

where Zk l-g] are coefficients of the ordinary perturbative 
series, 

Z k (g) = ~. ~ d x [ -  g (x 4 + x42)] k exp( - x2). (2.23) 

Taking advantage of the relation 

a_V_ 1 S F(v) d e e  v-1 e x p ( -  a c0, (2.24) 

and integrating in (2.23) over u, we get 

Zn[g , 0 ] =  ~ do~o~an exp(-o~-o:2 0) 
o 

0 "-k Z~(g) 
" ~ (n-k)! r(2k+l)" 

k = O  

(2.25) 

* Similar problems will be discussed in subsequent publications 
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Computing Zk (g) we obtain 

Z,  [g, 8] = S d ~ (c( 2 O) n exp ( -  e -  c~ 2 8) 
0 

1 (-g/O) k 
k= 0 (2 k)! (n-- k)! ak, (2.26) 

B 

where 

~ r(21+ 1/2) r(2(k-l)+ 1/2) 
(2.27) 

a k  = 1! (k-  1)! /=0 

Introducing t = 20/g we rewrite (2.26) in the form 

1 ~ d e e 2 ,  exp _c~2 e z .  [g, 8] = l~z 

�9 ~, (--2/t)k 
k= 0 (2 k)!(n-- k)! ak. (2.28) 

From (2.28) and the above consideration it is seen that 
the optimal value of the parameter t does not depend 
on the coupling constant g. Therefore, the VPT series 
allows us to reconstruct the functional dependence Z[g]  
when g ~ ov immediately (see (2.7)). 

Let us now examine which results come from the first 
order of VPT. From (2.26) we get 

oo 
Zo [g, 83 = rc ~ d c~ e x p ( -  ~ - c~ 2 0), (2.29) 

0 

oo 
Z 1 I-g, 0 ] = ~  ~ d~0~ 2 8 ( 1 - - 3 g / 4 0 ) e x p ( - - e - - c d O ) .  (2.30) 

o 

If we make use of the optimisation of version 1, we 
should put Z1 [g, O] = 0  and as a result 

t I = 2 01/g = 3/2. (2.31) 

It is interesting that optimisation of the first order by 
version 2, i.e. with the condition 

OZ(1) [g, 8] 

00 
=0,  Z(I)=Zo+Z1, (2.32) 

gives the same value of the parameter t as version 1 (t2 
= tl). The results of calculations are reported in Table 1 
from which it is seen that even the first order of VPT 
reproduces the exact value of Z [ g ]  quite well in the 
whole range of variation of the coupling constant g.* 
In Table 1 we also present the results derived with the 
asymptotic version of optimisation (version 3) that gives 
the value of the parameter t3= 1. In this version, the 
interval (Z ~1) [g, 0], Z ~~ [g, 83] ) determines the upper and 
lover estimates for Z ig] .  When g ~ oo, we find from 
(2.28) 

* The limit g ---, oo will be discussed somewhat later 

Table 1. The result of variational perturbation theory for (2.1) 

g Z . . . . .  [g] Z(1) I-g, 0] Z ( ~  0] Z(1)[g, 0] 
0=01 = 0  2 0 = 0  3 0 = 0  3 

0.1 2.8026 2.8001 2.8927 2.7917 
1.0 1.8726 1.8584 2.0860 1.8153 

10.0 0.8500 0.8374 0.9841 0.7920 
100.0 0.3076 0.3017 0.3642 0.2801 

1000.0 0.1017 0.0997 0.1214 0.0918 
10000.0 0.0326 0.0320 0.0391 0.0294 

z .  [g, 83 

1 F(n+l/2)r  (--2/t)kak (2.33) 
- l /g 2 (2k)!(n-k)!" 

Upon performing one of summations, in the Nth order 
of VPT we obtain 

Z(m = A(m g-  1/2, 

where 

r ~ (--2/t)kak (2.34) 
A(N~= r(N+3/2) (2k+ 1)!(N-k)V ' 

n=0 

In the first order we get 

= ;~z3/24 r (1 - 1/2 t), (2.35) A (1) 

with the optimal value 

t I = t 2 = 3/2, 

and the coefficient equals 

A(1)= 3.2115, 

which is in good agreement with the exact value (see 
(2.3)) 

A . . . .  t = 3.2863. 

3 Ground state energy and propagator 
of the anharmonic oscillator in the strong coupling limit 

We will proceed from the partition function represented 
by the path integral 

exp (-- TE) = 
q~(- T /2 )=  ~o(T/2) 

~ q) exp [-(So + m2 S + g S1)], 

(3.1) 

where 

T/2 T /2  

So=�89 ~ dt(o 2, S=�89 
- T /2  - T/2  

T /2  

dtq~ 2, S t=  ~ dtcp 4. 
- T /2  

( 3 . 2 )  
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The ground state energy Eo follows from (3.1) in the 
limit T ~  Go. It is convenient to pass from the functional 
integrals typical of the statistical mechanics to the func- 
tional integrals of the Euclidean field theory. To this 
end consider the quantity dEo/dg that is expressed in 
terms of the four-point Euclidean Green function. So, 
passing to the dimensionless variables 

(,0 --+ g -  1/6 (p, t~g-X/3t ,  0)2_~g-Z/3m2 

from (3.1) we obtain 

d Eo/d g = g-  2/3 G4 (0), (3.3) 

where 

G4(O)=N-lf~(pq)4(O)exp[-(Soq-0)2S-]-Si)], (3.4) 

N = S ~ ~o exp [ - ( S o  + 0)2 ~+ $3]. (3.5) 

Here So, S, and S~ are given by (3.2) but integration 
runs over t from minus to plus infinity. 

In what follows we will be interested in the strong 
coupling limit, 

g/m 3 --* oo ((.0 2 -"+ 0). 

Defining the functional 

A[q~] = 0 S0 [q)] + ~cS[qo], (3.6) 

with arbitrary parameters 0 and ~c for the time being, 
we rewrite (3.4) in the form of a VPT series, 

G 4 (0) = N - 1  ~ ~ @ (p4 (0) 

�9 exp [ - (So + 0) 2 S+  A 2) - (& - A2)] 

___N_ 1 ~ 1 n~. ~ ~ q0 q~4(0) [A2 - S t ] "  
n=O �9 

�9 exp [ - ( S o  + 0)2 ~ +  A2)]. (3.7) 

Next we will find the asymptotics of the path integral 

~ q) [A z - SI]" exp [ -  (So + A2)] (3.8) 

at large n. Changing the variables, p ~ n 1/4 (p, we repre- 
sent (3.8) as follows 

n" ~ ~ q) exp [-- n Sef f [@]  - -  n 1/2 S O [(p]], (3.9) 

where 

Serf = A 2 - in [ a  2 - S,]. (3.10) 

The functional integral (3.9) contains a large parameter 
n and can be calculated by the functional saddle point 
method [41. The saddle-point function q)o is determined 
from the condition 6 S e f f / 6  (to = 0 that leads to the equa- 
tion 

- 4 i o + a q o o - b @ = 0 ,  (3.11) 

where 

a=~c/O, b={OAEq~o](1-@[~Oo])} -1, 

E~oo] = A 2 [~Oo] - S t  [~Oo]. (3.12) 

The solution to (3.11) decreasing at infinity, correspond- 
ing to a finite action, and given a major contribution 
to functional integral (3.9) at large n is of the form 

~Po = + f i b  a [cosh l / a ( t -  to)] -1 (3.13) 

where to is an arbitrary parameter reflecting the theory 
to be translationality invariant. It is not difficult to com- 
pute functional (3.10) for the functional (3.13) 

Seff  [ @ o ]  = 1 - In ~ [~Oo], (3.14) 

where 

m [~00] = 1 - 3 ( 0  ~c3) - 1 / 2 .  (3.15) 

Here we may take advantage of version 3 of the optim- 
isation procedure requiring the contribution of higher- 
order terms being minimal, which means the condition 

[q)o] = 0. Therefore variational parameters 0 and tc are 
related as follows 

~c = (9/16 0) 1/3 . (3.16) 

The remaining variational parameter 0 is fixed on the 
basis of a finite number of the VPT expansion terms; 
we now will restrict our consideration to the first order. 

Further transformations with (3.7) will proceed as fol- 
lows. Since any power of A 2 in front of the exponential 
of (3.7) can be obtained by differentiation, we do not 
introduce new diagrams but those of conventional per- 
turbation theory. Performing intermediate dimensional 
regularization and reducing the functional integral with 
the use of (2.21) to the Gaussian form, we get 

G4(0)= ~ ~, 1 ( d ]  "-m 
n= 0 m= 0 (n--m)! \dd} 

�9 (gm(zZ)[ l+iu0 1 ~ - - ~ ] - 2 - 2 m) ,  

where 

(3.17) 

, 2 ,  ( - 1 )  m 
gmtZ Y= mi S~q~q~4(O)STexp[-(S~ 

zZ=[0)Z +iu~c]/1--~][l +iuO]/a-c~]- '  (3.18) 

Upon differentiation of (3.17) with respect to ~ we should 
put ~ = 0. 

The functions gm(Z z) are standard expansion coeffi- 
cients of G4(0) into a perturbative series and they can 
be determined by the standard diagram technique. From 
(3.17) it is seen that the Nth VPT order requires only 
those diagrams that are present in the Nth order of con- 
ventional perturbation theory. 

In this case it is not difficult to connect expressions 
(3.18) with the known expansion coefficients A, of the 
ground state energy Eo in the perturbative series 

Eo(g) = m/2 + m ~ A.(g/m3) ", (3.19) 
n = l  
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and this connection looks as follows 

g,,(z2)_ (1 + m)A1 +~ 
Z2+3m (3.20) 

Numerical value of the coefficients A, may be taken from 
El5].* 

Then making use of (2.24) we obtain 

oo ~ ( l + m ) A l +  m 
G4 (0) = n--~0 m=0 (n--m)! 

�9 [ F ( I  + m/2) F(1 + 3 m/2) ]  -1  

( d ] "  m 
�9 \ ~ ]  Fro(O, K, ~), (3.21) 

where 

oo oo 
Fm(O , to; ~)= ~ d x x m / 2 e x p ( - x )  ~ d y y  3m/2 

0 0 

�9 exp[ -co2y - (1 -cO. (xO+y~c) ] .  (3.22) 

Note that we are interested in the strong coupling limit 
and therefore we set co2=0 in (3.22). However, it is to 
be noticed that expanding e x p ( - c o  2 y) in powers of ~o 2 
we can determine corrections to the main contribution. 

From (3.21) and (3.22) and (3.16) we obtain for the 
ground state energy in the Nth VPT order in the strong 
coupling limit 

E~om = 3 g Z (1 +m)Al+m 
,=o ~=o (n -m) !  

.[r(1+m/2)r(1+3m/2)]-l R,,=(O), (3.23) 

where 

oo 
Rn,m(O)= ~ d x x  m/2 e x p ( - x )  

0 

oo 

�9 ~ d y y3m/2 (0 X + y)2~, m) exp [--  (0 x + y)2]. 
0 

(3.24) 

Optimal value of the parameter 0 both in the first and 
second versions 0~,2 ~ 1; therefore, in the first VPT order 
we get from (3.23) and (3.24) 

E~ol) = g l / 3  (~o -~- el) ,  (3.25) 

where 

80 = 3 A  1 ] ~ x  2, (3.26) 

3 2 4F(5/4) 
el= ~ A l e x  q ] ~  A2 Xs, (3.27) 

x = (16 0/9)1/6. (3.28) 

Upon optimisation of version 1 we obtain xl =0.5705 
and the ground state energy 

E(o x)(xl) = 0.649 g1/3 (3.29) 

and upon optimisation of version 2 we find x2 =0.6062 
and 

E~o 1) (x2) = 0.660 gl/3. (3.30) 

It is easy to verify that the second VPT order contributes 
only several percent. 

We have to compare the obtained results with the 
exact value [16]: 

E . . . .  t = 0.668 gl/3. (3.31) 

We will here also calculate the mass parameter #2 con- 
nected with the two-point Green function, # - 2 = G 2 ( p  
= 0), where 

G 2 ( p = 0 ) = ~ d  t ~  (p (o(t/2) q 0 ( - t / 2 ) e x p ( -  S [p]).  
(3.32) 

Numerically, this parameter was computed in [17] in 
the strong coupling limit, 

2 g2/3 # . . . .  t = 3.009 . (3.33) 

The VPT series for the function G 2 (0) is as follows 

Gz(0)=g-2/3 1 ~ ~ F(n+ 1/2--m/4) 
,=o ,,=o (n--m)! 

B,, xZ+3m, (3.34) 
�9 F(1 + 3 m/2) 

where Bm are dimensionless coefficients of the standard 
perturbation theory.* In the first VPT order we get from 
(3.34) 

G~I) = g -  2/3 (G2o + G2 ~), 

where 

G2o = ~ 2  g- x 2, (3.35) 

G21 = ~ x 2 - 4. r(5/4), x ~ (3.36) 
4 

Upon version 1 of optimisation (G21 = 0) we find 

#2 = 3.128 g2/3, (3.37) 

and upon version 2 (0 G~l)/O x = O) 

#2 = 3.078 g2/3. (3.38) 

We can compare these results with exact value (3.33) 
and get satisfaction. 

* For the considered first nontrivial VPT order we need the two 
* The first VPT order requires the values, A 1 = 3/4 and A 2 = -21/8 value, Bo = 1 and B1 = --6 
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With the use of the propagator G 2(p) we may com- 
pute the vacuum energy by the relation [18] 

3 dp [1-G2~(p).Gz(p)], Eo= S  (3.39) 

where G2o(P) is the free propagator. 
It is of interest to employ a more simple version of 

VPT with one variational parameter, say, to, and 0 is 
put zero. Just this one-parameter VPT will be used in 
the next section for constructing the effective potential. 
In the first order for the two-point Green function we 
obtain 

G~21)(p) = ~ du  exp(_u2/4)  

"{mo(p, z 2 ) + [ ~  Ao(p, z2)+A1 (p, z2)]~ , (3.40) 

where 

Ao(p  ' Z2) = (p2 + 2 2 ) -  1, 

A 1 (P, 22) = -- 6g (p2 + z 2)- 2, 
z 

z2=coZ +iu~c/1--~. 

Inserting (3.40) into (3.39) we get 

E(ol) (K) = g 

1 3g 
+ [  4 F ~ 4 )  [//~ + ~  1/~]}, (3.41) 

and upon optimisation of version 1 (the expression in 
brackets in (3.41) is put to zero) we find 

E(ol) (tr 1)= 0.645. gl/3,  (3.42) 

whereas version 2 gives 

E(0~) (~2) = 0.634. gl/3. (3.43) 

And finally, we shall estimate the energy of the first 
excited level, El;  to do this, we define the energy shift 

#1 = E1 -- Eo. (3.44) 

Then, using the spectral representation for the propaga- 
tor 

0o #. 

G2(p)=2n~O P 2 +1"12 [ (0[ ~ [n)l 2, (3.45) 

where matrix elements of the coordinate operator are 
calculated for eigenstates of the total Hamiltonian, we 
arrive at the following estimate for the energy shift (3.44): 

/ta =< p(1 +), 

#]+) = 2 G2 (t = 0)/G2 (p = 0). (3.46) 

By analogy with the sum rules [19], we may expect a 
sufficiently rapid saturation of the spectral representa- 
tion (3.45), which brings ~1 and #]+) closer to each other. 
In the first order of the one-parameter VPT we get 

#(1 +) = 1.763 gl/3,  (3.47) 

whereas the exact value is [161 : 

Pl = 1.726 gl/3. (3.48) 

4 Effective potential 

Consider the generating functional of the Green func- 
tions * 

W[J] = ~ ~ q) exp {i IS [~o] + ( J  q~)]}, (4.1) 

where 

( J  q~) = ~ d t J(t).q~ (t), 

S[qo] =So-m2 S -g  Si . 
(4.2) 

(4.3) 

The effective potential is usually constructed in the qua- 
siclassical approximation based on the expansion in 
powers of the number of loops [9]. In our case this 
method gives the one-loop potential 

Ve~( 1~176 = �89 ]/rn 2 + 12 g ~o~, (4.4) 

that is completely unfit for the description of the nonper- 
turbative region. 

In this section we will compute the effective potential 
by the VPT method. To this end, we introduce variation- 
al parameter a 2 rewritting action (4.3) to the form 

S [-@] = [S O a2 ] [- a2 -m2 S - ~  S2] - [gS l -~  S2]. (4.5) 
[ 

The effective potential is obtained from the effective ac- 
tion when the field configurations are constant, ~0o 
= const, and in this case the variational parameter intro- 
duced in the form aE/T will be independent of the "vol- 
ume" T of x space. 

Expanding the exponential of (4.1) in powers of g $I 
2 2 - a  S / T  and using the above expounded procedure, 

we get 
oo 

W[J]=exp(-irc/4) T 1/2. ~ dv exp(iTv2/4 ) 

i I. 
J 

�9 ~ q~(- g St) k exp {i [ S o -  M 2 S +  ( J  (P)]}, 

where 
(4.6) 

M2=m2 +~.a .v ,  (4.7) 

* We employ the pseudo-Euclidean signature in the n-dimensional 
space, keeping in mind applications in field theory 
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and upon differentiation with respect to e we should 
set e= l .  Denoting the perturbative expansion coeffi- 
cients for the functional W[J] by (Ok [J, m 2 ]  : 

C~ ( kg)k[Sdt 64 ]k 

�9 e x p [ - 2 ( S A J )  ] , (4.8) 

where 

A (p) = (p2 _ M 2 + i 0)- 1 

we obtain from (4.6) in the Nth VPT order 

W (m [J] = exp ( -  i re/4) T 1/2 
dv 

"S ~ exp(i Tv2/4) 
y 

�9 ~ ~ (--1)"-k(d~ "-k 
.=o k=o (n-k)! \~} 

632+M2]_1/2 
" det ~ j  COk[J, M2]. (4.10) 

The functional determinant in (4.10) is calculated by the 
relation det(...) = exp [Sp ln(...)] and the result is 

1/2 T __ (rn2)l/2]} . [det ~32 +M2] - { - i ~ -  •2+m2] =exp [(M2) 1/2 

In the first VPT order we get 

W (1) [J] = exp ( -  i ~/4) T 1/2 

�9 ; d/) 
exp[i TS(v)] 

- oo  ~ V  ~ 

"[ 1 +(~~ dd lnco~ ' e  (4.12) 

where 

j2  /)2 1 
S(v)= ~f+~---~[(MZ)1/2--(rnZ)1/2], 

{E ' ' 1  
(50=ex p iT 2M 2 2 ((M2)l/2-(m2)l/2) ' 

(4.13) 

(4.14) 

~ i g T [  3 1 j2 j 4  ] 
COo ~ M ~ +  3 ~ +  (MZ)~)4j. (4.15) 

In expressions (4.12-15) we take constant sources, 
J = const which is required for constructing the effective 
potential. Diagrams corresponding to expression (4.15) 
and to the first order of the standard perturbation theory 
are drawn in Fig. 1. 

Introducing the generating functional of the con- 
nected Green functions 

Z [J] = (i T)-I  In W[J], (4.16) 

o = :: 

Fig. 1. Diagrams corresponding to expression (4.15) 

%._, 

y 
J 

Fig. 2. The graph for the effective potential corresponding to the 
first VPT order (expressions (4.18-21)) 

we obtain for the effective potential the standard expres- 
sion 

Veff [-(PO] = J @0 - -  Z I - J ] ,  (4.17) 

where J is derived from the equation 

q~o=dZ[J]/dJ. (4.18) 

The integrand of (4.12) contains a large parameter, T 
in the exponential and thus that integral may be comput- 
ed by the asymptotic method of a stationary phase. Then 
in the first VPT order in the strong coupling limit (m 2 = 0) 
we get 

Z (1) I-J] = Zo [J] + Z1 I-J], (4.19) 

3 j2 3 
Zo[-J]=4 m 2 8 (M2)1/2' (4.20) 

1 J 2  ~ 
ZI [ J ]  = 14 M z + (M2)1/2 

--g[3 1M2 + 3J2/(MZ)5/2 + j4/(M2)4], (4.21) 

where M 2 is a new variational parameter computed by 
the optimisation procedure. The effective potentials ob- 
tained from (4.18 21) and corresponding to the first and 
second versions of optimisation almost coincide with 
each other. The corresponding graphs are shown in 
Fig. 2. 

To compare with numerical results for Eo and /~2, 
we should know the expansion of Veff(~o0) about the ex- 
tremum. Solving the equation of optimisation, Z I = 0  
(version 1) we get from (4.21): 

MZ=MoZ [1_~ 4 j2 ] 3 (M2) 3/2 q-(9(J4) ' (4.22) 



where 

m 2 = (6 g)2/3, 

and then the effective potential  reads 

2 
(1) (1) /~(1) ~2 q_ Veqff ( ( p o ) = E o  - F - ~ -  tk, 0 ~((~04), 

(4.23) 

(4.24) 

where 

E~o 1) = 3 ( 6  g)1/3 = 0.681. gl/3, (4.25) 

#{1) = m2  = 3.302. g2/3 (4.26) 

to be compared  with the exact values given by (3.31) 
and (3.33). The second version of  opt imisat ion leads to 
the same values for E0 and #2. 

As for the behaviour  of  V~ff(~Oo) for large fields ~o0, 
it may  be found f rom (4.18 21) that  

V~)(~0o) ~ gcpo 4. (4.27) 
r c~ 

N o t e  that  the equali ty p Z = M ~  from a field-theoretical 
point  of  view means that  the variat ional  parameter  m 2 
is noth ing  else than the renormalised mass of  the field 
~o. This connect ion  will also hold true for spaces of  larger 
dimensions. 

5 Conclusion 

Thus, we have p roposed  the method  of  nonper turba t ive  
calculation of  functional  integrals, we have called the 
variat ional  per turba t ion  theory. The me thod  is based 
on the mere compu ta t i on  of  the Gauss ian  functional  
quadra tures ;  it does not  require new diagrams and  uses 
only those that  appear  in the s tandard  per turba t ion  
theory  in the same order  of  approximat ion.  

Within  this method,  a quant i ty  we are interested in 
is represented by a series whose convergence may  be 
governed by variat ional  parameters.  This approach  al- 
lows one to obta in  convergent  series, for instance, the 
Leibniz series that  provides upper  and lower series esti- 
mates for a given quant i ty .*  The me thod  implies the 
opt imal  choice of  parameters.  However ,  unlike m a n y  
other  variat ional  approaches,  our  me thod  allows us to 
compute  correct ions since we are dealing with a series 
and can always calculate a subsequent  expansion term. 
Therefore we avoid the problem typical of  var iat ional  
approaches  of  the determinat ion of stability and reliabili- 
ty of the results obtained. The proposed  variat ional  per- 

* These problems will be discussed in detail in subsequent publica- 
tions 
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turbat ion  theory gives a regular me thod  of compu ta t i on  
of  corrections, and wi thout  going beyond  its scope al- 
lows us to answer the quest ion concerning the realistic 
degree of  dominance  of  the " leading cont r ibut ion" .  

We have here considered only the anha rmonic  oscilla- 
tor. However ,  owing to the functional  integral formalism 
that  allows, at least formally, the considerat ion of  an 
arbi t rary  number  of  dimensions, the method  may  hap-  
pen to work  not  only in q u a n t u m  mechanics  but  also 
in models of q u a n t u m  field theory.  
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