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1. Introduction

In recent years supersymmetric quantum-field models have drawn
great attention. We recall that a principal advantage of such models
is the unification of bosonic and fermionic fields into one multiplet
and a significant reduction of the number of divergences (up to a
complete vanishing in models with N=4). Basic tool for studying the
two-body problem in quantum field theory is two-particle dynamic
equations (the Edwards equations for process 2 +>1 and the Bethe-
Salpeter, Logunov — Tavkhelidze equations for process 2 ~»2 ), A
standard method for deriving these equations and their connection
with the Lagrange formalism are provided by perturbation theory /1 .
In the framework of this approach a supersymmetric Bethe-Salpeter
equation has been obtalned earlier .

A natural language exists for studying the properties of multi-
particle equations in field theory - the method of higher-order Le-
gendre transformations for the generating functional of Green funct-
ions . With these transformations, multiparticle equations may
be obtained as a consequence of the Schwinger equations. These multi-
particle equations are model-independent and have been obtained
beyond the scope of perturbation theory. The whole dynamic informa-
tion on interaction is contained in the equation kernel., Note that
the kernels obtained by the above method for multiparticle equations
are expressed through the generating functional of the Legendre
transformations. This provides new possidbilitles of studying kernels
beyond the scope of perturbation theory and thus testifies once more
in favour of this approach.

For the first time the Edwards and Bethe-Salpeter equations on
the basis of the second Legendre transformation (for 503 theory)
were obtained in ref. 4 . Then this method was further developed (for
other quantum-field models and for a number of interacting particles
larger than two) in refs./5 . Our paper deals with derivation of the
above equations by that method in a supersymmetric theory.

2. The Schwinger equation

We shall consider a theory of scalar chiral superfields ﬁ/x;,@)

and ?%NIH) with an arbitrary interaction functionalé‘""[% p_]
(a generalization to the vector superfields is not, in principle,
difficult). Then the total superfield action 1s written in the form/6/
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Using the connection between the left-hand and right-hand chiral

(2>

bases we may rewrite the free part of the action (2) in the form
(see 4.1 )i

S0 = F(Pte0) P(x5)) K1 (20,260 Ku(26,%0)

Kat(2b, z'0") Ka(26,28")

/Pl
90/1’9—/) . (3a)

where ‘%-:-/—/ , ﬁ’::__ (gy, &) is a transposed column, and
is an integgl matrix operator with a kernel determined by the
relation

m §(6-6)S(x-x) e—jwaef(x—x') (4)

51/915’"9-5‘/3;-1’) m(6-6)(x-x)/

Hereafter integration (summation) is done over twice repeated
variables (indices).
For further convenience we introduce the following notation?

559{ 5-"—92 (5)
Dlx,0) = O(26%); P(x6) = © (x62).

Then instead of (3a), we have

SD =Z/'¢d/x19f)%¢ﬁ/x19ﬁ x: f)?oﬁ(xzéz‘s),

(3v )
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where ol = 1,2; ﬁ = 1,2 and the matrix elements ﬁ/ﬂ‘zﬂx» X28:)
of the kernel Jf are determined by relation (4). The kernel of the
operator inverse to ﬂ‘ is given by the relation

‘%‘d‘/z/‘rlﬁjd) 2z ﬂz‘ﬁ) %‘—fﬁy/xz 92"(1 X 93"’) - (6)
~Lol
e K 08 2208 K108 2308 = Suy o1~ S(65-08)

It represents a matrix of free propagators Do of the following
form (see (4.2)):

-1 - mJﬁ% -6) A (’l‘z -Z2) Eﬂgja&'ﬂ (1« x;)
:/‘t[ =Ds= 206:30, c
A4 Ae-x) - 8(B2-0) A (s

7)

We shall define the generating functional of Green functions as
a functional integral with two standard local sources J"‘/xe )
composing a column fﬂ‘9) and four bilocal sources M‘{/Qﬂzﬂbal&)
composing a matrix

N/:(Jzﬁ:,rzﬁi) Mn(xz&, T26,)
sz (-229—1, .1‘1(91) Mzz [-219—1) 1'29—2)

M =

617, 7; M= N [9PPesp [i] {(Ples6) Praii)) x
Kot (261, 22 02) [12 (2161, 2:6,)
X _ - - + (8)
Hot (2461, 2:6:) Ka(x:6s, 220,)
4 Mﬂ(&t‘zé’!, .1’:.9:) sz (xza(, ‘Tzﬁz) (1,191)
Mﬂ(z'lﬂ:; Z262) M2 (1'19_1) 1'192) Ktzﬂz)
*(78) J(x)) 269 ), S [0, BT},
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Here /V is a conventional normalization constant. _
The Green functions are expressed through 5—[.]1 J;’ M_]

as usual:i
As..dy "y , , s P aAw |
G (2:6" veey AWORY) = L<0/7"CP“’(T1@1 ... Pt

v _SVGLT T M _
ST 4x: 7). ST xwdn®) | _

For simplicity we introduce the notation: M =
[z]-=/4.1} ZJ—:/qI; , (10)
. -ld [ . wnt_
z//‘f"f"vLD,, ‘/Q)=/qzﬁi L8T=A,

in terms of which the generating functional is of the form

CLAE AP] =N - [DPDP eap f Al (26%) Plz6D*
s 4 969 A (2085, 2.8) P 6D ALY, 2}

It is obvious that the limit of switche ;ﬁff sources ]:f: M:O

a
corresponds to A;:/)lz =0, A{Bz Do From invariance of the
measure of integration 09?31 with respect to translations % —_ ?71{-
+ gl we get

A, dymds o
0= - JoRi0%: S oap { A (2:0) P (xs65)

s 4 Plasbf) A 67, 26D P (2600 ALT Plf=

=N Jopon {Al(z69+ Al (263 %67 P00
n ,Zl [ AE26% 2.67) P L) + P as00) A3 (2465, 269+

o / a
+ LALTBL ) cap{ A7 P 3 P A pif.



As a result, we find the following equation in variational deri-
vatives:

1 y, S / S
[A (209 + R Get 2001 i r 4 F(4" (“19’1“9’),4,@3,)

J )
*o(‘/qfﬁzﬁzz) /’2 (:04, xﬁ)) 7 (12a)
SALP:, B
BT ) s e JCLALAT =0,
PEED Lprgs, o i

which represents an analog of the Schwinger equation in a supersym-
metric theory. Similarly, from invariance of the measure 0@9’2
we obtain the second Schwinger equation

//}1 (x8%) + /]z /2392 3’3191

z 2 i
*- 104 1 B3 1
(4 (x6? x&) i +J./4!@101)
JAL P! P

J‘ng/xgy ?7 ‘(f JZG[ 1)/)2] 0

where 6[/91, z] is the genera.ting functional of Green functions.

The Schwinger equations (12a) and (12b) determine 6 up to a fac-
tor, an arbitrary functional of /}z"‘ .« The functional is fixed by
constraints 3 « The constraifxts are obvious from (11):

Jelf pd  f JEIAA) oy
SAP A& JALTAS

(12v)

I
0041( 161)
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As usual, it is necessary to pass from the generating functional
of disconnected Green functions 6[/41;/42] to their logarithm if
we want to get rid of nonphysical disconnected components:

WA, Aud= teGLAs A,

(14)
that represents the generating functional of connected Green functions.
Then the connected Green functions Dn. - on are determined by

the relation
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where the notation (5) is used, and indices A, ..., 0dn take
values 1 and 2.

With the help of (14) and (15) it is not difficult to obtain,
instead of (14), the equations for Lv/ :

Ai (69 + A3 (63 2100) Dilwsbl) + £ (4204 60D} (e:t)
D (a6 A; (267, 264)+ [ {26 =0, (162)

/412[3:991#/]:2(.262; s ze)Df[x:ﬁf) ’L,Zl(Dj (694 Y, 6,
z6%) +/42u(x92) xxetl)D}l(xJB,J))*_y&(xez):0, (16b)

where

- [PLPT ), w an
(7“(¢9°°)=€ W————{ﬁw Z) )¢
Px6%) / .
q)jx,zq“-l,,gv:ﬁz.

From definition (10) it is obvious 1) that the symmetry proper-
ties with respect h32 e permutation of coordinates and indices of the
matrix of sources 2 are the same as the properties of the matrix

[D;‘(]dﬁ . With this fact taken into account and using expres-
sion (4 ) and antisymmetry of the derivative of -function it may
be shown that

Al 08 2.62) = A 2108, x16D). (18)
With account of this relation we have, instead of (16a,b):
£
A0(x60%) + AFb(20% 216D D (2:6D) + (2 6%)= 0, o

]Jwe recall that the bilocal sources ”“ﬂset zero at a final stage

of calculations should possess the same symmetry properties, other-
wise the properties of the free propagator will be distorted when
differentiating the generating functional with respect to those sources.




or in the matrix form with notation (5)3

_—1(er6%j/) + :72562;321694) /95261”9) JE;ééL) Z){(éréz)
As(=0) 2ad, 210y AP0, 2:81) J| Di(x161)

* é{(ﬁrf%) =0.
(jf(czzéi) (200

3. The Edwards and Bethe-Salpeter eguations

Before proceeding to derive two-particle equations let us show
how Legendre transformations are introduced. The first Legendre
transformation is determined as follows. From the relations

(21)
a
Diao® - WAL (o1, 2)
SAL(x07)
F4
it follows that f and /912 are implicit functignals of Dl ’ Dj
andlqz . We introduce the following functional

WL, D, Aed =W/~ A= W- DAL, @

It can be shown /3/ that LV/Avis a generating functional of

1
irreducible amputated Green functions which are expressed through Lv/f)
n

ot..dn s oy _ S W ’
/C; (Gtzéb ,...,;Ené%1,) ‘aplzft?filgfgl',JUCL ”1h6ﬁ+f>
(23)
3,

For further consideration we need the identity

2)Hereafter by this shortened notation we mean internal Grassmann va-—
riables of integration with the same indices having the meaning accor-
ding to rules (5). In particular!?

SW ps. IW ___ %% = [izd0d z0) +
SNt S A0 = e M )
Y . (x06).
+J2d G s As(20)
3)'l‘he sign “Jc' means tﬁatvwhen one differentiates over this source,
all other sources are fixed.
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The left-hand side of this identity is a functional unity in the chi-
ral basis (see @.2)) . Consequently, the propagator inverse to the
total one [);93 is given by the relationt

D% 2:6i) DI H2a675 20 = @
= DI (0% 20D D7 e 075 2'0%D= 882050409

With account of relations (24) and (25) it is not difficult to obtain
the equality?

_ a a (26)
D 4g 2 '68) = LAL(ZOD
SO x'6F)
Next, with the help of (22) and (23) at n=l it can be shown that
[1%z6%) =- Al (6%, (e
For /z-'d"ﬁ using relationships (25) and (26) we get
-1d

4B g ) = SALEEN) (71U s s
/7 Flx6%29'F) 2L D, (xe,xé’()z.a)

Introduce a generating functional of the second Legendre trans—

formationt

BNt NPI_ 1/ O & Sl %P (29)
LV/ I(ZDIA) [)z _7 LV/ ;ﬁ;f%éLYQI ;7;&;{;(/42 .
From definition (29) and constraint equations (21) 1t follows, first,
that
Sl LYY ¢ (30)
SDgtaey 2 (20 907

and second, that
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With account of equality (18) this relationship can be regritten in
the form (as usual, the shortened notation is used, see

S/
JDf08) ~

The third, fourth, etc., Legendre transformations can be defined
analogously. For this 1t 1s necgssary to add action (1) with terms

s
with sources /43 (2.1 xz 2, X3Us ) /44, /xzﬁt,lzﬁz 119;/.1”97)
and so on. However, in this paper we are interested in the two-partic-

A5 08) = AP Y08 2408 HD b, 1)

le supersymmetric equations, and hence, for our purposes the second
Legendre transformation is suffiolent.
N P
ow let us differentiate equation (19) with respet to 1 20
assuming that all the other sources are fixed:

Sip Sle-20S (0% 0'8) 4 AL (204216 e

1 [dT=8%) A O84) »
Dd"(rtﬂd M%’é’ 'JB) '
With account of (15) this equation can be rewritten in the form
dup -2 DI 6% 9%) # AL (2 0% 24 05D D) Noes 652 0)

JI20%) ) n#br, o 2'0%) = 0.
g SO (a6 Jp (= o )

Using relationship (25) we get:
[ 0% 2P0 4 Alr0% 2600 29663 260-0.

(32a)



Here the mass operator 4)
o’ Afon o (33)
5ot 2= [I1L0)
SDiED) Jr
is introduced, where (7“(.2'99 1s defined by relation (17). Coming

back to the notation (5) we may rewrite equation (32) in the matrix
form

111 /A2 -
D, " (z9, 2'6), sz”(xe, x’ﬁ? 7‘( f‘(xe, x8)),

LU f -
0" (z6,28), D, (&5, z'5) s (x8,x'6),

Ai (28, 2'6) J(E8) /5D, &6), 89(28)/F Du

(32v)

220, x’é? , (fy@re)/m@ 8), JI6YSDixs)
s

To derive two-particle equations (the Edwards equation and the
Bethe-Salpeter equation for the amputated connected three— and four-—
-legged function, respectively), we carry out the second Legendre
transformation (29) of the generating functional of the connectedd'
Green functions. In this case all the functionals of Ag and ;ﬁ
(4ncluding the mass operator (33) ), becom functionals of Dl

and
[§
D;‘VB . Differentiating Ziﬁ(xzﬁz) .1'151) with respeot toA,lZzEHI{)
with account of the above fact and relationships (15) we get:

fZ %B(.tzﬂzai 2 9; ) J‘Z“ﬁ(xzeﬁ Z205 Dddfh o
A (x5 64) - SOFx0™) T° g

' : AP/ ey 0F A didiyy d d e
x,gj)’,_ J'Z Kz‘zﬁz) IIﬂQ_D 102 Kttﬁx,jd'zﬁ " zafa
DI il 2:65) v

34a

Note that further exposition may be much simplified if we define the

rule according to which first external upper 4dndices )‘/3; J/, J} ;
Vg
Eenote the pairs of external variables ,’t;ﬁ;) xXi 94/ X 95) I 912}“'
4) Indeed, in the limit of switched-off sources the third term of
equation t32) is expressed through the 1nve1?e totallé d free propa-—
o D- ap_ N’

gators as the usual mass operatorz = Dz(o) which can be
easily verified by applying definition (10).

10



(1.e., numeration of an external argument by a Roman number corres-—
ponds to a serial number of a Greek letter in the alphabet) and, se-
cond, internal upper indices 6‘1 y voey dn represent the pairs
of internal variables ez 5 ...» xnﬁad.a

According to this rule equality (34a) can be rewritten in a
shortened form

2 P 1 "“3’ J‘Z# 0610‘2/ (34b)

2& e .
JAL Dy " D s s
We differentiate equation (32) with respect to /at(aﬁﬂézf,)
setting all the other sources fixed. Then, with account of (25),

relation (34) and the identity
(f ntdds) didt  _iady )
D L - ‘(G D)
gy L2 2
/4 2 op & 5

we obtain the equation

_ Dyt edpeas D; ~Ldif og(’DZ f DX J‘gleamu.r(m

Let us go over to the amputated functions

/—,df,_ —.{deD ffd'L f/d;,* Dd.ld,zd.a
= ) .

36)

Then, instead of equation (35) we easily get the Edwards equation 5)
for a connected amputated three-legged function

WAk 'ie =jf{¢ﬁ i éol——:‘iz e e/ Bl

or in a detailed form

480102 2208
[P 2168, 226, 2003 ) = = fo’?é:;z)' f

5)

When we write "equation™, we imply fixed values of indices.
Equation (37), obviously represents a set of eight Edwards equation
corresponding to eight combinations of two-valued external indioces
«, Jg, . This comment algo conoerns the Bethe-Salpeter equation
to“be obtained below, (423, which 1s a system of sixteen equations.

11



f/7(de ;) SZ (w108 2207)
aw =/, Dzdwu X1 dﬁ X2 0, )
x /)drld.! .1"151 :f 25 6);1'3) DZ 2dll(e7-'z gldj x‘/&‘;‘)/—ldsdll’{/ (370)

A graphic scheme for the Edwards equation (37) is shown in Fig.l.

of
= = SZO{F + = zdp i B oo f
P eor It B ol B N
p B p P

Fig. 1

Let us proceed to derive the Bethe-Salpeter equations in super—
symmetry theo Jy To this end, let us differentiate eq. (32) with
respect to/4 with account of the relation

o A= 4 [ dps # SeadprT= gy s dpa] . o0

As a result,

_ D-Idrdrl

Jd arda /ddfi
‘ AP 2 )D; 4 ,ym[o‘}(a’);;]% (39)

dtd, ar dUB
0(,10(‘2 /J\/q Z o"A——‘W

From constraint equation (18) and relation (15) it follows, first,
that

ay O,
f/,e»f e

-4 [0;’"” D“" ¢ DY D]

and second, that

8) Bere we have made use of relation (18) written in a shortened form

/4’03- /41 . Therefore, in relation (38), alongside with the
permutation of upper indices, the permutation of the corresponding
arguments is meant.

12



J‘ded’ ;
TAT = ShrAR A

1d2 4 Py A1y d28 o1d dz{ ddzJ‘
=4 LD DI DL+ DD DDV D)

Substitution of relation (40) into (39), first, cancels a number of |
terms owing to eq. (35)

- 4 LX2 C;‘ 1d2 - 2
"leMd[Ddd/Df’L ;cocJ‘ {]D,z“ﬁ/‘

%P 22 2d2 S5 4 S
,z/j‘quzdz [D;‘ * /DJJ"/' . D}/J7L,Z/j:0“1[0dr

i dxj
+ ) ’
and second, upon that substitution the term in the left-hand side of
eq. (39) contains the term

/ —fdds asd A28 a2 jochB
04

[0.°D DI D

that cancels out with the second term. Consequently, eq. (3)'assumes
the form

- 1ol ds ouacsz!ocgs / ;vaﬁ [ odsdz

[D +Dj Dj] - (40p)

4040 ? 2 S “n
1d0l2 / o2 ‘/g d“{‘y .
05D+ g 5w D=0,
Proceed to the amputated functions /E ‘ﬁ,‘;‘-‘- D;.lo(d.i lfﬁdlDf/¢3
xD‘l dllDydtdzdsdJ . Considering that :
/ S5 —LdY -1 P ) 18
7 e T '0E% Dt -
_ Z“ﬁ |
2 ( SDFF* )
we get
5 ap ji‘ dids fro2f 8
/C af/S/ _/Z;\pz:otm(.z §g¢1 D 2 /; .
(yzogs (mc; D;mu ks 3’5‘ (42)

Ddxdz

13



7)

This equation represents a system of the Bethe-Salpeter

equations
(see footnote 27 ). It is plotted in Fig.2.

. i d‘z“}‘ J_qu
-2 L §0% *
P 5 P § P
* Fig. 2.

Let us find a connection of the Edwards equation (37) and Bethe-
Salpeter eq. (42) with generating functional of the second Legendre
transformation h/ﬂ) . With account of (32) and (30), (31) we get

Zotﬁ J' jaf/s J'h/(z) W(:)
5D §DF [-D: ]_ TDISDF 0 @)

and

ap e, @
57 -0 e - w

/[ -4y Iof'ﬁ D JdA‘D 1(67 y SW®
DD, TDITDE

As will be exemplified below with the Wess-Zumino model, these
relations play an important role since they provide new possibilities
for investigating kernels and inhomogeneous terms of the Edwards and
Bethe~-Salpeter equations.

4, The Wess-Zumino model

Note that if the interaction term ,57“ [¢; wJ in (1) is
taken 1n the form

St (B, FT =4 { fi2.50 Pae,0) # )
%/;”:2/3 /25?73&4’) g)jiﬁfx 0,394,470([% 9091

7) Eqs. (37), (42) have been obtained in the supersymmetric approach
in a matrix form. A component form can be easily found by a standard

procedure /6/3 One should choose concrete values for the indices
)/ J’ ( thus choosing a partiocular channel) and then differen-

J iy
tiate with respect to 9 and ﬂ and put them zero.

14



we shall arrive at the well-known Wess—Zumino model. Let us express
‘70"{2: 9“) that enter into inhomogeneous terms, and the kernel of —
equations (37) and (42) in terms of the above expression f”,(Sj’al[% 90_]
Formulae (10), (17), (43) give us
ev= (46)
.4

= o W8S [0! @2
g =it ;5{72‘”9’1)% e S
JAL T T AR

=Z' 'W/ ; zu/ . Aol & o
3&5 Jéﬂf)g,/zlf[&z +Di D]
Let us determine the inhomogeneous term of the Edwards equa-~

tion (37) from its connection with the generating functional of the

second Legendre transformation (43).
The Schwinger equation (19) and relation (31) give

S/ .y
o= A A g

Insert it into (43) ana taking account of (46) one easily obtains

S 4p .

o B
aCf}iZﬁ%zéE;;?Zf%L) - é}cﬂar5}ﬁ<57&""”‘ﬁz
) (2 Bir

Relation (47) is exact, 1.e.,1it holds valid beyond the scope of
perturbation theory.

We considered a scalar superfield model, a particular case of
which is the well-known Wess—Zumino model. The supersymmetric Schwin-
ger equations are found, and on their basis with the use of the second
Legendre transformation, the two-particle Edwards and Bethe-Salpeter
equations are derived. It seems reasonable to extend the formalism we
have developed to more complicated models, including the Yang-Mills
supersymmetric theory. It is also of interest to study the Logunov-.
-Tavkhelidze equations which may be useful for examining bound states

15



of particles occurring in the supersymmetric QCD (for instance, a
gluon~gluino ( 1 ) exotic bound state). Note that the connection
of the kernel of the Bethe-Salpeter equation with the second Legendre
transformation provides new possibilities for studying both the ker-
nel of the Bethe-Salpeter equation and the quasipotential.

These problems seem to be important, specifically, in view
of elaboration of the scientific program of experiments at the con-
structed colliders LEP (CERN), SsC (USA).

The authors are grateful to E.A.Ivanov, V.A.Matveev and AN,
Tavkhelidze for interest in the work and M.V.Chizhov and L.V,Avdeev
for useful discussions.

Appendix 1
Chiral superfields are determined by the equalities

Dn ?_7_/'”1 6,6)=0, (A1.1)
Dd; 47/-”; 6, 6)= 0,
where Z:%t is a covariant derivative (see ref./s/). In the chiral
basis
Li(xl,6,6)=(2"-:i66%8, 8, 0);
R:(x%,6,8)=(x"i06%, 0, ),

P=D(ze, ), 9‘5= 5[.1-;, 6). (£.1.3)

Alowing for relations (A.1.2), (A.1.3) and using a Taylor expansion
we may obtain the following relations

Plas,6)= ¢ ~£690p 1, ),
P(x2,0)= 00 Pla,p),

where the notaion 1s used:

856 = ‘9(53.2/’)6 = o% B (A1.5)
in whioh 64 = 6) are Pauli matrices, and ﬂd' g% are

Weyl spinors(@df ﬁaﬁ 6"(’ Qﬁfﬁd' E‘“ Eﬂ‘-f.ﬂ 1),

which ©represent Grassmann coordinates of superfields.

(A.1.2)

(A.1.4)
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Appendix 2

For the superfield action (1) there exist four free propagators
corresponding to four possible pairs of superfields and 773
sandwiched between vacuum expectations. In the chiral basis the matrix
of free propagators is of the form?

net /<0/7"90/er P(x'6)/0><0|TP(x6) PlaB)o>
0T Plxb) P(x'8))0>< 0/T PlxF) P x>
/ mrjﬂ’ )N (x-x) ¢ 'M%’HA (x - x)u )

:zaaa .
" A (x-x)  —mI(6-6)A, (x-2)
¢ __/_. PX
A ‘t)'@ﬁ' dPE I?Z?-—,DZ— £ !
We shall show that this matrix is a kernel of the operator inverse
to the integral matrix operator :ﬁf (7) with the functional unity

j= J/ﬂ'ﬂ?}/x-xp 0
g o-G)E-x) ) . AP

From anticommutation of the Grassmann variables 5 and 9
it follows that

e—.wax /- ,5&(96’76-/-,3/6’9/’5)2' (a.2.3)

where 5 and )/ are arbitrary Grassmann coordinates. Using the
definition of the Grassmann J‘ —function we arrive at the following
equality

(05R)*= (6% (6 Jud Z* 23 )(62(63 g X ﬁx”) -
=-d(8) a“/x)/z“fé F i (59)ff o
==80)8 (%) {16} Jud, (65)"

where

M 2z 5).29] (A.2.4)

With the rule of lifting (1owering) indices with or without the dot

and the explicit form of 6 matrices being used we may find that
the expression in braces in the r.h.s. of (a.2.4) equals

0, MN#P
-SpI=-A4, )=P=0
PI=4, p=P#0.
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As a result, instead of (A.2.4) we get
9oX 0)$(%)9272 B,
(e ) =23(6)8( ); 2z¥ 32° (A.2.5)
=28(8)8(%)0 .
Obviously, applying to the latter we may rewrite (A.2.3) as follows:
g O /- 2/68%+ S8)S(%) .

It is easy to obtain with account of (A.2.5), that

:7€TZ:L = [)5 Cfc ==.Z 5

where the kernels of operators Jﬂf and Z)o are defined by relations
(7) and (A.Z.l), respectively, and the functional unity is given by
(a.2.2).
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Cucaksan A.H., CkaukoB H.B., lleBuenko 0.10. E2-86-635
CynepcHMMe TpHYHbe ABYXYaCTHYHbIE YpaBHEHHs

B paMKax CKaJIspHOH CyNepnojseBoH MOAeNH, YaCTHeM CllyuyaeM
KOTOpoli ABMAETCA XOpomo H3BecTHasa Mmopaent Becca-3ymuHo, mony-
yeHb CynepCHMMeTpHUHhle ypaBHeHus liBunrepa. Ha ux ocHoBe ¢
HCNONb30BaHHEM BTOpPOro npeobpasoBaHusa JlexaHApa MOIYYeHs! OBYXT
yacTHYHbIe CymepCHMMeTpHYHble ypaBHenus JaBapaca u Bere—Connu-
Tepa. Hafinena cBA3b sAfep U HEOAHODOAHLIX UJIEHOB 3THX ypaBHe-—
HHH C TNPOH3BOASMHUM (GYHKIMOHAJIIOM BTOPOrO npeoGpasoBaHHA Jle-
»aHppa.

PaboTa BemonHeHa B JlaGopaTopuu Teoperuueckoit dusuku OUAU.

Npenpunt OGbeIRHEHHOrO HHCTHTYTa AAEPHBIX HccnefoBahui. Jy6Ha 1986

Sissakian A.N.,Skachkov N.B., Shevchenko O.Yu. E2-86-635
Supersymmetric Two-Particle Equations

In the framework of the scalar superfield model, a par-
ticular case of which is the well-known Wess-Zumino model,
the supersymmetric Schwinger equations are found. On their
basis with the use of the second Legendre transformation the
two-particle supersymmetric Edwards and Bethe-Salpeter equa-
tions are derived. A connection of the kernels and inhomoge-
neous terms of these equations with generating functional
of the second Legendre transformation is found.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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