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A method is proposed to calculate functional integrals beyond the scope of perturbation theory. The method uses only the Gauss
quadratures and only the diagrams of the standard perturbation theory. By using the anharmonic oscillator as an example the

method is demonstrated to be very effective.

In the present paper we propose a nonperturbative
method for calculating functional integrals. Here we
restrict ourselves to the one-dimensional case and
consider a quantum mechanical anharmonic oscil-
lator in the limit of strong coupling. The proposed
approach, as well as the standard perturbation the-
ory, uses only the Gauss functional quadratures.
However, it does not reduce to a certain way of sum-
ming an asymptotic series of perturbation theory ¥!.
The proposed method contains an element of the
variational procedure. However, in contrast with the
ordinary variational approaches ** in which one en-
counters difficulties in evaluating whether the “main
contribution” is really main, in the method under
consideration the sought quantity is represented as
a series allowing one to calculate a correction and
evaluate the stability and reliability of the obtained
results #3,

The series arising in this approach will be called
the series of variational perturbation theory.

First, let us consider the problem of calculating the
ground state energy (vacuum energy) of an har-
monic oscillator with the Euclidean action

S=S,+m25+gS,, (1)

#1 Problems related to the summation of perturbation series were
discussed in refs. [1,2].

2 Here we mention the wide-spread method of the Gauss effec-
tive potentials [3,4].

# The problems of the stability of the Gauss effective potential
was considered, in ref. [5].
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where -
So=t fag?, 3=4[ae?, si=[aret @

in the limit of strong coupling g/ m3- co. For further
application of the method to quantum field theory
we shall calculate the quantity dE;,/dg connected with
the four-point Green function G,(x;) by the relation

e =8G0), 3)

where

G0)=N"" [ 99 9*(0) expl - (So+wS+S)]1,
@)

N=J‘9(pexp[—(So+w2§+S,)] . (5)

In the latter expressions we have passed to dimen-
sionless variables making the change

¢_’g—l/6¢’ t_)g~l/3t’ w2=g—2/3m2.

The limit of strong coupling corresponds to w?=0.
Now we introduce the functional

A=0S,+xS, (6)

with as yet arbitrary parameters 6 and x. We rep-
resent the dimensionless action .S in the form #

S=S,+51, (7

# A similar approach has been considered in ref. [6].
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where
B K=(9/160)3. (15)
Sp=So +wS+A42, (8) )
/ Thus, there remains one free parameter 8 which we
NENEY L 9)

and write down, expanding in powers of Si, for the
Green function (4) the variational series of pertur-
bation theory,

=1
Gu() =N 5 = [ 9004 (O)St exp(55)

(10)

The exact value of G,(0) is independent of the pa-
rameters 6 and x. Therefore, considering the finite
number of terms of the series, we can choose the val-
ues of the parameters 6§ and x in the optimal way.
First, we require the contribution of distant terms of
the series (10) to be minimal. For this purpose we
should find the asymptotics of the functional integral

[ 90 (425 expl — (So+47)1 (1)

for large numbers of n. By the change g—n'/*p we
rewrite (11) in a form allowing the use of the stee-
pest descent method [7],

v | Gpexp(~nSulpl—n'ASalol),  (12)
where>
Sealp]=A~In(4?=S)) . (13)

The saddle-point function ¢ corresponding to the fi-
nite action is determined from the equation 8S.g/
d¢=0 and has the form

2a 1
o=+ V/%————-ch[ﬁ(t_t0”, (14)

where .
a=x/0, b={6(1-2[po])}~",
Do) =1-3(6k*)~'7

and the arbitrary parameter ¢, reflects the transla-
tional invariance of the theory. As is seen from (11),
the contribution of distant terms of the series will be
minimal if 42[,]=S1[¢]. This condition leads to
the following relation between the variational pa-
rameters § and «,
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fix by taking a finite number of terms of the series
(10) using the relation dG§*(0)/96=0, which is
naturally fulfilled for an exact value of the function
G4(0).

Now let us discuss some technical details of the
calculation of the functional integral in (10). First,
note that due to the presence of the term 42 in the
exponent (see expression (9)) we deal with an in-
tegral of the non-Gaussian type. This problem is eas-
ily solved by using the Fourier transform
exp(—Az)v= j

-0

2:1}%exp(—%uziiuA), (16)

which preserves in the exponent only terms qua-
dratic in the fields ¢. Second, in calculating the
expression (42—S;)”" we shall use the fact that any
power of 42 can be determined by the corresponding
number of differentiations of the expression
exp(—aAd?) with respect to the parameter «. This
procedure, from the point of view of the diagram
technique for Green functions, allows one not to take

_ into consideration new diagrams but only ordinary

ones. Thus, for the Nth order of our approximation
we need only those diagrams which form the Nth or-
der of ordinary perturbation theory.

As a result of some calculations, on the basis of
(3) and expression (10) for the ground level energy
in the limit of strong coupling we find

Y& (1M Avem 16 1/5em
X Rom(8) [T (1+3m)T(143m) 1", (17)

where

Rm(8)= jdxx'"/2 e*
0

X j dy y>/2(Ox+y)? =™ exp[ — (Ox+y)?] .
0

The coefficients A, in (17) are the ordinary coeffi-
cients of the perturbation series
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Eo(g)=im+ 3 A(g/m)".

Their values can be found, for instance, in ref. [8].

Expression (17) can be simplified having in mind
that the optimal value of the parameter << 1. Then,
in the first nontrivial order we get

EM =g'3(5/n A, x*+[40(G) //n] 4, %%},

‘ (18)
where
x=(50)"%, A=}, A,=-%.

Solving the optimisation equation dE§"’/dx=0, we
find 6=0.028 and the corresponding energy value

E§V =0.660g"'"3. (19)

One can easily verify that the contribution of sub-
sequent orders in fact is small and amounts to sev-
eral per cent. The obtained value (19) is to be com-
pared with the exact one [9],

Ege=0.668g'/7 . (20)

The next quantity to be considered is the value of the
propagator G,(p=0)=p"2,

G,(0)= Idtj-ng(t)(o(O) e S . (21)
Using the same method as for calculating the ground
level energy for (21) in the Nth order we get the series
G¥(0)

. n I"(n+ (1-im)) B,
72 Z (n— m)2|

n=0m=0

2+3m

I'(1+3m) ’
(22)

where the B,, are the usual dimensionless coeffi-
cients of perturbation theory for the quantity (21).
From (22) in the first nontrivial order we find

ﬂ%|)=3.078g2/3 . (23)
The exact numerical value of this quantity [10] is

ﬂ(zzxact = 3-009g2/3 - (24)

Finally, we shall consider the construction of the
nonperturbative effective potential within the pro-
posed method. We shall start with the generating
functional of the Green functions
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WiJ1= | 29 exnti(Sipl+<Jp))) (25)

In analogy with the previous case we shall introduce
the variational parameter having written the action
in the form #

S[p] =[S, —m25—-(a?/T)5?]
—[8Si—(a?/T)§?] . (26)

Introducing a variational parameter as the ratio a2/
T we aim at calculating the effective potential that
arises from the effective action at constant field con-
figuration. In this case, the parameter a2 in (26) will
be independent of T.

Expanding further the integrand exponent in (25)
in powers of the new interaction action equal to the
second bracket in (26), we get the expression

(=]

W M [J] =exp(—Lin)T172 _L 2% exp(LiTv?)

yoa (=D *(g)”‘k( -az_Mz)-”z
xng'wz'o (n—k)! \de det —92—m?

X we [J, M?*], (27)

where w,[J, M?] are the usual coefficients of per-
turbation theory for the functional (26) which are
determined by the standard diagrams with the
propagator

A(k)=(k*—M*+i0)"', M?= €av.

To calculate the effective potential it suffices to use
only the constant source J=const. The numerical in-
tegral in (27) contains a large parameter in the ex-
ponent and can be calculated by the stationary phase
method. As a result, in the first order for the gen-
erating functional of coupled Green functions
Z{J]=({T)""In(W[J]) in the limit of strong cou-
pling we get

ZOU) =T M= (M) 2

31 J? J4
o333 wm Gre) )

#5 In the framework of field theory we work in the pseudo-
Euclidean metric in the space of n dimensions and T is the
volume of the one-dimensional x-space.
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Here J is the variational parameter that can be found
from the optimisation condition Z!?/3M?=0. The
effective potential is constructed with the use of (28)
in a standard way,

Vesr(90) =Joo —Z[J] ,

where J is found from the equation ¢, =dZ[J]/dJ.
For the comparison with the numerical values (20)
and (24) it is sufficient to find the expansion
VP (9,) in the vicinity of the extremum. Eq. (28)
yields

Vi (9o) =E§" +5uti 05 +0(98) , (29)
where |

E§» =3(6g)'°=0.681g'3,

13, =(62)**=3.302g%3. (30)

Expression (30) should be compared with the exact
values (20) and (24).

The authors are indebted to Professor V.G.

Kadyshevsky, Drs. D.I. Kazakov, G.V. Efimov and
also S.N. Nedelko and K. Roberts for their interest
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in this work and valuable discussions of the obtained
results.
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