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I, Introduction

The interaction processes at high energies and large transfer
momenta are very important in studying the strong interaction dynamics
and elementary particle structure. At present, a regular method for
describing these processes is perturbation theory that is applicable
owing to the property of asymptotic freedom of quantum chromodynamics
1,2/ . However, the inclusion of a composite structure of hadrons
reaults in a representation in which only a part corresponding to the
scattering of escaped constituents from a bound state is calculated
by perturbation theory /3 « In the total expression for the cross
section, this part is integrated in the product with the wave
functions of a bound state, the determination of which is beyond the
scope of perturbation theory. In quantum field theory, those functions
describing transformation of a physical particle into constituents
imply the dependence on the total momentum variable defined by the
interaction dynamics. In general, this dependence can be taken into
account by the pe;t}rbation theory method in the coupling constant
proposed in ref. 4 . However, in the case of deep inelastic pro-
cesses the problem is solved by choosing a reference frame. ¥or
this y;;pose, the system of "infinite momentum" E&—» o0 1s usually
used . In such an approach all physical quantities are expressed
through the wave functions of a composite partiole moving with
infinite momentum.

In the present paper, a deep inelastic process is studied when
a composite particle is at rest; as a result, the corresponding
cross section 1s expressed through usual, from the point of view of
nonrelativistic quantum mechanics, wave functions. 4 new version of
expanding structure functions over a series in the coupling constant,
each term in it possessing a spectral property due to a correct
inclusion of a conservation law of energy in any order of perturbation
theory, is suggested. Thgaperformed analysis shows that in the rest
frame of a bound state (P =0 ) an impulse approximation is in-
sufficient for a correct desecription of the elastic limit xﬁq}-* 1
in contrast with the system Fi-+ oo , To obtain leading terms in the
asymptotlo region Igé-» A , one should take into account the
interaotion of components in the final state. The relevant diagrams

are pointed out, whose calculations in the QCD model are in agreement
with the earlier obtained results, e.g. © .,
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2. Perturbation Theory

Lot us consider the deep lnelastic scattering of an electron on
a hadron. The cross section of such a process is defined by the
tensor

Wiy = EA_\x expix) <1 [ J 195 @
1%

where \E’> is the eigenstate of the total Hamiltonian H s cOTrres-—
ponding to a hadron with four-momentum, normalized by the condition
<P\Q>=@ﬂ)32905‘3)(§*d) X7 :D'M(x) is the electromagnetic current

in the Helsenberg representation. For definiteness we assume that at
the zero moment of time the Heisenberg pictures and interactions
coinclide

Ju(x) = IM(oc) 1f  ¥°=0 .
If the dressed current IXAG:) is expanded over the interaction
constant

t + t
T&= {Tqmpd\o\’c' Hlu')} 10 {Texp&, (o le>} ;@
v} 0

we obtain one of the possible versions of perturbation theory for
structure functions of deep inelastic scattering. In the mero order
we have the known expression with free currents

Wiy = (@ exp(iqe) <RI T @1 | &)

290

which exponnds the main drawback of perturbation theory (2) - 1t

lost such an important property of structure functions as spectrality
connected with a correct inclusion of the energy conservation law in
constructing the deep inelastic scattering cross section, Indeed,

one may verify that in the zero approximation (&) \Jpv +0

below the reaction threshold (P*q)'l:Ml, Apy = -q’/QP.q >4

It 18 clear that no total set of states IND> between ocurrents in
(3) will lead to the 3-function with respect to energy in the
expression

x) In what follows, to denote momenta of eigenvectors of the
total and free Hamiltonian, we shall use capital and small letters,
respectively.



= ga\“x exp(i9)<R 1T, (DIND @

since \P) 15 the eigenstate of the total Hamiltonian H  and the
time translations of current Jh(x) are defined by the free Hamilto-
nian., Since the violation of the speotral property is known to imply
distortion of the behaviour of structure functions in the vicinity
of Xgj-> A , representation (3) becomes useless for studying this
region. To restore the spectral property, in (3) one uses the parton
picture in which the following two moments are important: transition
to the system F%-q oo and assumption of a limited transverse motion
of quarks in a hadron, In this case, of importance are the projection
properties of the wave function of a bound state with respect to a
longitudinal fraction of the momentum of composites which occur only
in the system Fi-scn . Since our consideration proceeds in the
rest frame of a composite, one should have a perturbation theory in
which the spectral property is conserved 1n each expansion term.

We rewrite the tensor Wy, 1in the form

Wor @R exp(ifi)RITE 5% TIPS . @

A symbolic notation of the § ~ function with the operator
argument is interpreted by the change in (5)

8(z-1) = 7 Slz-E) INCN | 2= PAg,

where {N> 1s the total set of eigenstates of the Hamiltonian ﬁ .
Since both the currents in (%) are free, the construction of pertur-
batlion theory is reduced to the expansion of the & ~function 1in the
coupling constant. For this purpose we use the representation

213 (2 -ﬂ)= [z -ﬁ—ie]"— [z- i e]"

the definition of the T matrix operator

[a-flaie] ™= [2-fgrie] ™ [2-Hori e T [z - pvie]™

[z-fl-ic—]" = [z-f{o-ie]" + Lz-ﬁo-{e]"'?"?z)[z-ﬁo-ie]"



and the unitarity condition x)

A4 ~ A A A
T(e) - Tle) = 291 TS (-0 )T 1z). (6)
Then, after simple calculations we get

= S
Wyy = (4% exp(432 <RI @)1+ 2 Morie] T} «
£7)

e 3z, | T+ Te-Hoviel T} T, 0019

Using the total set of bare states (N> ( i.e. eigenstates of
the Hamiltonian H,) and integrating over dX, we have

wm = (2%)3 Zh SM( P+q-p,,) TM T: , (8)

where

T, = <P| 3'"(0){1 + [z-ﬁo+ie]"’f"(2)}ln>

and Pm) 1s the total 4-momentum of states |[ND> .
We propose a perturbation theory for the functions wﬁv that
is based on the expansion in the coupling constant of the operator
T(z) in relations (7) and (8). Then, the presence in (8) of the
four-dimensional & —function in any order of the suggested ver-
sion of perturbation theory provides the above meéntioned spectral
property. '

3. Impulse approximation and threshold behaviour

R¢=,p:r.-es¢an1;(“§a. bound state \PD> as the Fock column with the
components (b (p P ) to be called below the n-particle wave
P\ n
functions

x)l’rovided that bound states exist in the theory, the right-hand )
side of the unitarity condition (6) has an additional term 2% ZF(Q-HD)"
18)8 (2-E0)p 1 (2-Ho) . Moreover, in one of the schemes of
quark confinement just this becomes essential. These problems will be
discussed elsewhere.
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R b | P> = (B qu’a(m 2

Lgt us write down (8) in the impulse approximation corresponding to
T(’E): 0
IR o )
Ny = ?,X;P-— Q% EVRCARNOITCARIDI A C10)
A

where
— T 2 - - _ 2 . R
P-'=P-+5f &=9+P+(Q+P¢—P¢I)) P,;'—’m\?’ pt=porp>,

The quantity QP(Pud) defined by the formula

2
YY) >
Q(ﬁ,a)_—. v50) ﬂ ( ZP))S(P'ZPR,) -"'Pn) y  (10)
B 2P Ju e !

makes it probable that the i-th component of adron P nas momentum
in the interval -P'l-' N a*dﬁ. whereas the square of the effective
mass of all the oconstituents is in the interval d, d+ ook

the following normalization conditilon being fulfilled

(a o, QL F)= 1.
We rewrite formula (9) in a more compact form

\IJMV = zt_ \?E (Y] 8“’((P+q-p)"‘— m?)whvd"p , Qv

where the Qg(p) function of the four-dimensional argument P= (%,p)
is related with the distribution (10) as follows,

Q'QP) = Q) (B-%, (o dB-pFum ).

v
The quantity QBQP) is the probability for the total four-
_momentum of all the constituents but the i-th one to be in the inter=
val P, p+dp in a hadron with momentum P
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To avoid a complex dependence of the wave functions on the hadron
momentum P , arising due to the 1nteract:£im dynamics, we shall
consider only the special reference frames P=0 and Pzaoo . Ve
make rough estimates of expression Q4 thai lead to a standard par-
ton picture of interaction. In the system P=0 , without loss of
generality one can direct the 2 axis along the vector a’ (qZ:jq‘])’
then the $ ~function in (11) becomes

§((Prq-p)-mi) = 5 (W*- lﬁ—gp‘— Mep*s pr-m:) =
:Lﬂ}_ - Me + Mg (Mep*s pt
W"g(? 13 W"( EpTem; P)))

where wz: (P*q)z ’ M% - M*V-WH: M*V—"\)z—q"‘-

The neglect of the third term in the S ~function argument corres-—
ponds to the parton model. Since the rejected term Me (Mgp*+ m%—p‘)/wz
has the order of smallness {M>)/y , the parton model means taking

the 1imit V -» oo and the structure tensor acquires the form

Moo= S5 SQQ ONUELISENLY @

Integration in (13) over the angular variables of vector 5',
on which 92" (P) does not depend, leads to the following expression
M)

[ LY .
Wy =228 T gdP"gdpo Q (P, F )Wy 0
WU 0 PhmMg+ Mk .
Analogous caloulations for the system P2 > oo (q*(o, ql‘-'-O)
lead to the known parton distribution over the longitudinal
fractions of momenta

i - (15)
Myy = ﬂM\fi Z;Qw('1"%)wuv )

o gi
X) Note that A- %: T‘Z_——Br%_??e—?— i8 the Nachiman variable /7/.
Y+ ——=
-q2



where

S = S el 9l L. ae)
o o0

It is to be noted that according to the representation (12) ?5’(p)

is the function of two arguments P°,IS| and in the system Fgaoo
depends on three arguments p*,Flz and p* invariant with respect
to rotations in the plane perpendicular to the %  axis. Approximate
representations (13) and (15) corresponding to the well-known picture,
have been obtained by neglecting small components (of an ordera¥ /V )
in the & —~function argument (11). To elucidate how good 1is the
approximation, a more accurate analysis 1s necessary with the conser-
vation of the integration limits over the variables P2 and P2
following from the exact §- function in (11) /7’8/.

Using the representation (13) one can investigate the behaviour
of the structure functions near the exclusive threshold £-» O . It
is easily seen that 1t is defined by the asymptotic behaviour of the
wave functions of a hadron at rest in the region of large momenta of
all constituents ( P < Mg ). Analogously, in the system Pz—poo
the elastic 1imit of the structure functions is defined, according
to (16), by the behaviour of the wave functions of the light front
at x-» 4 .

The asymptotic analysis of equations for n-particle wave
functions of bound states in the QCD /456

in) — — -
& (p,,. p,) = B0 B~ 1B~ ~ I I~ 1Bl 0o

n L -

<P; @ %0 B) = (4—x;)2(2n 2+l R
( AN 1is the difference between heliolty of a bound state and that
of an active quark) shows that the impulse approximation provides
different results depending on a reference frame. Indeed, the forma—
1ism with hadrons at rest gives a fall at g+0 vWp =~ g5"—6
sharper than the generally accepted one VW, = g2“‘3*2\°?|
that is in agreement with the consequence of the impulse approximation
in the reference frame F}.;oo . It 1s the case when the zero order in
perturbation theory does not provide a correct desoription of the
regularity under consideration; thq;efore, one should take into account
the subsequent terms of expamsion fP(E) in (8). Note that a similar
situation takes place while analysing the asymptotic behaviour of the
elastic form factor of the composite system




Fo= <QIT0)1P>

The amplitude of the deep inelastic process (8) has the same field-
theoretical axpression as the fom factor Pp s thus being its
inelastic analog. The variable W= (P+a)Y= G plays the role of a
f£inal state mass. An essential difference from the elastic form
factor is in that the final state expands in a standard way in powers
of the coupling constant

16y = 41 + [@-HoeieT T@}In>

and has the zero free 1imit as the Fock state. In the formalism
the leading asymptotics of the structure functions with respect to
1- ’.‘Cg) and of the form factor with respect to transfer momentum
i1s defined in the impulse approximation, i.e. 1n the zero order in
perturbation theory. However, in our approach P (0] ; as 1t will be
seen from a further consideration, the leading asymptotics with res-
pect to 4—21‘.5") manifests itself in the next to zero order of
perturbation theory. An analogous situation 1s observed in analysing
the representation for the elastioc form factor written with the help
of the wave functions of hadrons at rest. In this case, one shou}d al-
so take account of the subsequent orders of perturbation theory
in the coupling oconstant for the boost operator defining the final
state |Q) with arbitrary momentum (3. through the state of the
composite system \6) at rest.

We shall show that the leading asymptotics at g-,o in the
system P O corresponds to diagrams of the type of Fig.l

and the results of calculations are in agreement with the impulse
approximation in the system Dz > OO0 . For a qualitative explanation

q | L ;

P4 pz

Fig.l Fig.2



of the afore-~said we should like to note that part of any

diagram (of the type of Fig,2) to the left from the photon vertex
corresponds to the scattering of constituents with total mopmentum

Ef . In the 1imit 19| > 00 (this is the region under investigation)
the nuclei corresponding to these diagrams are defined by perturba-
tion theory in the system of “infinite momentum® with the 2 axis
directed along the vector Ef . This 1s the reason for cross sections

at ¢> 0 to deorease more slowly due to a specific in P2~4 [Se
cancellation of large terms in the energy denominators.

In the reference frame B:O one should also allow for the
diagrams describing the photon production of pairs from vacuum
(Fig.z). The calculations show that they give the same contribution
as the diagrams of Fig.I. Since the calculation of diagrams in Fig.2
encounters no additional difficulties, we shall investigate only the
diagrams of Fig.1l.

Let us consider the case of a meson with two valent constiju-
ents. Using the second order expansion in coupling constant of qW?)

from representation (8) we have
Yoy _ 2
fPH = S¢6 (01!2)@2:)2<‘4)!1\IH(°) { [2 'Ho‘* LQ} ‘H].} |P4 Pl.> ) (17)
- Ky K. o —
@) @e), = SUZEI VU207 ) - Meop, Hy= g\PO’”W(}:qﬁ“_
In the QCD the connected diagrams corresponding to (17) are shown in

Fig.3. @ { g

| 1 & ! Ke |
P H r Pi t L
t
4K | - | 5 :
P i ‘ £:0 p : | B-o0
i ] 13 r | : 1 9
D4 Dz Dy Dz_
Fig.2
Using the 7epresentation (8) one can formulate the diagram
technigue 9/ y according to which each dashed line between the
interaction vertices is assoclated with the energy denominator
D =M+o\°—ZL;‘h€¢’+mg ,
(18)

-
where K¢ is momentum ascribed to the line intersected by the



dahsed line. In the region under investigation lal = o0
due to an explicit form of (18) one becomes aware of the above
cancellation of large terms as it occurs in the diagram technigque g*“’

Meq® ~ 131 + W/2151
-41.* c
IRy ~ (s TH5) Notd)

Identical change of the energy denominators (18) owing to the
condition 4= LK,
D= M*q- ‘ZK(— b}

= -
where K¢ = JK:*M{' -K(Q/[al.)ta.kes automatically inte account the can-
cellation of large terms ~ lal . In this notation it is easy to
compare the contributions to :D of different momenta: momenta with
large constituents in the direction of (T I('c?f/m‘l > o0 glive
contribution K, =0 , and the small |[K,|~m correspond to
K['a-v m . For ‘large momenta in the opposite to a’
direction K¢-G/|f|2-o0 » we have K& — ©0-

According to the afore-sald, the energy denominators of

diagram A have the form

D‘l_"'Mg"P:“k—_Q[ Dz:Mg' K¢ - (L- .

)

The four—dimensional & —function in (8) at P =0 can also be
—
represented in variables pt , p~ and P

§"(erq-Tn) = S(ER) S0 - IR)S0G-207) . 9

Hence, it 1s seen that at |9 | S® , to20 | P, K’~o(g)
and ko~ ~O(MAA1)  t.e.

Dyx-t" |, D,x-8 - (20)

Adnalogously, for diagram B we have
D=Mg - k- K -p” , D= Me-i-eg

10



However, in contrast with diagram A the energy denominator
D":-}s—~0('/§) y since E:-\Z’ « Therefore, the contribution of
diagram B to the asymptotics of structure functions as §-»O is
suppressed. Each inner line denoting the propagation of a particle
with mass W and three-dimensional momentum K is associated
with the f8ctor (2\} Kiem? )-’ « Then, for the wavy line corresponding
to a massless gluon with momentum K this factor in the asymptotic
region g—oo can be changed by the following expressiont

_ o - ol md
2\sz =2|Pz'l1l => P:: Pz—::f‘z' ! (21)
(3

-
where we have taken into account the limitedness of momentum 2 aa
(which 1s connected with a rapid decrease of the wave function ‘%(Q(z)
at |I,) 2 o ) and the condition

Pq. "'Pz—:Mg'

The inclusion of a spin results in the appearance in each inner
line of additional factors Q*M and 0\59(\1) for particles with spin
1/2 and 1, respectively. The gluon projection operator dse(\t) depends
on the gauge condition fixed in a covariant way

dse('\() = -%se.

The external legs and vertices are taken into account in a
standard way as, for instance, in the Feynman diagram technique.
Thus, with (20) and (21) included, T} can be written as
follows:

2 -A '- - ) - ROy |
Th=e9°G& @) U, {g@e)z d%u.,!,)tea M,} Ve, (22)

where - A ~ a . A

9\,4:1{"1:'141)@&!.)1{,.%""“_2{? VK=l = LA,
Agcording to the representation (8) and (19), for the tensor WMV
we have

=17 + -~ - rd - -

Wy = A\ 88 T 055 L7 S (g R )5 Hg) (23)
Gm«? 2?."1?;’

with ff‘=M% + Due to the presenoe of the suppression factor (r,*)_'

in (22), in the scale invariant limit (lead asymptotios 1n V' )

the & _funotions in (23) are changed by

x}Bota.ining the exact § ~ functions we could obtain an
expression in whioh the dependence on w?* violating scaling would
be taken into acoount.

11



Sler- )8 (- 4)8(m,+15,) = Ap,p)- 2
The corresponding approximation for p\g gives
My = & 70 ST T,Y Y,
Then, (23) becomes

(25)
VG &QA") Fyl) VM Pali) ), 2, pIsC0AD by, dB7,
(0 )2 v Q( —) (P§)7. 2?, 2P°
where J‘S is moving coupling constant and
VMV = O(Q)UHU- 6.9 (.6\4*'"11) Kst—b’v Uui) aﬁhl) bfs (p;'mz)b,eb)(el) .
After integrating over o\ﬁdP; in (25) in the leading in V order,

we get
(f\:" e)q& slid )uu)u,x A U)ol ¥ ble) St 4’6‘“9 @,

Thus, from (26) using the standard definition of the structure
functions, we have

v et (R ey Com)
Mwl ge(?;&(_mzsp(mf_zj r‘-—l—>9 21

here
" D= (§o\1) U('h)(b (’l, '11).()'('(1)& ( - sz’"'z)
(1)

The asymptotic expression (27) obtained is in agreement with the
oaloulation of impulse approximation in the field theory on the null
plane with an accuracy up to the oconstant coefficient 6 » Now we
shall consider the case of a baryon with three valence constituents.
Though the calculation 1s performed by analogy with the two-particle
case, this example exposes some specific features typical of only
many-particle composite systems. Consider the diagrams of Fig.4
corresponding to ‘the fourth order terms of expansion ‘I'(Z)
For HyzpWPa"VGep, this is a minimal order in which conneoted
dlagrams arise that describe the three—quark interaction in the
final state. (Three- and four-gluon vertices are not considered here).

Analogously to (24) the four—dimensional & - function in (8)
in the scale invariant limit \-~oc 1is substituted by

g(p"f_ %{)J(P{+p{- Mg)(f( B+ EIJ’;L) = AlpupLP) . (289

12



Among the energy denominators D, of diagrams A and B in Fig.4,
only fD; and _DSB differ from each other

®

Py
Py

B

| ! E ":‘ P
i , “‘ﬁf ' / !
N P
Ky ] | . ¢ | t ~
,%—, } \L 0 P — 0
L N o
b D3 D, D Fig.4 ; D, Dy

D; = M+ qO_ P10,_ k3°- 830 = M +q-- P‘- - KJ——QS‘ )

D2 = M- 0~ k- K3 - BO— ky- by = Mo ™p - Rk

which, by virtue of (28), in the limit V-co and §-+0 transform
into

D.':z't.; ) 'DSB‘:'-(PI*‘+P11’)30(M1{§M>.

Note that Z - diagram (Fig.4 )is suppressed by the energy denomina-
tor only as g - O since in the regime P; ~+<0 apart from lfﬂ"”

an additional conditiom (Py+p+p)/18) = oo should be satisfied.
All the rest of D¢ in the limit §—~ 0 like 11: turn out to be
finite quantities dependent only on momenta of the wave function of

a hadron at rest. Therefore,one may think that the contribution from
diagram of Fig. 4B is suppressed in comparison with 44; however, in
the case of spinor quarks the decreasing contribution of Z ~diagram
owing to the energy denominator ZD; is compensated by the inoreasing
as g-;o projection operator %;M + Moreover, in our case just
this diagram corresponds to the leading asymptotics of structure
functions., Such a cancellation takes place in the field theory of null
plane and the contribution from a fermion moving backward is taken
into account by an instanteneous propagator part y* /5,* usually

13



denoted by the vertical spinor line /2,10/ « In the leading in
order for the tensor W}w the contribution from diagrams of
Fig.4A and B has the following form '
A P
Wyy (’Zcé&dl) &5 (""*'QV“ Folihih) oy ﬂdP ﬂds(CJMs) A@pP)
n R z . )
) e O S U Rk

P

b (_‘CF)(@”BQ) (BLty) va bz m,'l,),da r'[gh ﬁO\S(Q./Mg)A(P. P h)
e *'5) ,13 ("l 13) 3:-4 P = (.P't +) (P )

\7_._~p*u( 1), ¥ 857 80y g, Ut 1.)@\)(!0*@&6 (P;mz)zs‘(_sﬂm)zf" Utw)e

] Uu;)US (PJ" mﬂﬁs U(",})dss deel dé& dss' )
\/ =pr UMEET YL 8 U(mxsuu (B m,)v‘(h-mbzs"uhl)o

e ) (am) ¥ Uty d d“,, dss' dee’ -

dp, is the gluon projection operato;c

Note that the first denominator in wMV corresponds to the
product D, D, D; Dy  and the last denominator originates from the
multipliers (v<,° k‘, )“ corresponding to the gluon lines. The
last multiplier WMV has the square energy denominator DYy apart
from (K- kf)‘ o« In VW ‘;HN, ~pty and k| AR are taken
into account. It follows from (28) that p,~,p,; < MS
therefore, in the leading in § order we have

V,w—{ LGN )u (Y S5 ¥y, U @ ViR)Y T tue
o Uty 5 ¥ TS U dgsedeprdssds s

OO OIS R R R Ui © D) ¥ 5 1 1 5 1t U)o
o TV T ¥ S Ul dss' doer dgg dse

N
In VMGV we have taken into account that }S; =—k3 and therefore
& M~ Ky gY=ky ¥% .« In the diagonal gauge dFV:‘ng by virtue of
@)= (§+)*=0 we have VA =0 s 1o s g+ 0 the leading
contribution 1s from diagram of Fig.4B.

PR RS AT DLIVAL S AV SLITSL A R ATNE

Thus, for the tensor W"v we get

Wy, = B\A/(,L ¢ d>o Uﬂal.!) w d’o (1) d‘L)
ko= & MGep) JE) B b T ce

14




where

folpz d B olp B o’(:u2 <PM)P) /7o<s(c,/uf)

L R e

Wev = U Y,7F, V) 8 UlG) X‘I’d"’(/('lz)@l//% ) T8, Ul

The version of perturbation theory for the structure functions
of deep inelastioc process ¢D) suggested in this paper can success-
fully be applied in the case of an arbitrary number of constituents,
As a result, the investigated physical characteristics are written in
terms of the wave functions of a bound state at rest that have a
clearer physical meaning than in the system Pz-q oo o+ Of special
interest such a formalism should be for studying composite systems
(for instance, of nuclei) whose wave functions 1in the rest system
have already been studied in other processes.

Acknowledgements, The authors are deeply indebted to V.A.Matveev
and A.N.Tavkhelidze for interest in this work and valuable remarks .
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Xeegenvupse A.M., Keunuxugse A.H., Cucakan A.H. E2-87-543
Tny6okoHeynpyroe paccesHWe B ¢OPManMaMe C BOSHOBbLIMU
PYHKUMAMHA MOKOAWMXCA COCTaBHLIX CUCTEM

T nyGokoHeynpyruin npoyecc nenToH-afApPOHHOrO PacCeAHWA W3Y4YaeTCA B cucCTeMme
NOKOA CBA3aHHOrO COCTOAHUA. flpegnaraeTcA HOBWM BapwaHT Pa3NOMEHUA CTPYKTYp=
HbBIX QYHKUWA NO KOHCTaHTEe B3aMMOAENCTBMA, KakAud 4neH Kotoporo obnagaet cBsoii-
CTBOM CREKTpanbHOCcTH. [lOKa3aHO, UTO B CUCTEME NOKOR COCTABHOR YACTUUL WMM=
nynscHoe npubnumeHue HefOCTaTOUYHO ANA KOPPEKTHOrO OMMCAHWMA yNpyroro npeaena

: + 1, B OTAMUKME OT cHCTeMn P + =, lnAa nonydeHun aeAymeﬁ acuMNTOTUKK
crayxrypuux dyHKUMA npu xgs - 1 He06onuM ydeT B83aMMOAENCTBUA COCTaBAAIWNX
8 KOHEeYHOM COCTORHuM. Ha npumepe CBA3AHHOIrO COCTOAHMA ABYX #M TPEX 4HacTuy
yKa3aHe COOTBETCTBYOWME AMArPaMMbi, PacuyeT KOTopuX 8 moaenu KXl HaxoauTca
B COMNacuM C pe3ynbTaTamu,nonyueHHsiMn 8 dopmanusme P, - «,

Pabota BunonHeHa 8 JlaBopaTopun TeopeTuYeckowd Ouankn OUAM .

ﬂpenfmm- O61enHHeHHOro HHCTHTYTA AXEPHBIX HecnenoBaHui. y6xa 1987

Khvedel idze A.M., Kvinikhidze A.N., Sissakian A.N. E2-87-543
Deep Inelastic Scattering in the Formalism with
the Wave Functions of Composite Systems at Rest

A deep inelastic process of -lepton-hadron scattering is studied in the
bound-state rest frame. A new version of expansion of structure functions
over an interaction constant is proposed, each term in it having spectral
properties. It is shown that the impulse approximation is insufficient for
a correct description of the elastic limit in the composite particle rest
frame in contrast with the system P, - =. The leading asymptotics of the
structure functions as xgi ~ 1 can be obtained by allowing for the interac-
tion of constituents in a final state. Using as an example a bound state
of two and three particles it is shown that the results of calculations of
the relevant diagrams in the QCD model are in agreement with those obtained
in the formalism P, + =,

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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