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Abstract

This survey 1s an attempt to familiarise the reader with
the mathematical formulation which underlies the straight-line
path method in quantum field theory. The suggested approach
is based on the representation of Green's functions and the
scattering amplitudes in the form of continuous integrals over
the particle paths.

Some applications of the method to solving problems of
high-energy particle interactions are considered, and its
connection with the quasipotential description in quantum field
theory is studied.



§1. INTRODUCTION

The study of strong interaction processes at high energies
is one of the fundamental problems of present-day elementary
particle physics. The general principles of quantum field
theory constitute the theoretical basis for the interpretation
of the laws, which govern these processes.

The study of high-energy hadron interaction is based on
the fruitful idea of the scattering amplitude as a unified
analytic function of physical variables, which was suggested
by N.N. Bogolubov in his fundamental work on the theory of
dispersion relations/l’z/.

This concept expresses the important requirement of a
mutual relationship between different physical processes and
is a corner-stone of the majority of theoretical and phenomeno-
logic approaches to high-energy strong interactions which are
béing extensively developed. Some Qf the most useful are the
dispersion relations and equations, dispersion sum rules,
asymptotic approach, phenomenological Regge, eikonal and quasi-
potentional approaches. Recently the quasipoten;ial method has
proved to be rather fruitful in describing proéesses of the
high-energy particle interactions.

/8-8/ was suggested in 1963.

The quasipotential method
Over the past years it has been extensively developed and
applied to various branches of quantum field theory.

This approach has made great progress because it combines

the rigorous bases of quantum field theory and clear physical



interpretation which allow the use of both empirical and heu-
ristic considerations about the nature of high-energy particle
interactions.

In a number of recent studies devoted to the description of
various high-energy processes, attention has been paid to the
importance>of heuristic ideas concerning the smoothness of the
local quasipotential which originated in the pioneer studies of

D.I. Blokhintsev/S/

/7/

» S.P. Alliluev, S.S. Gershtein and A.A. Lo-
gunov On the one hand, this hypothesis makes it possible

to reproduce the main features of high-energy hadron scattefing
and, on the other hand, it leads to a simple qualitative picture
of the interaction of particles at asymptotically high energies.
Within this picture, hadrons, when scattering at high energies,
conserve their large longitudiﬁal momenta (in the c.m.s.) in

each act of interaction and undergo small momentum transfers.

In a éertain sense, this behaviour is close to the classical
picture of the SCattering of the fast particles which move along
approkimafely straight-liné paths and‘undergo only small angular
defleétions. 4H§wever, the impdrtanf difference is that the high-
energy hadron scattering is of an absorptive, i.e. essentially. in-
elastic, nature with approximately constant total cross section
and diffraction behaviour at small momentum transfers.

This qualitative picture of the approximately straight-line
motion of interacting particles can be extended to high-energy
inelastic processes, since one of the most important empirical
laws of the latter is the limited nature of the transverse momenta
and the predominance of the longitudinal (along the collision

axis) components of the momenta of the secondary particles.



It seems therefore especially impotant to develope methods
based on the straight-line path concept, i.e. on the assumption
that the of momentum transfers are small in elastic and inelastic
interactions of §articles at asymptotically high energies. We
shall call all these methods the straight-line path method (SLPM).
This is the topic of the present survey.

The relativistic formulation of SLPM was first presented

/8’9/) on the basis of the functional

by the Dubna group (see e.g.
integration methods in quantum field theory. This choice was
not accidental. Firstly, the method of functional integration

was shown in the fundamental work of R. Feynman/IO/ and N.N.

Bogolubov/ll/

to be very convenient for finding closed expres-
sions for completeGreen's functions. Secondly, in the framework
of the continuous representation of the amplitudes for various
processes as a sum over the paths of colliding particles, the
straight-line path concept is realized in a simple and clear
manner. Straight-line path approximation consists here in
accounting for particle paths, which appfoach most closely the
classical ones and coincide approximately with straight-line
trajectories in the case of high-energy small-angle scattering.
The methods of approximate calculation of functional quadratures
used in this case, are close to the approximation procedures

/12/ and B.M. Barbashov/ls/ for investi-

proposed by E.S. Fradkin
gating the infrared asymp®etic of the Green's functions in quantum
electrodynamics.

Section two is devoted to the description of the general
method of construecting the two-particle Green's functions and

the scattering amplitudes in the form of continuous integrals

over the particle paths. As the object of our investigation, we



chose the standard models of field theory: the model of scalar
"nucleons" which exchange scalar "mesons" and the model of scalar
"nucleons" which exchange vector "mesons". The closed functional
expressions obtained for the two-particle Green's functions
contain contributions from different graphs which take into
account radiative corrections, closed nucleon loops, and sc on.
The important stage in the construction of the scattering
amplitude is the developement of the method of calculating the
correct transition to the mass shell and the analysis of the
problem of renormalization. An interesting aspect of the general
expression found for the scattering amplitude written in the form
of the functional integral is a specific factorization in the
amplitude of the contributions describing self-action nucleon
effects, exchange effects and vacuum polarization. The expres-
sion for the two-particle Green's function is then used to
construct the amplitude for the processes with the production

of some number of meson quanta. The general properties of the
amplitudes for ineld§%ic'proceéses are considered.

In section tﬁree thé relativistic formulation of straight-
line path approximation is given for the expression for elastic
and inelastic amplitudes written in the form of continuous =
integrals. This approximatioh leads to a modification of nucleon
propagators for which the interference combinations of the
virtual meson homenta are not taken into account.

Sometimes a simpler version of fhe approximation is used
in which the quadratic terms in the propagators vanish. However,
in a number of cases such a method is unacceptable due mainly
to difficulties associated wifh the‘divergences of the Feynman

integrals.



As an example of the application of straight-line path
approximation, the amplitude for two-particle scattering at high
energies and fixed momentum transfers is considered. Of impor-
tance is the factorization of the radiative corrections to the
scattering amplitude which, in this approximation, have the form
of an eikonal representation with a Yukawa interaction potential.
The final result does not show retardation effects. It is
interesting to note that the sum of the ladder graphs with meson
line crossing reduces in straight-line path approximation to the
sum of ladder graphs of the quasipotential type. It is shown
that the diffraction behaviour of the scattering amplitude is due
to the form of radiative corrections, which lead naturally to a
smooth complex potential.

As another example of application of straight-line path
approximation, the processes of multiple particle production are
considered. Among different approaches developed along this
line the idea of interpreting the meson production in strong
interactions by analogy with the bremsstrahlung of "soft" par-
ticles in electrodynamics is closest to the straight-line path
approach. The feature common to both approaches is the assumption
that the recoil of "leading" particlgg in the emisg}on of secon-
daries can be partially or completely neglected. The main
results ofthis part of the survey are as follows: prediction

- ~_...concerning the Poisson character of the distribution over multi-
plicity at fixed t; observation of the region of the automodel
behaviour of the cross sections summed over the number of se-
condaries; and approximate linearity of the avefage multiplicity

over t.



Straight-line path approximation has recently been extensi-
vely developed. In particular, in this approximation some other
models of field theory have been studied, a wider class of dia-
grams has been taken into account and different asymptotic domains
have been considered. The present survey is not intended to
provide a wide discussion of all the related problems for which
the reader is referred to a recent survey/lu/, in which there are
some other results and an extensive bibliography.

In section four some mathematical realizations of the straight-
line concept, which use methods of functional integration and
allow one to perform a consistent consideration of the particle
path deflections from linear trajectories, are formulated. The
study of this problem is of great importance since it may lead to
a self-consistent resolution of the problem of the foundation of
straight-line path approximation and may extend tﬁe range of its
applicability. It is shown that accounting for the correction
terms results in the appearance of retardation effects. Owing to
the fact that the correctlon terms are 81ngu1ar at small distances
it is dlfflcult to provide a deflnlte to the question of the
behaviour of the correction series as a whole.

In section five an operator method for solving the quasi-
potential equations is formulated, and its relationship with the
approximate methods of functional integration is established. It
is shown that under the condition Qf smoothness of the local quasi-
potential the operator method makes it possible to give a consistent
foundation for the eikonal representation of the scattering

amplitude and to find to its corrections.



In section six the structure of the "noneikonal" contribu-
tion to the two nucleon scattering amplitude is studied. It
is shown in particular that in the sum of all ladder-type graphs
of eighth order, there exist terms which violate the orthodox
eikonal formula but disappear in the limit % + 0 where p and m
are meson and nucleon masses respectively. These terms are
associated with the contribution to the effective quasipotential
corresponding to the nucleon-antinucleon pairs exchange. Further,
the asymptotics are studied for the twisted eikonal graphs. The

results obtained are employed in the reconstruction of the

asymptotic quasipotential.

§2. REPRESENTATION OF SCATTERING AMPLITUDES AS CONTINUOUS

INTEGRALS OVER PATHS

2.1. The Construction of the Two-Particle Green's Function

For simplicity we considerrfirst the model of scalar nucleons
interacting with a scalar meson, with the interaction Lagrangian
+
of the form acint =g Y Yo
The results will later be generalization to the model of
scalar nucleons interacting with a neutral vector field.

The one-particle Green's function of the nucleon in the given

external scalar field ¢ satisfies the equation

[' O+m* - j)”(x)]G(x;y“f):(f(I—)) (2.1.1)



- 10 -

The formal solution of eq. (2.1.1) can be represented by

means of the functional integral/13/

G(ag/jo)“bjc[?’e tem j[‘)‘)] %/{%jd; (2.1.2)
plas ~J Yo)ely I} §[2-4 *f{f\) () o],

where

(2.1.3)

Tl
%
[5 ] 5‘1)690/9['14‘ V(?)C/’Z]
T K . _ '-‘:'va N
1 J&)‘?A/D[ L)‘L l)(rz)c/?]
and 6v is a volume element of the functional space of the four-
dimensional functions v(n) defined on the interval T, < n< Ty
The Fourier transform of the Green's function (2.1.2) has

the following form

'Tx-'iﬂ'

Glp 7/)”) Jd&‘/je "‘7 Gaplg) =
= Ljolf ew(/a m)j dx e L“(/"?’)j[g\)] : (2.1.4)

W%jo@gﬂwiﬁg +zju(7 J?]

Using expression (2.1.4), we can find the two-particle Green's

function of nucleons in the form

PRS- S

Clppger)=Lenp 152551 Ogusip)OpipSip], *
where 5 o

i AR N N rrarongl

(2.1.6)
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and SO(¢) is the S-matrix averaged over the nucleon vacuum
fluctuations in the presence of the external field ¢. SO(¢) can

be written as

&(f) - @/gf)['ﬁ 77[)0)] 3 (2.1.7)

where the functional w(¢) in the models considered here corres-
ponds to the sum of the connected diagrams with one closed nuclecn
loop and an arbitrary number of external meson tails.

Introducing the notation

LSJf —Ejdz f(g)d'(a'ii-zj/)“rgi/\)é) <1, (2.1.8)

where

(/('* SR P L’) jd}g[& Zw/b;u/jv (Z)d ] (2.1.9)

We can rewrite the expression for the two-particle Green's

function (2.1.5) in the following simple form

| G(/a,,/a,{). G, 7») = ibj A, dT, € L/(b' )i, 2 (p "mﬁ

01 d.

{3y (prgu)+ L (py- P = (2.1.10)
e M j[&),]o [5%]0 é( Xy Py 4»/ )
where) cz ¢ ff( {QJ”
o = sJasa]e $19Y go(f)/
j (2.1.11)

g
We will now examine in detail the structure of the quantity C.

Let us determine for each functional ACd) the'quantity

Ay) = [t f55 M(f)

(2.1.12)
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so, that the average value A(¢) over the meson vacuum fluctuation
is given by A = A(¢)|¢=O
From the average value of the product of two functionals

P

/{5 ’2/"/"' j% ]A 97 B(ﬁf’)/ (2.1.13)
/3 [@‘7" J <5}0 \f) ]/I()Of B(j)/
[2/)&@ L gy) 570 ] /-‘(50) /8(‘7/‘ /j"=j°z=o: (2'.1.1L+)
f(:525) 3<f)/

Choosing

ti

"

Aﬁo) )"4] J ) 8)0) S(f) (2.1.15)

we have

/—1—(50) = Qf)‘fo[‘dqu(df*du)“ 1703‘%5/‘*4)?/; (2.1.16)
| g—o(j‘) > Q”’f’ [ /7(50)]’ (2.1.17)

where the quantity [I(¢) corresponds to the sum of all the con-
nected Feynman diagrams with an arbitrary number of closed nucleon
loops and internal meson lines (bearing in mind, that the nucleons
interact with the external fielgd o).

Using the identity (2.1.14) and egs. (2.1.15-17), we find

the following expression for the quantity (2.1.11)
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=0

= @4/1{_ ?3%9.{,2];)1; Lﬂ[—-jj%(c}ﬁc/b)_]j (2.1.18)

Expanding the quantity (2.1.18) in powers of the coupling

8- o 50Gg) " 932G e ) -

constant and substituting the series in eq. (2.1.10), we get,
after performing simple functional integrations over V., just
the usual non-renormalized series of perturbation theory for the
two-particle Green's function.

We now stress an important fact which will be used below.
The expression (2.1.18) allows us to separate, in a general form,
the contributions to an interaction between two nucleons (exchange
effects), the self-interaction of the nucleons through the meson
field (radiative corrections), and the vacuum renormalization.

The first term in the exponential in eq. (2.1.18) can be

rewritten as

| C o " . * 2./ . ZI . N (" Y 21 l: L 'JJ
‘jcg j%((]{ﬂ‘gb) = ij%d'c}b+ ﬁj% ; +—Z§£<§%J (2.1.19)
, A $7y)
5 (I
where the first term on the right hand side corresponds to one-
meson exchange between the nucleons, and the rest of the terms
lead to the radiative corrections. S

Correspondingly, the second term in the exponential in

eq. (2.1.18) can be represented in the form
/7 = /7,1, * [74 * /7:,; * /7(0)7 (2.1.20)

where

[, * ﬂ[‘gj% (J{ +(/';J)]" /Y(‘gj%d1>” ”(—Jj%(/,)r”(o) (2.1.21)
/7{ = ” ('(jj%JL) - /7(0) , L= %, (2.1.22)
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It can be shown that the quantities (2.1.21-22) may be

expressed in terms of the polarization operator of the meson field

51,
Xy Xy, /7 \ 2.1.23
Pty 5p(e) St ¥ e

or in terms of the full Green's function of the meson field

%(3('»“1'/70) i} %@'r%) *Jd;y{ Ggu %(934-(74) péfyb/f) (D(Jz%,) (2.1.24)

in the presence of external sources.

As a result we get for the quantity f;the following ex-
/15/

) s s o
6-e" 6969 g™

pression

where

6(¢): xp [- %79_ j%éj]'ibj) P-4y, (2129
é(fz) é/x/o[ jj (/(/ ] (2.1.27)

and we have used the notation

,?,jc/é’jdj\ %(:x, “(7)\‘;%(]‘)1 p=4y,  (2.1.28)
C’aw JCU‘ SCIJK %(‘71 0, | 7/\ j%(/f (7/l (Z)c]) (2.1.29)

We note that the i): are connected to the Green's function
of the scalar.meson, interacting with the external sources,
associated with the i-th nucleon, amizQZForresponds td?%he Green's
function of the scalar meson, interacting simultaneously with

the sources of both nucleons.

Thus, the quantity(g,which determines the two-particle Green's

function for nucleons is factorized into the terms which describe
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the interaction between two nucleons, the radiative connections,

and the vacuum renormalization respectively.

2.2. The Representation for the Two-Nucleon Scattering

Amplitude

The two-nucleon scattering amplitude is determined through

the two-particle Green's function (2.1.5) by
(Zﬁjﬁ 5¥%&+ﬁ&"9@"7u) l ﬁ7(f%4©z} ?b,?@) =
= /&ML /7 (/g;'- m? (?izb ;77’9 G (Pf) /Qw' ?’7 92’)

/pi?%ﬁ*ml’ Ledu

We will ignore the renormalization problem which will be dis-

(2.2.1)

cussed in the following section and add on the right hand side
of eq. (2.2.1) the factor exp ill(0) , so that it does not con-
tribute to scattering processes.

As was mentioned in the Introduction, it is very important to
develope the correct procedure for passing to the mass shell in
constructing the scattering amplitude in general form, before any
approximations are made. Many approximations, being reasonable
from a physical point of view, when applied before the transition
to the mass shell, disturb the positions of poles of the Green
function and invalidate the whole procedure mathematically.

In this paper we develope the method for extracting poles
of the Green's function. This method is a generalization of

/8,9,16,17/

that used previously to find a scattering amplitude

for the model of scalar nucleons interacting with a scalar meson
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where the contributions of the closed nucleon loops are neglected.
Using the expression for a two-particle Green's function
(2.1.5) and egs. (2.1.9) and (2.1.25-29), we put the scattering

amPlltude (2.2.1) in the form

(2)" Slprpu =) Flpupei 0 9.) = faw:u T Gptmigiem)

jc{fc 5 o, jd;,j d3, ¢ o e h) S e b, [l e,
‘”"(f )1 i (/%%)j[soj [5\7] L F(z, 2, //,, /,J)

(J,—Z,*Z/Df wf\)(/?) (Jh-zb%@/b; Zerh)

*(222)

where

gJ(Z 2,0, | ! @mé@)% *Aj/ ) ingJ%{:JfJ‘; (2.2.3)
SR lf fo) =g 0 )Y€ -
To obtain egs. (2.2.2-3) we have used the fact that the free

part of the Green's function which is not connected with an

interaction between nucleons, can be subtracted using the formula

/?({i (”I) Y8 Pafifu o
6% 6L 1= g SRl fup e e e

Using the identity

w e T
Ju, o fd;,.jd;b joz; jd; §t fie s

Wb

and changlng the ordinary and the functlonal variables

‘Z"»-a" T, f—
X; —> QL‘ZJ . - j,f‘) 0/ (2.2.6)

- 30)- (-4 By-r)
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we get

)" Speepa=gi= 99 £l g, Lo [T (g

( Fom®

36’174 C{T 50/; G(é '?/XJ/“[LL,(/:), m)-ft"‘(/k m)w;(/ h”)uﬁ(%

(2.2. 7)
Jutde, & SO ) 15T 5] e )
Going to the limit in eq. (2.2.7) and taklng into account
the translation symmetry of the quantity EFJX/, we get the final

result for the scattering amplitude

: % () o (¥, '
ﬁ(/%/%% 9,) = 5[5&,_]00 O (b, 7,/1).,) j[é»)b]é((ﬁ)c/b/i)«y)'
P ixd _ % o ~t "J@ff'/; 2.2.9
4 Jd% e A@m (a5 ppi, 9 1V:) Me 13 c/(/) (2.2.9)

where
A = (Ff"?»r): _(/Oz“?;_>; X=Xy =X,
and all the quantities in this expression are the functionals

of the llmltlng sources

(/ Je/ﬁ 3 a;~2+2p: 8 9@*2? fg( )+,Zj\)0/?(2 2.10)

Note that the expression (2.2.10) determines the scalar
density of the point-like particle, moving along the classical
path Jﬁi(s) which depends on the proper time s = 2mZ and

satisfies the equation
da(s)

Vh*—df—s— = P 9(§)*? @('S)'*Q;(g) (2.2.11)

x/We remind the reader that under translations L X+ s+ the

functlonal variables of gr’that is the "current den51t1es"

focs S[x -2+2p,5 %(E)+ 26, 5 L)+ 1(5 dql, 2.9

also undergo the transformation.
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under the condition fri(O) =3Ci, i=1,2.

For this reason the representation (2.2.9) for the scattering
amplitude can be considered as a continuous summation over all
possible nucleon paths in a scattering process.

Now we generalize the above consideration to the case of the

vector-exchange model with the interaction Lagrangian

- 4 /4 +§ e L.A” t,
.= j /MSI’ /\A//.+z%. /“70\// (2.2.12)
We shall not go into all the details, but only summarize

briefly the final results.

The scatterlng amplltude in thls model 1is given by

paps 315 = SIS 6 q10) SI0]” 6 lpqul0,)
é(f){(z) jo/l' %ﬁzﬁ (x /a 9 ) -
3 dpe WY "’a“’d‘”

éofi}: [/bi* ?i + 2‘)1(0)]06 ;=12 (2.2.14)

As in the previous case, all the quantities in eq. (2.2.13)

where’

are expressed through the Green's function of the vector meson

field interacting with the external sources

(/J jd;[zﬂu(;)w? Pl-2) + 29@)]
(g’[a~i+f<‘//bﬁ9(§) .?/? 9(F)+Zj\)(20?] (2.2.18)

It is easy to see that eq. (2.2.15) determines the current
density of the point-like particle moving along the classical

path (2.2.11) and obeys the condition

' (4) o
- - (2.2.16)
)/0( -O t 1)1"

[« & )
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2.3. Discussion of the Renormalization Problems

It is evident that the one-particle Green's function of

interacting nucleons G(p), which is determined by
(quéqu G{p)(@P;ﬁD ]GXP?“fSwa xgal)

has in general different positions for the pole and the value of

the residues than the Green's function of free nucleons, i.e.

Glp) = '/ / S
w PP g, T P

= m* Zlmg,) = m* o
>z
/a %

(2.3.2)

where
A4
et
%
Z /‘:/yd)

For this reason in defining the scattering amplitude (2.2.1)

(2.3.3)

as the residue of the two-particle Green's function at the poles,
associated with the external nucleon tails, we should write,

for example, z(pi-m2 Jinstead of (pi-mz).

phys
Moreover, it can be shown that due to the renormalization
of the mass and the wave functions, the functional integrals in

eq. (2.2.7) diverge, or more precisely

j[SVJ [5)] 9FT;-am {LQZT‘[JM+(/#“’PE
._LZ 3, [§m +(/ 2)(q. ,,%)J j[oa] [w 5{ (2.3.4)



- 20 ~

where the symbol.g-denotes the renormalized value of the func-
tional integral which is finite after extracting the divergent
exponential factors.

Thus, we obtain for the scattering amplitude, defined as
a residue of the two-particle Green's function at the physical
poles, the same expressions (2.2.13), the only difference being
that instead of .jtfoj] LSJ!] we should write more correctly
MCRIMERY

In a general investigation of the structure of scattering
amplitudes the procedure of regularization of the functional
integrals can be considerably simplified, if one assumes that
the follpy%pg limits exist

& ;T,31)

f[av] G‘ (PgsT3I) T3

where the momenta P and q are on the mass shell and the quantities

e’ (PC[l ) (2.3.5)

é (P q T’;‘\)) are determined by eq. (2.1.26) with the nucleon
current, given by (2.2.8).
These limits exist in the sense that the following "improper"

functional integrals exist
f[g\)lwe (p.glv = 1 (2.3.6)

and

j[cf\)J C C(oql\))/\(\) [A] ;2.3.7)

for appropriate functionals A (v).
Using eqs. (2.3.5-7), we get for the two-nucleon scattering

amplitude (2.2.9) the expression
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/[7(/05/%,' % ?2«) = ’Z({)(f) !Z’(zl)({) ][(lbf,f)&; ?/, C/,-,)) (2.3.8)

{lpupein9) = SI80,] e (/a 74/1),) Jrsn]e (/o ./V,)
%jd‘xe' (&/b“?/\))jdd/e JJ%IA/JJ (2.3.9)

and

(2.3.10)

2 e) - j[&)] 6" (/o 9:V.), £=(p:-9.)

It can be shown that r(l)(t=0) = 1.

One can see from eq. (2.3.8) that part of the radiative
correction is factorized in the scattering amplitude in the
form of terms which depend only on the square of momentum
transfers.

These radiative factors have a simple physical meaning: they
describe an interaction of the asymptotically free nucleons in
the initial and final states with the fluctuat%ons of the meson
vacuum.

The representation (2.3.8) may be useful in studying asymp-
totic behaviour of scattering amplitudes at high energies, as it

extracts, in a consistent form, the factors independent of energy.

2.4, Construction of the Inelastic Processes Amplitudes

In this section we consider the generalizafion of the methods

describe& above to the construction of amplitudes of the inelastic
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processes. We shall consider such inelastic processes when some
number of secondary mesons is produced in two-nucleon collisions.
These processes can be described by means of the two-par-

ticle Green's function of nucleons in the presence of the external

meson field jfebf -
G(pypus 9 C/’u/jﬁm) = So’fz; dv, €
ol s, @ 1) Tt gy 1T 16 ()

where

S(y™)-[ewp £(D 5 je?mf ) Sl
,@<(o~{ “ﬁfo@{/ﬁ]& ”gﬁf (]4+]2+L7[50 2 (2!42)
- gj@(/zr Jz.)]}

It is convenient to rewrite (2 4,.2) as follows

(T (/of~ mY + (T (pi~ mY

(2.&.1)

6(79@;{‘) =P ‘/7(j" 6 /Q( eu’) (2.4.3)
Ry - exp {198 Yjof) 1MLy g3 f]-
M1 - N D (i) I
and é*ﬁ(jf”{ 0) 1s defined by eq. (2.1.18) and corr;esponds

to the pure elastic scattering processes.

Introduce ncw the quantltles

L(9") fo fv/f‘JcU\ch(?}/) Peyloy™ s
w o TAPIR
o (aly™) - s fan, S, oo () (7).
/"[z,(y,,(y,,/ﬁf jj%()\{(],w\%),

(2.4.6)
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where

g
i 5}”(2) 5}0((7,) g‘f‘(jz)

is the generalized vertex operator of three-meson coupling in

[,(Z)(/n(}’z/f) /7(50) (2.4.7)

the presence of an external field, and the polarization
P(X,y|¢) is determined by eq. (2.1.23).

ext

The functional R(¢ in terms of the quantities

(2.4.5-6) has the following form

R(y™) =€ ‘ﬂ%cp['z;jy“‘(‘w)ng’:fjﬁ@j (2.5,

The generating function for amplitudes of the inelastic
processes 1is determined as the residue of the two-particle Green's

function of nucleons in the presence of an external field (2.4.1)

S G o

Adding to the right hand side (2.4.9) the factor exp 1H(¢eXt

which does not contribute to the particle interaction, and per-
forming changes of the variables (2.2.6), we get the following

expression for the generating functional (2.4.9)

pu ot ") = St e 0 e
Sren]” O (/» a,lV,) € jj)a FJ[W]OO Q()(L,y/b)C

L(}(a,ab/(/ (/w)” ) | (2.4.10)

where
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-4 D G fo
KJ(:X{,TU Cju,f ) (7 jclle J((z 4.11)

Here the quantlty ézlz is deflned by

\5; = @Z(x 2 Pi il V) fdo"fd/\ fdl {dz dy 047
7)&?2)9&1'%) [,—;[‘J-'yﬁ(jg ldjp ~ ;]@(/11],,*{12]1)]0@{7;42.4.12)

and corresponds to the full Green's function of the meson field
interacting simultaneously with an external field ¢ext and
the sources jl and j2r

The amplitudes of the processes in which secondary mesons
are produced in two-nucleon collision are determined by the

functional derivatives of the generatlng functional (2.4.10)

(z*/ 5(7, 72, /bf ,by Z/C) P(/o Pus G Gus &y, - , Ky) =

N ly, &,
= /7 jc’/‘ae(y  Pas G 7b/>0 ) (2.4.13)
(=1 5}03{ /)""0

For example, the amplitude of production of one secondary

meson with the momentum K has the form

/*(/c Pes Gy 9 L) jj[w] 6 (/O 019)J152,] ¢ %(()h )
M{[ F(F 90 < ‘)) (/3 Gus & V)](?L D, |
50% e—cd'éfJim(qu ,. (a /b” 7“ ;c/‘)) e_cdz JL,N(](/}Q 1)
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Here we have used the notation

(i (i 95 elV;) = Selz o i

k

ek .
/_L,(?/f )/x&zoﬂ‘“’»' (2.4.15)
go=o

and

[ (% o, g5 €]V, = - fe/,\, fch Jdz dy,dy, € e
%(jf— —g—‘)fzs%.f 2) /“’[(y,)%,g/,jf@(iy;J%}] (2.4.16)

Similar expressions can be obtained for the production

amplitudes of two or more secondary mesons.

§3. STRAIGHT-LINE PATH APPROXIMATION AND ASYMPTOTIC

BEHAVIOUR OF HIGH-ENERGY SCATTERING AMPLITUDES

In this section we use the continuous representation of the
scattering amplitudes, obtained above, to formulate straight-line
péth approximation and then to investigate, by means of straight-
line path approximation, the asymptot{c behaviour of the elastic
and inelastic high-energy nucleon amplitudes.

We take, as .an example, a model of scalar nucleons inter-

acting with the vector field and neglecting the vacuum polari-

zation effects i.e. the contributions of closed nucleon loops.

3.1. Elastic Scattering

When the vacuum polarization effects are neglected w = 0,
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the two-nucleon elastic amplitude is determined by eq. (2.2.13),
in which

ap *

@m’ﬁ A &F) jo/k N__,.(J ) (3.1.1)

As a result, we obtain the following expression for the

two- partlcle scattering amplltude/18/

Flpypus 9y 0) = #jdxe‘“% (a)j[& [W ]Co
[z;)(o) ‘ot y,] [20,(0) * put 9], jo{(f wfd [ 5 D).
2 ,b/ s po g ) i ge0:) +
e pg) < (el

where

(/c,/v ?/l)) ,?/ch//[\)(ﬁ) Pﬁ ) 78(;)]
Z/xf){zcl”[/gef}(ﬁ) 9F§(ﬁ) j\)d’J} (3.1.3)

is the transition current satlsfylng the continuity equation
“(a)
’Co(]a (IC;Fme:)D;% 0 (3.1.4)

We note, that the terms
(4) '
o} ] s LA (3.1.5)
in eq. (3.1.2) describe the radlatlve corrections to each of the

nucleon lines, and the terms

'(4)j(2) (3.1.6)

describe the interaction between two nucleons.
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Let us now consider in more detail the physical meaning of

the functional variables v and v These variables, formally

1 2°
introduced for obtaining the solution for the Green's function,
describe the deviation of a particle trajectory from the straight-
line path. 1In fact, if we put v=0 in formula (3.1.3) for tran-

sition current, we obtain

C ) 2 p 2 9 |
/o((’CJ [J'?IO) = ~(lplci1'0’ Zgk-2o > SIS

This corresponds to the classical current of the nucleon,
moving with momentum p at >0 and with momentum q at z<O0.

We ﬁote, however, that the approximation v=0 1is known to
be inapplicable at values of the proper time s of the particle,
close to zero, when the particle classical trajectory changes its
direction. In the language of Feynman diagrams the approximation
assumes that the quadratic «k-dependence in the nucleon propagator
can be neglected, i.e.

1 1l

> - ——

m2 - (p+|<)2 2pk

This can cause the integrals over duK to diverge at the
upper limit.

A better approximation to the nucleon current taking into
account the recoil effects, is given by the average current

(/ . (& -c//V) j/&)] (/& k %7/\))
) Lja//[/ce(;) +z/f>9(;/+ M/ﬁ(( L
{Zuv[/a/ 0(s)+ 95 U(E) + Wlsl < e

= ‘%bd+’k‘ '29¢_“td

2ﬁ/c+/c+c0 z?k-/c‘-izo
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Straight—line path approximation, which is used to find the
elastic amplitude, con51sts in substltutlng in the exponent in
eq. (3.1.2) the current products averaged over the functional

variables vl and v

(/;"gi)(t;'/"’f, ?/) d/.sa)(* £, /34,, 70 =

:( z/‘)fw"“ Ke 2(?;@ K« 2/34/;' /,' ~ Z(Ihﬁ+ (C/_:, (3.1.9)
Epik+ k% i0 7’)/{ k*io z,/o;c K400 g%;ﬁbﬂw

nd
(jogc)(/:j/éi ) 7:) </(L)( K; PL.? ?L) =

- zf)t'o"+ K. _ ,(,qmau/‘ (2/6 r/"'ﬂ _ ,a() 1'-1C3 ,(:(2;31'10)
«‘3/3 Kre*io 2?/”1‘,4:—10 ,c/h k+k%10 /(;7/C+/\/“Lo

2

Consequently, in straight-line path approximation the
expression for. the elastic amplitude with the term .(q1 «> q2)

being neglected takes the form

fd(/j PL'7'7) .G(ZZ()({/Z“(;&))( (/b ‘7) (3.1.11)
jda@”?’ Q% )jdde—” ( P‘fcf

where

)

ax

) «f (3.1.12)
2, b, 7) #~ drxe D7 e).

_'E, ko 2,65 kL lg,+k

1,/b,/c+/c’1’-éo ,Z,a K-kt zo &/‘wz,/cekl%do 7/_/: Lo
and | Z7 //3

'»"Z/({)(%)= M/’[ —cg—j(f’“ %(L) Aortie z?ﬂ /C)LJ (3.1.13)

(2 )q ,a/\/"rl" 27 }cf-/C:/

Z()({) - exp [M | (Z %(;e)(_ﬁ__

(@
G

+ 1C ]
wrh? 27 /C”) O (3.1.1%)



It is interesting to note that the contribution of the
radiative corrections to the ladder type diagrams in the frame-
work of straight-line path approximation is extracted as a
factor r(l)r(z) depending only on the square of the momentum
transfer t = (pl-ql)z. A phenomenon analogous to the factori-
zation of the radiative correction contribution in quantum
electrodynamics, was found by Jennie et al/lg/.

In the high-energy limit s+ and at fixed momentum trans-

<< g2 the quantities X(O)

fers t, limited by the condition l£7
m

(1) take the form

©)_ _{gf’ g - SETI (3.1.15)
J{ ST 5)Eig/”b e “22%%’1%1(’“/9i[),

?
M’L(L)= ea (3.1.16)

)

and r

(4

where KO is the Macdonald function of zero order, and
2 . ]
[n e f = O(50)]
— 5 3.1.17
[42 2 m (ll)

T 3(27)mt
Thus, in this asymptotic limit the expression for the elas-

tic amplitude of the two scalar nucleon, interacting with the

vector field has the formX/

(st f“”(g,t)e“f

7 (3.1.18)

where

j,(())(s)f) _ \—S-—-f—{—)—jdﬁ ti‘i(e'ﬁ]ﬁy’/?{{) (3.1.19)

x/Taking into account the identity of nucleons, we are led
in symmetrizing eq. (3.1.18) to terms vanishing in the limit s-»w
with fixed t.



i

> 2

T = - AJ__ (3.1.20)

It is clear from formula (3.1.18), that the consideration
of radiative effects leads to the diffraction behaviour of the
high-energy, small-angle scattering amplitude which corresponds to
the Gaussian form of the local quasipotential of the elastic

scattering with an interaction radius of the order The

€ me -
forces which are due to the exchange of mesons between the nucleons
. . ol D s ! o
—_ — << —
obviously have a radius e and it is assumed that g o o
Thus, in the region of momentum transfers u2§|t|<g2m2 it is very
important to take into account the multiple meson exchange which

leads to the eikonal structure of the quantity f(O)(s,t).

As was shown by Barbashow et al/20/

, the consideration of the
interaction of nucleons with vacuum fluctuation of the meson field
allows one to get the qualitative explanation of the origin of
smoothness for the smoothness of the local quasipotential.

Writing the amplitude (3.1.18) in the eikonal form, we find
the equation for the corresponding eikonal phase
2T fi"je“ & e:z£f<°£3‘¢’ﬁf)

MTa (3.1.21)

€

It is easy to show from eq. (3.1.21), that x(zL ) 1is a
complex quantity with fhe positively defined imaginary part, i.e.
|e2lf|<l in correspondence with the unitarity.

(0)

Expanding the exponential in eq. (5.2.6) in powers of ¥ R

the phase ¥ 1s given by the series

R I —
-L/CJ:)L_L -~

y(ﬁ) - }%; JZ?G _ e-—a/c,: ,
+ L(é

D =S .y,
-l (K+k '
2(& [ (BB - aRaRy
4o

€

(3.1.22)

_7 d'E '’/ €
§r

(&% p)( B+ )
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The first term in eq. (3.1.22) is pure real and corresponds
to the scattering on the Yukawa potential with the centre of force
being stochastically distributed by the Gauss low. The second
term in eq. (3.1.22) contributes to the imaginary part of the
quasipotential.

Thus the account of the radiative effects in two-particle
scattering leads naturally to the smooth complex local quasipo-
tential, the imaginary part of which is a positive-defined quan-

tity in correspondence with the unitarity requirement.

3.2. Inelastic Processes

The amplitudes of inelastic processes describing the produc-
tion of a certain number of the vector field quanta at high-energy

two-nucleon collision can be determined by means of a generating

function f(pl,Pzaqlaq2|AeXt

In the framework of straight-line path approximation the

IAext

quantity f(pl,ngqlq2 takes the form

]C(/b " %% w) j jdac, ex,(,b4~?f)+m(/%~?-u)</; ) Q:g ) )
d,;(% ) P {jﬁdfc A [(/(y (5pm5) € %”/c/%c],,)e “l
foa enp {454 ol 87, () [ Z jeteipug) jepe gk nn,

o i i) T ki 9) - (EQ—E)J}

where the functional average values of the currents and their

bilinear combinations are defined by eqs. (3.1.8), (3.1.9) and

(3.1.10), respectively.
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The amplitude for production of N vector quanta can be

found by functional derivatives with respect to the field ASXt

(15)" 5 oo 7, 907 26) flpps 90 £ ) -
=/7€ (« ) {(/o Pai 9 9l A )/

d ’ )+ CRalpy= G
g " gyt 055

[ 0rupug) &%+ e i) g lp 1y
D % (a,- ) J oA exp { —‘@7—’\— Jd%eD/ (/c)[ Z 1 I R ) )

vLJ\(j/w (/c/”fyf)(]m kﬁa,?)e e ‘*)+ (/C o ]]Z (3.2.2)

/C,: Ny

where ea(K) is the polarization vector of a meson with momen-
tum K.
. Further, we consider the case in which the momenta of the

secondary mesons satisfy the requirement of "softness"

7’ i LA —> .
E 22:7 Koé <& Z ,}LZ:;ICC_LI« ]?41_' ?11!':'?11“6]11] , (3.2.3)
where the components of the particie momenta are given in the
c.m.s.. §1+§2:0’“ and the momenta of the initial nucleons are
chosen along the z-axis.

With these requirements the amplitude of N-meson production

is factorized and can be wrltten in the follow1ng form

fz/ml (N f(/ 5P G Jus ke, /C’“ w) - ' (3.2.4)
- e f? FEA I ﬁg%k & (6 )
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where ) _ + o 2 gt;fi .
(],,f (/c,-/bg,cj;)-<zﬁlc+b 2712 z), =12
1= A%= (g, i+ Z,@) (% +Z/c ) poer 328

The differential cross section of N mesons production in

two-nucleon colllslon is defined by

oy = zl/s(s ~4mY /JA[/M (N)/ ()" 5(/3”/6 iR ZF)
_Lb_ o/cz, i A /7 dE, _{ (3.2.6)

(27) 29,0 205, NI iey Ror (27)

where s = (pl+p2)2.

Using (3.2.6) and making the transformation

n »
S(prpa= = 9= 2= k) =
t;'/ =1 h, » (3.2.7)
= jo/fﬁ 5(/5(, Gy - gkc*A)O(/b ?r:Z;/cg’- A)
we obtain the expression for the plural meson production diffe-
/18/

rential cross section

@s), , ":}; £ (0:734 /J[eé’(s,'é)/bwh//),’ﬁ)M{?L(fzjﬁ)) (3.2.8)
YA fired

2 a5
W/h(/b”A) i j j?/c: 5(/:,~7,—g/q +A) (3.2.9)

and we have an analogous equation for W (p2 -A).
_ 2 ’
The quantities W_ (p_ A) and W_ (p, -a) depend on the
ny 1 n, 2,
variables

t= A \)1=P1A and t’AZ,l);f—P,fl (3.2.10)

?
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respectively.
Using the variables (3.2.10), we rewrite the volume element

duA in the following form

A - 2T At dv, d, C-QSE

. 1 i .2,
TS 2,7 (3.2.11)

where ¢ is an azimuthal angle, and the physical domain of

integration is determined by the inequalities.
—-1T < 1\)«' < S 'l":4/2'

- Y

—- S < < 0 ) m?t L< S . (3.2.12)

Further, we find the asymptotic behaviour of the differential

cross section (%%) at s»» and fixed t. Integrating
nm -
eq. (3.2.9) over dvl and dv2 and using eq. (3.1.18) we get
m
dsy 1 oayht
(dt evodiie VAN )1£y(gt>/UT (g t) (3.2.13)
n'\,nl. t—&!‘—m

2 (3.2.14)
Q=42

J

The integration domain Qp over the secondary meson momenta
is determined by the'condition
2}
11 = (3.2.15)
or, taklng into account, that in the case considered here

(A — Z i, ) by the condition
0 < Q?Z:K < S+t | (3.2.16)
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Consider now an approximation in which the total momentum

of the secondary mesons can be neglected in accordance with the

requirement of "softness" (3.2.3). In this approximation, eq.
(3.2.14) takes the form of the Poisson-type distribution /21/
- n
) 3 _1_ at — ]
Wn(St) = n & [n(g‘t) (3.2.17)
/

where the quantityx

_ z > - 2
h(S‘,{)z "‘(ﬁr)l f%’f IJ{IM(/CJP)C{>/ ) [:1)2 (3.2.18)

plays the role of the average number of secondary particles
produced in the two-nucleon collision at s+ with fixed t.

Using eq. (3.2.5) for Ea’ we find for |t|<<g2m2, that

nist) = — &t (3.2.19)

The quantity b generally speaking depends ©on a special form
of the cut-off of the integrals over the emission meson momentum.

In the particular case when

ya A
~ M
K ,
3.2.20
1T > >>/(,,%z ) ( )
Rz
where: a = — , we get
Pg

%r"g%zmz 2 TR =0 ] IS

x/The integration in eq. (3.2.18) is effecti?ely limited by

IK,l SR, [K| <R



which coincides with the doubled slope parameter of the diffrac-
tional exponential (3.1.17). Note also that the equality 2a=b
holds in the infrared asymptotic limit wu+0. In this case after
summing eq. (3.2.13) over the number of secondary mesons we find
that the dependence of the variable +t cancels, and the diffrac-
tion peak in the total differential cross section disappears.

122/

This regularity was mentioned in paper and has some analogy

with the automodel behaviour of deep-inelastic hadron interactions

at high energies/23’2u/.

St4. SOME MATHEMATICAL REALIZATION OF THE STRAIGHT-LINE PATH

CONCEPTION IN THE FRAMEWORK OF FUNCTIONAL INTEGRATION METHOD

In the previous paragraph some applications of SLPM in its
simple form have been considered. Roughly speaking, we used

fhe.approximation
F [sV]F Fo-
' j[é‘))]é’ ~ (’,f or even ~ e 0=o

In other words, it was assumed that in particle scattering
at asymptotically high energies and fixed momentum transfers
the main contribution to the Feynman path integral is given by
those paths which are the least deflected from the classical
particle trajectories.

We consider below a number of approximation systems which are
different mathematical realizations of the physical straight-line
path concept within the scope of functional integration.

Note that the methods of the theory of measure and integration



in functional spaces have lately been extensively used in papers
on quantum field theory. This approach is based on the represen-
tation of the exact theory equations in the form of the functional
integrals. However, because of the absence of a well-developed
technique of calculation of general quadratures the functional
integral is a "thing in itself" in the sense, that the extragtion
of necessary information is usually performed in stages, using
some approximation procedure. The simplest and best known are
the approximation procedures for which we are dealiﬁg only wifh
the Gaussian quadratures at each stage of calculation. The
"KiKk=0 -approximation" discussed above and straight-line path
approximation are among just this type of approximation.

The procedures developed below originate from the concept of
a straight-line path and invparticular, allow us to estimate
consistently the effects of particle path deflection from the

straight-line trajectories in scattering processes at high energies.

4.1. Formulation of Approximation

We consider a functional integral over the Gaussian measure

— ¢ [a3VT3) M1

Condt . (4.1.1)

where n[v] is a certain functional, and const is a normali-
zation constant. As is well known, the calculation of (4.1.1)
can be reduced to finding functional derivatives according to the

formula
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j’[gu]@%w]: i ((q% fdg(%;})%e

In addition, in some quantum field theory problems (see, for

example, Kuleshov et a1/25/) it is required to determine the

mvl

Boglte1.2)

differential operator éq){?z ﬁbé\)z} where

[D55 = 343D 33 )5,)(; 15003.)

and D(El,Ez) is a function of a propagator type. With a view

to further applications, we unite both problems as follows.

We have to find the functional n{v] from the relation
[u] f mv] ]
o @;ol e = ?

where m|v| is a given functional and D is a function of two

(4.1.3)

variables. When

éD:_.‘ll 5(71-71) (4.1.4)

the value of the functional 1|v| at v=0 determines the func-
tional integral according to (4.1.2). To simplify the formulae
the action of the differential operator will sometimes be denoted
by fhe sign of averaging as in (4.1.3).

For graphic demonstration we introduce the notation

- Y
. 7] —i>.<:> ) “fsbéng)r :i>(:[>;
, gb -‘
Qﬁffﬁ{é j%'g‘a’;‘} i = 7f:‘>@_

(4.1.5)

In this notatlon, for example,

j%w 0] = z(@@ Q@)



where, following the ordinary terminology, we call the two

first terms the unconnected graphs. Let us stress that in spite
of the obvious analogy of the (4.1.5) graphs with the Feynman
diagrams, in many cases their appearance has nothing to do with
the usual Feynman graphs.

Assume now, that the structure of the functional w|v| is
such that there exists a small parameter connected with a loop.
In this case there is an approximation procedure which we call
the correlative one, and according to which we seek I|v| in

the form of the series
& n
17 = Z 9 [-]n
Py (4.1.8)

Substituting (4.1.6) in (4.1.3), we immediately obtain

/7, = .%T = é%%? )

=307 7) U0 v
/] :3{/-[77'3—773— 577(:71:2— 7?7‘~=> W+ (4.1.7)

.

2

L} ~
.................

connecled

fmat
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Considering graphs (4.1.7), we make sure that the correla-
tive method really corresponds to the éxpansion in the number
of loops, and only the connected partbof.the sum of all graphs
with loops contributes to .

'Truncating the series (4.1.6), we obtain the approximate
expression for the functional 1. This approximation is valid

when inequality

n
)

<< W

! C"““ﬁ*e& \mcpoomfecfe¢ (4.1,8)

is satisfied fQP any n22, 1In this case considering only Hl
while expanding eH in a power series of g one obtains the
leading terms in each order, the consideration of H2 gives us
the corrections to them, etc.

The correlative procedure is closely connected with an

expansion of the following type

—

@9”.:83?[1“"%%:(?_—7?)“] (4.1.9)

4

Such an expansion has been met previously/g’IS/. It has in
general the same domain of épplica%ion as the gorrelative ap-
proximation and differs from it by giving the smaller number of
correction terms .in each order of g. Let us still note that
the higher correction terms have, from our point of view, a more
simple geometrical meaning (see (4.1.7)) in the correlative
expansion which simplifies its usage to a certain extent.

As was mentioned aﬁove, the approximations considered are
satisfactory when there exists a small parameter connected

with a loop. But it may happen, that thé theory contains a small

parameter, connected with a line that is the one arising when
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a functional w[v] is varied. Then it is possible to make an

expansion in the number of lines connecting the different loops.

4 ~ N CIEIPISIE
foh(( T\“["L] e '(Vl; ; } (4.1.10)

Representing w in the form

and substituting (4.1.10) 1n (U s 3), we obtain

el o 1, Z - {SVL)W[V[ ]}

ol Jo - o g vl

where a small parameter ¢ 1s ascribed to the terms with diffe-
rent n and I|v| = HE|v| at €=1.

Now we seek the functional H€|V| in the form

oo
[, = 2 E o (4.1.12)
Nn= 0

If we confine ourselves to the first few terms of the series
(4.1.12), we obtain the "ninj -approximation".
The calculations lead to the following expressions for the

first few terms
=47 > @
/7 Z?CZ f%(g”} - = @W@ g (4.1.13)

G 5/" __Z___.g_zl_.
=4 2% 52 (5 5,5,

i 5r |

NV A DR
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Where the figures indicate the order of the contraction, i.e.

~ S*F 8T . |
S%“ 2 SV, 8V, OV, 5v - 50’5' Olfb dfs A3
S

D(3,3:) D (- ) 5\)(3,)5\)(;) 8V(3:) 5V (3)

and so on. This is the expansion in the number of lines, con-

necting different loopé. As we deal with the connected graphs
the number of such lines and the number of loops satisfy
the inequality
S Z n—1 (4.1.14)

This results in the inclusion of the sum of the first n
terms of the ninj -approximation in the analogical sum of the
correlative approximation so that the application domain of the
former is not wider than that of the latter. However, its appli-

cation might simplify the calculations because one can dispense

with the sum

o0 G0 =D

Note also that the first terms of all the approximations con-
sidered above coincide and the difference only comes out in
calculating the correctibns. This reflects the fact that the
methods under consideration,-when applied to the calculation of
the high-energy scattering amplitude, represent different versions

of the straight-line path approximation.
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4.2. Corrections to the Eikonal Formula

Let us consider an application of the methods developed
above to the concfete example of the two-scalar "nucleon" scat-
tering amplitude in the model cé'int = g:w+w¢: . Neglecting the
radiative corrections and the contribution of the vacuum polari-

zation, this amplitude can be represented as follows/g/

fee(PbPz,q,‘,qi = fdx@(x)e~1x(]94 C{)
fdAS(JC PP 9, C() “ (% "’”?z) (4.2.1)

where

S = j[&] [5\)] €A7b{c(/”/ljo/;jo(r D] -=

»33a,(3) - Ty (T) - zj (?)d7+2,j0b(7 1] ({2 §
o] [s0] e A
afz(?) /bfz,ﬁ(f 7{2/ 29(;) -‘ (4.2.3)

We shall seek the asymptotics of the functional integral Sy

at high energies s = (p.+ )2 and fixed momentum transfers
& P1*Py ,

t = (pl—ql)z. The calculations performed in this case show that

there are parameters connected with a loop and %g connected

X 0
~

with a line™ . Consequently, as a result of relation (4.1.1L4)

in the n-th order of g2 at fixed X #0 the leading term of Sy

has the asymptotics l; » and the following correction = n
s s Vs

x/Note that we are considering the loops and lines defined

by rules (4.1.5).



...|+|+_

If we want to calculate only the first two asymptotic terms in

each order of g2, it is convenient to apply the "n.n. -approxi-

1]
mation", generalized for two functional variables vy and Voo
I
and to use the approximation e 2 . 1+ H2 + ... of the (4.1.2)
expansion type. Then the approximate formula for has the form

: QAT

S/\zed [—'Z+ Jo’fz(g,)(/) / (4.2.4)

Proceeding from (4.2.2), we obtain the following expression
Plo-o i [ ?M'“’“J ajdeepfaiel 3a)-
-Ta C’C)J 41K (l}I*[ [ (3)5 fd‘/{t@( ) _1tc9’c (4.2.5)

Jdgd&c exp QLK[(% 572 G T) ]_“. = (l}‘ * t!>§

In formula (4.2.5) we have replaced the variables §&,T by

for =«

o—

E
Vs

M%U”{’/[(w(/)) (59(7)7/ 0:

— fd” d', Dle,) D(k,) €
27

Similarly we obtain

D

(
5"’2*”‘ .o, axp2in 3 - ab/(?)/"wm

&3 1w} <t fritps o))
L (1l < 1)} [¢(;;)+ (Mw)]
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@(;/)51/) = ﬁ(f/);y)[/ff/ 9(/5”/’/24/)4(%/ﬁ(/;f/"/gb/)] (4.2.7)

Let us find the asymptotics of the expressions (4.2.5) and
(4L.2.6) for s and t fixed. The expression (4.2.5) must be
calculated to within O(lf), and (4.2.6) - to within 0(l§).‘

s s

For this purpose let us choose in the c.m.s. the z-axis

along the initial particle momenta. Then

/% :/%5) 0 0 ¢ ;/s-//mz'j)

+ ——.é——*- VS -bhmY 2t
Dys = ['/;/v‘ ol i-’—zT{m (/+ i /,(u.z.s)
v _._-75

and substituting (4.2.8) in (4.2.3), we obtain asymptotically

W) =gt 2 0(5)+ o3)

{

/s
| a, E)N /- A )+ 02
| 0 7% - Tf\sé 29(.(;) 0(5), (4.2.9)

+ _/ 4
h- = (73 0, C>) * .
Using (4.2.9), we obtain asymptotic expressions for (4.2.5)

and (4.2.6). ‘Namely,

T m Jd% D) e ”jd AT €

z{/_ Py /‘ig_ff [;ﬁ(-;)-;:ﬁ( )]+ (/f/ /‘T/)} 0 o
. { AR, o (2, WY [(&, a} ﬁ fm) 1

£ + -
81 B sI5 41°

3 (k- k)= T (kv )
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o) o) J 50 5B

E’L-f/"b |
/Grs (/C“J" /a—a/)J/ € \Ejk O(S/

= 4/ H//V/Yy iy -—A“—Y—L[(Qowr) ﬁ( +a)
+(’r-5r}§(a a}] (/V/'rl] _,Zf’_

fS AY

+ /;Zc-~ a’}/) JZ{O(/”/i// * 0(:'3{2)>

(/a’+a’lz+ (4.2.10)

‘j:/ [(51)(;)/ (5;)())j/ -0
@TJL jd/’ d', %(f,)@(,;) o™t ()

ja’* d<cT, o/; dT, *?/)C/J[ ; s (ko= k) - CT(k,O ¢ Kg) +(ri2.11)
”; (o ki) = 1T (i, k)] D3 3)+ Cﬁ(r,r;)j o(f):
2 (Jewl - al) K ugzy)

32 7Y%
In formulae (4.2.10) and (4.2.11) we consider LxJ_I £ 0,

which guarantees convergence of all integrals. KO and Kl are
the Macdonald functions of zero and first orders defined by the

expressions

, o llq /A ) ~ ]i ////a"}//)
16/ CMVIQZ) ofk~kﬁ .?1 ”_, j%;//7/a4/) fa(;Myazé) s
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Now substituting (4.2.10) and (4.2.11) in (4.2.4), we obtain the
/26/

desired formula for S

~ N L4 g ) Up B,
§ = e - g S0
/Cl*a'z/ 79(&-:1' (:r; ér) ﬁ(a ijjf?//ﬂ/’u/

g (1ol ) B2
gl U(/%#az/ /;v az/) ﬂ(/{/&)}

32 rsYs

In expression (4.2.12) the factor in front of the curly brackets

(4.2.12)

corresponds to the eikonal behaviour of the scattering amplitude,
and the terms inside define the corrections of the relevant
value %E .

As is known from investigations of the scattering amplitude
Using the scope of Feynman diagram technique, the high energy
asymptotics can only contain logarithms and integral powers of S.
In this case there is an analogous phenomenon, as long as the
integration of the expression (4.2.12) for quantity SA according
to formula (4.2.1) leads to the disappearance of the coefficients
for half-integer power of S. None the less, it is necessary to
take into account the terms containing the half-integral powers
of S if we want to calculate the next corrections to the
scattering amplitude.

It is worth noting the emergence of the dependence on 21:0
and UCZ in the correction terms, that is the so called retardation
effects, which are absent in the leading asymptqtic term.

Carrying out analogous calculations, we can convince ourselves

that the following corrections decrease sufficiently fast by
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comparison with the ones we have written out. However, it should
be stressed that this does not imply proof of the validity of the
eikonal representation of the scattering amplitude in the frame-
work under consideration. The fact of the matter is that the
coefficient functions in the asymptotic expansion, which are ex-
pressed through the Macdonald functions, are singular at small
distanees. Hence, when calculating the scattering amplitude, the
integration of the quantity SA according to the formula (4.2.1)
may lead to the emergence of terms violating the eikonal series in
the high order of g2. The possibility of the appearance of such
extra-terms in some order of perturbation theory in the ¢3-type
models has been indicatéd previously/27’28/.

In this connection,it should be noted that in the framework
of the quasipotential approach in quantum field theory there exist
strict grounds for the eikonal representation based on the assump-
tion of quasipotential smoothness.

In the example considered ébove we dealt with the singular
interaction which leads to the Yukawa-type quasipotential when

the radiative effects are neglected, and which requires particular

caution.

§5. THE OPERATOR METHOD AND STRAIGHT-LINE PATH APPROXIMATION

In this paragraph we consider the operator method of finding
the approximate solutions of quasipotential equations. This
method is sufficiently general to be applied to other equations

of quantum field theory.
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As a concrete application of the operator method the asymp-
totic behaviour of the scattering amplitude at high energies and
fixed momentum transfers is considered. Within the limitations
of this method and using the essential assumption of nonsingular
interaction one gets the possibility of corroborating the concept

of straight-line paths for smooth effective quasipotentials.

5.1. Formation of the Operator Method

Let us consider a quasipotential equation with a local

quasipotential for the scattering amplitude of scalar particles

T(pps)~g Vi) §IHHG VE-.9) TG 559

where p'and p'are the relative particle momenta in c.m.s. in

(5.1.1)

initial and final states, respectively, and s = H(52+m2) z 4(5'2+m2).
To solve eq. (5.1.1) let us perform the Fourier transfor-

mation

4 el

'[/[" f”\s) (z)sjd’(ie LR ?/V(’L s) (5.1.2)
77(/0 4”) 50/?,(/?, Q /b ‘7"(*? 7. )

(5.1.3)

Substituting (5.1.2) and (5.1.3) in (5.1.1), we obtain

(52 - g Ue) 855)
#Jfﬁf{(? g)V(lz )(D 7 olz*”e T ',5) (5.1.4)
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Introducing the representation
ﬁ 2 ) V(,L )F(q.‘, ) (5.1.5)
we-hazg?é’ /2"3) = 5(3){2" E”) +
.,_ jO/@ ("’“s)@ ?jO/'z/,e ’L V(-»//S) /-7(‘,/»//) (5.1.6)

Let us define the pseudo-differential operator

lg;l(; EZ?/ é;)' (5.1.7)
K(zs) = JCPG)-W?{@?‘S)S Lz (41) 5(3)(5). (5.1.8)

Taking into account the expression (5.1.8), eq. (5.1.6) may be

written in the following symbolic form

(_’ & / (3)(€"zj*g ZE’[V(f,S) F(’E’) 'E"}S)] (5.1.9)

We shall seek the solution of this equation in the following form

| y W(EE:s) -i&(E-7)
/J(;”‘;S/ (J} f‘)/ e e (5.1.10)

Substituting (S.l.lquin (5.1.9), we obtain the equation for

the function

Wisis) A o WaashEs @
e (5 5)= J-//"Lt* [V(@ﬁ}@ ./6) (5.1.11)
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Expanding the function W in powers of the coupling constant g/12/

\/\/(th)Zj W (Z¢;s)

(5.1.12)
h=1

we immediately obtain from eq. (5.1.11) the expressions for the

functions

W, (% 8s) = ja’?’ /(775) f{[{/& 7’}?5]9—17?

e g (5119
(5 55) =~ WBES L £ fugag o™ T* 9
V{ﬁ;S) V(i ; 5} H[(<7’,+7M;C))&{]/f{/(7j+g)fsj+k[ @/:,L/C"’jfsj}(s.l.lu)

Confining ourselves only to a consideration of Wl instead
of W in formula (5.1.10), we obtain from (5.1.10), (5.1.5) and

(5.1.3) the following approximate expression for the scattering

amplltude/zg/

77(/" 5/ = Zj%fd”‘@l(/opzv(ﬁjefwo/ai (5.1.15)

The meaning of the approximation made above is clear, if we

expand T (5,5';5) in powers of the coupling constant g

(w)_,*,sj _gz_.jc/? dg, V(Gis) - /(7.u)
Vip-p-2 59 TRI(GF)' o

and compare it with the (n+l)-th

(5.1.16)

iteration terms of eq. (5.1.1)

T(W) g~ 5) _dfl_h..f fa{c], d% V(c/, s) V(C;’,js)
Vip-F- Z(;“S)Zﬁ//(y ) s/

H[(? 7,,f/0/ 6] H[(Z? ) ] (5.1.17)



where )} denotes the sum ovar all possible permutations of mo-
P, +>

menta q;> q2, ~eey Qe

It is easy to see from the expressions (5.1.16) and (5.1.17)
that in the case of the Lippman-Schwinger equation the approxi-

mation coincides with the so-called "aiaj=0 approximation"

according to which the terms of a.a. (i#3) ~-type in the "nucleon

17]
propagator" are omitted.

5.2. Operator Method and Asymptotic Behaviour of the

Scattering Amplitude

In this section, taking as an example the Logunov-Tavkhelidze
quasipotential equation, we cbnsider the case when the above
approximate expressions of the scattering amplitude can be used
to find the asymptotics, when s tends.to infinity and t 1is
fixed. In asymptotic expressions we shall take into account not
only the leading term, but also the next correction, using the

formula

, WEES h(zf5s) .- 2.
e (Z,£59) - Vs [/v‘jLMé,('c,’f?;‘S)'*"'jz (5.2.1)

where Wl and W2 are defined by (5.1.13) and (5.1.14).

Let us choose the z-axis along the (E+E') vector. Then
=, —> NG

P - P = A.l ) A-Lnl = O \ t = _A-L (5.2.2)

Noting that

KI5 - - -‘?
7/3 (7/5+Wb (/ /g/ 4+/’)7—L<. -{S]m;d

=2 1, 3%* 71 — 7‘A¢ 4 5.2.3
$(-¢¥) & 5 (6. - te) ]+ 0(3/”)’ o




- 53 -

we obtain from eqs. (5.1.13) and (5.1.15)

W< Mo Wy ppe),

(5.2.4)
\/\/L - ,__%9_ + O‘%’é) / (5.2.5)
/o ) "jd? = Zijo/f/ V( 'Z’f+;’?; 5) (5.2.6)
- - Z-"b -9 -
W, =-2 dd’v*-s'@_ iif+9‘_jiAl=
M (7 ) ek
= 6V[[E5 e s) + z(Vu‘Aﬁ) jc(z(z Z) V(/z +g"’ /
=-4f0/7«c/% STV (G5 V)
e fur ¢ ?ﬂ 7“ =-4i |dz'{3V [/'7%2”"‘;5)*
(sz re ( Aé’ic‘)( /Z+GLZ—Zé) ;}f { ( (5.2.8)
+ [ZWZ” (V2% =, s)]"}

To obtaln the desired asymptdics with the accuracy mentioned

above it is sufficient to write the scatterlng amplitude as follows

T(EFS) = g Stz Y(JERET o) e E
(/ j M;/_/_ j’v Ww ) (5.2.9)

Then substituting eqs. (5.2.6-8) in (5.2.9), we obtain

for smooth potentials the expression/so/
S jdzm LEL’ZL f ZU ﬁ’{z V( Ve *zb ) _{
- . | g ) -
7n(¥15/ 5303(%@P zi 62 Iy -
t- foxed
/we ., 7(1)7/4*5’1' )

(2#6? J(’{ € . Jo/Z V



(2 - 14,2, %édz’ V(V s z% o)
B 3 K$C{Qﬁ.€? ‘5}11 -{ {? _

(ZF /s

_p ¥ [z V(/Z5, 3/7{ for' T e 5) !

oo -

gl T LV OEE - e 8

£

Sotn e ™% Jaaq V(yaer, S)ez‘ 8

(5.2.10)

It is easy to see that the first term in eq. (5.2.10) describes
the eikonal behaviour of the scattering amplitude and all others

define the corrections of the relative value %E .

5.3. The Connection between Operator Method and Path

Integration

In order to discover what physical picture corresponds to
theAresults obtained above, let us ascertain the connection of the
operator method with the Feynman method of‘integration over
particle trajectories. To do that we come back.to eq. (5.1.11)
for the function W. The solution of this equation can be

written symbollcally as

W -
_ 4 x { =

1- g K[(-iV-r)'TVE)
jo(j L{C(hu) "L'd R[( (V- "") V(t}
=-{ |dT |
31/

o .
According to the Feynman parameterimnion/ s we introduce an

h

(5.3.1)

ordering index n and rewrite (5.3. 1) as follows
W N (T(1+ w)

0 -..._L'go(\ce jjd?}{[( /c/Lﬂ‘ﬁ;z (5.3.2)
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Using the Feynman transformatlon

[?(Q)J f@ﬁ[@awﬁ &F{ fd'(x(yz ﬁo('p 9)(7]}?/[[3('2)7(5 3.

X(0)=p

oo

)

the solution of eq. (5.1.11) can be written in the form of a

functional integral

T
CT(1+ ¢ x Lfd&()/g( > > -
=\Lj Te ({é)j%/oj%(ir)se T %(a, ;1)%1(5.3‘“)
&ﬁ»=0

In the formula (5.3.4)

_§Q?£Q)@+e

G(&4; 7= e Sz {- ijgdyf( [(/3(7)-/'5)7'\"(5733& 5.3.

wn

)

and G satisfies the equation

46 . (- ij(m )T V()- E-¢) Tl
G<T=O) (5.3.6)

Using eq. (5.3.6) to obtain the operator function G and
substituting it in formula (5.3.4), we obtain the final

expression for w/32/.

a3 o
Ly xm)pGk) o |
E%PJQ (z,)ae eg, (5.3.7)

a@»«o

c‘x) “C{+c
"o fdre e
o

. - Where

r~—zjc/Z K- V- Jas3)805-7+¢)]

Writing down the expression

- eg ’eer“(z (/- f/ (5.3.9)

neo
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in which the sign of averaging means integration over T;E(n)
and E(n) with the appropriate measure (see (5.3.7)), and

carrying out the calcUlatiéns, we find that

py - 2

— T? - T
W T»LJ; , o} = LJ

2, and so on, (5.3.10)

i.e. the expansions (5.3.9) and (5.2.1) coincide completely.

Confining ourselves to the first term in expansion (5.3.9)
(n=0), we obtain the approximate expression (5.1.15) for the
scattering amplitude, which corresponds to taking into account
only those particle paths closest to the classical one and
coinciding with the stréight-line trajectories in the case of
high energy particle scattering at small angles. In other words,
one can say that the operator method at high energies is the

realization of the concept of straight-line paths.

§6. STRAIGHT-LINE PATH AND EIKONAL PROBLEM

As it was shown above, the essence of SLPM lies in the
assumption that the large momentum transfers are suppressed in
each high energy particle interaction. Such large momenta,
when cépried by the particles in the collision process, tend to
be conserved ("inertia" of large momenta). The type of the
particles transferring large momenta may change during the inter-
action process according to the empirical regularities observed
in the inclusive reactions. Thus, for example, in the collision

of fast nucleons it -is necessary to take into account the
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possibility of radiation of hard mesons which take away the
greatest part of the initial nucleon momenta. Generally, in
order to obtain the eikonal formula by summation of the pertur-
bation series, one takes the initial particles as the leading
ones transferring large momenta. However, the existence of
virtual processes with the alteration of particles of the "lgading"
type must generally speaking lead to the violation of the orthodox
eikonal representation. The possibility that such an extra-term
in the asymptotics of the sum of diagrams may appear was first
noted by Tiktopolous et al/27/.

In this section we have studied a structure of the '"non-
eikonal" contribution to the two nucleon scattering amplitude
described by a sum of ladder-type diagrams without taking info

account radiative corrections and vacuum polarization effects in

the scalar model.

6.1. High Energy Asymptotics of Feynman Graphs and

Modification of the Particles Propagators

We now choose to study the scattering amplitude of two

. . ‘ + .
scalar nucleons in the model qlint = g:y Yy¢p: neglecting the
radiative corrections and closed nucleon loops. This amplitude

is represented as the sum of the following diagrams

P1 > > ?1

1!

a

Pa’(> }?z

Fig. 1.
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where Py and p, are the momenta of the in-particles and qy
and q, the momenta of the out-particles. If the number of
integration momenta is £ and the number of internal lines is I

(for the diagrams of Fig. 1 type I = 32 + 1)
I 1

F - j.d[Q S\ 1 AT eae )

P (6.1.1)

where r, are linear combinations of integration momenta K:j'

Using the Feynman parameterlzatlon we have

- - Cocg/ Z ok, - 0//\{,
ﬁh([ /)/ded toy & M[SV(M *U

I

= 2 di(p-m "*‘(C) Za Kk +’°)—gb (6.1.3)
t=1 L(//

Following this procedure it is possible to obtain a representa-
/34/

’ (6.1.2)

tion for F 1in the Chisholm form » integrating over C:i in

eq. (6.1.3)

in) (I-2¢0-1 0/0’, ddf(jf [C(oc [”(ezjl.u
e S ) (L

In the formula (6.1.4)

a;

) e
C dd//a(/// C'Z) = det dig (6.1.5)

———l G

b6y C

and the Chisholm determinant D can be represented in the

following form

Dst) - &) §,49(o<)f + hx)

(6.1.6)

We will now give a brief account of the results obtained

in/35/ which we will then use to study the asymptotic behaviour
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of expression (6.1. H)X/

Defini+tion

A t-path is a set of lines forming a continuous arc,
such that

a) If we short-circuit these lines, the entire graph is'split
into two parts having no common line and only one common vertex
(to which these lines have been reduced). The p; and q,
external lines of the graph are attached to one of the two parts
and the P, and q, lines to the other.

b) None of its subsets has property a). A t-path is a *-

path of minimum length (i.e. number of lines).

Rule

- If the graph F is such that there exist M t-paths of
lenth ‘p its asymptotics are
‘F:(;ﬂ)‘Lf'“ - p)l p! (énl, jw(oc)]
| o (M/)/ ({A)[Zéfff’
Z%Cf)__ )5(206 _f) {0/06} (6.1°7)
d 4 V=1 Q¢F

In the formula (6.1.7)

13{ i ho = f )
y $(045 /)E -0 ,

(,(o() _ Cr(o(')/o((j) , (6.1.8)
»

are parameters of those lines which belong to the j-th

I-2¢-%

(3)
v

x/Results similar to those of ref./35/ have been obtained

also in paper/36’37/.
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t-path, av(v¢fp) are the remaining parameters and the quantity f

0
is obtained from f (see (6.1.6)) as follows. Let us perform the
replacement

() ()’
<, ' = A Xy (6.1.9)

J
= AA, A, () and tz (
f o ad f e { |

Having written out the formulae we need we can proceed further.

)

then

*0(6.1.10)

If the momentum transfers in graph 1 are zero, i.e. P, ° Q4
and P, = q,, we shall call a set of lines whose propagators depend
on the momentum a p-path. Thus, in the graphs F +there are two
p-paths, each forming a continuous arc. Note that each p-path is
@ t-path according to the definition. However, the configurations
of the p-paths depend on the concrete arrangement of the integra-
tion momenta while the t-paths are the topological characteristics
of the given graph. 1In the graphs under consideration the intera-
tion momenta can be chosen so that the ﬁ—paths will coincide
with any pair of t-paths not forming a closed loop.

Statement 1

Let the given gfaph be such that the contribution to the
leading asymptotics is_due to the pair of t-paths which have
no common line. Then the asymptotics of this graph will not be
changed if the integration momenta are chosen so that the p-paths
coincide with t-paths and the following modification of the

propagators depending on external momenta p is performed

3 1
3 d ‘
(2 )c;)?l« 27"2@"”’3*45 2p2‘cﬂ,+a€ )

(6.1.11)



i.e. we neglect masses and products of integration momenta.

Proof

The propagator modification (6.1.11) results in the following
alteration of determinants C and D. In determinant C the
parameters corresponding to the E-paths become equal to zero,

i.e. C becomes C In the determinant D the quantity C 1in

0°
which the same parameters become equal to zero is also changed.

As a result, the quantity f(a) (see (6.1.6)) conserves its main
properties which determine the asymptotic dependence on s.

and %0, calculated according to egs.

Determinants C ggt + h

0’ 0
(6.1.8) and (6.1.10) are also unchanged. Thus we make sure that
whenever the propagator modification (6.1.11) is performed, the

expression (6.1.7) is the correct asymptotic form of our Feynman

integral.

Statement 2

Let the given graph be such that the contribution to the
leading asymptotics is due to a pair of t-paths having a common
line. Also let the integration momenta be placed to that p-paths
coincide with t-paths. Then the asymptotics of the graph aré‘
equal to the factor (% %) multiplied by the asymptotics of the
reduced graph obtained when we short-circuit the common line.

We choose the plus sign when external momenta in this line have
the same direction if they do not, we choose the minus sign.

Dealing with the reduced graph we can use Statement 1.



Do f
Let a carameter $ b2 assccilated with the
whiich corresponds the propagator

common line to

- - — 2

{ 20D 2{ ()=
\/4 Lw) -~ 7+PJL)|/ ‘('t) M”15
It is gufficient to show Thet the propagat
replacad. by (£ Z). In fact the quantities £,
=3 - U

are not changed as a conseqguence of
of Statement 1. The quantity £ has tre
\ , o
)

. )
where. &« " ..and., N are sets of paramnsiers
the two *t-paths. It is now evident.thaz
the quantity |
- .
4 =

- \,_)g

(1)

which

. (1))

(6.1.12)

cr (6.1.12) can be

and got + hO

the arguments used in the proof

(6.1.13)

corresponding to

‘instead of f we can use

(6.1.14)

proves statement.
5.2. Cikonal and Ncneikonal Contributions to the Scattering
‘Amplitude
As is known (see 4.2), the scattering amplitude for two scalar
nuelzons, with the radiative corrections and the contribution of
the vacuum polarization being neglected, can be represented in the

form (4.2.1).



Putting the variables v,y and v, equal to zero, i.e. neglect-
ing the terms of t‘ik:j-type in nucleon propagators, we obtain
according to Statement 1 a sum of contributions in each diagram
of those t-paths which coincide with nucleon lines. Note that
for the present twisted graphs corresponding to the term (q1++q2)
in eq. (4.2.1) are not under consideration. As a result we have

the well-known eikonal representation for the scattering amplitude

J[ (zr)" jdcie éa“iji(e—%gsg"(/w/iyzj) (6.2.1)

when s = (p1+p2)2+°° and t = (pl-ql)2 is fixed. According to
this fact we shall call the contributions of the t-paths coinciding
with nucleon lines the eikonal ones.

In a paper by Tiktopoulos and Treiman/27/ it was pointed out
that in diagrams of higher orders (namely, béginning from the 8-th)
in powers of the coupling constant g it is necessary to take into
account other t-paths whose contributions may be comparable with

those of the eikonal t-paths. We begin our study of the noneikonal

contributions with the diagram shown in Fig. 2.

'P1¥1 23“'{; (?’

P2 > 77 2/ 3 4 i c?l

e

Fig. 2

——

In this graph which we shall call "XX-diagram" there exist
four <t-paths, (123L4), (1'2'3'4'), (1'234') and (12'3'4') all of

length three. A formal account of all the %—paths leads us to
3 :
the asymptotic 2n3s . However, this corresponds to the conversion
s
zero of all line parameters which is impossible due to the factor




6(1 - Zai). Using any three paths should lead to the asymptotic
2 i -
2n3s » but in that case the coefficient ‘including determinant ¢

0
S ;
also becomes €qual to zero so long as these threeé paths from a closed
loop. It is then necessary to calculate a sum of contributions
from the following pairs of t-paths:

(1234, 1'2'3'4") , (1234, 1'234') , (6.2.2)

(12'3'4, 1'2'3'4') ,  (12'3'4, 1'234")

Pairs (1234, 12'3'4) and (1'2'3'&',»1'23&') have no influence
on the asymptotics sinee these E—baths form e closed”loép.: All
pairs_pf‘ E-pathe (5.2.2) lead to the same asymptOtic dependence
. on s, namely »ﬁgﬁ .. Thus we shall be 1nterested 1n coefflclents

The contribution to the XX-diagram from the pair (1234
1'2'3'4') is included in formula (6. 2 1) ‘and will be 1ndlcated

An's (xx) ‘
L

o® A ‘ - (6.2.3)

Now ‘we .shall obtain the contribution from;the _E-paths (12'3'4)
~and (1'234').. Let us choose the integration momenta so that these
pathe coincide with the p-paths. Then, according to Statement 1
we can modify propagators of lines forming theA t-paths. After
that, perform the substitution ef ;ﬁtegratioqamomenta

L ﬁllfcqi e (6.2.4)

which results in the repiacements df!hueleoﬁ lihes by meson lines

“/f) - sjnjw (k}

4 .
k ’f, - i

(6.2.5)

D, (p«;/.-— £) /’ z(/ g —/&],re {4
The prgpagetors correspondlng to the :_paths will be multi-

plied by % . Because of this fact we may conéider all the lines
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of t-paths as modified nucleon lines. As a result we obtain a
diagram of the same type (Fig. 2) but with the p-paths being

directed along nucleon lines

2’ 4
p” > 4% 3X
Pl > 1, L 3 ,9))

~ 9,

A4

7

Fig. 3

Thus the desired contribution is of the form

Ln S J{(" (f))

§* noneik
1) v Oxx) 1 (6.2.6)
{7 () - Af (e45)
noneil m ek m :
If the particle masses satisfy the condition
2 + o
+ <L 1 ™ ' 1
m2 s m (6.2.7)

the contribution of the noneikonal t-paths will be less than that

e

of the eikonal ones.

Now we have only fo consider the contribution to the asyﬁptotics
of the XX-diagram from the pair of T-paths, (1'2'3'4') and (12'3'4).
The remaining pair, (1234) and (1'234') (see (6.2.2)), evidently
lead to the same contribution. The t-paths (1'2'3'4') and (12'3'4"')

being short-circuited, we obtain the reduced graph




Then it follows that the contribution of these t-paths does not

depend on momentum transfers, i.e. it can be represented in thé
b

form 1 ’
ns 1 /_*L’
§7 p jﬂ( " ) . ‘ (6.2.8)

Let us find the form of the funcfion ¢(E;)' if the condition
(6.2.7) is satisfied. TFor this purpose we cnzose the 1ntegrat10n
momenta in the XX-diagram so that the p- paths coincide with the
t-paths (1'2'3'4') and (12'3'4). Then using Statement 2 we find

that the desired contribution will be equal to the reduced graph

asymp*otics multiplied by 1 (Fig. 5).
s

b et F S
/f \\?’" B ?ﬁ
Prke h,\ ST
ki e
fb? o% “s\\\///’\gﬁ
f"L ?L*G
Fig. 5

#

-

When s-=oo the asymptotics of . F' will,. according to the

formula (€.1.5), be of the form

— . & : ' v
/7"7' >~ —iff:"\‘)‘ ({)//"74{ JC/C{_, Iy 0{0‘\‘ < 5(/— (5{,{ - !7.:_5,) (S (7/— 0!; - ()j‘:) ’

"L&;{_ b ’/:b (6.2.9)
where Q% );f
/7‘):0’ h, = ~/‘41[;‘7; oty 1 o)) '+df*0(g]co . (6.2.10)

From eqs. (6.2.9) and (56.2.10) we get the expression for the

function ¢ defined by the relation\(612.87

Y}(/) - con jJu\, //o(/ /b, ~-_’:.°2 ;-_’f:jv’. ) (6.2.11)
' ST B sr)oans)
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2

At large —5 the main contribution comes from the domain
)

Og + ag + o, = 0

6 7 and we can agai% use the Tiktopoulos method

performing the substitution a5’6,7 > Aa5,6,7. As a result

dasdasda7 > A8(1 - ag - Og = a7)da5da6da7dl,

é(f“df—dé/odq— ocs,_oég)-% 5(7“’%'“5) (6.2.12)

from which follows
p(#) - mﬂj%j e
| o
P(f) - cond o

under condition (6.2.7).

(6.2.13)

Note that const in eq. (6.2.13) now

includes all the integrals over .. Taking into account the

equality f (t=0) = const

eik 7 ——— and egs. (6.2.3), (6.3.6), (6.2.8),
u 7

(6.2.13) we obtain the asymptotics of the XX-diagram

XX X) -
J[( ({) J( (f) //’Wﬂ%‘é/()J (6.2.14)

where

iﬁj " J[«/ (f/" remwt‘fﬁ (,L y/— n k)

(6.2.15)

2
, t 1is fixed and E7 << 1
m

when g2«



6.3. Asymptotics of the Nycleon-Nucleon Scattering Amplitude.

h Lighth Order

In the previous section we have considered one of the eighth
order diagrams. We now turn to the reméiqing diagrams except for
the twistéd:gpaphs described by the term (qlf+q2) in formula
(4.2.1). In these diagrams theré are three types- of noneikonal
t-paths which can contribute tc the leading asymptbtics.

In the first type we include noneikonal t-paths which have
nc common line. Except for the XX-diagram there is only one graph

with such t-paths (see Fig. 6) andbtwoﬁcrbss-symmetric diagrams

P > > ?,

1 2 o

Nw

Y

e

Fig. 6

‘The contribution to the asymptotics .of diagram 6 can be -

written in the same fcrm as (6.2.6)

2 A @ oty
]'[ (t) = — £ uzm]f (t #1)
nened § m ede m (6.3.1)

If we add the eikonal contfibutionVof diagram XX to that of"
the cross-symmetric diagrams,’then Qné  cancels and we obtain the
total eikonal contribution |

1L (e) | '
£ Jew ‘ (6.3.2)
Then, according to the egs. (6.2.6) and (6.3.1) the noneikonal

t-path contribution to the same sum has the form

By .
][,.c,,e&({) ! j/u.L (t ’H‘) (6.3.3)

~

m



In the eighthorder there are no cther noneikonal corntritutions
depending on the momentum transfers.

The noneikonal t-paths have a common nucleon line which we
attribute to the second type. Its contribution does not depend on
the momentum transfers and has been considered above for the XX-
diagram (see eqs. (6.2.8)-(6.2.14)). However, the equivalent
contributions are cancelled in the sum of all diagrams with such
t-paths.

Consider, for example, the diagram
1 a 3 4

f?, > 3 77

F& 7 77 2’ 37 #77 72
Fig. 7

whose paths (1'2'3'4') and (13'4'4) belong to the second type.
Its contributions may be taken into account with the help of
Statement 2 since, in this diagram the asymptotics may be graphi-

cally represented in the form

< (6.3.4)

The asymptotics of the graph which appears as a result of
mirror reflection of 1 and 2 vertices relative to the vertex, may

be represented as follows

1

-—

< (6.3.5)

Now let us consider cross-symmetric graphs. According to

s

Statement 2 we have to replace the common lines by the factors

(- %) to obtain



. (6.3.6)

The first term in eq. (6.3.6) corresponds to the noneikonal
contribution to the diagram which is cross-symmetric to the graph:
shown in Fig.l7.

Summing expressions (6.3.45, (6.3.5) and (6.3.6) we convince
ourSelveé'of the cancellation of the contributions from the non-
eikonal second type t-paths.

Evidently, the same arguments hold for the other similar
diagrams. To the third type we étffibgte those of f-paths which
have a common meson line. Its coﬁtribufion to the leading
asymptotics also does not depend én“theimbmentum‘transfers. In
the eighthorder there are the samé;diagfams‘with the third type
t-paths. As an example we consider only one of these graphs
(see Fig. 8), keepiﬁg in mind the validity of the results for

other similar diagrams.
' A 3 4

A L
101‘; re ?1

.....

Fl > ’ 2’/ 3 4! > ?L
Fig. 8 - C

In this diagram, the tpaths (1'434') and (12'14") are non-
eikonal and belong to the third type. Their contribution may be

written down in the form (6.2.8):
. z

oY
-

(6.3.7)
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We shall examine the behaviour of function ¢ under condition
(6.2.7). Let us choose the integration momenta so that the p-
paths coincide with +t-paths (1'434') and (12'1'4) (see Fig. 8).

According to Statement 2 the desired contribution will be equal

to the asymptotes of the reduced graph (Fig. 9), multiplied by %
Using eq. (6.1.7) when s+» we get the the asymptotics
" o,
/7 ~ .'g’_z’_zs Wjo/df O/OCS (.7('/~ O(/-oéb) (Y(/"'O-/s'(”iJ'
° ¢
(5)(/»@/5-%_0(;—0(8—0(3) . (6.3.8)

(3£ 4) L

where

go':o) Ao =~/14’“CZ [ﬁ?"‘ﬂ"(é*dﬂ%}*%_]. (6.3.9)

From eqs. (6.3.8) and (6.3.9) we obtain the expression for
2
the function ¢(¥5), defined by the relation (6.3.7)

cﬁ(ﬂn’:‘{ ): coust Z’ced} b 5(1‘_204.)5:(1 o0, =0y ~{X,)

2 (6.3.10)
£ [me <°‘5+°L€'°‘-?“°[g) + 0(9]

2
At large 25 the main contribution is due to the region
u .
o + og * o, * ag = 0. By substituting

%56,3, >)L°<a’,(,,%,9 ) (6.3.11)



we get (/Q’,» ‘e C/O‘/S' — ./{35('/" Ay~ K, ~ O(i" O(;) dog5... (‘/‘7‘/.? (?(/f}
5‘(/‘0(5“ A~ 0(4"0@9“0‘(9) —> 5‘(/—0(9) (6.3.12)

£ 2.

It then follows, under condition (6.2.1), that

f £ A
( ) = (30714'{- (j//( . Y ) ie.
: m, g
o Ji/';;, 1
6.3.13
ey | ( )

. , L
DLE) -+ conit
frn* T m

The results of the second and third sections can be expressed

1]
™
S
~3
by
<
]
X

by a single formula in which the cancellation of f&ns in the
cross-symmetric sum of diagrams is taken into account. In fact,
at large s the asymptotic behaviour of the nucleon-nucleon

scattering amplitude in the eighth order of the perturbation theory

has the form

108 e - i 2 '
J . (; {;‘Zf(;ﬂjj ]{(/;/) fmw[,("[)} (6.3.14)

where
it *nvuﬂf
4//’/:2&./ (t) = /w f ({Z'/ ) o QD{ ) (6.3.15)

The fejk(t) in eq. (6.3.14) denotes the t-dependent factor
in the main asymptotic term of the sum of the diagram shown in
Fig. 2 and 6, togethefrﬁith its croéé4§ymmetric partners, when

only the contributions of éikonal t-paths are taken into account
- ~ 2 b 22 :
the funection ¢( ) goes as £7 at £7 << 1. The first term in
m? m° o om” ‘

curly bracket belongs to the sum of the eikonal contributions

<’
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from all the graphs of the eighthorder (compare with eq. (6.2.1)).
2

If the ratio £7 is small, one can neglect the dependence on
m
momentum transfers, and if E—?-<<1
m

| ﬁi} ~ _ congt
\/U,k_(t ml)" QU‘(O) B Joee ) (6.3.16)

gives the result
-5 S
(&) g ( 1 1 - XA Loust
j[ = ‘23 o il (2P Az, e Roox(iil}*:n—?(s 3.17)
¢ o <S8 4! (am) 3.1

t - fied,
f‘L
m 4 1

To conclude this section it should be stressed that only the
contributions of various t-paths corresponding to zeros of the

function f(a) in eqs. (6.1.4)-(6.1.7) were taken into account.

6.4. Asymptotics of the Nucleon-Nucleon Scattering Amplitude.

-Higher Orders

In sec. 6.3 we considered the high-energy behaviour of the
scattering amplitude in the eighﬁiordér in powers of g. We showed
that in this order there exist graphs which give the noneikonal
contributions to the asymptotics of the amplitude of the same order
in s as the eikonal one. However, it has been shown/27/ that
higher orders in powers of g there exist graphs in which the
noneikonal asymptotic term dominates the eikonal one. A typical

example of these graphs with noneikonal paths of the fipst type

(see. sec. 6.3) is illustrated in Fig. 10.
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'/4 :./7(Z+d

Gy

In this diagram, just as in the XX-diagram there are two
noneikonal <t-paths with length equal three: (12'3'4) and (1'234').
To studylits asymptotic behaviour we use the same method as in;sec.
6.2, i.e. Qe direct the p-patﬁs aldhg the t-paths and replace
the momenta as in (6.2.4). The asymptotics of the graph wifh (2+1)
meson lines (of the (22+25 order in powers of g) shown in Fig. 10

coincide with the asymptotics of the graph shown in Fig. 11 up to
2 .
a factor (37)2 2

<-?,

2

Moreover, the substitution t -t £7’ in the graph 'in Fig. 11

should be done (c.f. eq. (6.2.5)). The dotted-lines of this

2
u_

5 .
These lines are due to the meson lines (see Fig. 10), which do

reduced graph correspond to the virtual particles with masn

not belong to the v{—paths

(. . (-’»I" /7?. \ 4 &1 4 C 4 i
/ ,(/C . /\)/ koo = — - = A ‘Z)’ e () (6.4.1)
2pte) =~ Do )= s = i e
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Under the condition (6.2.7) one may put t=0 in the asymptotics

of this diagram. Thus, using eq. (6.1.7) for the main asymptotic
term of the graph of order (28&+2) considered above, we get the

following expression

g s )l 1502

S? / L(?-1)

g(/ Zoc—Z/S)Mo(mzec 2/5)“ l>3 (6.4.2)

In formula (6.4.2) the parameters o; correspond to the wavy

meson lines, Bi to the dotted-lines and Xi to the nucleon lines.

Apparently the region Eai=0 does not give the essential contri-

bution to the integral (6.4.2) at 97 >> 1 X/. Hence
y
- e+1 [y st
78 (e ):,_ ln & Gwst L1273
¢ (me)& % (6.4.3)

In the case of order (2%2+2) in powers of g whcih we
consider above, there exist the graphs with noneikonal t-paths

of the third type, which have the form

X/This can be shown by calculating the power of A appearing

in the numerator when the substitution is performed (c.f. egs.

(6.3.12), (6.3.13)).



In Fig. 12 there exist two t-paths of length three, name by
(12'1'3) and (1'323'), which lead to the asymptotics &ﬂ% . t'he
method used above in sec. 6.3 for the eighthoraer graphi gives
in this case an equation similar to eq. (6.4.3). The noneikonal
t-paths of the second type, whose contributions cancel in the sum
of the eighth order graphs, now give tHe nonleading asymptotic terms.

All the graphs of order (22+2) fbelong either to the type
described in thié section and lead to the asymptotics of the form
(6.4.3.), or have t-paths of length greater than three and
consequently do not dominate in the asymptotic region s-+e.
Taking into account the cancellation of 2ns when graphs are
summed with their cross-symmetric partners, we get the follo@ing

asymptotic expression for the amplitude f(22+2) in order (28+2)

in power of g

/(2 +2) y ¢
J ads
\f’ = - 1)€-2 £23.
§° (mY) ‘
S o '
t;fxed (6.4.u4)
ﬁ),_ L& |

Note that the eikonal formula (6.2.1) when t=0 - in the same

order of g gives the following result

(20+2) | Cengt
J(i (t=0) e
el S » (6.4.5)

Thus, if one neglects the twisted graphs one gets for the ratio
of the noneikonal to the eikonal contributions, to the amplitude

of the given order, the result

‘%« fl) | /AL / ¢ -3
J ek = ot (“’1 /23 (5.
J[(H+QJ | m m 23 (6.4.6)
" Saw /
el 1 - Hved
18 .
s
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From eq. (6.4.6) it follows that in the region

* 1 _
{—= oo ’ //;17- « [ ) {~m , T =0 (6.4.7)

the eikonal part of scattering amplitude dominates the noneikonal
one, and eq. (6.2.1) gives the main asymptotic terms in each
order in powers of g2. On the other hand, in the region (6.4.7)
it follows from eq. (6.4.6) that when s>>m? the noneikonal
contributions dominate the eikonal ones.

Thus the investigation of the ladder type graphs in the scalar
model demonstrates that the eikonal formula corresponds to the
account of the t-paths, coinciding with nucleon lines. In this
case the "leading" particles, carrying large momenta, are nucleons
and do not change their type in virtual processes.

The noneikonal contributions to the amplitude are due to
processes with alteration of the leading particles type, i.e.
with the large momenta transfer from nuecleons to mesons and vice
versa. Then the important question arises about the significance
of twisted graphs in which the final momenta Q and q, are
exchanged (compare Fig. 1 and eq. (4.2.1)).

The possibility of large momentum being carried by a meson
establishes the fact that the corresponding contribution may

dominate the eikonal one in the same order of the coupling constant.

6.5. Twisted Eikonal Graphs and Quasipotential Structure

In this section we shall consider these diagrams in detail

and will also study the reconstruction of the asymptotic quasi-



potential from them/38/. To the second order of perturbation

theory only the twisted graph

fr > - ?1
Pa\" > ?1
Fig. 13
exists with the known asymptotics %.

To the fourth order we have already two such diagrams. One

of them (see Fig. 1u4)

fr > > ?2,

Pl. > ‘ ” ?4

Fig. 14

possesses weaker asymptotics -1—?— than the corresponding nontwisted

s
graph. The other (see Fig. 15)

(Ce 9
Fig. 15

has the'asymptétics &%ﬁ that have already resulted in the

breaking of the eikonal representation for the sum of generalized

ladder graphs in the fourth order/33/. We recall trat noneikonal

contrlbutlons (the p0551b111ty of whlch was. p01nted out pre-

VJ.ously/2 /) appear only in the elghﬂmorder of perturbatlon theory.
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In the subsequent order we have six twisted diagrams. The

diagram drawn in Fig. 16

F‘f > > 71,

Fig. 16

possesses the weakest asymptotics.

The next pair of graphs

f» B . g ff /% > ?ﬁ

pr = g - 4,

Fig. 17

in the limit s+« with t fixed, behaves as ln; i.e. they

R o . -
have the same asymptotics as nontwisted graphs of this order.

The diagrams in Fig. 18

P = G p> = 91

Fig. 18
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have the asymptotics % which is stronger than that given by the

eikonal formula.

Finally, the last graph in the sixth order

T, 9/

) el
¢ - g
Fig. 19

£n28
behaves like

The consideration of the first six orders allows one to

conjecture that in the higher orders the diagrams of the shape

illustrated in Fig. 2¢

with asymptotics g will dominate. Oniy if the leading
asymptotic terms in each order of perturbation theory are summed
up, as .is usually done when deriving the eikonal represgntation,

does one get - the following asymptotic expression for the sum F

of twisted graphs:

)[4—' : N jj SoLy,(t‘)

t’f’lK(’(Q (6.5.1)
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gt g VB
d.é ':——‘{'f- IJ—_—-. S

) & /—'é@m'iﬁ //_ 4m® (6.5.2)
T

With such a summafion, the coefficient for sa(t) and the ex-

pression for a(t) are computed only to an accuracy of gz. How-
ever, from (6.5.1) and (6.5.2) it does not follow that within the
framework of the scalar model the sum of ladder graphs leads to
the proper eikonal representation of the Yukawa potential scattering.
Indeed, as has already been mentioned, the twisted graphs are due
to the identity of scattering particles. Within the framework
of quasipotential scattering theory the particle identity neces-
sarily implies the exchange forces in two-particle interaction as
it holds in quantum mechanics.

The standard method of constructing the local quasipotential

/3/ can be generalized in different ways

by perturbation theory
when the exchange forces are present. Here we will briefly des-
cribe a method based on introducing the normal and exchange

interaction parts through the expression

.V(KBP)‘C) = y/(filal“c) - (7{(!;79)"6) (6.5.3)

Here the quasipotential scattering amplitude is represented by

the sum of two terms/3g/

T'(sspye) - Gls;pik) + HGPoE)

(6.5.4)
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satisfying the system of linear equations,
| | s
c\ (¥) (¥ #) [C
= + X
H H X y H (6.5.5)

where the symbol "x" means integration
dag 1
/TG Tm g e

For a scattefing of two identical particles we have

AP [ 2 Yie. 5.

H(s;pye) - PYs;p-e)=J(sipre)

4 .
His.p 0 <= PGP, e)-GE;0-C)C6,-px)

(6.5.6)

A
where P is the transposition operator for coordinates of

the two particles. With this, the function G obeys the

conventional eqﬁation by Logunow-TavkhelidzeX/

G = {/‘* 7*@' E | (6.5.7)

/ : - .
*Eq. (6.5.7) follows from (6.5.6) if one takes into account

the fact that in the case of identical particles the integration

over intermediate two-particle states contains the statistical

factor —%-., , and %’KG- = .%x-H) ny = jff,(G. - ’ﬁ({/xc__)
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Equation (6.5.7) can be used to construct the local quasipotential

f/ over the given perturbation series defining the amplitude & -

g - [61,
Y - [e1-[4~7. 1,

Y, = [0, « % T[4 < 41Ty .35

&

and so on.
The symbol [...] means the "local" continuation of the mass
shell E2 = p2+m2 = k2+m2 of an arbitrary function A(E;p,k)=A(s,t,u,$;

where

€= 4ET t = —(PmE)T u=-(pre)

Cf“: 1021_‘ kll,

In this notation we have

[A Get,u,8)] = Alst, %o —5-t,0)

(6.5.9)

The quasipotential constructed in this way makes it possible, in
turn, to reconstruct the initial scattering amplitude on the mass
shell. We should stress, however, that perturbation theory defines
the amplitude T as a whole but not the G and H parts separa-
tely, i.e.

In((,t) =[G5M(E;p,t) + H(E; "P,'C)]

(6.5.10)
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Defining

A5t - [G..(Ep.ic)]
B}m(ﬁ,«u): [th (E; {71(,)] - | (6.5.11)

which, in the case of scattering of identical particles, are
connected by the symmetry relation
Bl (st)es B (cu) ot 1
AT , no Q‘ > K

2 (6.5.12)

we have

Toet) = R0+ Bolew) o,

In generél, the sblittingi(6.5;13) is not unique. As an additiénal
condition determiniﬁg this splitting one may employ the analytiéal
properties. In particular, one may assume that the quantities

F n(s,t) and B n(s,u) are analytic functions of momentum transfer

2 2
with singularities at t>0 and u>0 respectively, and obey the
nonsubtracted dispersion relation.
"In this paper, in which the main task is to reconstruct the

local quasipotential byAperturbation theory in the?regiOh of

asymptotically high energies, we will formulate the following

condition:
an(s,t) ' - is defined by the leading asymptotic
: ; term of the ampiitudé TZAA in the
region s+, t-fixed (the forward
scattering).
Bgn(s,u) - - is defiﬁédyby the léadin%‘asymptotic

term of the amplitude T2n in the
region s-»*, u-fixed (the backward

scattering).
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The following Table is an example of the method of construc-
ting thre local quasipotential prodeeding from the set of twisted

and usual eikonal graphs on the basis of the conditions stated

above.

Normal graphs

F—contributions

B—-contributions

/’l ey e ) ?4

Pu s - Qu
p g
e

o9 ;—-——-—L...__),. ?}J

i
-yt T

g ]

0(¢)
0(%)
g ()

Twisted graphs

F~-contributions

B-contributions

Z:::]::ié%

94

LT
Pa

G4
P 9+

o(¢)
o(%)
fréz_s 6




Here the following notation is used:
7 corresponds, in tne Language oF quas’potentlal
431 2 gpaphs, to the 31ng1e scaLterlng on Yukawa
L A
i

potential at high energles and fixed momenta transfer

? J oA? ICy
(] )Learre) ™ i

is the two-dimensional contraction corresponding to the double

scattering on Yukawa potential

o

St;L

-Q‘ S NPT N e

that corresponds to the contribution to scattering from the
exchange by'nucleon-antinucleon rairs.
. A g ’
' The action of operator P turns, obviously, into the
substitution
(6.5.14)

Pa, = Plp-r) — (prr),

Summing the usual el«ongl and twisted grapbs we get for

the scattprlng amplltude

T=(L-P [?/? -9 F B o Q;E Q s



- 87 -

Making use of the above procedure, the local quasipotential can

now be reconstructed according to perturbation theory

Y -1 =1

{<fhmd (6.5.16)

g E X M X d % i _f_\‘/}:z (6.5.17)
50

and so on.

As has been indicated above, Y2 represents the conventional
Yukawa potential in the phase of eikonal representation. The
relation (6.5.17) define the corrections of non-Yukawa type which

orginate from the graph in Fig. 15. In momentum space this

correction to the quasipotential is given by the formula

y( 2) &A.S ﬁA/ O(llC_L
7 2m)¥d (£]+m™)[(A ) em> ] (6.5.18)

where the replacement A2 = -t > g2 should be performed after
integrating. -
Introducing oa-representation we obtain from (6.5.18)

" Ln S ofoc
2
9(7) //(,{77 [\ 3 04(1_0(')?2_,, m> (6.5.19)

The representation (6.5.19) allows one to calculate the

quasipotential in the coordinate representation

Y lus (o, e ‘7" ) |
G0:) - e B faa Jilg SETg e

# i :
Z ins f{ szt) (6.5.20)
,?//Zr) S 2 | '
We see that Y is asymptotically smaller than the leading

term (Yukawa potential) of quasipotential independent of s.



However, even'in the fourth order Yu givgs larger contribution
to the scaftéring émplitude than thé'éééénd iteration of the
Yukawa potential that results in the Bfééking of the eikonal
formula. At short distances this potential behaves as &EE s, l.e.
it is more singular than the Yukawa'potential. The connection of
nonéikonal terms with the increasing of singularity of the quasi-
potential corrections was pointed out’pre§i§usly/26’u0/.

| We note that the method described above can be applied to
calculations of the asymptotical quasipotenfial in higher orders

of perturbation theory.

§7. CONCLUSION

In this survey we have attempted “to familiarise: the reader
with the mainAideas-qnd~e1ements:6f fhe matﬁemétiéalafofmalism,
which underlie straiéhtFline path métﬁoé-fthuantum field theory.
Thepe are mahy”éeparate papers devoted to the discussion of the
result obtained with the aid of this method. It is hoped that
presentating them in the form of a survey has helped'fhe reader
to understand moreﬂclear}y'the essencé'of fhe straight-line path
concept. |

One mayrbelieve that further devélopment of the‘séraight—line
path method will ailow}one to enlarge fﬂé;bangé of its applications
and make 1t one Qf‘theveffective toois df §uanfum\fie1d.theory.

The authots are’deepiy indebted to N,N Bégolubov for his
interest in this work and for numergﬁé‘frﬁitfu1~discussions. One

W

of us‘(A.N;S.) express his thanks fblP;Bf.'Laurikéinen for

hospitality and stimulating conversééiohé;
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