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Abstract
The paper is devoted to the investigation of the structure of snoneikonals contributions to the scattering
amplitude and its connection with the asymptotic quasipotential.

Introduction

In order to reproduce correctly the main features of high energy particle scattering
at small angles one can begin from the investigation of the type of interaction
potential. In this connection the study of the properties of the local quasipotential
and the foundation of the eikonal representation in quantum field theory are of
great interest [1, 2].

From studies of the eikonal problem, the Dubna group has formulated the
»straight line path approximation» [1, 3]. The essence of this approximation lies
in the assumption that the large momentum transfers are suppressed in each high
energy particle interaction. Consequently, there is a tendency for the large momenta
of the particles in the collision process to be conserved (»inertia» of large momenta).

The type of particles transferring large momenta may change during the inter-
action process according to the empirical regularities observed in the inclusive
reactions. For example, in the collision of fast nucleons it is necessary to take into
account the possibility of radiation of hard mesons which carry away the greatest
part of the initial nucleon momenta.

Generally, to obtain the eikonal formula by summation of the perturbation
theory series, one assumes that the initial particles predominate in transferring
large momenta [4]. The results thus obtained are in essence equivalent to those of
the »kikj-approximation» [5]. However, the existence of virtual processes with the
alteration of the »predominant» particle type must lead, in general, to the violation



152 S. P. Kuleshov, V. A. Matveev, A. N. Sissakian, M. A. Smondyrev and A. N. Tavkhelidze.

of the orthodox eikonal representation. The possibility that such extra terms might
appear in the asymptotes of some diagrams was first noted by Tiktopoulos and
Treiman [6].

In this paper we study the structure of the »noneikonal» contribution to the
two nucleon scattering amplitude described by a ladder-type diagram sum, without
taking into account radiative corrections and vacuum polarization effects in the
scalar model. It will be shown in particular that there exist in the sum of all ladder-
type graphs of the eighth order, terms which violate the orthodox eikonal formula
but disappear in the limit u4/m — 0, where x and m are meson and nucleon masses,
respectively. These terms are associated with the contribution to the effective
quasipotential corresponding to the nucleon-antinucleon pair exchange. We then
study the so-called twisted graphs which violate the eikonal formula no further
than in the fourth order. In addition the corresponding correction to the quasi-
potential is investigated.

1. High energy asymptotes of Feynman graphs and modification of the particle
propagators

We now consider the scattering amplitude of two scalar nucleons in the model
Zime = ¢: ytypd: neglecting the radiative corrections and closed nucleon loops.
This amplitude is represented as the sum of the diagrams in Fig. 1 where p, and p,

Py > q,
-F

P, — Q,

Fig. 1.

are the momenta of the incoming particles and ¢,, ¢, are the momenta of the out-
going particles.

We shall use the representation for F in the Chisholm form [7], and Tiktopoulos’
results and concept of the ¢-path [8]. Note that similar results have been obtained
elsewhere [9].

When the momentum transfers in graph 1 are a zero, i.e. p, = ¢, and p, = ¢,,
we shall call a set of lines whose propagators depend on the momenta p; a p-path.
Thus in the graphs F there are two p-paths each forming a continuous arc. Note
that each p-path is a t-path according to the definition. However the configurations
_ of the t-paths depend on the concrete arrangement of the integration momenta while
the t-paths are the topological characteristics of the given graph. In graphs being
studied the integration momenta can be chosen so that the p-paths will coincide
with any pair of ¢-paths not forming a closed loop.

The following statements can then be proved [10].
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Statement 1

Let the given graph be such that the contribution to the leading asymptotes is due
to the pair of i-paths having no common line. Then the asymptotes of this graph will
not be changed if the integration momenta are placed so that the i-paths coincide
with p-paths and the following modification of the propagators depending on
external momenta is performed

1 1
ke +2pZhi—m +ic  2p ki +ic’

(1.1)
i.e. we neglect masses and products of integration momenta.

Statement 2

Let the given graph be such that the contribution to the leading asymptotes is due
to a pair of {-paths having a common line. Also let the integration momenta be
placed so that p-paths coincide with #-paths. Then the asymptote of the graph is
equal to the factor (4-1/s) multiplied by the asymptote of the reduced graph obtained
when we short-circuit the common line. We choose the plus sign when the external
momenta in this line have the same direction; if they do not, we choose the minus
sign. Dealing with the reduced graph we can use Statement 1. As is well known,
the eikonal representation for the scattering amplitude

is . o(u
fr~ [dzxLe“‘ﬂAl (e Rl l),
(2m) (1.2)

s=(p + p)t—> ©, t=(p, —q)* Iis fixed

includes the contributions of the ¢-paths, coinciding with nucleon lines.

Previously [6] it has been pointed out that in diagrams of higher orders in powers
of the coupling constant ¢ (beginning from the 8-th) it is necessary to take into
account other {-paths whose contributions may be comparable with those of the
eikonal #-paths. We begin our study of the noneikonal contributions with the diagram
shown in Fig. 2.

1 2' 3 4 %

Fig. 2.
In this graph which we’ll call the »xx-diagramy» there exist four Z-paths, (1234),

(1'2'8'4’), (1234") and (12'3'4), of the same length: three. It is then necessary to
calculate a sum of contributions from the following pairs of i-paths:
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(1234; 1'2'3'4"), (1234; 1'234’), (12'3'4; 1'2'3'4"), (12'3'4; 1'234"). (1.3)

Pairs (1234; 12'3'4) and (1'2'3'4’; 1'234') have no influence upon the asymptotes
since these I-paths form a closed loop. All pairs of {-paths (1.3) lead to the same
asymptotic dependence on s, namely In s/s®. Thus, we are interested in dependence
on £.

The contribution to the xx-diagram from the pair (1234; 1'2’3'4’) is included in
formula (1.2) and will be indicated

Ins (xx)
— JE0. (1.4)

We will now find the contribution from the f-paths (12'3'4) and (1'234'). Let
us choose the integration momenta so that these paths coincide with the p-paths.
Then, according to Statement 1, we can modify propagators of lines forming the
t-paths. We can also perform the substitution of integration momenta

b = k (L.5)
i —> T Ky, .
U

which results in the replacement of nucleon lines by meson ones

2
D...(k ;) - = S o,

B~ mt e

(1.6)
2

7
Du(py — 3 — k) —

m2

B ) i
D, (pl—ql)—n; — k|, ie. t_>t'r_r;é'

The propagators corresponding to the #-paths will be multiplied by u/m. Because
of this fact we may consider all the lines of {-paths as modified nucleon lines. As
a result we obtain a diagram of the same type as in Fig. 2 but the p-paths are
directed along nucleon lines.

1 2' 3 4
T 2 3 & %

Fig. 3.

The contribution we are describing is therefore of the form
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Ins
83 f sllo)nelk
y (1.7)
ot fﬁfi"( A
If the particle masses satisfy the condition
y* ¢
<L <1 (1.8)

the contribution of noneikonal i-paths will be less than that of the eikonal ones.

We now have only to consider the contribution to the asymptotes of the xx-
diagram from the pair of i-paths (1'2'3'4') and (12'3’4). The remaining pair (1234)
and (1'234’) (see (1.3)) evidently make the same contribution. The {-paths (1'2'3'4")
and (12’3’4) being short-circuited, we obtain the reduced graph in Fig. 4. It then

p1 q1

p; qa,
Fig. 4.

follows that the contribution of these {-paths does not depend on momentum trans-
fers, i.e. it can be represented in the form

Ins 1 u?
?/-1_2"5 ) (1.9)

Let us find the form of the function ¢(u2/m?) if the condition (1.8) is satisfied. For
this purpose choose the integration momenta in xx-diagram so that the p-paths
coincide with the #-paths (1'2'8'4’) and (12'3’4). Then using Statement 2, we obtain

---the desired contribution which is equal to the reduced graph asymptotes (Fig. 5)
multiplied by 1/s.

(ds) (Ok) (d;)
ks ki+ky ket ':2‘* k3

‘e >q,
p, -k (ex) Kk, ~ky(d2) '
Kylcly K3(0) =F
Py g -
: P, K, g,k z
(dl3) {ay
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When s — oo, the asymptotes of F' will be of the form

Ins
F' =~ o const fdal v dagd(l — o — o)0(1 — g — ) ¢
" | ¢, (1.10)
. — Oy — g — Oy — Og — Kg) — =,
° ’ (9ot + ho)ﬁ)
where
go=0
(1.11)

m2
hy = _,“2[;5 (0‘5+0‘s+“7)+0‘a+0‘9] Co.

From eqgs. (1.10) and (1.11) we get the expression for the function ¢ defined by
the relation (1.9).

2 8(1 — %y — Oty — Og —
4,(5&-2) — constf{da} 78(1 — Zéa) - (mz % T % = g T %) (1.12)
f [qu (o5 + g + 0q) + g + g
from which follows
2 2 2
¢(:?) = const i In 1’;—2 (1.13)

under condition (1.8). Note that const in eq. (1.13) now includes all the integrals
over «;. Taking into account the equality fex(t = 0) = const/u® and egs. (1.4),
(1.7), (1.9) and (1.13), we obtain the asymptotes of the xx-diagram

f(XX) — {fi’l(l:) fi:::l)elk } (114)
where

2 /‘2 Iu2
FEalt) = f ﬁ‘i"( 2) + const f§(¢ = 0) o In e

when s — o0, ¢ is fixed and u?/m? < 1.

2. Asymptotes of the nucleon-nucleon scattering amplitude. Other diagrams
In the previous section we have considered one of the eighth order diagrams. We
now turn to all the remaining diagrams except for the twisted graphs discussed in
section 3. In these diagrams there are three types of noneikonal #-paths which can
contribute to the leading asymptotes.

In the first type we include noneikonal {-paths which have no common line.
Except for the xx-diagram there is only one graph with such f-paths (see Fig. 6)
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P, q,

Fig. 6.

and two cross-symmetric diagrams. The contribution to the asymptotes of diagram
6 can be written in the same form as (1.7)

Ins u? “
S enlt) = = cross f& (t or] B (2.1)

If we add the eikonal contribution of diagrams xx and 6 to those of the cross-
symmetric ones, then In s cancels and we obtain the total eikonal contribution

1
) Jex(?). . (2.2)

Then, according to egs. (1.7) and (2.1), the noneikonal f-path contribution to the
same sum has the form

1 2 2
fnoneik(t) = 8_'3 %2 eik (t 7—/:_112) . (2.3)

In the eighth order there are no other noneikonal contributions depending on the
momentum transfers.

We attribute the noneikonal I-paths, having a common nucleon line, to the
second type. Their contribution does not depend on the momentum transfers and
has been considered above for the xx-diagram (see eqs. (1.9)—(1.14)). However the
similar contributions are cancelled in the sum of all diagrams with such #-paths [10].

To the third type we attribute those {-paths which have a common meson line.
Their contribution to the leading asymptotes is also independent of the momentum
transfers. In the eighth order there are some diagrams with the third type #-paths.
As an example, we consider one of these graphs (see Fig. 7), keeping in mind the
validity of the results for other similar diagrams.

1 2 3 4
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In this diagram the Z-paths (1'434') and (12'1’4) are noneikonal and belong to
the third type. Their contribution may be written in the form (1.9)

Ins 1 @ ( qu)
& w2 %\ (2.4)
Using the same technique as in section 1 we obtain under condition (1.8)
M i
<15(772) = const rp (2.5)

This leads to the following expression for noneikonal contributions in the 8-th order

1 [u? u? const e
flao)neik = 8_3 {%2 feik (t ;;:2) + ,‘2 ¢ (;n— ‘ (2‘6)

The fex(t) in eq. (2.6) denotes the ¢t-dependent factor in the main asymptotic term
of the sum of the diagram shown in Figs. 2 and 6 together with its cross-symmetric
partners, when only the contributions of the eikonal paths are taken into account.
The function D(u?/m?) goes as u?/m?® at u?/m? < 1. When the ratio u?/m? is small
one can neglect the dependence on momentum transfers. Then if ¢/m? < 1

ut const
feik ¢ ”7&5 zfeik(o) = ”2 ) (2.7)
which gives
o o a ~ const e (2.8)

<t

Similar investigation of the diagrams of higher orders shows that only {-paths of
the first and third types contribute to the leading asymptotes. The result will be
(compare with (2.8))

o

g+ 2const
Je o~ TRt P23 (2.9)
£-E1X .
<
Note that when ¢ = 0 the eikonal formula (1.2) gives the following result:
ol 2
- f&H(t = 0) = const R (2.10)

Thus if one neglects twisted graphs one gets for the ratio of the noneikonal
and eikonal contributions to the amplitude of the given order, the result:
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Sl prfa\?
e |, ~ const mi\mz] >3 (2.11)
: t-fixed
a<

From eq. (2.11) it follows that in the region

2
s»w,ﬂ—z<<l,s~m2,t=0 (2.12)
m

the eikonal part of the scattering amplitude dominates the noneikonal part, and
eq. (1.2) gives the main asymptotic terms in each order in powers of g2. On the other
hand, it follows from eq. (2.11) that, in the region (2.12), but 8 >> m?, the noneikonal
contributions dominate the eikonal contributions.

3. Twisted eikonal graphs and quasipotential structure

We have shown above that the investigation of the ladder type graphs in the
scalar model demonstrates that the eikonal formula corresponds to the account of
the #-paths, coinciding with nucleon lines. The predominant particles, carrying large
momenta, are nucleons in that case and do not change their type in virtual processes.

The noneikonal contributions to the amplitude are due to processes in which
the predominant particle type is altered, i.e. in which large momenta are transferred
from nucleons to mesons and vice versa. The important question then arises as to the
significance of twisted graphs in which the final momenta ¢, and g, are exchanged
(see Fig. 1). The possibility of large momentum being carried by the meson leads
to the possibility that the corresponding contribution may dominate the eikonal
one in the same order of coupling constant. In this section we shall consider these
twisted diagrams and also study the reconstruction of the corresponding quasi-
potential.

To the second order of perturbation theory the only twisted graph which exists
is shown in Fig. 8 with the known asymptote 1/s.

P =q,
)
P, >q,
Fig. 8.

In the fourth order we already have two such diagrams. One of them possesses
a weaker asymptote (1/s%) than the corresponding nontwisted graph. The other (see
Fig. 9) has the asymptote In s/s that results in the breaking of the eikonal representa-
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tion for the sum of generalized ladder graphs in the fourth order. (Recall that the
noneikonal contributions of the previous sections appear only in the eighth order
of perturbation theory).

i X )
p, > q,

Fig. 9.

In the subsequent order we have six twisted diagrams. The diagram drawn in
Fig. 10 possesses the strongest asymptotes [11] and behaves like In2s/s.

. X )
P, = >q,

Fig. 10.

Consideration of the first six orders allows one to conjecture that in the higher
orders the diagrams of the shape in Fig. 11 with asymptotes g** In*~'s/s will domi-
nate.

p1—= e >q1

Py ; >,

Fig. 11.

If only the leading asymptotic terms in each order of perturbation theory are
summed, as is usual when deriving the eikonal representation, one obtains the
following asymptotic expression for the sum F of twisted graphs:

2

~ o(s) .
F:E::d ~ —i (2 §), (3.1)
4m?
T A
aft) = — 1+ . (3.2)

- In
87 v/ — t(am? — ) Vl

-8
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With such a summation, the coefficient for s*® and the expression for «(t) are
computed to an accuracy of ¢g* only. However, it already follows from (3.1) and (3.2)
that within the framework of the scalar model the sum of ladder graphs leads by
no means to the eikonal representation proper to the Yukawa potential scattering.
Indeed, as has already been mentioned, the twisted graphs are due to the identity’
of scattering particles. An identity of particles implies in general the presence of an
exchange force in two-particle quasipotential as well as in quantum mechanics.

The standard method of constructing the local quasipotential by perturbation
theory [12] can be generalized in different ways when the exchange forces are
present. Here we will briefly describe a method in which the normal and exchange
interaction parts are introduced through the expression

V(s; p, k) = G(s;p — k) + V(s; p + k). (3.3)
The quasipotential scattering amplitude is represented by the sum of two terms [13]
T(s; p, ky = G(s; p, k) + H(s; p, k), (3.4)

satisfying the system of linear equations

(#) = 0) = (ig) < () o
where the symbol »x» means integration
1
Vm? 4 g2 m* + ¢* — E?
For a scattering of two identical particles we have
HUs;p + k) = PEG(s; p — k) = Gs; p + k),
H(s; p, k) = PG(s; p, k) = G(s; p, — k) = Gls; — p, k),

(3.6)

where P is the transposition operator for the coordinates of the two particles. With
this, the function G obeys the conventional equation by Logunov-Tavkhelidze!

G=%C+F x G (3.7)

Equation (3.7) can be used to construct the local quasipotential <G over the given
perturbation series defining the amplitude:

cﬁ = [G,),

G = [64] — [G, x G, (3.8)
G = [Gg] — [G, T2 X Gl — [G, X G,] — [G: X G, x G,)
and so on.

1 Egq. (3.7) follows from (3.6) if one takes into account the fact that for identical particles the integration
over intermediate two-particle states contains the statistical factor 1 2! and Q? XG =9 xH,

f@xH U xG = P(C()xG)
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The symbol »[...]» means the »local» continuation of the mass shell
B = p® 4+ m? = k* + m? of an arbitrary function A(E; p, k) = A(s, ¢, u, 6), where
s=4E, t=—(p— kR u=—(p+ k2,
é=p?— k-
In this notation we have
[A(s, ¢, u, 6)] = A(s, ¢, 4m? — s — ¢, 0). (3.9)

The quasipotential constructed in this way makes it possible, in turn, to reconstruct
the initial scattering amplitude on the mass shell.

We should stress, however, that perturbation theory defines the amplitude 7'
as a whole but not G' and H parts separately, i.e.

T2n(8, t) = [Gzn(E; B k) + H2N(E; P, k)]‘ (310)
Defining
an(s, t) = [Gzn(E; P, k)]’

(3.11)
an(s, u) = [HZn(E; p) k)]’

which are connected in the case of scattering of identical particles by the symmetry
relation

Fan(8, t) — Ban(s, u) at t-—>wu, (3.12)
we have
T2n(8, t) = Fau(s, t) + Baa(s, u). (3.13)

In general, the splitting (3.13) is not unique. As an additional condition fixing this
splitting one may exmploy the analytical properties. In particular, one may assume
that the quantities Faa(s, ) and Bi.(s, #) are analytic functions of momentum
transfer with singularities at ¢ > 0 and u > 0 respectively, and obey the non-
subtracted dispersion relation.

In this paper, with the main task of reconstructing the local quasipotential by
perturbation theory in the region of asymptotically high energies, we will formulate
the following condition:

Fan(s, t) is defined by the leading asymptotic term of the amplitude T2, in the
region s — oo, f-fixed (the forward scattering).

Bia(s, w) is defined by the leading asymptotic term of the amplitude Tz, in the
region s — oo, u-fixed (the backward scattering).

Table I illustrates the method of constructing the local quasipotential proceeding
from the set of twisted and usual eikonal graphs on the basis of the conditions stated
above.
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Table I.

Normal graphs F.contributions B-contributions

Ins Ins

Twisted graphs F-contributions B-contributions

92
1 “
ol— P
8
51

92 1 In
8 8 g !
T
92
gt Ins g Ins P i ;
8 8
h

In Table I the following notation is used:

{HH

Pq

_
4+

corresponding, in the language of quasipotential graphs, to the single scattering on
the Yukawa potential at high energies and fixed momentum transfer;

N f d%k,
(&, + w4, + k) + u]

is the two-dimensional contraction corresponding to the double scattering on the
Yukawa potential;
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dzlcl
~f 2 2 ) 27
(kJ_+”)[A_L+kJ_) + m”]

which in turn corresponds to the contribution to scattering from the exchange by
a nucleon-antinucleon pair.

The action of the operator P obviously turns into the substitution
PAa, —PB(p—k), > (p+ k), (3.14)

Summing the usual eikonal and twisted graphs we get for the scattering ampli-
tude:

T=(1+P) 921+g‘i-;-‘ H +g“£sf () +... (3.15)

Making use of the above procedure the local quasipotential can now be re-
constructed by perturbation theory

q?,: I -».w*} (3.16)
- T =] -

s1Ins
> > g ’
t-fixed 8

(3.17)

and so on.

As has been indicated above, G, represents the conventional Yukawa potential
in the phase of eikonal representation. The relation (3.17) defines the correction of
the non-Yukawa type which originates from the graph in Fig. 9. In coordinate space
this correction to the quasipotential is given by the formula [11]

¢ Ins K,(2mr)
Gy(r) = e 2 i (3.18)

8 r

We see that <G, is asymptotically smaller than the leading term (Yukawa
potential) of the quasipotential independent of s. However, even in the fourth order,
G, gives a larger contribution to the scattering amplitude than does the second
iteration of the Yukawa potential that results in breaking of the eikonal formula.
At short distances this potential behaves as Inr/r i.e. it is more singular than the
Yukawa potential. The connection of non-eikonal terms with the increasing of
singularity of the quasipotential corrections was previously pointed out [14].
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Note that the method described above can be applied to calculations of the
asymptotic quasipotential in higher orders of the perturbation theory, including
corrections from the noneikonal terms of previous paragraphs.

Thus, noneikonal contributions to the amplitude appear when changing the
sort of predominant particle, i.e. when allowing for the processes with large momenta.
transferred from nucleons to mesons and vice versa. Such a possibility results in
the contribution from twisted graphs dominating the eikonal ones in the same
order of the perturbation theory. This leads to the fact that the local quasipotential
in the region of high energies will be represented by a power-series in the coupling
constant, each term of which gives a correction to the Yukawa interaction. It should
be stressed again that in spite of their smallness these corrections are necessary to
find the correct asymptotes of amplitude.
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