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The problem of convergence of series of the variational perturbation theory is analyzed for the 2(o~a)-model. It is 
shown that there exist such methods of choosing variational additions that lead to convergent series for any values of 
the coupling constants. 

For the approaches to nonperturbat ive problems that are not solvable exactly it is important  the following: 
the method should be capable of  computing corrections to the so-called leading contribution found, for instance, 
by a variat ional  procedure. However, the algorithm of  computat ion of  corrections is not sufficient to judge the 
reliability of  the results obtained by a nonperturbat ive method or to speak about the range of  validity of  derived 
relations. Of  fundamental  importance here are properties of  convergence of  the series that approximates  an 
initial quantity.  Indeed, if in perturbat ion theory even a divergent series may be considered to be asymptotic 
and to contain a certain information on small values of  the coupling constant, then in the absence of  a small 
parameter,  the approximat ing series are to be subjected to more rigid requirements. Actually, to obtain reasonable 
information,  we should require this series to be convergent. It would be even more desirable to deal not only 
with a convergent series but with the convergent Leibniz series (an alternating series with terms decreasing in 
absolute value).  In this case it would be possible to make upper and lower est imations on the basis of  the first 
terms of  the series, and with extra free parameters  these estimates could be made maximally close to each other. 

To this end we will consider a method of  variational perturbation theory (VPT) [1-3] .  Though the word 
"perturbat ion" is present in this approach,  the VPT method is not perturbative and does not, generally, use 
any small parameter.  The corrections can be computed in the VPT method because only calculable gaussian 
functional quadratures are used, like in the standard perturbat ion theory. And which is more, the VPT series 
can be written so that its terms could be computed with the use of  Feynman diagrams (the series is, o f  course, 
different in structure from the perturbat ion series and the propagator is also modified in form).  

We will start with a simple numerical example that in the functional-integral formalism can be considered as 
a zero-dimensional analog of  the ~04-model. Consider  the integral 

Z i g ]  = f dx  j d y e x p [ - S 2 ( x , y ) - g S 4 ( x , y ) l ,  
- -  o c  - - ~  

( l )  

where 

S2(x,.v) = x 2 + y2, S 4 ( x , y )  = x 4 + y4. 
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uso ,.. Fig. 1. A corridor of estimates of upper and lower bounds 
lo 1 lo 1"o 2 lo g ' 1 ~ ° 4  definedbythefunctionsZ(U)/ZcxatN = 1,2,3andt = I. 

We take #t the variational term in the action in the form g ½tS 2, then the VPT series is written as follows 

J7 Z [ g ]  Z Z . ( g , t )  Z . ( g , t )  ( - g ) "  = dx  dy ($4 I .¢2~.  l 2 , - - ~ '~ 2 ,  e x p ( - S 2 - g ~ t S 2 ) .  (2) 

n=0 --o~ --oo 
The sum of the VPT series does not depend on the parameter t therefore it can be chosen on the basis of a certain 
criterion of the VPT expansion being optimal. 

It is easy to find out that the series (2) converges when t > ½, which is valid for all positive g. An analog of 
the Sobolev inequality here is the relation 

S4/S~ ~ l ,  (3) 

from which it follows that for t > 1 the VPT series (2) is of positive sign. At t = 1 the regime changes and for 
½ < t < 1 the series is the Leibniz series. Note that the value of the variational parameter, t = 1, passing which 
the alternating series becomes a series of fixed sign, is determined from the criterion of asymptotic optimization 
of the VPT series which minimizes the contribution of higher-order expansion terms [ l ]. 

For the Leibniz series the exact value Z,, has the following bilateral estimate: 

Z (2N+)) < Zex < Z (2N) (4) 

where Z *2u+t~ and Z (2~') are, respectively, odd and even partial sums of  the VPT series. In fig. 1 we plot a 
corr idor o f  estimates o f  upper and lower bounds defined by the functions Z(/V)/Z,, at N = 1,2, 3 and t = I. It 
is seen that even the first partial sums provide a reasonable accuracy for the whole range of coupling constant. 

Now consider a massless ~o~4 ~ theory in the four-dimensional euclidean space with the action 

st ] = s0t l s0t ] = ½jdx O ) 2, = j d x ¢  
For the generating functional of the Green functions W [ J ]  with the variational addition taken in the form 
gtS~ [~p] we obtain the following VPT series: 

#1 We keep in mind that our computations should be based on gaussian quadratures. 
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 '[Jl = fD(oexp( -St (o l  + <J(O>) =  n' tJ, t], 
n = 0  

- D(O (S4/4Cs - tS~)  n e x p ( - S o  - gtSg + (J(O)). (6) 

Here we made use of  the constant Cs = 4! / (16n  2)z from the Sobolev inequality (see, for instance, refs. [4,5]):  

s~[(ol/sg[(ol <~ 4c~ (7) 

and set ). = g/4Cs. 
The method of  computat ion of  functional integrals of  the form (6) can be found in refs. [1-3] .  In the given 

case we are interested in the problem of  convergence of  the series. Asymptotic estimate of  remote expansion 
terms can be made by the functional saddle-point  method [6-9] .  To this end, we represent W, [g, t] in the form 

nnf Wn[J,t] = ( _ g ) n  ~.w D(oexp(-nSeff  - nl/2So + nl/4(J(o)), (8) 

where 

Sefr[(o] = gtS~[(o] - lnO[(o] Dr(O] - S4[(O] tS~[(O]. (9) 
' 4Cs 

The main contr ibution to the integral (8) in the leading order in the large saddle-point parameter  n comes from 
the functions (o0 obeying the equation 6Se~/6(O = 0, i.e., 

a 3 02(o0 + ~i.(o0 = 0, (10) 

and leaving the action functional to be finite. Their  explicit form is as follows: 

(Oo(X) = - -  ( x _ x o ) 2 + / ~  z ,  ( l l )  

32~ z 
a = (12) 

tS0[(o0]{1 + gD[(o0]} ' 

Arbi trary parameters  x0 a n d / t  in (11 ) reflect the translational and scale invariance of  the theory under consid- 
eration. From (11 ) and (12) it follows that a 2 = gt  (32nz)2; as a result we obtain 

W~[J,t].,~ ( - 1 )  n ~  exp - n -  +nZ/4(J(oo) . (13) 

From this expression it is clear that irrespective of  the values of  the coupling constant g, the VPT series (6) 
absolutely converges when t > ½ and when t > 1, as follows from the Sobolev inequality (7),  that series is of  
positive sign. In the interval ½ < t < 1 at large n the series (6) is the Leibniz series. Here again the value t = 1 
corresponds both to the change of the regime of  the VPT series and to its asymptotic opt imizat ion.  Note is to be 
made that the expression (13) determines only the leading contr ibution to the functional dependence of  W, on 
the large parameter  n. In particular,  in (13) we do not reproduce a certain multiplier  that appears in the next to 
leading order in n. However, the propert ies of  convergence of  the series can be quite well analyzed in the leading 
order in n. 

Now consider a more general case, a two-parameter  VPT for the (o4-model in the d-dimensional  euclidean 
space. It is evident  from the above analysis that the term with a source in the action and the mass term are both 
for nothing in studying the properties of  convergence. Therefore, for simplicity we will only consider the vacuum 
functional 14/[0]. We perform variat ion of  the action with the use of  a two-parameter  addit ion,  
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Z 
S [ ¢ ] =  2A2[~o], A[~a] = 0S0[~]  + ~ $ 2 [ ~ ] ,  (14) 

where 0 and X are free parameters  of  the variat ional  type. The VPT series is constructed by the expansion in 
powers of  the new interaction action S~ = 2S4 - S. The asymptotic behavior  of  terms of  the VPT series in the 
leading order in n is as follows: 

W,~[O,O,X] ~ n-l/22'~Dn[~ao] exp{ -n (2A2[~o]  - 1)}, (15) 

where 

D[¢o]  = A2[tp0] - $4[~0] .  (16) 

The range of  parameters  0 and X in which the VPT series converges is given by the inequality 

[;.D[~0][ < exp(2A2[~o] - 1). 

The condit ion of  asymptotic opt imizat ion D[¢o]  = 0 results in the following connection between the param- 
eters 0 and X 

( 16 "~l/(4-d), 
X = \O---g-C-~ / (17) 

where Ca is a known constant dependent  on the space dimension d [8]. Specifically, in the one-dimensional 
case C~ = ~ and the condit ion (17) turns into the condit ion of  asymptotic opt imizat ion for the anharmonic 
oscillator [1,2]. The two-parameter  VPT is convenient  because the parameter  0 that remains free upon the 
asymptotic opt imizat ion can be fixed on the basis of  opt imizat ion of  the first terms of  the VPT series employed 
in computations.  

The authors are sincerely grateful to V.G. Kadyshevsky, D.I. Kazakov, Yu.L. Kalinovsky, L.D. Korsun, G.V. 
Efimov and K. Roberts for interest in the work and useful discussions. 
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