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Abstract. Expansions for each fundamental basis of the hydrogen atom over two others 
are found and an additional integral of motion corresponding to an elliptic basis is 
determined. Rcpresentations of the elliptic basis as a superposition of polar and parabolic 
states are obtained. Certain interesting limiting cases are investigated. 

Introduction 

Until recently the systems with hidden symmetry have been analysed mainly by two 
methods (Fock 1935, Bargmann 1936), the first consisting of reformulating the 
Schrodinger equation and rewriting it in such a form that hidden symmetry becomes 
obvious, and the second of constructing by a classical analogy the integrals of motion, 
which turn out to be generators of the group of hidden symmetry. 

In this paper we should like to pay attention to a strong relationship between 
hidden symmetry and the separability of variables in the Schrodinger equation. The 
discovery of this relationship has recently initiated an intensive application of the 
method of separation of variables to the equations of mathematical physics and 
provided many new results in this branch of mathematics (Miller 1977). In the 
framework of the method of separation of variables the eigenvalues of the generators 
acquire the meaning of the separation constants and the eigenfunctions, the solutions 
(the fundamental bases) of the Schrodinger equation in different coordinates are 
common for the Hamiltonian and each generator of the group of hidden symmetry. 

In the theory of systems with hidden symmetry one often deals with the matrix 
elements of the operators with respect to one basis of the system. Usually, these 
operators are linear combinations of the degrees of generators of the group of hidden 
symmetry. Sometimes, such matrix elements can be calculated only in the case when 
one knows the expansions of the basis, corresponding to the matrix element, over each 
fundamental basis. The aforesaid determines the role of the theory of interbasis 
expansions both in pure mathematics (Miller 1977) and physical applications (Komarov 
et a1 1976, Malkin and Man’ko 1979). 

This paper is devoted to interbasis expansions for a two-dimensional hydrogen 
atom thoroughly studied by Zaslow and Zandler (1965) and by Cisneras and McIntosh 
( 1968). 

In the first section we present the information on fundamental bases of the two- 
dimensional hydrogen atom in the discrete spectrum region. Section 2 is devoted to 
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the calculation of the coefficients defining mutual expansions between polar and two 
parabolic bases. In the third section the method of separation of variables is used to 
find the integral of motion specific of the elliptic basis. In the fourth section this 
integral of motion is used to construct the elliptic basis, first as a superposition of 
polar bases and then as a superposition of parabolic ones. The fifth section is devoted 
to the study of the polar R + 0 and parabolic R +CO limits of the elliptic basis. Much 
of the material is supplied in tabular form, in the appendix. 

1. Fundamental bases of the two-dimensional hydrogen atom 

Information on the group of hidden O(3) symmetry of the two-dimensional hydrogen 
atom in the discrete spectrum region can be represented in table Al .  Hereafter atoAmi: 
units h = e = m = 1 are used. The generators of this group will be denoted by L, B 
and 8. The general eigenfunctions of the Hamiltonian 

E N = - 4 ~ ’ = - 2 / ( 2 N + l ) ~  

and of each generator i, @ and k, i.e. the fundamental bases of the two-dimensional 
hydrogen atom, have the meaning of the Schrodinger equation solutions obtained by 
the method of separation of variables in the polar and two parabolic coordinates at 
right angles to each other (Englefield 1972). All the fundamental bases at given N are 
orthonormalised over tbe second quantum index. The generatorsA%*@ and, k 3 o P m u t e  
with the Hamiltonian H and satisfy the commutation relations {9, K }  = iL, {L ,  LP} = iK 
and {k, 2) = i@. 

2. Expansions between the fundamental bases 

From the commutation relations between i, @ and k and the meaning of the funda- 
mental basis it follows that the expansions between these bases can be interpreted as 
rotations through ninety degrees in the relevant coordinate planes. As the rotations 
are planar, the expansion coefficients should coincide with an accuracy up to the phase 
factor with the Wigner d-function of the right angle (table A2). The first column and 
upper row of this table represent the fundamental bases of the two-dimensional 
hydrogen atom, and the remaining cells represent the coefficients of interbasis 
expansions, by which we mean the expansions of the bases of the left column over 
the bases of the upper row. These expansions imply the summation over quantum 
numbers p ,  k and m, respectively. We start from the expansion of the first parabolic 
basis over the polar one 
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It is obvious that the overlapping integral between these bases is very complicated to 
calculate. The following method is more effective. At large r the bases are considerably 
simplified and contain r in the same degree. Therefore, within this limit the dependences 
on r are reduced in both parts of the expansion (2,1), and the orthonormalisation 
condition of the functions e"' leads to 

( N +  m) !( N - m ) !  
( N + p ) ! ( N - p ) !  

x ( 1  +cos ( P ) ~ ( " - ~ ) (  1 -cos ( P ) I ' ~ - ~ )  eimc drp. 

By calculating this integral, comparing the answer for Vrm with the known formula 
from angular momentum theory (Varshalovich er al 1975): 

and taking into account the symmetry relation 

we come to the conclusion that the expansion (2.1) has the form 
N 

$ N p ( %  U )  = (-i)"-" d:m(tn)$Nm(r, (PI, (2.2) 
m = - N  

which is in agreement with the data of table A2. The Wigner functions are tabulated 
completely, and therefore there is no problem in using the expansion (2.2) at certain 
values of quantum numbers N and p .  Now we turn to the expansion of the second 
parabolic basis over the first one 

The parabolic coordinates of the first and second type are related by transformation 
of rotation by angle n/4 

B = (U - U)/ J2 .  

It has been shown in a paper by Pogosyan er al (1981) that under the rotation of the 
system of coordinates by an angle a, the product of the Hermite polynomials is 
transformed according to the rule 

HN+k(x  COS a - y  sin a)HN-k(x  sin a + y  COS a) 

a = ( u + u ) / J 2 ,  

[( N +  k ) ! (  N - k)! ] ' / '  

Using this rule, we immediately have 

(2.3) 

The expansion of the second parabolic basis over the polar one can be obtained by 
the summation theory (Varshalovich er a1 1975): 



458 L G Mardoyan et a1 

and has the form 
N 

r ~ N k ( u ,  ~ ) = ( - i ) ~ + ~  1 (-i)mdTm(ir)+Nm(r, Q). (2.4) 
m = - N  

The expansion coefficients inverse to the expansions (2.2)-(2.3), coincide with those 
given in table A2. This fact is a consequence of the orthonormalisation of the 
fundamental basis leading to the orthonormalisation of the expansion coefficients. 

3. Elliptic integral of motion 

The necessary information on the elliptic basis is collected in table A3. The elliptic 
basis (Mardoyan er a1 1984) +si( 6, r] ; R )  =f$((; R)g!$( r] ; R )  is an _eigenfunction 
of the Hamiltonian fi and of an additional elliptic integral of motion A obtained by 
the method of separation of variables. The eigenvalues A r ’ ( R )  of the operator have 
the meaning of separation constants in the elliptic coordinates. The elliptic basis is 
divided into two sub-bases 4z;([, r ] ;  R )  and (L(N;1)(& r ] ;  R ) ,  the first being even and 
the second odd with respect to thp change r ]  + -7. Such a division is possible due to 
the invariance of the operators H and A relative to the inversion with respect to the 
variable 7. A positive integer q numbers in ascending order the values of the separation 
constants A:’( R )  and determines the number of zeros of the functions gj;b‘( r] ; R ) ,  the 
so-called angular elliptic functions. In the sub-basis which is even with respect to r] ,  

0 G q s N, and in the odd sub-basis 1 s q 6 N. The number of zeros of the radial elliptic 
function fsj(6; R )  is given by the difference N - q. The total number of zeros of the 
elliptic basis at a given discrete value of the energy E N  is N. The elliptic parameter 
R may change within the limits 0 s R s CO. Now we shall show how to determine the 
form of the elliptic integral of motion using the method of separation of variables. 
The process of separation of variables in the elliptic coordinates generates the separ- 
ation constant Q and leads to a pair of ordinary differential equations 

(d2/d t2  + R cosh 5 -+w2R2 cosh’ [ ) + I  (6) = - Q+1( 6) 
(d’/dT’- R COS T+;W’R’ COS’ ~ ) & ( r ] )  = Q+Z(r]). 

Eliminating the energy parameter w’, we get the operator 

1 1 a2 
(cos’ r]$+ cosh’ 

= cosh’ 6 -cos’ r] 
(3.1) 

the eigenvalue of which is the constant Q, and the eigenfunction is the solution of the 
equation fi4 = EN$. Since in the limits R + 0 and R +CO the elliptic system of coordin- 
ates, presented in table A3, transforms into the polar and first parabolic system:, it is 
ciear a priori that the operator 6 should be, a linear combination of operators L’ an$ 
9 which in, these limits transforms into L2 and 8, respectively. The choice of L‘ 
instead of L is due to the fact that as R --* 0, i.e. r] + Q, the parity with respect to the 
inversion r] + - r ]  is conserved. To determine the weight factors and the free constant 
in the aforementioned linear combination, we turn in expression (3.1) to the Cartesian 
coordinates and compare the obtained result with the form of the operators i2, 8, 
and fi written in terms of the Cartesian coordinates also. After some tedious calcula- 
tions we get 
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It follows from this formula that the elliptic bases $gJ( 5, 7 ; R )  and $;:((, 7 ; R )  are 
eigenfunctions of the operator represented in table A3, which correspond to eigen- 
values 

In the subsequent formulae we shall use the constants AF)(R)  rather than Q F ) ( R ) ,  
and therefore, in describing table A3 we have called them the elliptic separation 
constants. 

AF'(R)=Q:'-?W I 2 2  k .  

4. Elliptic basis 

Let us consider the superposition of polar bases 
N 

+E:((, 7 ;  R )  = C WE:m(R)$Nm(r, (9) 
m = - N  

for which by definition 

(4.1) 

A$%:([, 7 ;  R )  = Ab"'(R)$!$(S, 7 ;  R).  (4.2) 
As 7 += -7 the polar angle cp changes sign, and therefore, taking account of the 
symmetry properties of the elliptic sub-bases $E:((, 7 ;  R )  and $L,,!((, 7 ;  R )  with 
respect to the inversion 7 + -7, we get from (4.1) the following conditions: 

(4.3) w(*' 
N q , - m ( R )  = * w%:m(~)*  

Now we substitute (4.1) into (4.2), multiply the resulting equation by +Lm,(r, c p )  and 
integrate over the two-dimensional volume. Then, from the orthonormalisation of the 
polar basis there follow two systems of homogeneous equations, which should be 
satisfied by the expansion coefficients (4.1) 

(4.4) 

Here 9,,.,,, denotes the generator 4 matrix element with respect to the polar bases, i.e. 

9 m . m  = 1 +*Nmp(r, V)g+Nm(r, c p )  do. (4.5) 

This matrix element can be calculated by two methods depending on whether the 
operator 9 is written in the polar coordinates or whether the polar bases are expanded 
over the parabolic ones. Let us first write the operator in the polar coordinates 

a i [  ( 1 a* 1 a )  ( a  i ) a ]  9=- c o s 9  l + - ~ + - -  + s i n p  --- - .  
w r a p  2 a r  ar 2r acp 

Upon substituting this operator into the expression for the matrix element 9,,, and 
integrating over the polar angle, we get the formula 

9 m ' m  = ( 1 / 2w 1 ( a m , , m +  I tm+ I ,m + a m , , ,  - I tm,m - 1 1 
in which the value of tm,m-l is obtained from tmtl , , ,  by changing m + m - 1,  and tm+,,,, 
has the form 

t m + l , m =  loE r R ~ ~ m + l { l + ( m + ~ ) [ ( d / d r ) - ( m / r ) l } R ~ ~  dr. 
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A direct calculation of this integral is very tedious and it is easier to use the following 
method. We write down two Schrodinger equations, one with the quantum number 
m and the other with m’, multiply the first equation by R N m , ( r )  and the second by 
RZ!,,, subtract one from the other, and integrate over dr. Hence, one can easily establish 
the identity 

It follows from this identity that the contribution to the integral r m + l , m  comes only 
from the first term in brackets, so that 

r,,,+l,m=[om rR$!m+lR!& d r = - w [ ( N - m ) ( N + m + l ) ] ’ / *  

and for the matrix element P,,,,,,, we have 

P,,,,,,, = - $ [ ( N - m ) ( N + m +  1)]1’2 6,,,,-, - f [ ( N + m ) ( N - m +  1)]1’2 ~3,,,,,,,+~. (4.6) 

Following now the second method, substituting into (4.5) the expansion of the polar 
basis over the first parabolic basis, one can immediately get 

N 

g m * m  = pd:m($r)d:m,(fr).  
p = - N  

The sum on the right is calculated using the recurrence relation known from the angular 
momentum theory (Varshalovich et a1 1975): 
- p d  i , p , ( i ~ )  = $ [ ( J  + p’ ) (  J - p‘ + 1 ) ] 1 ’ 2 d i , p , -  I ( ~ T )  + t [ (J  - p ‘ )  ( J  + p’ + 1 )I 1/2 d J p,pf+ 1 ( i ~ )  

(4.7) 

and the orthonormalisation condition 
J c d i , , , , ( p ) d : , , , , w  = L,. 

p”= - J 

This simple calculation gives the result obtained above (4.6). Formula (4.6) and the 
system of equations (4.1) result in the trinomial recurrence relations: 

{[Ay’( R)  + m’/wR]} W($,,(R) 

= $[( N - m ) (  N + m + 1)]1’2 R )  

+ ;[( N + m ) (  N - m + 1)]’/* WE&-l(  R )  (4.8) 

The result obtained together with the normalisation condition is a starting point in the 
programme of calculating the expansion coefficients (4.1). Some expressions for 
WE:,,,( R )  are given in tables A4 and A5. The latter also represent the equations which 
are used to determine the eigenvalues of the separation constants. The method 
described above may be applied to obtain the exact expansion of the elliptic basis in 
terms of the parabolic basis 

(4.10) 
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Here, as well as in the expansion (4.1), the LHS is not assumed to be known a priori, 
and the constructive idea consists in that $Lj;b‘((, 7 ;  R )  satisfies equation (4.2). In this 
way the calculations lead to the trinomial recurrence relation 

[ h F ’ ( R ) + w p R + $ ( N 2 +  N - p 2 ) ] u s i p ( R )  

= $ ( N  - p ) ( N - p  - l ) ( N + p +  l ) ( N + p + 2 ) ] ’ ” ~ ( $ ~ ~ + z ( R )  

(4.1 1 )  1/2 ( * )  + $ ( N + P ) ( N + P  - 1 K N - p  + 1 ) ( N  -P +2)1 uhLqp-2(R) 

which should be solved with the normalisation conditions 

(4.12) 

Substituting into (4.1) the expansion of the polar basis over the first parabolic one and 
having compared the result obtained with (4. lo ) ,  we have 

N 

(4.13) 
m = - N  

The values of the coefficients u s J p ( R ) ,  collected in tables A6 and A7, are calculated 
on the basis of this formula. Note that the Wigner d-function has been chosen with 
the same phases as in the monograph by Varshalovich et a1 (1975). At the known 
W g J m ( R ) ,  formula (4.13) is more convenient for calculating the coefficients u(NJP(R) 
than the recurrence relation (4.10). 

5. Limits R+O and R+oo in the elliptic basis 

In view of the complexity of the elliptic basis, it is expedient to consider separately 
the limiting transitions in the formula obtained as R + 0 and R + W .  In the elliptic 
coordinates we have chosen the Coulomb field centre as the origin of the coordinates. 
Therefore, in the limits R+O and R + c o  (the proton and electron coordinates are 
thought to be fixed) the elliptic coordinates turn into the polar and first parabolic 
ones. It is obvious that the elliptic sub-basis does not change its parity in the course 
of such limiting transitions. This means that as R + O  the transition may proceed to 
the polar sub-bases with a given parity with respect to the inversion cp + -cp. In these 
sub-bases the exponent e imp is substituted by the cosine and sine of mcp ; in this case 
0 m s N for an odd basis, so that the multiplicity 
of degeneracy of the energy spectrum would be equal, as usual, to 2 N  + 1. The parabolic 
sub-bases with a given parity have the form fGip( u)g(Nlp(  U). In this case for an even 
basis the quantum numbers N and p have equal parity and for an odd basis different 
parity, so that in the first case p =  -N, - N + 2 , .  . . , N - 2 ,  N (in all, N +  1 values), 
and in the second case p = - N +  1, - N + 3 , .  . . , N -3, N - 1 (in all, N values). The 
possibility of transformation of the elliptic bask into the polar and parabolic ones 
follows from an expjicit form of the operator A. Indeed, as R + O  and R + c o  this 
operator tends to -L2 and -wR@, respectively. Hence, it is clear that the behaviour 
of the elliptic separation constants A:’( R )  as R + 0 and R + 00 is determined by table 
AS. Under these limiting transitions the quantum number q conserves the meaning of 
a quantity providing the number of zeros of the angular elliptic function. Now we 
consider the behaviour of the coefficients W E J m ( R )  and W(h;q),,,(R) in the limits under 
consideration. 

rn c N for an even basis and 1 
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and therefore the dependence on R of the coefficients is determined only by the 
quantum numbers N and q. This means that as R + 0 and  R -+ 30 all the coefficients 

to R. Now we multiply (4.8) by w R  and  make R tend to zero. It follows from table 
A8 that in this limit the expansion coefficients (4.1) equal zero at m # q. The values 
of R )  different from zero are then determined from the normalisation condition 
(4.9) and equal 

W(*)  Nqm(R) in the trinomial recurrence relation (4.8) have the same order with respect 

wEim(o)=t  aqm, l s m G N  

W!;b‘o(o) = 840 .  

Table A8 also shows that within the limit R + m, (4.8) turns into two relations 

- (2q-  N)W‘rSdm(CO)=t[(N-m)(N+m+ l ) ] 1 ’ 2 ~ z i m + l ( ~ )  
+ $[( N + m )( N - m + 1 )I ”* - I (CO)  

- ( 2 q - N -  I )  w!i;m(Q?) 
= f [ ( ~ -  m ) ( N + m +  I ) ] ” ~  w(,-d,,,+,(m) 

+ ;[( N + m ) ( N - m + I ~ 6 : ~  - (CO) .  

The comparison of these formulae with the recurrence relations (4.7) convinces us that 
the limiting values of the coefficients W:~,(CO) coincide with the Wigner d-function 
of the right angle up to the phase factor, which may depend on quantum numbers N 
and q alone. To provide the transformation of the expansion (4.1) as R+Q? into 
(2.2), it suffices to choose the phase factors as follows: 

w(+’ = (-i)N-(2q-N)dN 
N q m  2 q  - N,m ( t  

w(-) h - ( 2 q - N - l )  N I 
Nqm(Q?) = (-i) d2q-N-l,m(Zn). 

Then, using formula (4.13), it is obvious that within the limits R --* 0 and R + Q? the 
expansion (4.10) turns into the expansion of the polar basis over the first parabolic 
one and into the identical transformation respectively. 

6. Conclusion 

A complete analysis of the two-dimensional hydrogen atom should also include the 
case E > 0, when O(2, 1 )  becomes the group of hidden symmetry. This problem is 
very complicated and we shall undertake it in the near future. 
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Table A2. Coefficients of the fundamental interbasis expansions. 

dJ v,,, ( r, cp 1 k"(4 0) *Nk (P, 6) 

Table A3. Elliptic integral of motion and elliptic basis. 

1 

' ( $ + $ ) + R  ( c o s h t + c o s  7) 

Table A4. Expansion coefficients of the even elliptic sub-basis over the polar one. 

W'+l N m  Nq,,, ( R 1 

0 (*)'I2 

2 - 1 1 2  

0 [ ] 
A:'(A~+)+ i ) ( h Y ) + 4 )  

16R2 
*1 -P 5 A ' + ' [  1 + -  2 5 ( A ' + ) ) 2 + l (  n A Y )  )2]-"2 =-(A\b"+ 3) 

2 J 6  R 12 R 3 Ab+'+4 25 

*2 
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Table A5. Expansion coefficients of the even elliptic sub-basis over the polar one. 

I 
1 + I  *- 

J 2  

4 
25 

(A:-) + 1)( Ab-’+4) =- R2 

Table A6. Expansion coefficients of the even elliptic sub-basis over the parabolic one. 

N P U!&)JR) A ( + )  
4 

A ~ + ) ( A  + 1 )(AY’ + 4) 
16R2 

25 
-- - (Ab+’+3) 
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Table A7. Expansion coefficients of the even elliptic sub-basis over the parabolic one. 

(A:-’ + 1 ) (Ab-’  + 4)( Ab-’ + 9) 

16R2 
49 

-- - (AL-)+6) 

Table AS. Behaviour of the elliptic separation constants within the limits R + 0 and R +a. 

R - 0  R-m 
Ab+’(R)- - q 2 ; O G q s  N Ab+’(R)- - w R ( 2 q - N ) ; O S q S  N 
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