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Yka3biBaeTCd H8 BO3MOXHOCTb CYWECTBOBAHHMS MPOCTOrO COOTHOLIEHHS,
CB3bIBAKOIIETD ACHMITOTHYECKDE MOBeAeHHe CpefHe# MHOXXECTBeHHOCTH C Moi-
HEIM CeHeHHeM B3aNMOAENCTBHS M NapaMeTpoM Hak/AOHa RHPPAKUHOHHOTO MHKA.
DrIBOAbI ONHPAIOTCH HA pe3ynbTaThl B NPeACTABIEHHS O AHDPAKHHOHHBIX NMPOLECH
cax NMpH BHLICOKHX 3HEPTHsX, OCHOBAHHbIE HA MOJE/H KOTePeHTHHIX COCTOAHMA M
HAa MOJeNndX TEOpHH Mo B NPHGAHKEHHH NPAMONHHEeHHBIX NyTei.
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On Estimate of the Average Multiplicity Asymptotic
Behaviour and Diffraction Mechanism of Particle
Interactions at High Energies

In this note a definite simple relation, which connects the
average multiplicity asymptotic behaviour with the total cross section
and the elastic diffraction slope parameter, is r=ceived. The authors
suppose the picture of high-energy diffraction processes which is
based on the coherent state model as well as on the straight-line
path approximation method in quantunm field theory models, -
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It is quite evident that a consistent description of the elas-
tic scattering of hadrons at high energies is impossible without
deep understanding of dynamics of essentially inelastic processes
which are followed by the production of alarge number of seconda-
ry particles. One of the most important characteristics of such
processes is the average multiplicity of secondary particles. The
problem of the asymptotic behaviour of the average multiplicity
in the limit of extremely high energies attracts now great atten-
tion.

In this note we would like topoint to a possibility of existence
of a definite simple relation which connects the average multipli-
city asymptotic behaviour with the total cross section and the elas-
tic diffraction slope parameter.

Our approach is based on the far-going idea on the close
relationship between the diffraction character of elastic hadron
scattering and the main regularities of multiparticle production
processes/1_4/. To be more concrete we shall suppose the picture
of high-energy diffraction processes which is based onthe coherent

/5,6/

state model developed in papers as well as on the straight-



line path approximation method in quantum field theory mo-
dels/l7’8/.

In recent papers a tendency has appeared to consider hadrons
as composite systems with internal degrees of freedom in proces-
ses of strong interactions at veryhigh energy (’'droplet”’ model/g/,

/10/ /5,6/,

""parton’’ model , coherent state model
In the coherent state model it is suggested that the hadron
states in strong interaction processes at high energies correspond

to the coherent states of some complex system, the excitation spect-

rum of which is described in the simplest case by the four-dimen-

sional relativistic oscillator.

As a remarkable fact we stress that predictions of the cohe-

rent state model are in qualitative agreement with the calculations

performed in the framework of quantum field models using the func-
tional integration method for the summation of the infinite series
of the perturbation theory/ 6,7/ . | |

The coherent state method has lately been developedin papers
dealing with the composite dynamic model of hadrons/ 1/ and the
problem of strong coupling of particles with quantum field/lz/ .
The results obtained in these papers permit us to hope that the co-
herent state model gives a correct outline of the behaviour of com-
posite quantum systems with infinite number of degrees of freedom.

/5,6/

As it was shown the exponential decreasing of amplitudes

with increasing momentum transfers is due in this model to the

coherent excitement of transverse ( in the center of mass system



of colliding hadrons) modes of the oscillator, which is followed by
emission of a large number of secondary particles. In the limit
of extremely high energies, when the momentum transferred from
an initial hadron to an excited system isfixed, the particle produc-
tion process goes in a statistically independent way andis governed
by the Poisson law,

Thus the experimentally observable diffraction behaviour of
the differential cross section of the high-energy elastic scatter-
ingx/

dot! do*! ~A(s)y
= ( ) 1
dt dt o € (1)

corresponds to the following dependence of the average number of
secondary particles produced in inelastic hadron collision on s

and ¢
n{s,t) +A(s)t
! Tixed (@)
where A(s) is the elastic diffraction slope parameter.
The differential cross section of inelastic processes, when
- n and m secondary particles are emitted respectively by each of
two colliding hadrons, are determined by

do do*!
- =l W L .
( T Y pm T Yo W, (s, t) W _(s,t) (3)

Here

—A(s)' n
Wols)ee 7 Lot " (4)

n!

X/ Here and after the variable ¢+ denotes the absolute value
of the square of momentum transfer, i.e. ¢+=jq?!.



where the quantity A(s) -2!— has the sense of an average number of
particles emitted by one of the two hadrons™ .

It follows from eqs. (3) and (4) that the differential cross sec-
tion of the inelastic collision with excitement of only one of the
colliding hadrons is characterized by the diffraction peak with the
slope which is equal to a half of the elastic one:

-Als) =

x el
do* do do
Jt = "50 (I_ )n,o 2= (_d—r_ )0 e 2 . (5)

The total differential cross section for two hadron collision, after

summing in eq. (3) over a number of all secondary particles, is

given by
o el
do™ (977 const (6)
dt dt 0

and does not depend ont+ , which, in some respect, is analogous to
the point-like of automodel behaviour of deep inelastic hadron-lep-

/13/

ton scattering . Obviously, the relation (6) is meaningful only

for momentum transfers limited by the diffraction region.The real
meaning of eq. (6) is that the total differential cross section can
vary considerably in magnitude only with the variations At=1t_,
which are much greater than the size of the diffraction peak region
i.e.

L (7)
'QH A(S)

X/Note, that we consider the region of diffractive dissotiation
in which (M=m)? ' 2m? <« I.where M is the effective mass of the’’stre-
am’’,



To estimate the value t., we can use the unitarity condition. In-

tegrating eq. (6) over the region ¢ < 1., Wwe must obtain a cross

section which does not exceed the total interaction cross section

'eﬁ' dote! dael
dt =t _ (——) <o’ . (8)

0 dt e dt 0

Using the optical theorem and assumption that the forward elastic

amplitude is pure imaginary, we get from eq. (8)

o 16n
'eff S oot : (9)

The consistency condition (7) can be represented in the form

el tot

g = d «< 1. (10)
otet 16 » A(s)

The found value of t_, can be used toestimatethe average number

of secondary particles n (s) produced in diffraction collision of

diffr

two hadrons at high energies

1 [ o' p(s)rde: BrAG) (11)

afof 0 df o toft

n (s)=

n
diffr

Thus, the diffractive or peripheral partof the average multiplicity
of secondary particles is determined by the parameters of the elas-
tic scattering amplitudes. The conclusion about the behaviour of the
total average number of secondary particles n(s) can be done only
on the basis of some additional assumptions concerning the contri-
bution of small distances to multi-particle production processes.
In particular, if one assumes that ’’pionization’’ or production of

particles with finite momeanta in the center of mass system of col-



liding hadrons disappears in the limit of high energies, one gets
from eq. (11) the following behaviour of the total average multipli-
city

8nA(s)

nls)s —
o tot

— v, (12)

where v is the number of ’’leading’’ particles which is equal to
2 in this simplified approach™ .

The analysis of relations (l1) and (12) is of great interest
because it can shed some light on the relative importance of the
central and peripheral forces in processes of multiparticle pro-
duction at high energies (see, e.g., ref./l4/).

It is interesting to note that relation (12) gives qualitatively
the correct high-energy behaviour of the average multiplicity. In-
deed the approximate constancy of the total cross section and the
logarithmic shrinkage of the diffraction width, as is seen at the

/15/

accessible low energies corresponds to the logarithmic growth
of the average multiplicity (12).

In a more general case, using the well-known limitation on
the asymptotic behaviour of the diffraction slope parameter in

/16/ we get from eq. (12) the following upper

quantum field theory
bound on an asymptotic growth of the average multiplicity with

increasing energy

x/ Eq. (12) disregards particle spins and isospins as well
as the resonance contribution to the multi-particle production. In
reality another fact is expected in the first term of eq. (12) which
takes into account effectively the necessary number of degrees of
. freedom.
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- In?s
n{s) : const . —_— (13)

o'o'

Relation (12) gives an interesting physical interpretation of
the growth of the effective radius of strong interactions with in-
creasing energ3/17/. Really, the diffraction slope parameter A(s)
determines the ’’visible’’ sizes of hadrons in elastic collisions.
On the other hand, as it follows from eq. (9) the total cross section
is determined by the minimal distance R,=1'vt,, uptowhichthe
»’point-like’’ behaviour of the total differential cross section of two

hadron collision (6) has sense. One can see from eq. (12) that
A(s)=R? =n(s)R} . (14)

Thus, under the condition of constancy of the total cross section
the increasing of the effective radius of strong interaction R with
increasing energy is due to an expansion of a cloud of secondary
particles around the colliding hadrons.

Let us discuss now the question concerning the relation bet-
ween the asymptotic behaviour of the average multiplicity and the
inelasticity parameter k(s) which defined the ratio of the average
energy of secondary particles and the total energy of colliding
hadronsx/ .

Obviously, in the framework of an assumption on the statis-

tical independence of secondary particles we have

-k(s)=n(s)< kg

> (15)

Vs

X/ /18/ _

Recently this question was considered in paper



Assume now that in the high-energy limit there exists the

finite distribution of a number of particles produced in a given in-

terval of the variable x-= __Z_i% /10/, i.e.

Vs
dn(s,x)- plx)dx, e<x<1,
< - (16)
t - fixed
where €= ﬁ*__ and m, is some characteristic mass.

Vs
Hence in accordance with eq. (15) we get
Als)o [ p(x)dx

17
k(s)a—;— flxp(x)dx a7

at s-=,

It is easy to see that the asymptotic behaviour of the average
multiplicity at high energies is determined by the behaviour of the
distribution function p(x) near the point x=0 ,

For example, if the average multiplicity grows as(ins)'™*? at
s »0 We get p(x)tl—(—lnx)y atx=0 .,

In the general case from requirement of the finitness of

inelasticity it follows that the function xp(x) should be integrable

up to x=0, .
One can easy get from eqs. (17) the following formula
k(s)=k(so)+m*‘f L_ dn_ 45, (18)
0 57 s

Thus as it follows from this equation the inelasticity parame-
ter at high energy is determined by the behaviour of the average

multiplicity at all the foregoing energies.

10

¢
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Consider now the particular example when the average mul-
tiplicity grows beginning from some s, logarithmically with in-

creasing energy. From eq. (18) we find that

. . dn s
k:,h:nx k(s)_*(o—Tf-—, «f:ln—;—o—-, (19)
where
2m,
€o = _:_=xnax:§'
\ Sp

So, we can see that in this particular case the upper bound
on the growth of the average multiplicity with increasing energy
is determined by the ratio of two parameters: the inelasticity &
and the maximal fraction of the energy of an initial hadron on one
secondary particle ¢, .

It should be noticed that in the framework of the statistical
independence consideration when the particle production is descri-
bed by the Poisson law, both the parameters k and ¢, cannot de-
viate considerably from zero, i.e. k<<1, ¢, << 1.

Recently there has been suggested a number of models of
multiparticle production where an assumption on the Poisson cha-
racter of the distribution over the number of secondary particles
was made in some or other form/ 19/ .

The results obtained in these models depend crucially on
the concrete conditions under which the particle production proces-
ses are assumed to obey the Poisson law. So in some cases the
assumption of the Poisson distribution leads to the contradictions

with some rigorous resuits of quantum field theory. -

11



For example, as is well known, under some conditions from

general principles of quantum field theory it follows that/ 16/

o ato!
> const »
o tot - in?s

P, (s)=

" (20)

If one assumes now that the integrated probabilities of multi-par-
ticle production are described by the Poisson distribution one gets

Fy (s)=expl-#(s)] and hence the average multiplicity can not grow fas-

/20/

ter thanin in s

In our approach the integrated probability of an elastic chan-
!
25(s)
the upper bound on the asymptotic growth of the average multipli-

nel is given by P, (s)- and using formula (20) we just obtain

city (13) derived above,
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