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Preface

... wir wollen froh sein,
wenn wir in unserer Lage und geschichtlichen Entwicklung in Europa M:ichte
finden,
mit denen wir auf keine Art von Konkurrenz der politischen Interessen angewiesen
sind,
wie das zwischen uns und Russland bisher der Fall ist ...,
wenn nicht liberale Dummbheiten oder dynastische Missgriffe die Situation filschen.

Otto von Bismarck

YepHOOBLIBb - TPAreAus: U MOCH KU3HHU TOxe. S ouIy1Iaw 310
KAXKAYI0 CEKYH/LY.

Koraa karacrpodga npousonuia, v 1 y3HaJj, YTO TaM HATBOPWJIH,
4yTh HA TOT cBeT He oTnpaBuJjics. [loTom perna HemeAJIeHHO YIATH
C MOCTA NMPE3UICHTAa AKAIEMUH HAYK, J1asKe 00PaTUIICH 110 YTOMY
noeoay k M. C. I'opodauesy. KoJiiern octaHaB/ImBaj I MeHs, HO 1
CYUTAJ, YTO TaK HAA0. Moii 10JIT, CYUTAJ f, BCe CHJIbI MOJIOKUTH Ha
yCOBEPIIEHCTBOBAHUE PeaAKTOPA...

Ho st nokpuBu1 0b1 AY1I0#, ecid ObI COTJIACUJICH ¢ MHEHUEM, UTO
Terepb ATOMHYIO YJHEPIreTUKY Pa3BUBATh He HaA0 U Bce ADC
cJ1e/1yeT 3aKPhITh.

OTka3 4yejioBe4eCTBA OT PA3BUTUS ATOMHOM YHEPreTUKHU ObLT ObI
JJis1 Hero ryouTesieH. Takoe pellieHre He MeHee HEBEXKECTBEHHO U He
MeHee YYAOBUIIHO, YeM TOT IKCIIepUMEHT Ha YepHOoObLIbLCKO
ADC, KOTOPBIIT HENMOCPeACTBEHHO NPHUBEJ K ABAPHUH.

Anamonuu Il. Anexcanopoe

The present book consists of contributions devoted to the analysis of first- and second-order phase
transitions and the glass transition both from experimental and theoretical points of view. They have been
presented and discussed in the course of the research workshops Nucleation Theory and Applications held
in Dubna, Russia, in the yearly meetings in April 2009-2011. Hopefully, the results will be of use also for
other colleagues engaged in similar problems.



The programs of the workshops and the list of participants are given in the appendix. In the appendix,
also the content of the first four volumes of the proceedings, covering the periods from 1997-1999, 2000-
2002, 2003-2005, and 2006-2008 is reprinted as well as the content of two monographs with overview
lectures published by WILEY-VCH in 1999 and 2005. In addition, a list of some other monographs pub-
lished by participants of the workshops is given there as well. The cover pages of most of these books
are given at the cover pages of the present volume. They give some interesting insight into the topics of
discussion for about a period of fifteen years, now.

The general aim of these meetings was and is [i.] to bring together a number of leading scientists in the
field of the theoretical description and experimental investigations of first- and second-order phase trans-
formations of the member countries of the Joint Institute for Nuclear Research, of Germany and beyond;
[ii.] to discuss recent developments in this field with particular emphasis on the work done in the different
groups invited; [iii.] to establish and/or tighten direct cooperation links; [iv.] to carry out research on com-
mon research projects; [v.] and to check whether the experimental facilities available at the Joint Institute
for Nuclear Research in Dubna can be utilized for an experimental investigation of the kinetics of phase
transformation processes in different systems of interest. These aims could be fully realized, again.

The workshops could not have been organized without the financial support of a number of organiza-
tions and institutions. Further funding was required, of course, to obtain the results which are presented
and discussed in the workshop. Some of the sponsoring organizations, we would like to express our par-
ticular gratitude, are (in alphabetic order): (i.) Brazilian State of Sdo Paulo Research Foundation; (ii.)
Bundesministerium fiir Bildung, Wissenschaft, Forschung und Technologie (BMBF) Germany (via Re-
search projects, the TRANSFORM and Heisenberg-Landau programs); (iii.) DESY Hamburg, Germany;
(iv.) Deutsche Forschungsgemeinschaft (DFG) (via Research projects, travel, conference and publication
grants); (v.) Deutscher Akademischer Austauschdienst (DAAD); (vi.) Helmholtz-Gemeinschaft Deutscher
Forschungszentren; (vii.) Leibniz Institute for Tropospheric Research, Leipzig, Germany, for additional
funding of publications; (viii.) QSIL Langewiesen, Germany; (ix.) Russian Foundation for Basic Research
(RFBR). To all above cited organizations and those not mentioned explicitely, we would like to express our
sincere thanks, as well as to all colleagues who helped us in the organization of the workshops. In particular,
we would like to express our thanks here to V. I. Zhuravlev, G. G. Sandukovskaya, and E. N. Rusakovich.

It is a particular pleasure to publish the present book in 2011 which has been declared as the German-
Russian Science Year. As noted by Mrs. Annette Schavan, Federal Minister of Research and Education,
”Such a year of science highlights the diversity of German-Russian cooperation in education and research”.
We intend with the present volume to give a contribution to the reflection of such diversity.

In the preparation of the spectrum of activities connected with the German-Russian Science Year, bilat-
eral intergovernmental consultations reaffirmed the strategic partnership in education, research and innova-
tion. In line with such strategic statements, it is planned to continue the research workshops also in the next
years. The respective information will be given at the homepage http://theor.jinr.ru of the Bogoliubov
Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research and via Email. For questions,
please contact us [preferably via Email: juern-w.schmelzer @uni-rostock.de (J. W. P. Schmelzer)].

Jiirn W. P. Schmelzer Gerd Ropke Vyatcheslav B. Priezzhev



Contents

1 Introductory Remarks

2 Hast Thou Entered into the Treasures of the Snow? (JOB, 38:22)

Gyan P. Johari

Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S
4L7, Canada 3

Structural Order Parameters, Relaxation and Crystallization
Jiirn W. P. Schmelzer

Institute of Physics, University of Rostock, 18051 Rostock, Germany 7
3.1 Introduction . . . . . . . . e e e e e e 8
3.2 Some Spectrum of Problems in the Application of Basic Ideas of the Theory of Crystal
Nucleation and Growth to Experiment . . . . . . . . ... . ... ... .. ........ 8
3.2.1 State Parameters of the Critical Clusters and Work of Critical Cluster Formation . 8
3.2.2 Passage via the Saddle Point versus Ridge Crossing . . . . . ... ... ... ... 10
3.2.3 Decoupling of Diffusion and Viscosity . . . . . . . ... ... ... ... ..... 10
324 Sizeofthe Structural Unit . . . . . . . . ... .. L 12
3.2.5 Alternative Mechanisms of Crystallization. . . . . . .. ... ... ........ 12
3.2.6 Dependence of the Properties of Glass-forming Melts on Prehistory . . . . . . .. 12
33 ConClusions . . . . . . ... e 14
3.4 Appendix: Some Comments on the Relaxation Kinetics of Glass-Forming Melts . . . . . . 15
341 Introduction . . . . . . . . . .. e e e 15
342 Analysis ... e 16
343 DISCUSSION . . . . vt e e e e 18

Explosive Cavitation in Superheated Liquid Argon and Argon-Helium Solutions
Vladimir E. Vinogradov, Pavel A. Pavlov, and Viadimir G. Baidakov
Institute of Thermal Physics, Ural Branch of the Russian Academy of Sciences, Amundsen street

106, Ekaterinburg, 620016, Russia 21
4.1 Introduction . . . . . . . . . . .. 22
4.2 Experimental Setup and Measurement Procedure . . . . . .. ... ... ... ... .. 23
4.3 Experimental Results. Comparison with Homogeneous Nucleation Theory . . . . . . . . . 27
4.4 Conclusion . . . ... L e 30

The Main Silica Phases and Some of their Properties

Irina G. Polyakova

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199 155 St. Pe-
tersburg, Russia 33
5.1 Introduction . . . . . . .. 33



vi

52

53

54

5.5

5.6
5.7

Contents

Specific Features of Silica Resulting from the Electronic Structure of Silicon. . . . . . . . 34
5.2.1 Specific Features of Silica Compounds and Differences to Chemical Analogs: Sili-
conandCarbon . . . . . . ... 34
5.2.2  Electron Structure of the Silicon Atom and its Interaction with Oxygen . . . . .. 36
5.2.3 Consequences of m-Bonding in Silica . . . . . . ... ... ... oL L. 37
5.2.4 Increase in Silicon Coordination Number as a Result of s-p-d-Hybridization . . . . 38
5.2.5 Implication of s-p-d-Hybridization for Chemical Reactions and Physical Transfor-
mations of Silica . . . . . . ... 40
Phases of Silica and Their Properties . . . . . . . . ... ... ... . ... . 41
5.3.1 Dense Octahedral Silicas: High Pressure Phases . . . . . ... ... ... .... 42
5.3.2 Clathrasils: Friable SilicaPhases . . . . . . ... ... ... ... ........ 44
5.3.3 Exception: Fibrous Silica. . . . . . .. . ... ... ... ... .. . . 44
5.34 ProperSilicas . . . . . ... e 45
5.3.5 The Main Crystalline Tetrahedral Silicas . . . . ... ... ... ......... 46
5.3.6  Amorphous Silica . . . .. ... ... 55
5.377 Polyamorphism . . . . . . . . ... e e 56
Quartz and Some of Its Properties . . . . . . . ... .. .. ... oo 59
5.4.1 Enantiomorphismof Quartz . . . . . ... ... ... ... ... ... ... 60
542 Twins (Zwillinge) in Quartz . . . . . . . . . .. 60
543 AnisotropyofQuartz . . . . . . ... Lo 63
5.4.4 Thermal Expansionof Quartz . . . . . ... .. ... ... ... ... 63
5.4.5 High-Low or @ — -Transformation in Quartz . . . . . . ... .. ... ... ... 71
5.4.6 Pressure-Induced Amorphization of Crystalline Silica. . . . . .. ... ... ... 74
Hydrothermal Synthesisof Quartz . . . . . . . . . ... ... ... .. ... ... . ... 75
5.5.1 BriefHistory . . . . . . . . . . 75
5.5.2 Temperature Drop Method . . . . . . . . ... ... 76
5.5.3 The Main Problems of Hydrothermal Synthesis of Quartz . . . . ... ... ... 78
Concluding Remarks . . . . . . . . . . . L 88
Appendix: The Crystal Skulls . . . . . . . . . .. . . e 88

Structure, Thermodynamic Properties, Solubility and Synthesis of the Different Modifications
of Silica

Ivan GutzowV), Radost Pascova'"), Nikolai Jordanov("), Stoyan Gutzov?), Ivan Penkov'®), Irena
Markovska™, Jiirn W. P. Schmelzer®), and Frank-Peter Ludwig(®)

() Institute of Physical Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
(2) St. Kliment Ohridski University of Sofia, 1126 Sofia, Bulgaria

() Institute of Metal Science, Bulgarian Academy of Sciences, Sofia 1574, Bulgaria

() Bourgas Prof. Assen Zlatarov University, 8010 Bourgas, Bulgaria

() Institute of Physics, University of Rostock, 18051 Rostock, Germany

(6) QSIL AG, Quarzschmelze Ilmenau, 98704 Langewiesen Germany 95
6.1 Introduction . . . . . . . . . . L 96
6.2 Literature Sources and Ways of Literature Search in the Field of Silica Modifications . . . 98
6.2.1 Classical SiO5 Literature . . . . . . . . . . . . . e 98
6.2.2 Literature Connected with the Different Silica Modifications . . . . . . . ... .. 98
6.2.3 Internet Search Engines . . . . . . . . ... ... ... . 99
6.3 Phase Diagrams of SiO . . . . . . . .. 99
6.3.1 Fenner’s Classical Diagram . . . . . . ... ... ... ... ... ........ 99
6.3.2 Florke’sDiagram . . . . . . . . . ... e 100
6.3.3 Contemporary p — T-Diagrams of the Phases of SiO> . . . . . . ... ... ... 101
6.4 The Modifications of SiO5 and Their Synthesis . . . . . . . .. ... ... ... .. ... 103



Contents vii
6.4.1 SiOs-Modifications and their Mineralogical Characteristics . . . . . . . .. .. .. 103
6.4.2 Synthesisof Quartz . . . . . . . ... L 104
6.4.3  Synthesis and Stabilization of 3-Cristobalite . . . . ... ... ... ....... 106
6.4.4 Synthesis of Keatite: Classical Aspects . . . . . . . ... ... ... ....... 113
6.4.5 Synthesisof Coesite . . . . . . . . . . ... 114
6.4.6  Stishovite: Synthesis and Thermal Stability . . . . . . ... ... ... ...... 114
6.4.7  Synthesis of the Amorphous Modifications of Silica . . . . ... ... ... ... 116
6.5 Thermodynamic Properties and the Structure of the SiO2-Modifications . . . . . . . . .. 117
6.6 Solubility of the Different Modifications of SiO2 . . . . . . . ... ... ... ... ... 120
6.6.1 General Thermodynamic Dependencies . . . . . .. ... ... .. ........ 120
6.6.2  Solubility Diagram of SiOy. Ostwald’s Rule of Stages . . . . .. ... ... ... 126
6.6.3 Size Effects in the Solubility of SiO2 . . . . . . . ... ... L. 131
6.6.4 Possibilities of SiO2-Nucleation and Growth at Hydrothermal Conditions and Their
Technological Aspects . . . . . . . . . .. . ... e 133
6.7 Mineral and Natural Resources of the Silica Modifications . . . . . ... ... ... ... 136
6.7.1 The Mineral Resourcesof Quartz . . . . . ... ... ... ... ......... 136
6.7.2 The Plant Resources of Silica . . . ... ... ... ... ............. 136
6.7.3 Industrial Waste Sources of Silica . . . . . ... ... ... .. ... 137
6.7.4 Coesite and Stishovite as Impactite Remnants . . . . . ... ... ... ...... 137
6.8 Several Particularly Interesting Properties of the Silica Modifications . . . . . . .. .. .. 137
6.9 General Discussion in Terms of Technical Perspectives . . . . . . .. ... ... .. ... 138
7 Solid-State Transformations and the Thermal Conductivity of Solid Ethanol
Oksana A. Korolyuk
B. Verkin Institute for Low Temperature Physics and Engineering of National Academy of Sci-
ences of Ukraine, Kharkov, Ukraine 145
7.1 Introduction . . . . . . . . . . . . . e e e e e e e e e 145
7.2 Experimental Details . . . . . . . . . ... 146
7.3 Structural Transformations in Solid Ethanol . . . . . . . . ... ... ... ... ..... 149
7.4 Conclusions . . . . . . . . . . . e e e e e e e 152
8 Thermally Driven Capillary Fluctuations of Large Argon-like Clusters
Dmitry I. Zhukhovitskii
Joint Institute of High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Bd. 2, 125412
Moscow, Russia 153
8.1 Introduction . . . . . . . . . . . e e e e 153
8.2 Bulk Fluctuations . . . . . . . . . .. ... 155
8.3 Capillary Fluctuations . . . . . . . . . . . . e 158
84 CWMSSlice Spectra . . . . . . . . o o v e 160
8.5 Effective Surface Tension for Thermal Capillary Fluctuations . . . . . . . ... ... ... 165
8.6 ConClusions . . . . . . . . . . e 167
9 Charging of Small Particles in Ionized Gases

Boris M. Smirnov

Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13/19, Moscow

125412, Russia 171
9.1 Introduction . . . . . . . . . e e 171
9.2 Particle Charging in a Dense Buffer Gas with Rareness Plasma . . . . . . ... ... ... 171
9.3 Particle Charging in Rareness Gas Discharge Plasma . . . . ... ... ... ....... 175
9.4 Particle Charging in a Dense Plasma and Double Layer of Gas Discharge . . .. ... .. 177



viii

10

11

12

Contents

9.5 Particle Charging in Rareness Ionized Gas with Freelons . . . . . .. ... ... ... .. 179
9.6 Particle Charging in Rareness Ionized Gas with Trapped Ions . . . . . . . ... ... ... 182
9.7 Particle Charging and Screening in Rareness Ionized Gas . . . . . . ... ... ... ... 184
9.8 Conclusion . . . . .. . .. 188

Soliton-like Dynamical Clusters in Atomic Layers

Alexander P. Chetverikov (-2), Werner Ebeling -3, and Manuel G. Velarde (*)

() Instituto Pluridisciplinar, Universidad Complutense, Madrid, Paseo Juan XXIII, 1, Madrid-
28040, Spain

(2) Department of Physics, Saratov State University, Astrakhanskaya 83, Saratov-410012, Russia

() Institut fiir Physik, Humboldt-Universitiit Berlin, Newtonstrasse 15, Berlin-12489, Germany 191

10.1 Introduction . . . . . . . . . ... 191
10.2 The Dynamic Model of Atomic Layers . . . . . . . . .. .. ... ... ... ....... 192
10.3 Excitation of Soliton-like Modes by Externally Given Initial Conditions at the Border . . . 195
10.4 Excitation of Soliton-like Modes by Thermal Heating . . . . . .. ... ... ....... 197
10.5 Conclusions . . . . . . . . i e e e 200

Self-Similar Regime of Diffusion Growth of a Droplet in a Vapor-Gas Medium with Allowance
for Stefan’s Flow

Anatoly E. Kuchma and Alexander K. Shchekin
Department of Statistical Physics, Faculty of Physics, St. Petersburg State University, Ulyanovskaya

1, Petrodvorets, St. Petersburg, 198504 Russia 203
11.1 Introduction . . . . . . . . . . . L e 203
11.2 Equation of Non-Stationary Vapor Diffusion to a Growing Droplet with Allowance for the

Motion of the Droplet Surface and the Stefan Flow . . . . . . ... ... ... ... ... 205
11.3 Self-Similar Solutions of the Equation of Non-Stationary Diffusion with a Hydrodynamic

Flow . . . . 206
11.4 Hydrodynamic Contributions to the Vapor Flux onto a Growing Droplet . . . . . . . . .. 207
11.5 Relations Between the Parameters b and a in the Problem of Non-Stationary Diffusion . . 208
11.6 Vapor Diffusivity Dependent on Composition of the Vapor-Gas Mixture . . . . . ... .. 210

Gas Bubble Growth Dynamics in a Supersaturated Solution: Henry’s and Sievert’s Solubility
Laws

Gennady Yu. Gor, Anatoly E. Kuchma, and Fedor M. Kuni
Department of Theoretical Physics, Research Institute of Physics, Saint-Petersburg State Univer-

sity, Ulyanovskaya Street 1, Petrodvorets, St. Petersburg, 198504, Russia 213
12.1 Introduction . . . . . . . . . . e e 213
12.2 Equilibrium Concentration of the Dissolved Gas . . . . . . . . ... ... ... ... ... 214
12.3 Bubble Dynamics Equation . . . . . . . . ... ... o L 216
12.4 Critical Bubble and Initial Conditions for the Bubble Growth . . . . . . . ... ... ... 217
12.5 Three Stages of Bubble Growth . . . . . . . .. ... .. ... ... ... ... 219
12.5.1 Henry’sLaw . . . . . . . . . e 220
1252 Sievert’sLaw . . . . . . . .. 221
12.6 Time Dependence of Bubble Radius . . . . . . .. ... ... ... ... ... ... . 222
12.6.1 Henry’sLaw . . . . . . . . . e 223
12.6.2 Sievert’sLaw . . . . . . . . .. 223
12.7 Duration of the Consecutive Stages . . . . . . . . . . . . . e 225
12.7.1 Henry’sLaw . . . . . . . . . e e 225
12.7.2 Sievert’sLaw . . . . . . . . . 227

12.8 Steady Flux Conditions . . . . . . . . . . . . . e e 227



Contents ix

13

14

15

12.9 Bubble Growth in Volcanic Systems . . . . . . . . . . . ... 229

12.10C0onClusSions . . . . . o ot e e e 230

12 11Appendices . . . . . . . . oL e e e e e e 230

12.11.1 Appendix A: Effect of Solvent Viscosity on Bubble Growth . . . . ... ... .. 230
12.11.2 Appendix B: Dissolution of the Gas Bubble in a Pure Solvent: Sievert’s Solubility

Law . . . e 231

Interphase Heat Transfer for Different Regimes of Droplet Growth During Bulk Condensation
at Flow of Vapor — Gas Mixtures

Naoum M. Kortsenshteyn") and Arsenij K. Yastrebov®)

(V) Krzhizhanovsky Power Engineering Institute, Leninskii pr. 19, 119991 Moscow, Russia
(2) Moscow Power Engineering Institute (Technical University), Krasnokazarmennaya ul. 14,

111250 Moscow Russia 235
13.1 Introduction . . . . . . . . . o e e e e e e e e e e e 235
13.2 Heat Transfer between a Single Droplet and Vapor — Gas Mixture . . .. ... . ... .. 236
13.3 The Relaxation Problem . . . . . . . .. ... ... 239
13.3.1 Formulation . . . . . . . . . . . . . . e e e 239
13.3.2 Results for Free-Molecular Regime of Droplet Growth . . . . .. ... ... ... 241
13.3.3 Results for the Transitional Regime of Droplet Growth . . . . .. . ... ... .. 243
13.4 Bulk Condensation During FlowinaNozzle . . . . . . . . ... ... ... ... ..... 245
13.4.1 Formulation . . . . . . . . . . . e 245
13.4.2 Resultsand Discussion . . . . . . . . . . . . .. .. 246
13.5 Conclusions . . . . . . . . . . e e e 248

Size Effects in Phase Transitions in Aerosol Systems with Nanoscale Particles and Inside
Nanoparticles

Valery V. Levdansky (), Jiri Smolik (2, Viadimir Zdimal ¥, and Pavel Moravec (%)

(1) A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Be-
larus, 15 P. Brovka Street, 220072 Minsk, Belarus
(2) Institute of Chemical Process Fundamentals of the Academy of Sciences of the Czech Repub-

lic, v.v.i., Rozvojova 135, 165 02 Prague 6, Czech Republic 251
14.1 Introduction . . . . . . . . . ot it e e e e e e e e 251
14.2 Condensation of Vapor Molecules on Small Aerosol Particles (Clusters) and the Problem of
Homogeneous Nucleation . . . . . . . . . .. . .. .. i 252
14.3 Critical Size of a Charged Aerosol Particle in the Presence of an Adsorbable Foreign Gas . 253
14.4 Influence of Resonance Radiation on the Critical Size of the Particle (Cluster) . . . . . . . 254
14.5 Size Effects in Homogeneous Nucleation Inside Nanoscale Particles . . . . . . ... . .. 255
14.6 Conclusions . . . . . . . . . . . e e e e 256

Cluster Dynamics Study of Defect Evolution in Neutron-Irradiated Dilute and Concentrated
Fe-Cr Alloys

Alexandr Gokhman V), Frank Bergner (2, Uwe Birkenheuer (?), and Andreas Ulbricht (*)
(U South Ukrainian National Pedagogical University, Odessa, Ukraine

(2) Research Center Dresden-Rossendorf, Germany 259
15.1 Introduction . . . . . . . . L 259
15.2 Irradiation Conditions and Experimental Data . . . . . . . .. ... ... ... ...... 260
15.3 Cluster Dynamics Master Equation . . . . . . . . .. ... ... ... ... . ...... 260
15.3.1 Matrix Defect System . . . . . . . . . . ... 261
15.3.2 CrPrecipitates System . . . . . . . . .. .. 261

15.3.3 Cluster Dynamics Modeling . . . . ... ... ... ... .. ... ........ 264



16

17

18

19

Contents

154 DISCUSSION . . . . . . . i e e e e e e 266
15.5 Conclusions . . . . . . . . . e 267

A New Approach to Theoretical Modeling of Nucleation Kinetics in Solid Solutions

Paisiy M. Valov, Valeri I. Leiman, Viadimir M. Maksimov, Olga Yu. Derkacheva, Evgeni S.
Markov, and Alexander O. Vinogradov

St. Petersburg State Technological University of Plant Polymers, 198095 St. Petersburg, Ivan

Chernykh street 4, Russia 269
16.1 Introduction . . . . . . . . . . i i e e e e e e e 269
16.2 Kinetic Equation for the Distribution of Clusters with Respect to their Radii . . . . . . .. 270
16.3 Results of Computations of the Nucleation Kinetics at 500°C . . . . . . ... ... .... 273
16.4 ConClusions . . . . . . . . o i i e e e 276

Formation and Dissolution of Subcritical Nuclei in Solid Solutions

Paisiy M. Valov, Valeri I. Leiman, Olga Yu. Derkacheva, Viadimir M. Maksimov, Evgeni S.
Markov, and Alexander O. Vinogradov

St. Petersburg State Technological University of Plant Polymers, 198095 St. Petersburg, Ivan

Chernykh street 4, Russia 279
17.1 Introduction . . . . . . . . o o i e e e e e e e e e 279
17.2 Experiment . . . . . . . . . . e e e e 281
17.3 Calculations . . . . . . . . . . e e 282
17.4 ConClusions . . . . . . . . o v i it e e e 284
Can We Rigorously Define Phases in a Finite System?

Kyrill A. Bugaev"), Aleksey I. Ivanytskyi'"), Edward G. Nikonov'®), Alexander S. Sorin®) and
Gennady M. Zinovjev")

(1) Bogolyubov Institute for Theoretical Physics, Kiev 03680, Ukraine

(2) Laboratory for Information Technologies, JINR Dubna, 141980 Dubna, Russia

(3) Bogoliubov Laboratory of Theoretical Physics, JINR Dubna, 141980 Dubna, Russia 287
18.1 Introduction . . . . . . . . . . o e e e e e e e e 287
18.2 Generalized SMM . . . . . . . .. 288
18.3 The Laplace-Fourier Transformation Technique . . . . . . . ... ... ... ... .... 290
18.4 Isobaric Partition Singularities . . . . . . . . . . . . . . . e 291
18.5 NoPhase Transition Case . . . . . . . . . . . . ot i it i 294
18.6 Finite Volume Analogsof Phases . . . . . . .. ... .. ... ... ... ... ... 295
187 Conclusions . . . . . . . . . . e e e e e e 298

Three-dimensional Calculation of Inhomogeneous Structure in Low-Density Nuclear Matter

Minoru Okamoto"-?), Toshiki Maruyama'®, Kazuhiro Yabana:®) and Toshitaka Tatsumi¥)

() Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1,
Tsukuba, Ibaraki 305-8571, Japan

(2) Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4,
Tokai, Ibaraki 319-1195, Japan

() Center of Computational Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki
305-8571, Japan

(4) Department of Physics, Kyoto University, Kyoto 606-8502, Japan 301
19.1 Introduction . . . . . . . . . . oL e e 301
19.2 Method . . . . . . . . e 302

19.2.1 Relativistic Mean Field Theory . . . . .. ... ... ... ... ........ 302

19.2.2 Numerical Calculation . . . . . . . . . . . . . . . .. . e 304



Contents Xi

20

21

22

23

24

19.2.3 Coulomb Energy . . . . . . . . . . . . . e 305
19.3 Results . . . . . . . . e e e 305
19.4 Conclusion . . . . . . . . . e e e 310

On “Smoothing” of First Order Phase Transition in Small Systems
Alexander L. TseskisY), Naoum M. Kortsensteyn(Q), and Jiirn W. P. Schmelzer®)

() Am Weidenbusch 29, 51381 Leverkusen, Germany
(2) Krzhizhanovsky Power Engineering Institute, Leninsky Prospect 19,117927 Moscow, Russia

() Institute of Physics, University of Rostock, 18051 Rostock, Germany 313
20.1 Introduction . . . . . . . . . . . i e e e e e e e e e e 313
20.2 First-Order Transitionina Systemwith LEH . . . . . ... ... ... ... ....... 314
203 ConClusions . . . . . . . . i e e e 316

Theory and Experiment in Second-Order Phase Transitions and Critical Phenomena: The
Case of Pure Liquids

Dmitry Yu. Ivanov

Baltic State Technical University, Saint-Petersburg, Russia 317
21.1 Introduction . . . . . . . . . .. e e e e e e e e e e 317
21.2 Second CroSSOVET . . . . . v v v v v i e i e e e e e e e e e e e e e e e e 318
21.3 First CIOSSOVET . . . . v v v i it e e e e e e e e e e e 318
21.4 Critical Exponent” — Critical Amplitude” Correlations . . . . . . . . ... ... ... .. 320
21.5 Testofthe Ising Model . . . . . . . . . . . . . e 321
21.6 ConClusions . . . . . . . . i e e e e 322

Asymmetry of Heterophase Fluctuations in Nucleation Theory
Vitaly B. Rogankov

Department of Physics, Academy of Refrigeration, 65082 Odessa, Ukraine 325
22.1 Introduction . . . . . . . .. e e 325
22.2 Non-Classical Spinodal and Near-Critical Anomalous Nucleation in Gas Phase . . . . . . 327
22.3 Surface Tension and Density-Factor of CXC-Asymmetry . . . . ... ... ... ..... 333
224 ConClusions . . . . . . . v vt e e e e 336

Clustering of Global Events in Modern History of the Earth
Georgy N. Goncharov'V) and Viktor V. Orlov®

() Chair of Geochemistry, Faculty of Geology, St.-Petersburg State University, St.-Petersburg,
Russia
() Chair of Celestial Mechanics, Faculty of Mathematics and Mechanics, St.-Petersburg State

Unipversity, St.-Petersburg, Russia 339
23.1 Introduction . . . . . . . . . L e e e e e 339
232 Correlations . . . . . . . .. e e e e e e 341
23.3 Time Series of Correlation Coefficients . . . . . . . . . . . .. .. .. ... ....... 343
234 DISCUSSION . . . . . . o e e e e e e e e e e e e 350

On the Dependence of the Properties of Glasses on Cooling and Heating Rates: What is the
Right Deborah Number?

Jiirn W. P. Schmelzer":?), Timur V. Tropin®), and Christoph Schick")

(U Institut fiir Physik der Universitiit Rostock, Wismarsche Str. 43 - 45, 18057 Rostock, Germany
(2) Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, 141980
Dubna, Russia

() Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, 141980 Dubna,



xii

25

Contents

Russia 355
24.1 Introduction . . . . . . . ... 357
24.2 Glasses and the Glass Transition: Some Basic Experimental Facts . . . . . ... ... .. 360
24.3 Classical Equilibrium Thermodynamics. Phases and Phase Transitions . . . . . . . . . .. 361
24.3.1 Phases and Phase Transitions . . . . . . . . . . . ... ... ... ... 361
24.3.2 Ehrenfests Classification: First and Second-Order Equilibrium Phase Transitions . 362
24.4 Glasses and the Transition: The Classical Approach . . . . . . .. .. ... ... .. ... 365
244.1 Simon’sModel . . . . .. L 365
24.42 Kinetic Criteria of Glass-Formation . . . . . .. ... ... ... ... ...... 367
24.4.3 Classical Approaches in the Theoretical Determination of the Prigogine-Defay Ratio 370
24.5 Generic Approach to Glass Transition . . . . . . . . . . . . . ... e 376
24.5.1 Structural Order-Parameter Approach: General Characterization . . . . . . . . .. 376
24.5.2 De Donder’s Order-Parameter Approach: Basic Equations . . . . . ... ... .. 377
24.5.3 Relaxation of Glass-Forming Melts: General Considerations . . . . . . ... . .. 378
24.5.4 Generalized Equation of State: Results of a Lattice-Hole Model . . . . .. .. .. 378
24.5.5 Analysis of Equilibrium Properties of the Model System . . . . . ... ... ... 380
24.6 Dependence of Properties of Glass-Forming Melts and Glasses on Cooling and Heating
Rates: Method of Analysis . . . . . . . . . .. . e 381
24.6.1 Method of Description of the Kinetics of Isothermal Relaxation . . . . .. .. .. 381
24.6.2 Description of the Cyclic Processes under Consideration . . . . . ... ... ... 382
24.7 Dependence of Properties of Glass-Forming Melts and Glasses on Cooling and Heating
Rates: Results of Analysis . . . . . . . . . .. . . 383
24.7.1 Structural Order Parameter . . . . . . . . . . ... ... L L. 383
24.77.2 Entropy Production and Entropy . . . . . . ... ..o 383
24.7.3 Glass Transition Temperature and the Bartenev-Ritland Equation. . . . . . . . .. 389
24.7.4 Value of the Viscosity at Glass Transition . . . . .. ... ... ... ....... 394
24.7.5 Thermodynamic Coefficients and Prigogine-Defay Ratio: Analysis in Terms of the
Generic Approach . . . . . . ... e 394
24.7.6 Thermodynamic Coefficients and Prigogine-Defay Ratio: Determination via the
Analysis of the Equilibrium Properties of Glass-forming Melts . . . . . . . . . .. 400
24.7.7 Do There Exist Ehrenfest-type Relations in the Description of the Glass Transition:
The Answer . . . . . . . . . e e e 402
24.7.8 Fictive Temperature and Fictive Pressure . . . . . . ... ... .. ... ... .. 407
24.7.9 Effect of Variation of Cooling and Heating Rates: First Tentative Studies . . . . . 410
24.7.10General Results . . . . . ... ... L 414
24.8 Statistical-Mechanical versus Thermodynamical Description of Vitrification: Some Brief
CommentsonaCurrentDebate . . . . . . .. ... ... . ... ... ... 416
249 DISCUSSION . . . . . . L L L e 421
Review on the Phenomenology and Mechanism of Atmospheric Ice Formation: Selected Ques-

tions of Interest

Olaf Hellmuth"), Vitaly I. Khvorostyanov®, Judith A. Curry®), Alexander K. Shchekin®), Jiirn
W. P. Schmelzer®, and Viadimir G. Baidakov®)

(1) Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany

(2) Moscow, Russia

() School of Earth and Atmospheric Sciences, Georgia Institute of Technology Atlanta, Georgia,
GA 30332-0340

(4) St. Petersburg State University, Department of Statistical Physics, 198504 St. Petersbursg,
Russia

(5) University Rostock, Institute of Physics, 18051 Rostock, Germany, and



Contents xiii

26

27

Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, 141980
Dubna, Russia
() Institute of Thermal Physics, Ural Branch of the Russian Academy of Sciences, 620016 Eka-

terinburg, Russia 429
25.1 Introduction . . . . . . . .. e e 430
25.2 State-of-the-Art Ice Nucleation Modeling . . . . . .. ... ... ... ... .. ..... 432
25.2.1 Microscopic Perspective on Crystal Nucleation . . . . . ... ... ... ..... 432
25.2.2 Basic Concepts of Ice Nucleation . . . . . ... ... ... ... .. ....... 432
2523 HiStOrY . . . . o v o e e e e 434
25.2.4 Khvorostyanov—Curry Theory of Heterogeneous Freezing . . . . .. .. ... .. 435
25.3 Starting Points for Further Studies . . . . . . .. ... ... ... o oL 440
253.1 General Remarks . . . . . . .. .. L 440
25.3.2 Aspects of Substrate Formation . . . . ... ... ... .. ... ... ... ... 441
25.3.3 Surface-Stimulated Crystallisation . . . . . . . . ... ... ... ... ...... 443
25.3.4 Liquid-Solid Interface Parameters . . . . . . . . . .. ... ... ... ... ... 444
25.3.5 LatentHeatof Melting . . . . . . . . . . .. .. .. ... 451
25.3.6 Sample-Size Effects in Nucleation . . . . . . . ... ... ... ... ....... 451
25.3.7 Non-Sphericity of Droplet Morphology . . . . . .. ... ... ... ... .... 452
25.3.8 CCN Active Site StatiStics . . . . . . .« o v v vt s e e 452
25.3.9 Glass Transition . . . . . . . . . oo e e e e 452
25.4 Supplementary Material . . . . . . . . ..o 454
Vom Sechseckigen Schnee: Strena seu de Nive sexangula (Some Excerpts)
Johannes Kepler 463
Appendices 465
27.1 Programs of the Research Workshops 2009, 2010 and 2011 . . . . . . . .. ... ... .. 466
27.1.1 Research Workshop 2009 . . . . . . . . . . . ... ... .. .. 466
27.1.2 Research Workshop 2010 . . . . . .. .. ... .. . ... ... 468
27.1.3 Research Workshop 2011 . . . . . . . ... ... . . . 470
27.2 Content of the Proceedings Nucleation Theory and Applications 1997-99, 2000-02, 2003-
05,2006-08 . . . . .. e 472
27.3 Monographs Published or Accepted for Publication by WILEY-VCH and Springer Prepared
by Participants of the Workshops . . . . . . . . . .. ... L oL 476

274 Listof Participants . . . . . . . . . . L e e e e 477






1 Introductory Remarks

Doctrina multiplex, veritas una.

Inscription written at the front of the main building of the University of Rostock

Wenn es nur eine Wahrheit géibe,
konnte man nicht hundert Bilder iiber dasselbe Thema malen.

Pablo Picasso

'Ob die Kiilte die Ursache fiir die Sterngestalt beim Schnee ist?
Wabhrlich, ohne echtes Wissen ist das Leben tot.

Johannes Kepler

The present book contains overviews on lectures which have been presented at the Research workshops
Nucleation Theory and Applications in Dubna in the last three years (2009-2011). In accordance with the
general line of organization of these workshops, they represent either an account of the work which has been
performed independently by colleagues from the different groups invited or they contain results worked out
in the last years during the research workshops and in between them in the framework of different common
projects. Thus, the presence of the same authors in several contributions is obviously unavoidable in order
to give some account of the results of the common work.

Of course, neither all contributions presented nor all of the results obtained in the common research
can be included in one book. In the appendix, the programs of the workshops are given in order to allow
one to obtain some more general overview and to give also the possibility to establish direct contacts to the
respective colleagues. In addition, also the content of volumes 1-4 of the proceedings is reprinted giving
an account on the work performed earlier. It is one of the most pleasing results of the workshops that
the number of direct contacts in the network of cooperation links has been again increased considerably.
Hopefully, this book can facilitate further advances in this respect.

In the present proceedings, the spectrum of topics includes direct experimental investigations both of
thermodynamic properties of matter (in thermodynamic equilibrium and non-equilibrium states including
glasses) and nucleation-growth phenomena and their interpretation, the theoretical analysis of the course
of first- and second-order phase transitions, the discussion of principal problems of the thermodynamic
description of clusters and a variety of applications. In particular, I would like to mention the spectrum of
contributions devoted to phase formation processes in nuclear matter and their analogies and differences to
phase formation in the other more conventional fields of applications. Hereby, contributions are included
(at the status of preprints), again, which have been submitted in an appropriate form till the end of the
workshop 2011 or some finite time afterwards.

In the absolute majority of cases (but not in all), the results reported, and presented now here, have been
approved by the participants. Thus, it was decided, as at the last times, not to establish some kind of final

1A continuation and extension of this discussion by Kepler is given in Chapter 2 and at the end of the book.
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refereing system in order to allow one a rapid publication of the proceedings. This way, except some minor
editorial changes, to bring the contributions into the same form and to remove obvious misprints in the
original manuscripts, no changes have been made in the course of preparation of this book for publication.
It is believed that the presentation of even different points of view may stimulate the further discussion (and
will be more useful) until, finally, some agreement can be reached. Thus, the responsibility for the content
of the papers is retained, again, totally with the authors. They have to bear up both the honor for their results
and the possible risk.

Due to the support from the host institution, the Bogoliubov Laboratory of Theoretical Physics of the
Joint Institute for Nuclear Research (JINR), the workshops could be carried out under nearly perfect condi-
tions. Finally, I would like to note that it was a real pleasure, again, to prepare this volume for publication. I
acknowledge herewith the perfect cooperation with Alexander S. Abyzov (in addition to the common work,
for his help in the preparation of the figures, if it was required).

It is also a particular pleasure to express my thanks to Dr. J6érg Moller for the figures on the cover page
illustrating different phenomena of ice formation. The interpretation of them is given by him as follows:

Ephemeral cosmos

The known is finite, the unknown infinite, as Shakespeare put it. If you think you know everything
about nucleation and crystal growth, you are recommended to take a close look at snow first.
Sometimes you may find tiny bubbles, sometimes flat empty spaces, inside snow flakes. You will
see a plethora of different shapes, but you would probably not expect to see even color. Still, in one
of the pictures shown, one sheet of air in a flake is so thin that it reflects some light in reflection
so the crystal appears green. You see individual displays perfect symmetry, to the minutest detail.
You also see, occasionally, flakes that are virtually identical, but most are as different as you might
imagine. A perfect symmetry often includes the exact location of each individual tiny bubble, of
which you may find dozens or more in one crystal. Some express dentritic growth, others do not.
Most flakes show rotational 6-fold symmetry of all of their features, others show such symmetry
in terms of external shape, but have no apparent symmetry of any kind internally. Most flakes of
6-fold rotational symmetry show mirror symmetry about 6 respective planes (all of which cut in
the axis of rotational symmetry) - but some of those with dendrites do not, giving a partial spiral
appearance. Still others appear to have grown in pairs, starting from a common plane of mirror
symmetry. And then, some are completely irregular, others having grown in different directions,
like from the center of a tetrahedron towards its corners, at completely different rates ... and in
a few moments, they are all gone for good! As though they never existed! All of those in all the
pictures taken together — just barely enough to feed a thirsty sparrow.

Finally, I have to note that for known technical reasons, the printed version of the proceedings is available
as black & white copies. In a number of cases, the contributions are prepared by the authors submitting
colored versions of the figures. The respective colored versions of the chapters (and of course also
all other chapters) are available as pdf-files from the authors or the editor (juern-w.schmelzer @uni-
rostock.de). We will try to make the pdf-file of the proceedings available also via the homepage of the
Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research. Last but not
least, I would like to express my gratitude to the colleagues of the Publishing Department of the Joint
Institute for Nuclear Research for the final perfect completion of the work.

Dubna & Rostock, Summer 2011 Dr. Jiirn W. P. Schmelzer



2 Hast Thou Entered into the Treasures of the Snow? (JOB, 38:22)
Gyan P. Johari

Department of Materials Science and Engineering, McMaster Uni-
versity, Hamilton, Ontario L8S 4L7, Canada

'Man lost keine Probleme, indem man sie aufs Eis legt.

Winston Churchill
They are hexagons, those snowflakes in the storm,

2 Johannes Kepler wrote with his characteristic exactness, disputing the shape of snowflakes depicted in
woodcuts by Olaus Magnus, the archbishop of Uppsala. But Robert Finch saw a snowflake romantically,

I have watched each flake, hesitant narcissus,
Float into visible fragrance on the sight. Effect of Snow.

Like the flowers of genus narcissus — and the star of David — most snowflakes are six-cornered. But
when infra-red radiations of the Sun preferentially melt a snowflake’s core and it recrystallizes, it changes
to a multi-petalled form, enveloping a drop of water in a large sphere of its vapor. Then, it looks like a
sunflower, which John Tyndall discovered in the snows of the French Alps. You can occasionally find a
Tyndall flower in the snow on your automobile’s windshield, or produce one by irradiation.

In polarized light, a snowflake looks colorful, like an image in a kaleidoscope. But, unlike the kalei-
doscope image which can be reproduced, no two snowflakes are found to be identical, as more than 5000
photomicrographs published by Wilson Bentley, by Dobrowolska, who also wrote articles on their shapes,
and by Nakaya, have convinced us. Bentley spent nearly half a century photographing snowflakes in the
New England mountains during the early days of photography, using a hand-made camera and a portable
stand made from wood.

In our crystalline winter, children at play catch a snowflake in their hand and then try to observe it
closely, but in vain. After it has soft-landed on their woolen mitts, they look at it keenly holding their breath
to prevent it from melting.

The shape of an airborne snowflake depends upon the weather conditions. It may be a dendritic six-
cornered star, an approximately flat hexagon, a composite of seven hexagons, a blunted triangle, a six-sided
rod or simply a distorted sphere. These shapes, which are depicted by ten symbols, are produced when
micron-sized water droplets in the atmosphere crystallize, tending to achieve perfection in symmetry but
not attaining it. During their leisurely fall — and occasional rise — through the winter air, snowflakes can
merge to produce a variety of other shapes and grow or ablate as they pass through air of varying humidity.

Floating in the rarified atmosphere at high altitudes, snow flakes refract and disperse light, and thus form
the colored halos, pillars, arcs and circles around the Sun in an orderly array. Occasionally, they lead to
brilliant and fiery events. On smashing against or by sweeping over an aircraft’s wings and fusilage, snow
flakes produce St. EImo’s fire on the leading surfaces and illuminate the trailing edges of the wing tips. In
turbulent clouds, their contact with supercooled water droplets causes electrical discharges, which produce
the cloud-to-cloud and the cloud-to-ground lightening. No snowflake has a perfect symmetry.

! Added by Jiirn W. P. Schmelzer

2Gyan P. Johari, a Fellow of the Royal Society of Canada, is Professor Emeritus of Materials Science and Engineering at McMaster
University, Hamilton, Canada. He once did research on ice and glaciers. Part of this text is excerpted from his lecture given at the
Ottawa Glaciology Society meeting of May 1983.
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But human designs can achieve almost perfection in symmetry: The Order of Canada’s insignia is an
idealized snowflake, in the shape of a perfectly symmetrical six-pointed star, precisely as in the sketches of
Robert Hooke in the 17th century, and in the woodcuts of Olaus Magnus a century earlier.

Nor does it have a perfect arrangement of its atoms. The hydrogen atoms of its water molecules change
positions with time giving it a different arrangement once every few microseconds, and the arrangement of
the water molecules in its crystal is marred by flaws. Under the names of proton disorder, point defects,
dislocations and stacking faults, these flaws cause snowflakes to rapidly recrystallize and ultimately meta-
morphize into solid ice. Under certain temperature and humidity conditions, large crystals formed in the
intermediate stages of this metamorphosis produce loosely-packed layers separated by very large inter-layer
shear planes of lower crystal density. When the weight of snow above such planes has increased and the
potential energy of the top layer has reached near the limit of its structural stability, a mechanical shock
dislodges the meter-thick layers above the shear planes. This initiates an avalanche.

Snow accumulated over thousands of years, its successive layers turning to ice, has produced glaciers
and permanent ice covers in the Earth’s polar regions and on the highest mountains in the tropics. Eruption
of volcanoes has deposited traces of ash and dust between the layers and thus provided markers for geo-
logical dating of the ice cores drilled from these regions. The temperature of snow formation determines
the oxygen-16 to oxygen-18 isotope ratio, and measurements of this ratio in slices of ice cores drilled from
glaciers calibrated with the dates of volcanic eruptions have helped determine the climatic conditions of the
past. An ice sample core of 950 meters contains the climatic history of 46 500 years.

Under the pressure of overlying layers, ice can trap methane, ethane and other small molecules. In time,
pressure and temperature conditions transform the (ice-hydrocarbon mixtures) hexagonal arrangement of
water molecules containing channels, like honeycombs stacked in alignment, to an arrangement of close-
fitting cages of molecular dimensions. Small hydrocarbon molecules become confined in these cages, and
the new structure formed is known as ice clathrate. Remaining a solid at a few degrees above 0°C under
pressure, ice clathrates are found buried underground in the permanent frost regions of the Earth, and at the
bottom of northern seas. When the pressure is removed they decompose into ice and the hydrocarbon gas
is released. Ice clathrates comprise one source of natural gas in Russia.

Although ice is hard to the fall of a person, and brittle to the blow of an axe, it is soft to the continuous
pull of gravity, which makes glaciers flow like rivers — faster at the top than near their beds, and faster in
the center than at their sides. Glaciers cover 10% of the land area of the Earth and store 75% of the world’s
freshwater. Radio waves penetrate ice and this helps in determining the depth of the permanent ice covers.
In some regions in the Antarctic, ice is found to be up to 4200 meters deep; the weight of ice has depressed
the land in others. Snow and ice have all but buried the Royal Society mountains in Antarctica.

Flowing like extremely slow rivers, glaciers ultimately reach the ocean. Here, they plunge into it, or
else extend on the ocean’s surface as an enormous, strain-bearing, 100-meter to 800-meter thick tongue of
ice, lifted and lowered by the tides twice a day. After this tongue has reached a certain expanse and strain,
the abrupt force of the high waves fractures it into icebergs. This is the calving of a glacier, which has been
found to produce up to 80 kilometer long icebergs. Directed by the ocean currents and continuously shifted
by the Coriolis force, the icebergs travel majestically toward lower latitudes.

Cooke’s 1772-1775 voyage put the Antarctic ice on the map. But Coleridge’s words (Ancient Mariner)
put it in our imagination,

And now there came both mist and snow,
And it grew wondrous cold:
And ice, mast high came floating by ...

The ice was here, the ice was there,
The ice was all around ...

Showing only 10% of their size and appearing like white castles on the deep blue ocean, icebergs scour the
bottom of the ocean and tumble, and ultimately melt away. Nothing else wanes so slowly or totally in its
majesty. Edwin Pratt (The Titanic) extols their power in these words:



The gray shape with the paleolithic face
Was still the master of the longitudes ...

To Dante, ice was something to be found at the center of the Earth and only after passing the center
of gravity, he and his guide could leave the region of ice. To him, ice is at the bottom rung of Hell. But
Thomas Mann’s young engineer, Hans Castorp (Magic Mountain), finds the knowledge and the wisdom,
the consecration, while lost in the snows. You will find it in the chapter called Snow, where Hans
Castorp lost on the perilous heights dreams his dream of humanity, Mann later comments. And, Leslie
Orgel (1966) showed that adenine, one of the four constituents of the genetic code in the DNA molecule,
is produced when a dilute solution of ammonia, carbon dioxide and hydrogen cyanide freezes and the
electrical forces on the ice surface facilitate the chemical reaction, thereby suggesting that the chemical
constituents of life could have evolved in the ice laden regions. Quelques arpents de neige (Candide) is
Voltaire’s derision of the cause of the war between France and Britain to gain control of Canada. Contrast
that with Kipling’s much latter reconciliation with Canada as still Our Lady of the Snows!

Who would not remember Hans Christian Andersen’s Snow Queen, her castle’s walls of driven snow,
its great hall paved with ageless ice and lit by the aurora borealis; the little boy Kai being carried off in a
snow storm by the Snow Queen in her horse-driven sleigh; his child friend Gerda searching for him and,
after a long and perilous journey, finding him sitting in the great hall arranging pieces of ice into a pattern
to express Eternity, and no pattern satisfying him; her warm tears of joy melting the ice about his heart, and
she finally leading him home where roses are in bloom. The book of Habakkuk says:

Behold ye among the heathen, and regard, and wonder marvellously...






3 Structural Order Parameters, Relaxation and Crystallization
Jiirn W. P. Schmelzer
Institute of Physics, University of Rostock, 18051 Rostock, Germany
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Baaoumup I1. Ckpunoe

Abstract

A brief analysis of the spectrum of problems in the application of the basic ideas of classical nucleation theory to
crystallization processes in glass-forming melts is given. It covers the analysis of the properties of critical clusters
(whether they are widely identical to the properties of the evolving macroscopic phases or not) and the resulting from
the respective assumptions consequences with respect to their sizes and the work of critical cluster formation, the
question whether the viscosity or the effective diffusion coefficients determines the kinetics of crystal formation and
growth (the possible decoupling of diffusion and viscosity) or whether this process is realized by alternative mechanisms
not studied in detail so far, the problem of the determination of the size of the structural units entering the expressions
both for crystal nucleation and growth, and the problem to which extent the thermodynamic and kinetic properties
of glass-forming melts can be considered as a function of the actual thermodynamic state parameters of the systems
under consideration. Applying the structural order parameter approach as developed be De Donder, it is shown that the
dependence of the properties of glass-forming melts on prehistory (or the dependence on the structural properties) can
be given a definite quantitative interpretation.
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3.1 Introduction

The theoretical concepts underlying the description of crystal nucleation and growth processes have been
developed in its basic premises already 80-90 years ago. In a variety of cases, the resulting from such
attempts classical methods of description of nucleation, the classical nucleation theory (CNT) and the clas-
sical theory of crystal growth, supply us with a satisfactory description of the respective processes, however,
in a not much less or even larger number of cases severe deviations between the predictions of theory and
experiment are observed. By this reason, related problems remain to be widely discussed and are analyzed
in detail in the attempts to resolve the problems of deviations of theory and experiment. The present paper
is devoted to the description of some overview on current problems in this respect and possible ways of
their resolution continuing the previously performed analysis [1, 2, 3, 4, 5, 6, 7, 8, 9] (see, e.g., also [10,

11]).

3.2 Some Spectrum of Problems in the Application of Basic Ideas of
the Theory of Crystal Nucleation and Growth to Experiment

3.2.1 State Parameters of the Critical Clusters and Work of Critical Cluster
Formation
One of the basic characteristics of the crystal nucleation-growth processes is the steady-state nucleation

rate, J, describing the number of supercritical clusters formed per unit time in a unit volume. It can be
expressed generally as

J = Jyexp (— kVZT) . 3.1)

Here W, is the work of critical cluster formation, it is equal to the minimum change of the appropriate
thermodynamic potential of the ambient glass-forming melt required to form a cluster of critical size capable
to further deterministic growth, k5 is the Boltzmann constant and 7" the absolute temperature. Provided the
state of a cluster has to be described by more than one parameter — e.g. the number of particles of different
components — as it is usually the case in glass crystallization, the critical cluster corresponds to a saddle
point of the appropriate thermodynamic potential, here (for given external pressure and temperature) of the
Gibbs free energy, G. An example is shown in Fig. 3.1.

Provided the system evolves into the new phase via the saddle point (dark line in the right-hand side part
of Fig. 3.1), then according to Gibbs classical approach to the description of thermodynamically heteroge-
neous systems [12] the properties of the critical clusters are determined via the following set of equations:

(Pg —pa) + 0 0, Wja=pp, Ta=1Tp. (3.2)

dv,
Here o is the interfacial tension, p is the pressure, {2 is the chemical potential, A is the surface area and V,
is the volume of the cluster of the new phase. The subscripts « specify the parameters of the cluster phase
while the subscript (§ refers to the parameters of the ambient melt. For spherical clusters with a radius R,
the first of equations Eq. (3.2) goes over into the conventional Young-Laplace equation, p, — pg = 2a/R.

The bulk parameters of the critical clusters are determined in Gibbs approach by equality of the chemical
potentials of all components and equality of temperature in the considered different phases. Applying this
set of equations one comes to the conclusion that the properties of the critical clusters should be widely
identical to the properties of the newly evolving macroscopic phases. By this reason, one can model then
the thermodynamic driving force for nucleation and growth processes by a Taylor expansion of the chemical
potential difference at the melting temperature. In such approximation, the temperature dependence enters
the description only via the difference between actual temperature, 7', and melting temperature, 7},,, i.e. via
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Figure 3.1: Change of the Gibbs free energy, AG, in dependence on the radius, R, or the number of particles, n, in
the crystal cluster formed in the ambient melt. On the left side, the common picture is shown when one parameter is
sufficient for the description of the state of the cluster. On the right hand side, it is assumed that the cluster consists of
two different components, n, and no. The dark curve shows the path of evolution via the saddle. This is the path which
is usually supposed to be the main path of evolution to the new phase. The light line indicates the evolution via a ridge
of the thermodynamic potential. W, = AG. is the value of AG at the saddle point.

the difference (T'— T;,,) and the fixed for a given value of pressure entropy of melting. Of course, assuming
that the bulk properties of the critical clusters are the same as the properties of the respective macroscopic
phase, one could also use direct measurements in order to derive expressions for the driving force. The
underlying this procedure assumption is, however, in general not true, as shown by computer simulations,
alternative theoretical approaches and experimental results. The bulk properties of the critical clusters —
and, as a consequence, also their surface properties — deviate from the properties of the evolving finally
macroscopic phases.

The respective failure of the classical Gibbs theory can be removed in the framework of the generalized
Gibbs approach. It replaces above given relations, Egs. (3.2), by the following set of equations:

k
dA
(Ta = Tp)sa + (P = pa) + oo + > pjalitja = 1js) =0,
« i=1
oo >
OPia ) (p;5),15

3 (0o
T -1 = % (32) .
R\ 0sq {ris},Ts

Here s is the entropy volume density and p; are the particle volume densities of the different components.
These equilibrium conditions coincide with Gibbs’ expressions for phase coexistence at planar interfaces,
i.e., for large cluster sizes (R — o0), or when, as supposed in Gibbs’ classical approach, the surface tension
is considered as a function of only one of the sets of intensive state variables of the coexisting phases,
either of those of the ambient or of those of the cluster phase. In such limiting cases, Gibbs’ equilibrium
conditions Egs. (3.2) are obtained as special cases from Eqgs. (3.3).

The application of Egs. (3.3) allows one to determine the properties of the critical clusters in an al-
ternative to Gibbs classical method way. The results of such analysis show that the properties of critical
clusters deviate as a rule considerably from the properties of the evolving bulk phases. Experimental data
verifying this result in the analysis of crystal nucleation and growth processes are given in Refs. 2 and 3 and

3
(i — Hja) = = ( , (3.3)
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in [13, 14]. In addition, also the estimates for the size of the critical clusters may lead to different results as
compared with the classical Gibbs approach.

Both in the classical and generalized Gibbs approaches (we assume here in both cases that the surface
of tension is chosen as the dividing surface), the work of critical clusters formation is given by the relation

1
We=goA. (3.4)

Accounting for the possible deviations of the bulk properties of the critical clusters and their sizes, it can
be shown that the classical Gibbs approach overestimates as a rule the work of critical cluster formation
and underestimates the steady-state nucleation rates. Such account is easy to perform for condensation and
boiling, where the density of the bubbles may vary continuously. Similarly, the processes can be described
quantitatively for segregation processes in solutions where the concentration of the components in the clus-
ter phase may vary continuously as well. In application to crystal formation, the proper account of the
“degree of crystallinity” of the crystal precursors and its incorporation into the thermodynamic properties
of the evolving clusters seems to be a problem which is much less studied and understood.

3.2.2 Passage via the Saddle Point versus Ridge Crossing

In applying Eq. (3.1) it is assumed that the evolution path to the newly evolving phase proceeds via the
saddle of the thermodynamic potential hypersurface. However, in principle, also a passage via a ridge
may be possible and preferred by some kinetic reason even if it refers to a higher potential barrier to be
overcome [15, 16]. This problem has been discussed in detail also in a recent own paper (Ref. 8) for the
case of segregation in solutions by solving numerically the set of kinetics equations describing nucleation
and cluster growth and employing the generalized Gibbs approach for the description of the thermodynamic
aspects of cluster formation and growth. According to mentioned analysis, deviations of the preferred
evolution path from the trajectory passing the saddle occur for states in the vicinity of the classical spinodal
curve both for metastable and unstable initial states. Here the system prefers to form localized density
and/or composition fluctuations of finite value instead of spatially entended fluctuations with low changes
of density and/or composition.

With respect to crystallization, the situation is partly different. According to the analysis by Skripov
and Baidakov [17, 18] there is no spinodal in congruent melt crystallization, i.e., if the compositions of the
melt and the crystal phase coincide. By this reason, one can expect that in these cases the evolution to the
new phase will proceed as a rule via the saddle point. Moreover, in the analysis of segregation processes
in glass-forming melts it turns out that the most significant deviations from the classical picture occur in
the vicinity of the spinodal curve. By this reason, for the mentioned cases, when the spinodal is absent,
the behavior can be expected to be well-described by classical terms, however, the discussed already above
problem - as fas as to critical crystal clusters the macroscopic properties may be assigned to - remains
open. However, in the general case crystallization is accompanied by changes in the composition and the
generalized Gibbs approach has to be utilized to model the respective processes.

The problem discussed in this subsection has a further consequence: if in computer simulations a pas-
sage via a potential barrier is observed, the respective barrier does not correspond necessarily to the saddle
point. It can refer also to a ridge and in such cases, above equations cannot be utilized to compute thermo-
dynamic properties referring to the critical clusters.

3.2.3 Decoupling of Diffusion and Viscosity

As discussed in detail in Refs. 5 and 7 (c.f. also [19, 20]), primarily the kinetic pre-factor Jy in Eq. (3.1)
is determined by the diffusion coefficient of the basic units in the melt undergoing crystallization. For
one-component systems, we may write (c.f. Refs. 5 and 7)

[ o D W,
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Replacing the diffusion coefficient, D, by the viscosity, 7, via the Stokes-Einstein equation,

kpT
D=5~ (3.6)
don
we get the commonly employed relation
vV 0’/€BT I/Vc
J=— — . 3.7
G P\ kT (37)

However, the replacement of the diffusion coefficient by viscosity is already questionable for one-component
systems (due to the possible decoupling of diffusion and relaxation), it becomes even more questionable
for crystallization processes in multi-component systems, where an effective diffusion coefficient, Dy,
determines primarily the nucleation-growth process, being a function of the partial diffusion coefficients,
D;, of the independently diffusing components in the melt and their molar fractions, x;, both in the melt
and in the evolving crystal phase (see Refs. 5 and 7 for more details).

Figure 3.2: Illustration of the difficulties one is confronted with in solving the problem of theoretical description of
crystal nucleation and growth processes.

The effective diffusion coefficient is given by the following relation:

el )@

Deys Dizip

(3.8)
=1

Here d,, and dg are parameters describing the average size of the independently moving particles in the melt
and the crystal cluster phase, D; and D are the partial diffusion coefficients of the respective components
in the bulk of the melt and near to the interface melt-crystal, x;3 are the molar fractions of the different
components in the ambient melt and /2, is given by v2, = x;, + n(dw;o/dn), where n is the total number
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of particles in a crystal cluster. D, is the effective diffusion coefficient which plays the role of D in
Eq. (3.7) for multi-component crystal nucleation.

A detailed estimate of the magnitude of the error one introduces by the replacement of the effective
diffusion coefficient via viscosity is believed to represent a highly interesting problem, however, as it seems
it is hardly possible to realize such analysis for a wide class of systems due to the limited knowledge of the
respective parameters (c.f. also [21]).

3.2.4 Size of the Structural Unit

In Egs. (3.5) and (3.7), the size parameter dj enters having for one-component systems the meaning of the
size of the structural unit moving independently in the liquid and being responsible for crystallization. The
question arises in this respect how such size parameter has to be defined in the cases that crystallization
proceeds in a multi-component system. In Ref. 7 this problem has been analyzed in detail.

Provided the process of crystallization is realized via an independent motion of several components,
then this parameter has to be defined as the average size of the independently moving components. This
result holds true both for the description of nucleation and the description of growth processes.

3.2.5 Alternative Mechanisms of Crystallization

In the book by Skripov and Faizullin (Ref. 18) one can find the following statement: the transition from
the liquid to the fcc-crystal and back cannot be accomplished by just small (of atomic size) shifts in
the positions of single atoms: for such transitions a significant part of atoms should be moved by a
distance of about one atomic spacing. It follows that these processes cannot be interpreted via above
sketched kinetic mechanisms of crystal nucleation and growth being based on the consideration of the more
or less independent motion of the single particles of the different components of the glass-forming melt.
Similarly, Leko [22] connects in his comprehensive analysis of crystallization of quartz glass the respective
processes with bond switching. As it seems, a detailed specification of the kinetic pre-factor Jy for both
these mechanisms of crystallization is not performed so far.

3.2.6 Dependence of the Properties of Glass-forming Melts on Prehistory

The proper account of the circle of problems sketched above is already a hard task comparable with the
problems of supply of raw material for glass melting as sketched in Fig. 3.2. In Fig. 3.3, typical relations
are shown between glass transition temperature 7y, (for conventional cooling rates) and the temperature
Tnaz Where the maximum of the steady-state nucleation rate is reached. It is evident that the maximum of
the steady-state nucleation rate is found near to T;,. By this reason, one has to look carefully at the properties
of the ambient glass-forming melt in order to determine correctly the thermodynamic driving force of the
process of crystallization and the surface energy term.

The typical behavior of the density of glass-forming systems in vitrification is shown in Fig. 3.4. The
density increases with decreasing temperature but its values depend not only on the thermodynamic state
parameters but also on cooling rate or, in more general notations, on the prehistory, i.e., the way how the
glass-forming melt was brought into the respective state. In order to describe the respective behavior in
thermodynamic terms, one has to introduce, at least, one additional order parameter denoted here as ¢ and
representing the free volume of the melt under consideration. The change in time of this additional order
parameter can be described for isothermal conditions as

s 1

it~ T T.0) (€ —&)- (3.9

Here 7 (p, T, £) is the characteristic relaxation time, depending on pressure, temperature and the structural
order parameter. It can be shown (c.f. [23] and in detail the Appendix) that such relaxation equation can
easily reproduce the often observed relaxation behavior of the form ¢ oc ¢'/2 and can give a key to the
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theoretical understanding of the stretched exponential relaxation kinetics. In Eq. (3.9), &, is the equilibrium
value of the structural order parameter.
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Figure 3.3: Dependence of the steady-state nucleation rates for « —Lio O 2SiO2 on temperature as obtained by different
authors (left, c.f. Ref. 1) and (right) the relation between the temperature of maximum nucleation rate and glass
transition temperature for a large class of glass-forming melts [24].

For given cooling and heating rates, ¢ = (d1'/dt), Eq. (3.9) can be transformed into a relation describing
the change of the order parameter with temperature. The solution of this equation for constant cooling and
heating rates results in the dependencies demonstrated in Figs. 3.4 and 3.5.
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Figure 3.4: Typical dependence of the density of glass-forming melts on temperature in cooling (here shown for
a borosilicate glass [25], left side). On the right hand side this behavior is interpreted qualitatively employing one
structural order parameter [26] connected with the free volume of the system under consideration.

Since the structural order parameter is a function of pressure and temperature and of the prehistory of
the melt, also the thermodynamic properties of the melt depend on the same set of parameters. It follows
as a consequence that the thermodynamic state parameters of the crystal cluster in the ambient phase are,
as a rule, dependent on prehistory as well. Once the bulk properties depend on prehistory, also the surface
properties have to depend on prehistory. Consequently, the kinetics of crystal nucleation and growth is
affected, in general, by prehistory and may proceed, in particular, in a different way for cooling and heating
processes.

In above considerations, the order parameter is assumed to have the same value in the whole system.
However, the intensity of fluctuations in the glass transition range is as a rule higher as compared to systems
in thermodynamic equilibrium. In the glass transition range, local fluctuations are not damped out since the
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Figure 3.5: Left: Dependence of the structural order parameter on temperature in cooling-heating processes performed
with the same absolute value of the rates of change of temperature. Right: Dependence of the characteristic relaxation
time on temperature for cooling and heating processes (for the details see Ref. 23).

system is in a non-equilibrium state. A particular experimental realization of such peculiarity consist in
the “fluctuation flashes” in heating observed and discussed in detail by Porai-Koshitz and coworkers (see
Ref. 27 for an overview).

Since the thermodynamic state parameters are dependent on the structural order parameter, the kinetic
parameters have to depend, in general, on the structural order parameter(s) as well. For the case discussed
here, the dependence is demonstrated in Fig. 3.5 (right side) obtained by similar computations as the ones
resulting in Fig. 3.5 (left side).

Employing in this way the order parameter concept for the description of glass-forming melts, the
discussion of the dependence of the crystal nucleation and growth processes on the structure of the glass-
forming melts (see e.g. [28]) can be given a quantitative basis. In this treatment, structural properties
are considered as additional parameters not determined uniquely by the conventional thermodynamic state
variables like mole number, pressure and temperature but by additional parameters which can be changed
independently, in addition. Such approach is possible only if the system is out of equilibrium and treated
respectively by introducing additional structural order parameters. As a consequence, in such cases, in
order to derive the nucleation and growth rates, one has to determine the bulk and surface properties as well
as the kinetic parameters not only in dependence on mole numbers, pressure and temperature but also in
dependence on the (set of) structural order parameters depending, in general, on prehistory (e.g., cooling
and heating rates). A more extended analysis of the sketched here circle of problems will be given in a
forthcoming paper [29].

3.3 Conclusions

A spectrum of partly resolved and partly unresolved problems is discussed arising in the application of the
classical theories of nucleation and growth to experiment, In particular, in order to treat nucleation processes
in glass-forming melts, as a rule, the prehistory of the system under consideration has to be properly taken
into account in addition to the spectrum of factors governing the crystallization process if the prehistory can
be neglected. The account of the prehistory or the structure of the system can be performed in the framework
of the structural order parameter approach as developed by De Donder and discussed in application to the
description of glass-forming systems in detail in Ref. 23 and cited there papers. Such effects are considered
as particularly important in the analysis of ultra-fast nano-calorimetry at cooling and heating rates in the
range between 10~* K/s up to 10° K/s [30, 31]. A detailed analysis of the possible effect of prehistory on
the kinetics of crystal nucleation and growth is planned to be performed in near future.
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3.4 Appendix: Some Comments on the Relaxation Kinetics of
Glass-Forming Melts

3.4.1 Introduction

In order to describe appropriately the glass transition, relaxation processes and the state of the resulting
glass, at least, one additional order parameter has to be introduced into the description of glass-forming
systems [32, 33, 34, 35, 36, 37, 38, 39]. Here we consider the case that one structural order parameter E is
sufficient for the description of relaxation processes [1, 26, 40, 41, 42]. In stable and metastable equilibrium

states, the order parameter is a function of the two independent state parameters, i.e., E (&) = ~(p, T). At
given values of pressure and temperature, the relaxation behavior can be expressed as
dg 1 s X ))
S (g —¢gle)) | 3.10
7 g G0

In order to simplify the notations, we will use in the following derivation instead of §~ the dimensionless
reduced quantity

-

=0

(3.11)

In such definition, the equilibrium state the systems eventually tends to corresponds to £(t — oo) = 0.
Employing the methods of thermodynamics of irreversible processes, in preceding analysis it was

demonstrated that the kinetics of relaxation for the case of existence of only one structural order param-
eter £ can be written in the form (cf. Egs. (3.10) and (3.11), [1, 40])

d¢ 1

- =—-——==¢. 3.12

it~ .6 (3.12)
Here p is the pressure, T the temperature and £ the order parameter defined in such a way that it approaches
zero for the metastable or stable equilibrium states corresponding to the respective values of temperature and
pressure. In a first approximation, one could suggest to replace the characteristic relaxation time 7(p, T, §)
by the Maxwellian relaxation time 7o(p,T") depending only on pressure and temperature but not on the
order-parameter. Such approximation would lead to the simplified equation

d¢ 1

T o

and an exponential relaxation behavior of the order parameter given by

£(t) = &£(0) exp <—t> : (3.14)

However, already more than 150 years ago, R. and F. Kohlrausch were aware (cf. [40]) that such simple
relaxation law, as given by Eq. (3.14), is not sufficient for the description of relaxation processes in glass-
forming melts (somewhat later this point was reaffirmed also already by Tool [43]), replacing them (in
above notations) by dependencies of the form

¢ P

dt ro(p,T)g 1
or

s o(t) ¢ (3.16)

dt T0 (p> T)
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Employing different assumptions for the dependencies of either ¥ (&) on £ or (t) on t, different relaxation
laws can be obtained, for example, Kohlrausch’s stretched exponent formula (for p(t) o< 1/t" withn < 1;
for more details see [40])

i_ _ i ’ -1 — 1 —p)/0-n) 3.17
5(0 = exXp ) ﬁ_ n, TK_TO( n) . ( )

) TK

This equation was proposed to use in the description of relaxation of glass-forming melts by Rekhson and
Mazurin [44, 45], it turned out to be a very useful method of description but has - as mentioned by Mazurin
- not found a theoretical foundation so far (for alternative approaches of theoretical foundation involving,
however, certain ad hoc assumptions [46] see [47, 48, 49]).

In order to establish the type of dependence ¢ = () or ¢» = (&) in above equations, one can - as
one possible approach - develop statistical mechanical models of relaxation processes appropriate for the
desired classes of systems under consideration. Alternatively, one can start with Eq. (3.12) and try to find
out which kind of relaxation behavior one may expect making only very general assumptions in the analysis
of this relation. In such approach, one can either understand the origin why certain classes of relaxation
laws have been turned out appropriate in describing relaxation or suggest dependencies eventually capable
for a detailed description. The analysis of this second approach is the aim of this note extending the work
performed in our previous paper [40].

3.4.2 Analysis

In the analysis of Eq. (3.12) we assume (i.) that 7(p, T, £) can be expanded into a Taylor series with respect
to the structural order parameter £ and (ii.) that in the limit { — 0 Eq. (3.13) holds, i.e., lim¢ o 7(p, T, &) =
7o(p, T'). Introducing a dimensionless time scale ¢’ = ¢/79, Eq. (3.12) can be written then as

de 1 , ¢
- _ , t = . 3.18
dat’ 1+alf+a2§2+03§3+...€ (3.18)

Here a; = a;(p, T) are the (dimensionless) expansion coefficients of 7(p, T, &) at £ = 0.
Eq. (3.18) leads to

<2 + a1 + agé + CL3£2 + CL4£3 + .. ) d¢ = —dt’ . 3.19)

Integration in the limits (£(0),&(¢'); 0,¢') yields

a a £t')
<1n§ tae+ B2y Bes )’ T (3.20)
2 3 £(0)
In general, knowing the expansion coefficients, £(¢') can be determined from Eq. (3.20).
However, in the particular cases that one of the terms in Eq. (3.19) respectively Eq. (3.20) dominates,
we get some spectrum of particular simple differential equations and solutions

Tt ) =01, (3.21)

E Yk
ahlde = —at' €)= {5’“(0> - t’} . k=12, (3:22)

3

As a particularly important special case, we get for k = 2 the result & = (¢/)1/2,
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Let us now consider the particular case that the relaxation behavior is governed by the term containing
the expansion coefficient a; with j = k + 1. According to Eq. (3.22), the dependence £(t) for this mode is
given by

_ AR
f@)f{?@Uai} . (3.23)
J

In the course of time, the term containing the expansion coefficient a; may replace it since £ is decreasing
with time. The differential equation of this mode, we can write as

akgk ’ d§ 1 ’

d¢ = —dt or —= =— dt’ . (3.24)

€ ¢ £ axg”
Replacing &£(t) on the right hand side by its solution for the case j = k + 1 (cf. Eq. (3.23)), we obtain
g _ 1 /
e ro k/(k+1)dt . (3.25)
w0 (G5))
Ak+1

In other words, we arrive at Kohlrausch (or Jenckel-type cf. Eq. (3.17) and [40]) relaxation equations where
the parameters n = k/(k + 1) and 8 = 1 — n will have the values

1 1

n=s, 525 for k=1,
2 1

n:§, ﬁzg for k:2, (326)
3 1

n:Z, ﬁ:i for k=3...

Let us suppose now that the term a1 is very small, then the relaxation behavior governed by the term
in the expansion with j = k + 2 may go over into a behavior governed by the term a; and the respective
differential equation. Instead of Eq. (3.25) we get then

dg 1 /
? =— P k/(k+2)dt . (3.27)
w(e0-(552))
Ak+2
Instead of Eq. (3.26), we have then
1 2
n = 3 =3 for k=1,
1 I6] L fo k=2 (3.28)
n = — = — T = .
2’ 2 ’
3 2
n = g 5 = g for k=3...
This analysis can be extended to even higher numbers of eventually missing terms in the expansion of
7. In general, we would have then (for ay # 0, ar+1 = ... =aj—1 =0, a; # 0)
k k
n=-—-:", =1l-n=——. 3.29
kE+j b kE+j (529
The respective differential equation would read
d 1
a__ / (3.30)

—dt
) %/ (k+7)
E ak (§k+j(0) _ <k+]> t/> !

et
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with the general solution

3.4.3 Discussion

The approach predicts that, in addition to the exponential decay, near to equilibrium, relaxation may be
governed in intermediate stages by laws of the form &(#') = (£¥(0) — (k/ay.)t')*/*. Such kind of relaxation
behavior was already distinguished by Kauzmann [50] and recently reconfirmed to dominate the dielectric
« process in viscous organic liquids [51]. In addition, it allows one to understand the origin of stretched
exponential type relaxation processes, it gives estimates of the coefficient § in agreement with experimental
findings (0.3 < 8 < 0.75).
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®penkesb ObLT PU3MKOM-TEOPETUKOM.

ITUM CaMbIM fl X04Yy NOJAYCPKHYTh, YTO OH HHTEPECOBAJICH IMPeEkKIEe
BCEro U IJIABHBIM 00pa3oM TeM, 4YTO IPOUCXOAUT B PeaibHbIX
00beKTAaX,

U IPUMEHABIIMECH UM MaTeMaTU4YeCKHUe CPeacTBa 00C/ 1y KUBAIN
ero pusuky, a He HA000POT,

KAaK 3TO MHOIIA CJIYYAeTCH € NPEACTABUTE/IAMH COBPEMEHHOI0
NOKOJICHUH Y4€eHBbIX.

CnpaBeaimBOCTb 0A00HOI0 YTBEPKICHU, MOKHO CKA3aTh,
3aCBM/ACTE/ILCTBOBAHA KAXK/I0H CTPAHMLICH €r0 KHUIU O )KUAKOCTHAX.
On conpammuBaet: «UTO e NPOMCXOAUT B JCHCTBUTEIBHOCTH U KaK
ITO MOKHO O0BSICHUTH ?» - M 321a€TCH ITUM BOINPOCOM UMEHHO TaK,
a OTHIOAb He B (popme:

«BOT H3MIIHAA TEOPHS; TOAUTCH JIM OHA? JKCIEPUMEHTHI Ke,
BEPOSATHO, OIIMO0YHBI, €CJIM OHH il IPOTUBOPEYaAT».

Nevill F. Mott

Abstract

The kinetics of explosive boiling-up of liquid argon and argon-helium solutions has been investigated at negative pres-
sures created by the reflection of a compression pulse 3-5 us long from the free surface of a liquid by the method of
liquid pulse heating on a thin platinum wire (with a rate of temperature increase of about 1 K/us). The limiting super-
heats T (stretches p. ), the effective nucleation rate J. and the derivative (d1n J/d T)T:T* have been determined by
experimental data on the thermal perturbation of a wire probe and the results of solution of the problem on the initial
stage of explosive boiling-up of a liquid. It has been found that the dissolution of helium results in a decrease of the
cavitation strength of argon. The experimental data are compared with homogeneous nucleation theory. Satisfactory
agreement between data of experiment and theory with the use of the capillarity approximation in the latter is found,
although limiting stretches (superheats) attained by experiment are nevertheless systematically lower than calculated
ones.
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4.1 Introduction

The liquid phase can exist, as a metastable one, also at negative pressures. There are no fundamental
differences between a superheated (p > 0) and a stretched (p < 0) liquid. Spontaneous boiling-up and
cavitation at temperatures sufficiently far away from absolute zero should be described by the classical
nucleation theory connecting this process with thermal fluctuations [1].

Extensive experimental material has been accumulated by now on the limiting superheats [2-5] and the
cavitation strengths [6-15] of liquids of different chemical nature. As distinct from a superheated liquid,
where the discrepancy between theory and experiment in the superheat temperature is equal to units and
fractions of Kelvin [2,5], limiting stretches registered in experiments, by the data of many authors [6-11], are
usually tens and even hundreds of times smaller than the theoretical values. The discrepancy between theory
and experiment is usually explained by the imperfection of the contact of the liquid with the internal parts of
the walls of the measuring chamber and the presence of dissolved gases and solid suspended particles on the
walls and in the liquid volume. In this respect, cryogenic liquids are sufficiently pure. Many foreign gases
in them are frozen out and can be easily detached by filtering. The good, close to complete, wettability of
solid bodies by cryogenic liquids does not allow vapor cavities to exist on the inner walls of a vessel for a
long time.

In studying the cavitation strength of cryogenic liquids use was made of both quasi-static [6-10] and dy-
namic [12-15] methods. Meissner et al. [6,7] investigated the cavitation strength of nitrogen and superfluid
helium in metal bellows. In experiments on He II no abrupt cavitation effect was discovered. The authors
of [7] conclude that even if a negative pressure was realized in He II, its value did not exceed — 0.03 MPa.
Beams [8] investigated the breaking strength of nitrogen, oxygen, argon and helium by creating inertia loads
in U — shaped glass tubes immersed in a Dewar vessel with the liquid under investigation. A pressure of
the limiting stretch p, ~ —1.2 MPa was achieved for liquid argon at a temperature 7" = 85 K, whereas the
homogeneous nucleation theory gives p. ~ —19.0 MPa. The cavitation strength of liquid helium was also
investigated by the methods of spouting [9], osmotic pressure [10], and acoustic methods [11].

The results presented in [6-10] most likely point to heterogeneous cavitation in cryogenic liquids. All
attempts to remove from the system possible completed and easily activated boiling sites failed. The idea
of realization of homogeneous cavitation in He II based on the ideal wettability of practically all solid
materials by this substance did not prove its value either. The authors of subsequent papers [12-15] adopted
a strategy for the achievement of homogeneous nucleation in a stretched liquid not by means of removing
possible cavitation centers from it, but at the cost of neutralization of heterogeneous nucleation in the
phase-transition shock regime. For this purpose, use was made of combined pulse methods of generation
of negative pressures and liquid superheat [12], and also focused acoustic fields [13-15], which made it
possible to separate the cavitation zone from the transducer walls and to considerably reduce its volume.
The method of focusing of acoustic fields was used for investigating the cavitation strength of liquid helium
in references [13-15]. The results are in satisfactory agreement with the classical homogeneous nucleation
theory.

The present paper gives the results of investigating the kinetics of explosive boiling-up of liquid argon
and argon-helium solutions at negative pressures. Use was made of an approach based on the combination
of two methods: pulse stretching with the reflection of a compression wave from the liquid free surface
and pulse liquid superheat on a thin platinum wire [12]. This approach made it possible to realize a shock
boiling-up regime, at which the main contribution to evaporation is made by bubbles of fluctuation origin,
and to achieve nucleation rates J = 10?2 — 10%® s~'m~3 in a tensile-stressed liquid. At positive pressures
limiting superheats for liquid argon had been measured earlier [16,17].

The structure of the paper is as follows. Section 4.2 describes the method of investigation and the exper-
imental setup, presents briefly the theory of the method. Section 4.3 presents the results of the experiments
and compares the data obtained with homogeneous nucleation theory. Section 4.4 contains the discussion
and conclusions.
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4.2 Experimental Setup and Measurement Procedure

The schematic diagram of the measuring chamber is given in Fig. 4.1. Liquid argon 1 (V ~ 70cm?) is
in vapor-liquid equilibrium at a temperature 7' = 107 K in a cylindrical chamber 44 mm in diameter. The
height of the liquid column in the chamber is 40-50 mm. The chamber bottom is a duralumin membrane
(3), which is 0.8 mm thick. At a discharge of a low-inductance capacitor (5) into a spiral coil (4) pressed
to the membrane a pressure pulse 3-5 us long is generated. The front of the pulse is less than 1 us, the
amplitude is up to 15 MPa. A negative-pressure pulse in the liquid is generated when a compression pulse
is reflected from the liquid-vapor interface. The pressure of the stretch in the reflected wave is determined
by the expression

p—=p" +pik, (4.1)

where p” is the gas or vapor pressure above the surface of the liquid, p. is the pressure in the compression
wave, k is the reflection factor calculated by the formula

"o
p=Y 9 (4.2)

Wt w

Here w” = p”¢’, w = pc are the gas and the liquid acoustic impedances, respectively, ¢/, ¢, p”’, and p

are the sound velocity and the density in vapor and liquid, respectively. Since far from the critical point
w > w", k < 0. The dependence of the pressure amplitude in a compression pulse p on the voltage of
the capacitor supply was determined in calibration experiments with the help of a pulse pressure transducer.
The calibration experiments were conducted in the range of temperatures (100-140K) and pressures under
investigation. The error of determination of pressure in a stretching pulse is 5 %.

5

Figure 4.1: Schematic diagram of the measuring chamber: (1) liquid under investigation, (2) platinum wire, (3) dura-
lumin membrane, (4) spiral coil, (5) low-inductance capacitor.
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The liquid is superheated on a thin platinum wire 2 with a diameter of 20 ym and a length of 10 mm
located at the center of the chamber and immersed in the liquid to a depth of 3-5 mm. The wire is heated
by rectangular current pulses 15-25 ps long with an amplitude of 5-10 V at a rate of temperature increase
of about 1 K/us. The heating pulse and the stretching pulse reflected from the liquid free surface are
synchronized in such a way that the liquid boiling-up takes place at the moment of passing of the maximum
of a negative-pressure pulse through the wire. The wire is included in a measuring bridge circuit. The
temperature of the wire probe is determined by its electrical resistance with an error not exceeding 2 %.
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Figure 4.2: Oscillogram of an electric signal of boiling-up of liquid argon on a platinum heater at pressure p =
—2.0 MPa. The delayed sweep of the oscillograph with respect to the beginning of a heating pulse is equal to 15.0 us.
An arrow shows the beginning of intense fluctuation nucleation ¢t = ¢..

In the absence of boiling-up, the wire temperature T'(¢) increases monotonically with the rate T ~ const
up to the moment of attainment of the conditions of intense fluctuation nucleation, when the thermal regime
of the wire changes abruptly. When the liquid boiling-up begins, a short-lived temperature perturbation,
6(t), appears on the curve of the time dependence of the temperature of the wire, 7'(¢), being heated. The
absolute value is |6(t)| < |T'(t)|. Therefore the signal of boiling-up is preliminarily separated with the help
of a special filter and then delivered to the entrance to an oscillograph (Fig. 4.2).

We consider a simplified variant of solution of the problem on a thermal signal in the wall-evaporation
regime, whose detailed analysis is given in [18, 19]. Owing to the good wetting of platinum with liquid
argon, and also to the fact that the superheated wall layer is thin and the contribution of completed centers
is small, bubbles originate by the homogeneous nucleation mechanism. The homogeneous nucleation rate
depends on the liquid temperature 7T'(¢, x), which in its turn is a function of the time ¢ and the distance to
the heater wall z. The logarithm of the fluctuation nucleation rate J(¢,x) with good accuracy is a linear
function of the temperature [20], therefore in a wide temperature range we can employ the approximation

1
J(t2) = Juexp(T(ha) -~ To)Gr] . Gr =2 dgf

where J,, is the nucleation rate at the temperature of fixation, T;, = T'(¢,,0).
Bubbles come into being in a thin wall layer, therefore along with .J it is convenient to introduce the
surface rate of fluctuation nucleation I at the heater temperature 7' (t) = T (¢, 0) calculated by the formula

= const , “4.3)

oT(t,x)

—1
o x_o} . 4.4

[(T (1) = /J(t,x)dx —J(T®) [GT
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The temperature gradient near the heater is given by the formula [21]:

T (t) T, — Too
= _gtnt a.
ox |._, Jrat, *)

where a is the liquid thermal diffusivity, T is the temperature far away from the heater.

b

Figure 4.3: Microphotographs of explosive boiling of a liquid on bubbles of fluctuation origin at a heating rate of
1 K/ps: a) Z (t) is 0.05, b) Z (t) is 1. The exposure time is 0.05 us, p = —4.5 MPa.

In experiments on liquid explosive boiling-up at negative pressures on thin filament heaters bubbles at
the stage of a considerable thermal perturbation prove to be strung on a filament like “beads” (Fig. 4.3 b).
It is explained by the high rate of the bubble growth in a stretched liquid. At a negative pressure the bubble
growth is retarded by the inertia of the surrounding liquid (Rayleigh’s theory), therefore the rate of increase
of the bubble radius is a constant equal to

2(p" —p)

Bp)

Every bubble “dries” a part of the wire as long as its diameter d. Consequently, the condition of validity of
the “bead” model may be written as follows:

R= (4.6)

I(T () -7d®> <R. 4.7

According to this condition, in the time of the bubble growth to a size equal to the wire diameter no new
bubbles arise. In the experimental results presented here the condition Eq. (4.7) is fulfilled at pressures
lower than -2 MPa. The time of the bubble transformation into a “bead” is 0.05-0.5 us.

The part of the wire length covered with bubbles is found by integrating “dry” spots with respect to the
time of their origination:

Z(t) = 27Td/I(T(T))'R~(tf7‘)dT (4.8)
0

) [1 - (1 + GTTt) exp (—GTT't)} .
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From here on the count of time begins with the time fixation ¢,, = ¢, — 1us.

With growth and contact with the wire probe the bubbles envelop the heater surface and perturb the
heat flow from the wire. Eq. (4.8) makes it possible to calculate the nucleation rate J (7'(t)) at the instant
of registration of explosive boiling-up ¢, for a chosen value of Z(t) = Z,.. The value of G required for
calculating J (7'(t)) by Eq. (4.8) is determined from the condition of proportionality at the initial stage of
boiling-up of the temperature signal 6(t) (Fig. 4.4) and the nucleation rate .J (¢). Such proportionality is
substantiated by a thermal physics calculation [18]. In experiments, the signal of explosive boiling-up is
separated by a special filter, which transforms the temperature by the formula 6(t) = T'(t + §t) — T'(t),
where the delay time is 6t = 0.2 ps. From the relation 0 (¢,0) o J(t) and Eq. (4.3) follows the formula

T71 81110 (t, 0)
dt ’

The correctness of Eq. (4.9) is tested by the condition of independence of the quantity G from the time of
development of boiling-up at its initial stage.

0.01r

Gr = 4.9)

0.00

0(2)
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Figure 4.4: Oscillogram of a thermal signal in the initial stage of explosive boiling-up for an argon—helium solution at
p=—39MPa, T =0.8 K/us (solid line). The dotted line shows calculation at G = 7.

The error of determination of the effective nucleation rate by the procedure described above does not
exceed one order and is mainly caused by the uncertainty of the value of Z, set in calculations by Eq. (4.8).
A typical photograph of the explosive boiling-up of a liquid on a wire is presented in Fig. 4.3. The thermal
perturbation is most pronounced at the instant the wire is fully covered with a vapor “coat”. Therefore
in calculations the nucleation rate Z, was taken equal to unity. The temperature of intense fluctuation
nucleation 7}, was also registered at that instant. Under changes of time ¢, in the range from 15 to 25
us, the temperature of intense fluctuation nucleation 7). does not change practically. This fact is explained
by the strong temperature dependence of the nucleation rate and is an additional argument in favor of the
fluctuation mechanism of nucleation.

From Eqgs. (4.3) — (4.8) it follows that the effective thickness of the wall layer, which makes the main
contribution to nucleation, in experimental conditions is equal to 1076-10~7 m, the characteristic time of
boiling-up is 10~7 s, the nucleation rate in this case is equal to 1022~10%*s~*m~=3. Such high values of
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the nucleation rate are ensured by realization of the shock boiling-up regime. In this regime, evaporation is
mainly ensured by bubbles of fluctuation origin [2-4].

In the experiments with solutions, the saturation of liquid argon with helium was realized at a pressure
of 2.04 MPa. The establishment of concentration equilibrium in the chamber was controlled by the static
pressure and the temperature of the limiting superheat of the solution. The constancy of the value of the
attainable-superheat temperature, which in the process of saturation varied from 138.7 K to 136.1 K pointed
to the completion of the gas dissolution. The process of helium dissolution was intensified by passing
pressure pulses with an amplitude up to 5 MPa through the solution. When an inverted wave returned to
the bottom of the chamber, at the membrane surface one could observe an intense formation of cavitation
bubbles, which facilitated the agitation of the liquid.

4.3 Experimental Results. Comparison with Homogeneous
Nucleation Theory

Experiments were performed on argon of high purity (99,998%). All in all, there were three series of
measurements. Every series was conducted on different heaters with a new portion of argon in the mea-
suring chamber. Experimental data on the attainable-superheat temperature for liquid argon at positive and
negative pressures are presented in Fig. 4.5. At a temperature of 110 K the value of the limiting stretch
Ap, = ps — p was 10 MPa.

5
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Figure 4.5: Boundary of attainable stretches of liquid argon (dots), saturation line p,, spinodal ps,. Dots of different
types refer to experiments employing different wire probes. Dashed lines show the results of calculation of the limiting
stretch by the homogeneous nucleation theory (Eqgs. (4.11)—(4.13)) for two values of the nucleation rate: the upper line
refers to J = 10%° s™*m~3, the lower line to J = 10%° s 'm~3, C is the critical point.

The boundary of essential instability of the liquid phase (spinodal) is determined by the condition [2]

op\
(av)T -0, (4.10)

where v is the specific volume of the liquid. The spinodal of liquid argon is approximated in [3, 22] by the
results of measuring the (p, v, T')-properties in stable and metastable states (Fig. 4.5). At a pressure p =
—10 MPa the spinodal temperature T§,, ~ 116.5 K, which is 6.5 K higher than the superheat temperature
achieved in the experiment.
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On the spinodal, a homogeneous system loses its reducing reaction to mechanical or thermal perturba-
tions whatever small they are. However, even before the attainment of this boundary in a metastable liquid,
owing to fluctuations during the thermal motions of a collective of interacting particles, there may appear
nuclei of the competitive phase. These nuclei initiate a phase transition if their size exceeds a certain critical
value. Then the growth of a new phase is accompanied by a decrease of the thermodynamic potential A®.

In classical nucleation theory, the boiling-up of a superheated (stretched) liquid is treated as the Brow-
nian motion of bubbles in the one-dimensional space of their sizes with the potential field A® = W(R).
The maximum value of the potential barrier W, = A®, corresponds to the formation of a critical nucleus
of radius R.. In the stationary case the nucleation rate, i.e. the number of viable (R > R,) nuclei forming
in a unit volume in unit time is determined by the expression [1]

J = pnBexp(-G) , 4.11)

where p,, is the particle number density of a metastable liquid, G = (W, /kgT) is the Gibbs number, the
work of formation of a critical nucleus W, referred to the average energy of the thermal motion per degree
of freedom, B is the kinetic factor which takes into account the dynamics of the bubble growth.

For the work of formation of a critical bubble we have

2 16 3
W. =R (p! —p) = 2n—"— (4.12)

3 3 (! —p)°
where o is the surface tension at the critical bubble — metastable liquid interface, p’/ is the pressure in a
critical bubble.

The problem on cavitation in a nonvolatile, inertialess, high-viscosity liquid was solved by Zeldovich
[1]. Later this particular case of nucleation was considered by Kagan [23]. By the data of [1, 23], we have

3 1/2
= kT 4.13
ST Ry (ckpT)"'", (4.13)
where 7 is the liquid viscosity. If the dynamics of a near-critical bubble is determined by the liquid evapo-
ration rate, at positive and low negative pressures [23]

1/2
3 <2") , (4.14)

:3—b Tm

where m is the molecular mass, b =1 — (p/py) = 20/R.p] .

At a fixed nucleation rate J, Eqgs. (4.11)-(4.14) determine the value of the limiting liquid stretch p.
(the boundary of attainable stretches). Calculations by formulas of the homogeneous nucleation theory
presuppose a knowledge of substance properties in stable and metastable states. Such information for
liquid argon has been taken from [3, 24, 25].

The kinetic factor B in Eq. (4.11) depends only very slightly on temperature and pressure as compared
with the exponential factor. According to Eq. (4.13) at a pressure of -10 MPa and a temperature of 110 K,
the value of B is equal to 1.35 - 109s~1; at p = 2.5 MPa and T' = 140 K, the value of the kinetic factor is
1.18-108s~ L. The numerical values of the factor B obtained by Eq. (4.13) at T = 140 K are approximately
an order smaller than those obtained by Eq. (4.14). The very strong dependence of the nucleation rate
Eq. (4.11) on the exponent makes such differences in the evaluation of the coefficient B insignificant, i.e.
attainable-superheat temperatures in this case differ by no more than one tenth of Kelvin.

The results of calculating limiting superheats for liquid argon by the homogeneous nucleation theory
(Egs. (4.11)-(4.13)) for two values of the nucleation rate J = 10?°s™'m~3 and J = 10%°s~'m~3 are
shown as dashed lines in Fig. 4.5. The calculations were performed in a macroscopic approximation, i.e. it
was assumed that the surface tension of critical bubbles o did not depend on their size and was equal to the
value at the planar interface o, [ 25].
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With decreasing temperature and increasing liquid stretch, the radius of a critical bubble decreases.
In liquid argon at (T/T.) = 0.95 (T = 143 K), where T, is the temperature at the critical point, and
J = 107s~'m~? the radius of a critical bubble is 6.4 nm, and at J = 10**s~'m~3, R, is equal to 3.5 nm.
If (T'/T,) = 0.6 (T is then equal to 90 K), at the indicated values of the nucleation rate the radii of critical
bubbles are 1.4 and 0.9 nm, respectively. At temperatures far from the critical one the vapor density is low,
so critical bubbles in a stretched liquid do not practically contain any gas phase.

Allowance for the size effect (dependence o(R.)) in the homogeneous nucleation kinetics results in
increasing value of G = dlInJ/dT. If at a pressure p = —3 MPa and J,, = 10**s7'm~2 the value
of Gr calculated by the homogeneous nucleation theory in a macroscopic approximation is ~ 5 K71,
allowance for the size effect in the framework of the van der Waals capillarity theory [S] gives G ~
6.5 K~1. The values of G calculated by Eq. (4.9) from the conditions of optimum description of the
beginning of the signal of explosive boiling-up have an error of about 20-25%. Such large values of the
error are mainly connected with the high level of noise (Fig. 4.4). For p = —2MPa and T, = 125.8K
we have J, = 3-10%s 'm=3, Gy = (7.0 £ 1.0)K™!. For p = —3 MPa and T}, = 126.8 T we have
J. = 6-10%2s7'm~3, G7 = (5.5 £ 1.0) K~!. Thus the data obtained, confirming the general principles
underlying the homogeneous nucleation theory, do not allow us yet making an unambiguous conclusion in
favor of presence or absence of the effect of the curvature of the bubble-liquid interface on the kinetics of
argon explosive boiling-up at negative pressures.
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Figure 4.6: Cavitation strength of an argon—helium solution Eq. (4.1) and pure argon Eq. (4.2). The dashed lines show
results of calculations by homogeneous nucleation theory (Egs. (4.3)-(4.5)) for J = 10*> m~3s™!, the upper — an
argon—helium solution, the lower — pure argon. p2" "¢, pAT _ lines of phase equilibrium for an argon—helium solution
and for argon, p?pr — argon spinodal, C' — argon critical point.

Limiting superheats of solutions with the helium content equal to 0.31 mol% have been measured in
the pressure range from +2 to -8 MPa. The nucleation rates realized in experiment lie in the interval
J = 10?2 — 102m~—3s~!. The results of the measurements are presented in Fig. 4.6. Ibid one can see
experimental data on the cavitation strength of pure argon. Helium dissolution leads to a decrease in the
cavitation strength and the temperature of argon superheat. At a pressure p = —5 MPa the shift in the
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limiting-superheat temperature is approximately 3.5 K, and in pressure it reaches 2 MPa.

Experimental data have been compared with calculations via Eqgs. (4.11)-(4.13). In them the pecu-
liarities of nucleation in a solution are mainly allowed for via the parameters o and ps. Calculations by
Egs. (4.11)—(4.13) were made in a macroscopic approximation — the surface tension at the vapor bubble—
metastable solution interface was assumed to be equal to its value at a planar interface. The properties of
an argon-helium solution required for calculation were taken from [22, 26-28]. The results of calculat-
ing of limiting strength at J = 10?2 m~3s~! are presented in Fig. 4.6. Given ibid are theoretical values
of the limiting strength for pure argon. Within the experimental error, experimental results agree with
homogeneous nucleation theory. However, limiting stretches (superheats) achieved by experiment are sys-
tematically lower than calculated ones. Besides, the values of the derivative G obtained in the course of
experiments are somewhat higher than those calculated by formulae of homogeneous nucleation theory in
a macroscopic approximation. As is shown in [5], it is just this kind of disagreement between experiment
and classical homogeneous nucleation theory that should be observed if the latter does not take into account
the size effect, i.e. the dependence o (R ). To reconcile data of theory and experiment on limiting stretches
(superheats), it is necessary to assume that the surface tension of a critical bubble o (R ) is 5-10 % smaller
than at a flat interface. Owing to the weak temperature and pressure dependence of the pre-exponential
factor in Eq. (4.11) the derivative Gr is determined by the temperature dependence of the Gibbs number,
ie. Gr ~ dG/dT.

4.4 Conclusion

Under certain conditions, liquids can tolerate considerable tensile stresses at both static and dynamic con-
ditions. Stress release results from the formation of vapor or gas bubbles inside the liquid. Homogeneous
nucleation determines the lower boundary of the liquid cavitation strength, which at temperatures below
0.85-0.9 T is located in the region of negative pressures. The characteristic size of a bubble and the va-
por density in it decrease when moving along this boundary from the region of positive into the region
of negative pressures. Critical bubbles in a highly stretched liquid prove to be practically empty. All this
creates a number of difficulties both in an experimental investigation of homogeneous cavitation at negative
pressures and in the interpretation of results obtained in the framework of the classical nucleation theory.

The small sizes of critical bubbles make a liquid extremely sensitive to the smallest inhomogeneities
both inside it and on the surrounding walls. The absence of a vapor phase in a bubble complicates the
description of its growth both in the framework of the classical scheme of successive acts of evaporation and
condensation and in the context of the hydrodynamic approach based on the use of local thermodynamic
quantities. The classical homogeneous nucleation theory is formulated for small supersaturations when
G = (W, /kgT) > 1 and the macroscopic description of new-phase nuclei is legitimate. The possibility
of using for bubbles of radius 1-2 nm, which corresponds to three or four intermolecular distances in the
liquid, the same value of surface tension as at a flat interface is far from being evident. In investigations of
spontaneous cavitation at negative pressures not only the revealing and the study of fine effects, for instance,
such as the size effect, are of interest, but also a detailed verification of the classical nucleation theory in its
macroscopic version.

In experiments on explosive cavitation in liquid argon homogeneous conditions of nucleation were
attained both by decreasing the time of the liquid stay under a negative pressure by means of generation
of a short pulse stretch and by reducing the volume of the cavitating liquid by heating a thin liquid layer
near the surface of the shock boiling-up regime, at which the disturbance of continuity is mainly caused by
bubbles of fluctuation origin. A boiling-up signal, whose transducer is the wire heater, carries information
on the liquid limiting superheat temperature 7, the nucleation rate .J, and its temperature dependence G .
Since in experiments on explosive cavitation it is difficult to vary the nucleation rate within considerably
large limits, the value of the derivative G is an important argument in substantiating the homogeneous
mechanism of nucleation and analyzing the fine nucleation effects.

The realization of the explosive cavitation method presented in this paper made it possible to register
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the limiting superheat temperature for argon with an error 0.5 K at an uncertainty in pressure of about
5%. The nucleation rate corresponding to this superheat temperature was registered with an accuracy of one
order. This accuracy was sufficient for stating a satisfactory agreement between experimental data and the
classical homogeneous nucleation theory in a macroscopic approximation. The discussion of fine effects in
nucleation is beyond the scope of this analysis. Values of G calculated by the homogeneous nucleation
theory in a macroscopic approximation with allowance for the size effect differ at negative pressures by
20-25%. This value is comparable with the error of determination of G from experimental data on the
explosive boiling-up signal. To reduce the error of measuring G to 2-3%, it is necessary to increase the
sensitivity of the setup measuring section by one order. The work in this direction will be continued.

The dissolution of a gas in a liquid leads to changes in its properties. With an interface a free-volatile
component is usually adsorbed in the interfacial layer, causing the pressure to decrease. Thus, the disso-
lution of 0.5 mol% of helium in liquid argon at the normal-boiling temperature increases the saturation
pressure by 7 MPa [28] and decreases the surface tension by 10% [26]. The surface tension and the vapor
pressure are the main quantities that determine the work of formation of a nucleus and, consequently, the
nucleation rate.

In experiments on the kinetics of explosive cavitation in an argon—helium solution a decrease in the cav-
itation strength of liquid argon was revealed when helium was dissolved in it. The dissolution of 0.31 mol%
of helium in argon at a temperature of 0.757. (113 K) reduces its cavitation strength by 2 MPa. This result
is in good agreement with classical homogeneous nucleation theory. The latter fact indirectly points to the
establishment of an equilibrium composition of the vapor—gas mixture in a critical bubble and adsorption
equilibrium at the solution—critical bubble interface.
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5 The Main Silica Phases and Some of their Properties
Irina G. Polyakova
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The beginning chemist might predict
that silicon, having the same external electron structure as carbon,
will form two oxides — SiO and SiO,, both gaseous;
further, that SiO, like CO, will be stable at high temperatures
but will disproportionate at lower temperatures into SiO, and Si
(as does CO into CO, and graphite).
Why is he so nearly right about SiO and so completely
wrong about SiO,?

Robert B. Sosman

Abstract

The presented chapter gives a review of historical and modern aspects of investigation of the structure and properties
of silica - one of the most abundant substances on Earth. Silicas are substances with the same chemical formula, SiOs,
but different structures. The variety of crystal forms of silicas seems to be unique; they vary from loose clathrasils to
the built of tetrahedral units proper silicas such as quartz and cristobalite and to very dense high pressure phases built of
SiOg-octahedrons. Specifics of the crystal structures, formation conditions and abundance in nature are discussed. Spe-
cial attention is given to quartz and some of its properties such as the existence of right and left quartz, its anisotropy;
uncommon thermal expansion and the underlying it mechanism; the phenomena accompanying the o — S-inversion
— opalescence and appearance of incommensurate phases in a very narrow temperature interval; and pressure induced
amorphization, and so on. Physico-chemical problems of hydrothermal synthesis of quartz single crystals are also
discussed. Some relatively new phenomena, pressure induced transformations in amorphous silica and/or polyamor-
phism, are briefly reviewed as well. The electronic structure of silica is analyzed; its specific features explain the
multiformity of silicas as well as their unexpectedly high reactivity and the negative thermal expansion coefficients of
high-temperature polymorphs of proper silicas built of SiO4-networks.

5.1 Introduction

Nothing is something

The concept of zero is said to be a great finding of ancient Indian mathematicians. Just in the 9*!
century they have comprehended that nothing is something. If we want to fill something, we should provide
ourselves with an appropriate void. To have a void is to have something. Thus, zero in a number shows that
we have no unities in a given number position, but it also shows us that the number contains this position.

A similar situation is found in chemistry. Atoms with empty outer orbitals have more possibilities for
chemical bond formation than atoms with the same electronic configuration but without empty orbitals.
Presence of empty d-orbitals in silicon atoms imparts to silicon dioxide a number of specific features which
are absent for carbon dioxide although carbon is the nearest analogue of silicon. This “chemical void” can be
partially filled and involved in orbital hybridization. As a result, we get such properties as an extraordinary
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glass forming ability of silica; a great number of polymorphs for this elementary glass forming substance;
ability to form five-coordinated complexes contrary to pronounced tetravalence of silicon; ability to form
easily activated complexes resulting in an unexpectedly high reactivity at very low temperatures. The latter
property together with ability to catalysis leads to high-temperature phases (like quartz and cristobalite)
growth from solutions at 300°C or even at 100°C. Finally, involving empty d-orbitals in hybridization in
the long run leads to zero thermal expansion of SiOy4 tetrahedrons.

On my experience, reasons of the listed and some other features of silica are often remaining incompre-
hensible for specialists in glass science because these reasons lie in a quite far field. In the presented review,
I try to discuss some spectrum of the interesting properties of silica and, when it is possible, to supply an
explanation. I also wanted to tell about some amazing investigations performed fifty or more years ago,
very prolonged and laborious and very precise, which apparently could not be executed in full detail in a
similar way presently. In this chapter, I mainly use materials of the monographs [1] and [2] as a starting
point.

5.2 Specific Features of Silica Resulting from the Electronic
Structure of Silicon

5.2.1 Specific Features of Silica Compounds and Differences to Chemical Analogs:
Silicon and Carbon

There exist in nature a great diversity of silicon compounds. After carbon, silicon forms the largest number
of compounds with other elements. On the one hand, this is a result of silicon position, similar to carbon,
in the main sub-group of the IV group of the Periodic System and is determined by the same factors that
provide such a wide spectrum for carbon compounds. However, the latter statement is true only partly,
and the author of the Periodical System of elements, D. I. Mendeleev, was the first who emphasized sharp
distinctions in CO2 and SiO, properties [4]. The great number of carbon compounds results also from
closeness in C—C, C-O and C-H bonding energies (Table 5.1). As a result, these bonds spring up with
approximately equal probability.

Table 5.1: Average bonding energies (kJ/mol) for some bonds of carbon and silicon [1].

X
Bond C S;
X-X 346 222
X-0 358 452
X-H 413 318

As opposed to this, bonding energy for the bond Si—O considerably exceeds Si—H bonding energy and
two times surpasses Si—Si bonding energy (Table 5.1). Therefore the basis of silicon chemistry is made up
not from usual for carbon chains —X—X—X- but chains —Si-O-Si—-O-Si—. Only a small number of silicon
compounds may be considered as an analogue of organic compounds of carbon. All three types of the
bonds (X-X, X-H and X-0) are nearly equal with respect to their energy advantage in carbon chemistry,
but in silicon chemistry there is the alone energy advantageous type of the bond (X—O) therefore a less
number of compounds is known for silicon than for carbon. At the same time, silicon compounds have
specifics that make them unique among other classes of compounds. Silica is really unique by abundance
of its polymorphic modifications; structural multiformity of silicates is great indeed and by far exceeds the
variety of carbon compounds.

The difference between the chemical analogues, C and Si, is not only quantitative but qualitative, too.
The highest coordination number for carbon is four; but for silicon, it can reach five and six. The valence
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Figure 5.1: Interior tetrahedral O-Si—O and exterior inter-tetrahedron Si—O-Si angles.
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Figure 5.2: Histograms for the Si—-O-Si angle distribution established for different compounds: a) silicates (468 angle
values); b) polymorphs of silica (80 angle values) [1]. Arrows mark the tetrahedral angle.

angle of oxygen in organic compounds of R—-O-R type (where R = CH3, C3H5 and others) is equal to
tetrahedral angle 109°28’ and it seems that the same should be valid for the similar Si—~O-Si angle (Fig. 5.1)
whether the Si—O bond can be considered as mainly ionic or mainly covalent. In actual truth, in silica,
silicates and organo-silicon compounds the angle discussed changes over wide limits 120—180°.
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Figure 5.3: The effect of temperature and cation size on the Si—-O-Si angle of double-layered aluminasilicates: a)
Ba[Al2Si20s] above 570°C; b) Ba[Al2Si20g] below 570°C; ¢) Ca[Al2Si2Os]. Open points refer to Ba or Ca cations,
solid points to Si and Al atoms.

As it is seen from Fig. 5.2 constructed according to the most precise measurements of Si—O-Si angles
in silicates, the value of 139° is of frequent occurrence. For the angles of pure silica polymorphs, the most
frequent value is even higher, 147°. Compounds with the tetrahedral Si-O-Si angle, 109°28’, do obviously
not exist among silicas and silicates! Moreover, the valent Si—-O-Si angles in silicas and silicates vary
not only from structure to structure, but for every given structure, they can change over rather wide limits
with temperature or under chemical substitution in solid solutions (Fig. 5.3). This distinguishing feature
is not inherent for carbon-oxygen compounds; the valent C—O-C angle is rigid and differs only sligthly
from tetrahedral angle. One more specific feature of silicon compounds is the too large difference between
the Si—O bond length calculated from the covalent Si and O radiuses (1.83 A) and the bonds established
experimentally, in particularly the average for silicas and silicates bond length (1.62 A).

The origin of the mentioned above and some other features of silica compounds such as the variety in
mechanisms of chemical reactions, catalytic character of silica glass crystallization and chemical reaction
with silica participation, specifics of some physical properties such as thermal expansion results from the
electronic structure of the silicon atom and some peculiarities of its interaction with oxygen. These topics
will be addressed in the next section.

5.2.2 Electron Structure of the Silicon Atom and its Interaction with Oxygen

The configuration of the valence shells of carbon and silicon atoms seems to be the same, 32p2. A trans-
formation of the valence shells takes usually place at chemical compound formation. In an excited state,
the atom has one s and three p electrons at the outer shell (Fig. 5.4), which form four identical sp® hy-
brid orbitals. Silicon atoms in the ordinary four-valent state use just these tetrahedral directed bonds with
an angle of nearly 109°. Overlap of 3sp® orbitals of silicon with 2p orbitals of oxygen forms a chemical
bonding of o-type that is the bond with maximal overlapping of electronic density on the line connecting
Si and O atoms. These four hybrid sp® orbitals are quite stable and thus of primary importance for silicon
chemistry. The major part of silicon compounds is constructed from SiO, tetrahedrons; they are the main
constructional element of silicas, silicates and organosilicons.

However, there is a very significant difference in the valence shells of carbon and silicon: silicon has
five vacant d-orbitals that are absent in the outer shell of carbon. Linus Carl Pauling was the first who
understood that vacant place differs from absent one and in his famous book “The Nature of the Chemical
Bond” put forward an idea of 3d-orbitals participation in the chemical bonding of silicon with electroneg-
ative atoms (oxygen, for example) to explain the difference in silicon and carbon chemistry and numerous
discrepancies in prospective and experimentally established properties of the silicon bonds. Electronegative
substitute of silicon increases its positive effective charge and promotes contraction of diffusive 3d-orbitals,
which become energy commensurable with 3s and 3p-orbitals and thereby enhance valent capabilities of
silicon. According to modern concepts based on manifold experimental evidences, 3d-orbitals of silicon
are involved in 7-bond formation together with an unshared p-electron pair of electronegative substitute



5.2 Specific Features of Silica Resulting from the Electronic Structure of Silicon 37
S
C
L
2 v v v

Lyt p S
2 (VA A AV A d
3 VvV

Figure 5.4: Electron shells of carbon and silicon in an exited state.

(oxygen), i.e. (pr—d )-coupling. Furthermore, formation of additional o-bonds is possible, too, by 3sp>d-
and 3sp3d? hybridization.

Let us briefly discuss the consequences of the occurrence of these two additional types of bonding for
the case of silicon-oxygen interaction because they are of high importance for silicon chemistry. A detailed
review and analysis of the available literature data one can find in the monograph [1] for X-ray investigations
and in [2] for the chemical approach.

5.2.3 Consequences of 7-Bonding in Silica

The availability of m-bonding in SiO4 tetrahedrons is confirmed clearly by the mentioned above difference
between the calculated and experimentally measured single Si-O bond length. The bond length is 1.83 A
for the covalent model and contracts to 1.76 A with due regards for the partially ionic character of the bond,
but according to X-ray analysis the true length value varies in 1.59-1.63 A limits for different forms of silica
with tetrahedral coordination. Such large contraction of the bond indicates strong 7-bonding inside SiO4
group and increasing in the bond order because of a shift of an unshared p-electron pair of oxygen atom to
one of the empty d-orbitals of silicon. Besides the bond contraction, 7w-bonding leads to reduction in the
dipole moment of Si-O bonds, decreasing of the effective positive charge of silicon to +2 and a negative
charge of oxygen to -1. The availability of additional (p, —d )-bonding can also explain the more acid char-
acter of silanols in comparison with carbinols, the higher Si-O bond energy (419-494 kJ/mol) as compared
with more dipolar C-O bond (358 kJ/mol) as well as the absence or significant weakening of donor-acceptor
ability of siloxane (Si-O-Si) bond in siloxanes and polysiloxanes. Participation of both unshared electron
pairs of oxygen of bridging Si-O-Si bond in (p, — d,)-bonding effects upon the valent Si-O-Si angle and
leads the last to its increasing (Fig. 5.2). Valent Si-O-Si angles are not rigid but have a considerable flex-
ibility because of diffusivity and different orientation of the five 3d-orbitals of silicon resulting in 7-bond
formation for just any spatial location of oxygen atoms. This feature appears to explain the large number
of polymorphic modifications of silica with different types of packing of SiO, tetrahedrons. Clear corre-
lations between Si-O-Si angles and Si-O distances may be observed for a given crystal structure, but they
are not always comparable for different modifications. The approaching of the valent Si-O-Si angle to a
value of 180° is not typical for silica modifications and occurs only in individual structural positions of
high-temperature cristobalite and coesite.

Thus, m-bonding manifests itself quantitatively in Si-O bond contraction and strengthening as a result
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of increasing in the bond order, the latter varying in silicas and organosilicon compounds over limits from
1.2 to 1.5. The most suitable for m-bonding are d,, d.. and d,,. orbitals, which are directed at 45° angle
to the (z,y, z)-axes. Maximal overlapping of the electron clouds is located in this case out of the line
connecting Si and O atoms. An interesting consequence of the latter fact is consided below in the paragraph
devoted to thermal expansion of quartz. Another consequence is the very high tendency of silica melt to
glass formation. SiO- is the most famous glass former, its analogue in the periodic system GeOs is less
known but comparable in glass formation tendency as distinct from CO5 which was produced in amorphous
silica-like state only recently and under very high pressure [5]. The inter-tetrahedron Si-O-Si angle in quartz
glass varies from 120 to 180° with the most probable value of nearly 144°.

5.2.4 Increase in Silicon Coordination Number as a Result of s-p-d-Hybridization

Five vacant d-orbitals of silicon may be used apart from the Si-O strengthening by m-bonding for formation
of additional directed o-bonds with strongly electronegative atoms like fluorine, oxygen or nitrogen. In this
case, silicon coordination number increases to five and six.

Presently a number of quite stable at ambient condition compounds is known in which the five-coor-
dinated state of silicon was established by X-ray single crystal investigations. For some other compounds,
groups [SiAs] with five-coordinated silicon were established by spectroscopy and chemical methods. In
these compounds, the first coordination sphere of silicon contains at least one strongly electronegative atom
besides oxygen. These groups form because of sp3d.»-hybridization, and the coordination polyhedron of
silicon is represented usually by a slightly distorted trigonal bipyramid. For ideal sp3d.-hybrid orbital (and
trigonal bipyramids), the valent X-Si-X angle is equal to 120°.
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Figure 5.5: Dependence of average values for three X-Si-X angles on X-Si-Y and X-Si-Y’ angles.

Fig. 5.5 demonstrates the interrelation between average values for three X-Si-X angles in 15 refined
crystal structures involving five-coordinated silicon and average values of X-Si-Y and X-Si-Y’ angles
(where Si-Y is the shortest and Si-Y’ is the largest distance between the Si atom and apical ligands [6]).
The point 1 in the picture relates to forsterite Mg, [SiO4] with distorted tetra-coordination of silicon; point 2
- the ideal tetrahedral sp>-hybridization in a hexagonal close-packed lattice with the angle of 109°28'; 17 —



5.2 Specific Features of Silica Resulting from the Electronic Structure of Silicon 39

the ideal sp3d 2 -hybridization. The experimental data for compounds with five-fold silicon fall on two lines
passing through ideal tetrahedral and trigonal bipyramidal positions. Thus, there is a more or less contin-
uous change from sp*- to sp®d,»-hybridization and participation degree of 3d,2>_,2- and 3d,2-orbitals of
silicon in its bonding with ligands increases in this row; correlations between interatomic distances d(Si—A)
and corresponding angles confirm this conclusion [6].

Figure 5.6: Crystal structure of stishovite [8]. All silicon atoms are located inside oxygen octahedrons.

Six-fold coordination of silicon appears due to sp®d2-hybrid orbitals formation directed to octahedron
vertexes. It may be formed at ambient conditions in silicates with the general formula M,.Si;O, containing
Si—O-M bonds and if electronegativity of the M-atom is sufficiently high as it takes place for C, H, P or
F. Two polymorphic modifications of silicon pyrophosphate SiP,O~ are the examples of stable at ambient
condition compounds with SiOg octahedrons. Among compounds with Si(OH)g groups there is the mineral
thaumasite [7] which was found also in industrial concretes. However, the major part of compounds with
six-coordinated silicon is stable only under high and super-high pressure; a list of the compounds together
with the structural information one can find in [1]. The most famous example is stishovite, one of high-
pressure modification of SiO; (Fig. 5.6). Involving six relatively large oxygen atoms in the coordination
sphere of relatively small silicon atom is aided by ultrahigh pressures (16-18 GPa) because of the necessity
to overcome strong electrostatic repulsion of oxygen. The Si-O bonds inside octahedrons of stishovite are
taken to be predominantly covalent, four shorter bonds (0.1716 nm at Fig. 5.6) being (p — d).-bonded to
some extent and two longer bonds (0.1872 nm) being single.

Polymerization of silicic acid in water solutions also leads to increasing in coordination number of
silicon. For example, Mitzyuk and coauthors showed in a series of X-ray studies reviewed in [2] that average
coordination number of silicon with respect to oxygen in hydrogels of polysilicic acid changes from 4.5 to
5.8 in dependence on water content and degree of the gelskeleton ageing. A similar situation is found in
methanol-replaced gels. The fact was explained by donor-acceptor complexes formation between water
or methanol molecules and silicon atoms and confirmed by IR spectroscopy data. Thus, high-coordinated
silicon complexes can be easily formed at ambient conditions.

It is well known that the larger the atom is in size, the higher can be its coordination number because
of deminution in Coulomb repulsion of ligand atoms. Germanium is larger than silicon and has vacant
d-orbitals, too, and easily forms GeOg octahedrons at atmospheric pressure. Stishovite can exist at atmo-
spheric pressure and was found in small amounts in nature but only in meteorite craters where it was formed
by percussion metamorphism produced at meteoric impact.



40 5 Silica Phases and Some of their Properties

5.2.5 Implication of s-p-d-Hybridization for Chemical Reactions and Physical
Transformations of Silica

The possibility of silicon atom to form s — p — d hybrid orbitals in addition to the main four-valent sp>-
bonds is of decisive importance for chemical reactions with silicon participation and explains an extreme
sensibility of silica phase transformations to the presence of minor additions of some substances. There are
many evidences demonstrating that chemical processes with participation of silica phases such as dilution or
growth from solution passes through formation of five- or six-coordinated activated complexes. A detailed
literature review and further references can be found in the monograph [2], here we only briefly summarize
the main specific features of these processes.

Every physical or chemical transformation of silica goes through switching of =Si-O-Si= bonds which
are the main structural element for all types of silicas as well as silicates. The bond is especially inert,
and its decomposition is a limiting stage for dilution or polymerization of silica in water; the hydrolysis
mechanism is catalytic and depends on different agents present in water. In neutral and alkaline medium,
the process is accelerated by OH™ and in acid medium by H™ and F~ ions. Presence of some salts in
water solutions accelerates silica dilution at pH=2-4 and higher because of nucleophilic anions attack in
the row F'~ >SO?[ >Cl1~. Ability of siloxane bond Si-O-Si to heterolytic decomposition in presence of
these agents was repeatedly verified for organosilicon compounds, too, and the process always goes with
formation of intermediate five-fold complexes. Redistribution of electronic density in =Si-O-Si= groups
promotes to heterolytic decomposition of Si-O bonds. Actually, the oxygen atom of the water molecule
forms a donor-acceptor bonding with the attacked silicon atom, lowers its positive effective charge and
weakens (p, — d;) coupling in Si-O bond. As a result, an electrophilic attack of a hydrogen atom of H,O
molecule to bridging oxygen is facilitated and siloxane bond breaks with formation of strongly hydroxylated
products.

In the presence of OH™ ions in water solution, they apparently take part in initial stages of silica dilution
with intermediate activated complex formation:

OH -
I
= Si-0-Si =+ OH- & |=Si-0-Si=| «<»=Si-OH + O-Si =

Activated complex

The intermediate activated complexes are not durable and easily decompose with =Si-O~-anions forma-
tion; the latter can participate in the back reaction. In dependence on pH, nature and state of the medium,
they may be deactivated to a variable degree and thereby regulate the rate of dilution.

In acid solution, the process of silica dilution goes apparently with formation of intermediate activated
complexes with closed chain. In the case of weakly dissociable hydrofluoric acid, the bond decomposition
goes according to the following scheme:

H-F

= Si—0-Si=-2> =Si—-OH + F-Si=

It is easy to see that one of the silicon atoms in the four-centered activated complex is five-coordinated.
Strong acids like HC1 and H2SO, also form closed-chain complexes but with water molecules. The more
detailed regularities of water solubility of quartz and influence of different agents will be discussed in the
section devoted to hydrothermal synthesis.
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Hydrothermal crystallization of quartz is also a complicated process depending on a large number of
parameters. Acidity of the growth medium and presence of salt additions act on quartz growing rate in
addition to temperature and pressure. Ability of siloxane bonds to five-folded activated complex formation
underlies in the basis of these catalytic activity. In manufacturing environment of hydrothermal synthesis,
the desired temperature/pressure conditions assure immediate quartz formation from water solution, but at
lower values of these parameters, the process goes through intermediate phases. The nature of crystallizing
phases including clathrasils, their stability and forming sequence also depend on acidity or alkalinity of the
medium and the nature of salt additions, all other factors being the same.

As we have seen before, the five-fold activated complexes are different for the different mediums; they
stimulate formation of clathrasils with different structures, silica-X and silica-Y (see the next part for de-
tails). It is significant that silica-X changes with environment, in particular with the nature and state of the
medium. Different types of silica-X and their forming conditions as well as crystallization paths of silica in
water solutions for different temperature/pressure conditions are described in detail in [2]. It was especially
shown that temperature resistant silica phases like cristobalite and quartz can be formed in water solutions
as a result of reconstructive transformations of other crystalline phases at 100-300°C and even at room
temperature. Taking into consideration the high strength of Si-O bond and the fact that it is the only type of
bonding in silica, it seems impossible. Nevertheless formation of activated complexes sharply reduces the
energy barrier for the transformations and makes them possible.

Crystallization of silica and silicate glasses takes place along comparable lines. According to our evi-
dence, cristobalite and quartz can be produced in sodium silicate glasses of appropriate compositions im-
mediately above the glass transition region, at 540°C. The alkali ions play here a role of the transformation
catalyst. Hence, silicate glasses have intrinsic catalysts in their structure that provoke siloxane bond split-
ting followed by high-temperature phase (like quartz or cristobalite) crystallisation at relatively low tem-
peratures. In silica glass, this role passes to impurities. An extremal sensitivity of silica glass crystallization
to mode of production and experiment conditions as well as non-repeatability of crystallization results (this
is true not only for coefficients of kinetic dependencies but for the dependence character, too) has been
systematically studied and explained by Leko & Komarova (see, for example, [9, 10, 11, 12, 13, 14]) as
a result of trifling fortuitous pollutions. In superpurity silica glass any trifling admixture or pollution are
beyond competition as catalysts and play a decisive role in crystal nucleation and growth. Kinetic depen-
dencies, which are really intrinsic for silica glass, can be obtained only in special conditions described by
the mentioned above authors.

5.3 Phases of Silica and Their Properties

The word ”Silica” denotes a substance with chemical formula SiO. It is the most abundant substance on
the Earth. Nearly 58% of the lithosphere consists of bonded SiO5, and 12 % of this silica is found in form
of separate rocks as quartz, chalcedony, and opal and so on. Silica is unique among natural and artificial
compounds because of a wide variety of different modifications. The major part of them has long been
known as minerals, but development of high pressure technique brought about the creation of a number
of dense forms of silica, both crystalline and amorphous. Different authors give different lists of silica
polymorphs, which exist at quite special condition such as different gas or liquid environment, its acidity
and pressure. The phase diagram for pure SiO5 under normal conditions is in doubt and there is no final set
of proper silica phases.

We consider here some problems of compact silica. Dispersed forms of silica are a separate and very
special subject, which we do not touch upon in this paper. All compact crystalline as well as amorphous
silicas have three-dimensionally connected networks except for fibrous silica-W, and all silica networks
except for the three densest ones are built from SiO, tetrahedrons connected by their vertexes. Silica phases
and compounds are amazing substances in many respects. Let us take a look at these phases, their structures,
abundance in nature and some properties (Tables 5.2 and 5.3).
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o Density, Typical structural
Mineral name Modifi Crystal system Z T, °C , | clements of crystal
cation glem lattice [2]
Zeolite H-ZSMS5 orthorhombic 96 room 1.79 Large cavities
. . Large cavities 0.5
Melanophlogite cubic 46 room 1.95 and 0.65 nm
46[8i0,]- 6]N,,CO,]- 2[CHLN,]
Fibrous silica-W orthorhombic 4 room 1.97 Chains of 8104
tetrahedrons
(oxide Si) bonded by edges
y edg
Zeolite theta-1 orthorhombic 24 room 1.97 Large cavities
Lechatelierite disorded - room 2.201 C.ontml.lous three-
dimensional
(silica glass) cristobalite-like
network from
tetrahedrons
: : : Layers of 6-
Tridymit h h 1 4 >420 2.19 _
ridyinite igh e membered rings in
hexagonal 8 220 2.21 (O plle
medium 24 105-180 |2.23
low" | rhombic 43 room | 2.25- Layers of 6-
membered oval
2.27 rings in (001)
plane
low' | rhombic 64,160 Toom
low" | rhombic 320 room
. . . . Layers of 6-
Cristobalite high | cubic 8 248 2.19 e i
tetrahedrons in
(111) plane
low | tetragonal 4 28 2.32 Layers of 6'_
membered rings of
tetrahedrons in
(101) plane

Table 5.2: Symmetry, calculated crystallographic density and number Z of SiOy,/, tetrahedrons in the unit cell for
the main silica crystal phases (according to [1, 2, 15, 16]). Data for the high modifications have been got at different
temperatures; hence they should be compared with the low temperature data with caution (the last reference is the
largest on-line mineral database and mineralogy reference website on the internet). In the table they are marked with
grey color ((1) Meteorite low-tridymite, (2) natural low-tridymite, (3) volcanic low-tridymite).

5.3.1 Dense Octahedral Silicas: High Pressure Phases

Three densest phases of silica are constructed from SiOg octahedrons. One of this phases is the quite famous
stishovite, has been describe in the previous section (Fig. 5.6). The second phase, seifertite, is the densest
and hardest polymorph of silica so far found in nature, with the scrutinyite (a-PbOs) type structure. The
mineral was named after Friedrich A. Seifert (born 1941), founding Director of the Bayerisches Geoinstitut,
Universitit Bayreuth, Germany, for his seminal contributions to high-pressure geoscience. The phase was
predicted in 2007 by the metadynamics method [17]. It was found in 2008 [18] as lamellae occurring
together with dense silica glass lamellae in composite silica grains in the heavily shocked Martian meteorite
Shergotty. It was inferred that seifertite was formed by shock-induced solid-state transformation of either
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i Density, | Typical structural
Modit Crystal system z T, °C Y elements of crystal

Mineral name 5
cation glem lattice [2]

Spiral 4-membered
chains around
quadric axis

left- and right-
handed threefold
spirals

left- and right-
handed threefold
spirals

Spiral chains
around hexagonal
axis

Spiral chains
around triple axis
Chains of 4-
membered rings of
feldspar type
Rutile-like
structure built from
atm Si0O¢ octahedrons
bonded by edges
a-PbO,-like
structure built from
4.30 Si0O¢ octahedrons

Keatite tetragonal 12 room 2.50

Moganite high | orthorhombic 12 1354 2.56

low | monoclinic 12 room 2.62

Quartz high | hexagonal 3 575 2.54

low | trigonal 3 22 2.655

Coesite monoclinic 16 room 2.95

Stishovite tetragonal 2 room/1 | 4.28

Seifertite orthorhombic 4 room 4.29-

Table 5.3: Continuation of Table 5.2

1.34nm

Figure 5.7: Projection of structure of melanophlogite to the plane (001).

tridymite or cristobalite on Mars at an estimated minimum equilibrium shock pressure in excess of 35 GPa.
With respect to the density the mineral corresponds to density of the last solid layer which is situated above
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the liquid Earth core. The mineral was also intergrown in some grains with minor stishovite and a new
(third) unnamed monoclinic dense silica polymorph constructed from SiOg with a ZrOs-type structure.

5.3.2 Clathrasils: Friable Silica Phases

All silica phases built of tetrahedrons may be divided into two groups, the proper silicas and filled silicas
or clathrasils [1]. The proper silicas like quartz, cristobalite, keatite and coesite can be formed from pure
SiO5 in proper temperature/pressure conditions. Clathrasils can not be formed without presence of some
organic or inorganic molecules. Low-molecular forms of silicic acid condense around the guest molecules,
the latest being not cations but neutral compounds which organize silica framework around themselves and
playing the role of seeds in the crystallization process. The guest molecules appear to be locked inside
polyhedral cavities (cages) of the framework and a form of the cage is determined by size and form of
the guest molecule. In some cases organic guest molecules may be deleted out by burning, the residuary
skeleton being pure SiO5 and keeping its stability (zeolites). In other cases the structure collapses after the
guest molecules removal (melanophlogite).

A common chemical formula of melanophlogite is 46Si0,-2M'2-6M'4, where M'2 and M'* are guest
molecules in 12- and 14-hedral cages consequently. Possible M'2 guests are N, Kr, Xe, CHy; possible M4
guests are No, N2 O, COq, Kr, Xe, CH3NH> [1], as well as S and water [2]. A structure of the cubic silica
framework of melanophlogite is presented in Fig. 5.7 (according to [2]). Melanophlogite is a rare mineral; it
is found as a sublimation product at fumaroles near volcanoes. After prolonged air curing (during 30 years)
in natural weathering conditions melanophlogite loses its structure stabilizing organic molecules and water
and turns into cristobalite. Melanophlogite turns black under heating because of burning-out of organic
guest molecules but keeps the cubic silica structure until 900 °C and then is gradually transformed into
cristobalite above this temperature. Because of its open cage-like molecular structure, melanophlogite is
sometimes considered as a relative of zeolites which we do not consider here because zeolites are a very
special type of crystals. Nevertheless inasmuch as the Database MINCRYST [15] included two of them in
the list of silicas, we present some information on them in Tables 5.2 and 5.3 in one row with melanophlogite
to demonstrate typical properties of clathrasils — their low density and friable unwieldy structure with large
number of SiO, /5 tetrahedrons per the unit cell (Z).

5.3.3 Exception: Fibrous Silica

Main crystalline silica phases are presented in Tables 5.2 and 5.3 in ascending order of density for low
temperature modifications. Many of them occur in nature and all of them have their individual mineral
names because of the great importance of silicas for people. The clathrasils begin the table and octahedral
silicas finish it; the usual tetrahedral silicas are placed in between them. The only exception is a strange
phase which is placed among clathrasils because of its low density but does not belong to this family
of silicas because of its low Z and relatively simple structure. This is fibrous silica-W with a structure

Figure 5.8: The two-element chain isolated chain in structure of silica-W

constructed by chains of SiO, tetrahedrons bonded by the edges (Fig. 5.8). It was synthesized in a laboratory
[19] and falls out on its structure of all other tetrahedral silicas which are built from tetrahedrons bonded by
corners. Silica-W is formed by oxidation of gaseous SiO, either directly by Os or through disproportionation
according to the equation 2Si0=SiO5+Si. The structure is isotypic with SiS, and SiSe,, both of which
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are fibrous. The phase is unstable at atmospheric conditions because it absorbs water and converts into
amorphous hydrated silica [3].

5.3.4 Proper Silicas

Among pure tetrahedral silicas there are five modifications with topologically different frameworks — co-
esite, keatite, quartz, moganite and cristobalite. Tridymite has the same topology of layers as cristobalite.
As we will see later, it can be considered as filled silica. Brief characteristics of the phases are presented in

the central part of Tables 5.2 and 5.3.
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Figure 5.9: Phase equilibrium diagram for SiO2 polymorphs.

Three of the most far-famed silicas, quartz, cristobalite and tridymite, have high and low temperature
polymorphs but in the scientific literature there is no general rule for their designation. In physical chemistry
high temperature modifications should be named a-phases because these phases can be established with
high reliability whereas some probability always exists to find a new modification at low-temperatures.
Physical chemists name these low-temperature phases as (3, -, d and so on. On the contrary, geologists
name «-phase that modification which they can take in their hands, i.e. the low temperature modification. It
is necessary to say that a — 3 transformations of quartz, cristobalite and tridymite are completely reversible
and it is practically impossible to quench their high temperature phases at atmospheric conditions. It means
that there is no chance for geologist to face in nature with high temperature modifications of these silicas.
To avoid a muddle with the « and [ modifications, in the modern literature it is accepted to name silica
polymorphs as high and low.

Thermodynamic parameters of the main silicas remain up to now the subject of constant and persistent
discussions. Tridymite takes here a special place because it always contains some impurities and cannot
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Figure 5.10: Density dependence of refraction indices for silica modifications.

be form from quartz and cristobalite in ‘dry’ condition. The phase diagram constructed employing the
suggestion that tridymite does not belong to proper silicas is presented in Fig. 5.9 according to [2]. The
more traditional version based on the famous Fenner’s diagram and including tridymite one can find for
example in [20]. To our opinion, not quartz but cristobalite is the only stable silica phase at atmospheric
conditions and its field should be prolonged down along the abscissa. The phase equilibriums of silicas
however are not the subject of this paper and we will return to this theme in a paragraph on tridymite only
for a brief discussion.

The dependence of the refractive indexes on density for silicas is linear (Fig. 5.10, according to [2])
as for natural as well for synthetic modifications. Let us briefly consider the main crystalline tetrahedral
silicas.

5.3.5 The Main Crystalline Tetrahedral Silicas
Quartz

Ancient Greeks knew quartz and named it “cold similar ice”, i.e. kpvoTaAlo( that sounds as ‘crystallos’.
Thus, quartz as the most ambient terrestrial mineral with its striking regular faceting and transparency
gave its name for designation of solids at all. For its contemporary name quartz owed Bohemian mines
of the XIV century. They named gob and nonmetallic minerals as Querz, and in contrary to the ancient
Greece quartz have got its special name from the collective name of a large class of minerals. Quartz is
the most widespread mineral in the earth’s crust after feldspars. Quartz is ubiquitous in nature; it enters
into the composition of sedimentary and igneous rocks, as well as crystalline slates. It is also an important
constituent of vein and mineral deposits of various origin. Because of its high hardness and low solubility
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quartz accumulates as sands and pebbles. It seems that quartz needs oxygen for its formation, and it is very
rare on planets devoid of atmosphere like Moon and Mars or meteorites [2, 21]. According to modern data
quartz does not form at the normal pressure in absence of impurities including water [2] which stabilize its
structure.
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Figure 5.11: Plane (0001) projection of high (a) and low (b) quartz structure.

A crystal structure of quartz is very well presented and explained at the interesting web-site The Quartz
Page [22], therefore we do not stop here on this question in detail but mention only main features of quartz
structures, high and low (Fig. 5.11). In the next section, which is devoted especially to quartz properties,
we present some specific features of it.

The network structure of quartz (as well as of cristobalite and tridymite) with SiOy4/, tetrahedrons
bonded by their vertexes is quiet flexible and its high-low (8 — «) transition occurs without structure recon-
struction but only due to mutual turn and rotation of the tetrahedrons. Thus, the structures of the both quartz
polymorphs are very similar, but the symmetry of the high-temperature form is higher. Along the c-axis,
which is perpendicular to the plane of the figure, the quartz structure is built from continuous helixes of
tetrahedrons. Fractional numbers on the tetrahedrons at Fig. 5.11 show their heights inside the unit cell in
fractions of the c-parameter. The helixes form relatively large channels (about 2 nm crosswise) penetrating
the quartz structure. Small cations like HT, Li* or Na™ can enter the channels for compensation of neg-
ative charge and thereby enlarge the unit cell parameters of quartz. Entry of large foreign atoms in quartz
structure results in formation of so-called defect-channels with cross-section of 0.02-0.05 micrometers [2].
The defect-channels go perpendicular or parallel to the optical axis of quartz and are important for physical
properties of quartz. Impurities inside the defect-channels begin to move under electric field and provide
quartz conductivity [23, 24].

The inversion temperature of quartz (temperature of aw — 3 or low-high transition) is close to 573°C;
impurities in natural samples vary it slightly within +2°C, but for synthetic quartz a temperature deviation
of the inversion point may reach 35°C.

Moganite

This novel silica polymorph has first been described in 1976 [25], in volcanic rocks of the Mogan formation
on Gran Canaria islands, Spain. It later turned out to be identical with lutecite, a so-called length-slow
chalcedony type that was commonly found in chalcedony. Moganite is always intergrown with cryptocrys-
talline quartz to form chalcedony [26]. During some time the both names, moganite and lutecite, were used
in crystallographic literature, but now moganite is the conventional name of the mineral.

A review of early investigations of moganite crystal structure together with molecular dynamics simula-
tions is given in [27]. The structure of moganite was repeatedly analyzed [28, 29, 30]. Moganite crystallizes
in monoclinic crystal system in contrast to trigonal low-quartz, nevertheless their structures are much alike
(Fig. 5.12, compare with Fig. 5.11b), distorted six-membered canals go along one of the axis in both struc-



48 5 Silica Phases and Some of their Properties

IR RN RN

Figure 5.12: Crystal structure of low moganite in the plane (011). The six-membered canals go along a-axis.

tures. Unlike quartz, moganite features alternating fragments of both left- and right-handed threefold spirals
cut by (011) plains. As a result, closed four-membered rings are presented in moganite, and the unit cell
dimension doubles along the corresponding axis of quartz structure [27].
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Figure 5.13: X-ray patterns of quartz and moganite according to PCPDFWin database.

Structural similarity of quartz and moganite results in their morphological and radiographic similarity
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which make difficulties for their diagnostics. Thus, similar to quartz crystallites in chalcedony, moganite
is intensely twinned according to the Brazil law and forms rocks morphologically similar to quartz [26].
A certain similarity in X-ray patterns of moganite and quartz is also evident (Fig. 5.13). Positions of the
strongest peaks are very close, and there is some correspondence in the positions of other significant peaks,
but peaks split or have satellites in the pattern of lower symmetric moganite. Together with morphological
similarity of the rocks, this difficulty of X-ray identification seems to be the reason why moganite has been
identified as an individual silica polymorph only in the modern time.

A careful X-ray examination of more than 150 specimens of fine-grained quartz varieties from around
the world has revealed that more than 10% and as much as 80% of the silica in many samples is actually
moganite [31]. The large amount of moganite (>30%) was found in charts from arid, alkaline environments
may resurrect length-slow silica as an indicator of evaporitic regimes, and the absence of moganite in
weathered and hydrothermally altered silica samples may be a useful measure of fluid-rock interaction.
The amount of moganite seems to decrease with time as it is slowly converted into chalcedony, and agates
older than approximately 100-150 million years seem to be almost void of it [26]. On the other hand recent
experiments [32] established that at pressure 100 MPa moganite is a low temperature polymorph of low
quartz stable for kinetic rather then for thermodynamic reasons.

Moganite has a high-temperature orthorhombic S-modification, the crystal structure determination has
been performed in [30] for 1354°C. Molecular dynamics (MD) simulations for high-pressure conditions
[27] showed that moganite at 300 K has to exhibit two crystal-crystal phase transformations, at about 5
and 21 GPa, and these high-pressure forms appear to be the most stable phases among quartz family of
silica in the temperature range from 100 to 1100 K and the pressure range from 0 to 30 GPa. Raman
spectroscopy study of an anomalous behavior of moganite during pressure induced transformation was
investigated in [33]. Comparison of natural and MD simulated moganite structures permits to suggest that
natural moganite is a high-pressure phase existing between 5 and 21 GPa and conserving as a metastable
phase at normal conditions. The MD simulated orthorhombic phase which is stable at normal conditions
and up to 5 GPa seems to be close to the high-temperature modification of natural moganite.

Tridymite

We already discussed a serious objection against the opinion that tridymite is a pure silica. It is based on the
impossibility to produce tridymite without stabilizing impurities or water. In this respect very impressive
results were obtained by Florke [34]. He tried the experiment of electrolyzing the foreign oxides out of a
disk of tridymite with direct current at 1200 and 1350 °C. The final product at the anode proved to be pure
silica but in form of cristobalite while tridymite still persisted at the cathode, where the other oxides had
accumulated. A similar experiment at 1050 °C yielded a mixture of quartz and cristobalite at the anode.
Florke concluded that tridymite has no place on the equilibrium diagram of pure silica.

Another fundamental argument against tridymite ranking to pure silica polymorphs was provided by
methods of physical chemistry. Holmquist [35] investigated phase equilibriums in the high-silica regions of
Li;0-Si03, Nas O-SiO5 and K5;0-SiO; systems. He found that tridymite is a binary incongruently melting
phase containing between 0.5 and 1 % of a metal oxide which has at the diagrams its own separate field of
existence divided from pure silica (cristobalite) with two-phase region. This conclusion is quite radical and
does not give place for doubts of the foreign nature of tridymite - but only for those who knows the phase
rule.

Our own experiments gave a similar result [36]; a reductive schema of phase equilibriums in the sodium-
silicate system according to these data is presented at Fig. 5.14. It was found that tridymite is the only
equilibrium phase existing in a concentration range 1.75-2.5 wt. % NasO and over a temperature range
of 900-1250°C. In this region the X-ray pattern of tridymite uninterruptedly changes with concentration
and reflects continuous change in the structure of tridymite. Over a concentration range 0.6—1.75 NasO
tridymite coexists with cristobalite. In this region, the amount of tridymite changes from 100 % to negligible
parts with reduction in sodium oxide content; amount of cristobalite simultaneously increases. Existence of
the two-phase region (Tr + Cr in the picture) with gradual transition from tridymite to cristobalite shows that
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Figure 5.14: Phase equilibriums in the silica-rich part of NasO — SiO3 system. Tr s.s. means the single-phase region
of tridymite solid solution.

Figure 5.15: The idealized layer in the structure of high-tridymite.

tridymite cannot be a pure silica phase but it is a binary (or foreign multi-component) phase and the structure
of it has to change with nature and content of impurities. It is necessary to emphasize that concentration
limits in the diagrams in [35] and in Fig. 5.14 are given by synthesis without taking alkalis volatilization
into account. The real boundaries of the single-phase field of tridymite are located much closer to pure
silica than they were presented in the diagrams discussed.
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An example of changes in the tridymite structure with nature and amount of the other components in
its composition we can find in Tables 5.2 and 5.3. Tridymite presented differ in amount of Z per unit cell
as a consequence of difference in their origin and therefore in the chemical composition. The other result
of structural variety of tridymites is the strange fact that up to now nobody knows how many polymorphs it
has [2, 3, 37].

In the structure of hexagonal high temperature tridymite there are plane layers parallel to the (0001)
crystallographic plane (Fig. 5.15). In vertical direction layers are bonded by tetrahedrons vertexes directed
towards each other. The layers alternate as ABAB... (hexagonal packing). In the ideal structure there are
two such layers per unit cell, but in some natural samples the unit cell can consist of ten and more distorted
layers alternating as ABCBA, DBCBD and so on.

Figure 5.16: Projection of the low-cristobalite structure to the plane (001) (left) and (100) (right).

All described properties of tridymite show that it is a binary compound with a very low content of cations
(alkali or others) and it may be considered as cation-filled silica. The tridymite position in Tables 5.2 and
5.3 between the typical clathrasils and the proper silicas is in good correspondence with this attribution.
Tridymite is quite rare as an individual mineral. It is commonly found as three twinned plates that intersect
each other at an angle of 35°18’ (see photo at The quartz page [22]); its name is related to this peculiarity.

Cristobalite

Cristobalite was found for the first time at the end of XIX century during microscopic investigation of rocks
from San Cristobal deposit in Mexico. It exists in two polymorphic forms presented in Tables 5.2 and 5.3
which can convert one into another without frame reconstruction but owing to rotation of tetrahedrons SiOy.
The structure of the low-temperature tetragonal modification is presented in Fig. 5.16. Structure of the high-
temperature cubic modification contains plane layers parallel to (111) and constructed from six-membered
rings of tetrahedrons. These layers are exactly the same that high-tridymite contains in crystallographic
plane (001) (Fig. 5.15) but in cristobalite the layers alternate as three-step cubic close packing ABCABC...
instead of double-step hexagonal close packing in tridymite. This specific feature gives the opportunity for
intergrowing of cristobalite and tridymite structures. According to the layers alternation the crystal can be
mainly cristobalite or mainly tridymite; in some cases it may be impossible to distinguish one from another
[2]. Such hybrid forms are not rare in nature and the name cristobalite-tridymite opals (opal-CT, the other
mineral name is lussatite [20]).

The temperature of « — 3 inversion of cristobalite is rather sensitive to disordering in its structure. Well-
ordered cristobalite undergoes an abrupt transition at 270 °C, a hysteresis being almost absent. Structure
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Figure 5.17: Perspective projections of the substance of structural interstices of quartz (a), cristobalite (b) and silica
glass (c).

disorder reduces the inversion temperature of cristobalite to 130 °C and broadens its temperature hysteresis
[38]. Florke mentioned that in opals the inversion temperature can be reduced to 60-100°C [39].

Low density of cristobalite and close examination of its structure shows that its framework is relatively
friable in comparison with quartz. The most obvious illustrative example of this difference is provided by
the substance of structural interstices of quartz and cristobalite calculated by molecular dynamics method
[40] (Fig. 5.17). As we can see from the picture a volume of structural interstices in cristobalite mediates
between quartz and quartz glass. Quartz is much more dense substance than cristobalite but nevertheless it
contains structural interstices along its c-axes. Thus it was supposed that these substances having flexible
frames with sufficient structural interstices can be converted into much more dense tetrahedral modifica-
tions. This modification was really obtained by Coes [41] and afterwards was named coesite.

Coesite

It was shown that the best initial substance for coesite synthesis is amorphous silica which is being com-
pletely converted into coesite for 1 hour at T=580°C and P=3GPa. In the field of its stability (Fig. 5.9)
coesite can be produced from different forms of silica including quartz. It was also produced by shock
compression of natural and artificial quartz-containing porous materials. According to the phase diagram
(Fig. 5.9), coesite should be transformed into quartz after pressure relief, but it exists in metastable state
under ambient conditions. Under atmospheric pressure and temperature below 1100°C coesite is not being
transformed into quartz during long time, but at 1700°C it is being directly converted into cristobalite.

A reason of coesite stability in the metastable region is in its specific crystal structure with SiOy, tetra-
hedrons associated not in six-member but in four-member rings (Fig. 5.18). The structure of coesite is a
three-dimensional net with the four-member rings of tetrahedrons which are parallel to (010) and (001)
planes. Infinite chains of the four-member rings do not incorporate with each other within their planes but
connect together through equivalent chains in overlying and underlying layers. One of the four-member
rings of overlying layer is presented in Fig. 5.18 (the filled tetrahedrons).

After laboratory discovery of coesite, it was found in the nature, in the famous Barringer Meteor Crater,
which was produced by a large meteorite impact in Arizona desert (history and geology of the crater are
presented on the Site of the Barringer Crater Company [42]). Later coesite was found in many young
meteorite craters and now it is considered as the indicator of a recent in geological sense meteoric explosion.
In young craters coesite may account for about 40 % of the total silica content but in ancient craters its
amount does not exceed hundredth parts of percent. It was also found in diamond kimberlite pipes of
Yakutia and South Africa.
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Figure 5.18: Chains [Si4O11] in plane (010) in coesite structure.

Intermediate Phases

Hydrothermal synthesis of quartz from amorphous silica proceeds quickly and up to the end at high temper-
atures (300-600°C) and pressures (50-400 MPa) but at lower temperatures the process goes much slower
and passes through formation of intermediate crystal phases. These phases may be of two types, pure sil-
icas and cation-filled phases like the already discussed melanophlogite, tridymite or opal-CT. Some other
cation-filled phases forming during quartz synthesis are denoted as silica-X and silica-Y. They have no
constant composition because it changes with the nature and concentration of cations in the hydrothermal
solution; nevertheless their X-ray patterns have clear specific features, which permit to identify each of the
phase and confidently resolve their subsorts like silica-X1 and silica-X2 [32].
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Figure 5.19: Content of silica phases in dependence on time during their transformations in hydrothermal condition
[2]: 1) amorphous silica; 2) silica-X2; 3) cristobalite; 4) quartz.

A detailed investigation of physico-chemical properties of silica-X and silica-Y and the necessary con-
ditions for their formation has been performed in [2]. Fig. 5.19 illustrates temperature changes in hydrother-
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mal transformations of amorphous silica in alkaline medium at saturated vapor pressure. We see that two
silica phases of very high thermodynamic stability, quartz and cristobalite, can form at relatively soft condi-
tions, at comparatively low temperature and pressure. The path of quartz formation passes through origina-
tion and decay of intermediate phases, and metastable silica-X?2 is much more stable here than cristobalite.

a S10,-X1->8i0,-X2->Si0,-X3
amorpous ——Si0,-Y » cristobalite —» quartz
silica N
magadiite
melanophlogite
b
amorpous » quartz
silica \‘\> keatite””
cristobalite =™

Figure 5.20: Intermediate phases of hydrothermal transformation of amorphous silica into quartz in alkaline solutions
[2] at moderate temperature and pressure (a) and in relatively pure water solutions at higher temperature and pressure
(b). Arrows in ovals show the direction of operating parameter increase.

Two minerals close to silica-Y, magadiite (NasSi; 4029 11H20) and kenyaite (Na3Siz2O41(OH)s6H5O),
are described in the Mineralogy Database [43] including the structure of magadiite. The minerals named by
the place of their origin — the soda Magadi lake in Kenya where the transformation of amorphous silica into
quartz takes place in natural conditions. The described above clathrasil melanophlogite can also form as
an intermediate phase in natural conditions. Possible diagrams for transformation of amorphous silica into
quartz in alkaline mediums and at moderate temperature/pressure conditions are presented in Fig. 5.20a. In
relatively pure mediums and at higher temperatures and pressures the reaction goes through proper silica
phases — cristobalite and denser keatite (Fig. 5.20b).

Keatite

Keatite is medium in its density between cristobalite and quartz (see Tables 5.2 and 5.3). It was first
produced in 1954 by P. P. Keat [44] during hydrothermal synthesis of quartz in alkaline solutions but till
now it is not found in nature (the Quartz Page suggests that it may be found in stratospheric dust particles).
Keatite can be obtained as an intermediate product in a large number of hydrothermal reactions. It forms
over the temperature range 380-585°C and pressure from 30 to 120 MPa in the systems SiO2—H2O [45]
and Al,O03—SiO2—H0 [46]. The structure of keatite is built from coupled by vertices tetrahedrons similar
to the main silica phases like quartz, cristobalite, tridymite or coesite but in contrast to them the SiOy-
tetrahedrons in keatite are not crystallographically equivalent.

There are two sorts of tetrahedrons in the keatite structure (Fig. 5.21). Eight of 12 tetrahedrons in the
unit cell are in the general positions and form di-ortho-groups which make 4-fold helixes along the c-axis
(the darker tetrahedrons in the figure), as opposed to four other tetrahedrons (the lighter ones) which place
in the partial positions at 2-fold axes and join the 4-fold helixes among themselves in endless wollastonite
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Figure 5.21: The plane (001) projection of keatite structure.

chains along the z-axis. Under heating up to 430°C keatite has negative thermal expansion due to its
contraction along the z-axis. Keatite fully transforms into cristobalite when calcinated in air at 1620°C
during 3 hours [2].

5.3.6 Amorphous Silica

The natural silica glass has its own mineral name, lechatelierite. It forms by rapid cooling of molten
silica and occurs as so-called fulgurites at places where a lightning has struck into quartz sand. The high
temperatures cause the quartz sand to melt along the branched and irregular path of the lightning through
the sand. Simultaneously, the molten quartz is pushed away from the lightning because of the repelling
forces between the charged particles. As a result, hollow tubes of silica glass form [47]. Lechatelierite can
also be found at impact craters of meteorites.

Figure 5.22: Fulgurites of lechatelierite with approximate size 150-200 mm (a, the rare photo has been taken from The
Quartz Page) and typical products from quartz glass (b).
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An exterior of the mineral (Fig. 5.22a) seams to be radically different from commercial quartz glasses
(Fig. 5.22b) but they are the same material with the density 2.20 g/cm?® and similar structure. At Fig. 5.10
the point of lechatelierite falls exactly onto the common line of crystalline silicas and coincides with the
point of artificial silica glass.

[1 Structural anomaly region
O Diffusion anomaly region

B Density anomaly region

3

k Water a-Silica

Temperature

Density

Figure 5.23: The scheme of anomalies in water and a-silica.

The structure of artificial silica glass is now well known owing to both experimental and simulation
methods; therefore we do not consider it in this paper. It should be only emphasized that although silica
glass is usually produced by quartz melting and often designated as quartz glass it has cristobalite-like
structure. Designations a-silica or a-SiO, without any interpretation or specification meets in the literature
currently; they denote compact amorphous silica such as molten quartz glass or CT-opal.

There is a certain parallelism between water and a-silica. They both have similar anomalies of proper-
ties, the scheme of anomalies according to [48] and [49] is presented at Fig. 5.23. The latter reference is a
very interesting review of more then 70 anomalies of water; literature on anomalous properties of a-silica
is presented in [50]. The anomalies appear as a hierarchy of effects with different bounds. The ‘structural’
bounds indicate where water and a-silica are more disordered when compressed; the ‘diffusion’ or dynamic
bounds indicate where diffusion increases with density, and the ‘density’ or thermodynamic bounds show
where there is a temperature of the maximum density. All phenomena above-listed were first discovered
and investigated for water and only then were carried over to amorphous silica with a sole exception: in
vitreous state silica is known in the nature from time immemorial; vitreous water was found in the nature
only in the modern time — in meteorites, and probably vitreous water is a matter of nuclei of comets.

In addition to the mentioned anomalies both water and a-silica have transformations in liquid state
referred to as polyamorphism. This effect we will study in the next section.

5.3.7 Polyamorphism

Polyamorphism is a relatively new term denoting for liquids a phenomenon similar to polymorphism in
crystalline solids. We have to admit the fact of existence of liquids and amorphous solids with the same
composition but with different densities and therefore with different structures. Discovery of a high-density
modification of water [51] introduced into common use in scientific community the idea of polyamorphism
[52, 53, 54].

Refractive indexes for silicas built of tetrahedrons are linearly proportional to their densities (Fig. 5.10).
A significant change in the density or in the refractive index is a convincing indicator of the structure change.
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Figure 5.25: The relative volume change (a) and bulk modulus (b) for silica glass under pressure buildup and release
(according to [58]). The arrows show the direction of pressure changes. The breaks in the curves correspond to heating
from 290 K to 545 K and backwards. Solid lines are the glass compression at 290 K.

As pointed out above, a standard silica glass has cristobalite-like structure; its density is approximately
2.201 g/cm? and the refractive index is the smallest for glasses, np = 1.459. Quartz is denser than the glass
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(Tables 5.2 and 5.3) and its refractive index is higher, np = 1.544 for ordinary rays (quartz is birefringent).

Fig. 5.24 presents a partially melted peace of quartz. The sample was heated at 1700°C for a few hours
and then was quenched. The refractive indexes were measured for the residual quartz (from the right) and
for a vitreous band at its edge (from the left). This simple experiment has been produced in the sixties of the
last century and brought out clearly that a denser form of silica glass exists. Really, the refractive index of
the just melted glass immediately adjacent to the crystalline part of the sample is very close to that of quartz.
Immediately after melting, the structure of the melt is quartz-like and only in a few hours it is transformed
into a usual cristobalite-like glass with the corresponding refractive index. The experiment went unnoticed
and only modern success in high-pressure investigations together with intensive and widely reviewed study
of dense forms of water stimulated specialists in silica glass to recognize its polyamorphism.
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Figure 5.26: Phase diagram for a-silica polyamorphism below crystallization temperatures (a) and the thermodynamic
phase diagram and hypothetic diagram for liquid SiO2 (b) (according to [58]).

In the sixties of the last century it was also established that fast neutron irradiation produces a significant
change in the structure of silica glass and at a dose of the order of 10%° per cm? the initial glass completely
transforms into so-called metamict phase. The mentioned dose leads also to amorphization of crystalline
quartz with formation of the metamict phase, too. A brief review of early investigations of the metamict
phase in context of the discussion on existence of liquid-liquid transformations one can find in [55]. The
findings of modern Raman scattering investigations indicate that concentration of three- and four-member
rings of tetrahedrons in the irradiated glass increases with the dose that is an enhancement of coesite-
likeness of the structure [56]. It is known, that all glasses have a universal form of the low-frequency
Raman boson peak [57] and on this point the metamict phase is really a glass in spite of excess of a free
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volume produced in a explosive-like interaction between neutrons and the substance. In [56] it was also
demonstrated that the maximum of the low-frequency Raman spectrum (boson peak) shifts with an increase
in the irradiation dose, and the medium-range order size decreases from 25 A for the initial glass to 19 A
for the sample subjected to irradiation at a maximum dose.

A considerable list of references on the amorphous-amorphous transition and densification of silica
glass is presented in [50] together with MD simulation study, as well as in an experimental study of dense
modifications of a-SiOy [58]. Two types of a-silica densification are established at present. One of them
takes place at room temperature under pressures 12-40 GPa. Investigations of the glass structure, Raman and
Brillouin scattering and MD simulation showed that this transformation goes with change in silicon atom
co-ordination from 4 to 6 and represents the analogue of quartz-stishovite transformation. The second type
of silica glass densification occurs at lower pressures, 8-10 GPa at room temperature, but its regularities and
nature involve difficulties in interpretations. Here we present a brief review of in situ experimental study of
the latter type of transformation according to [58] to give an indication of this relatively new phenomenon.

The volume of glassy a-SiO5 was measured upon compression to 9 GPa at high temperatures up to 730
K and at both pressure buildup and release (Fig. 5.25). It was established that the residual densification
of a-SiOy after high-pressure treatment was due to an irreversible transformation accompanied by a small
change in the volume directly under pressure. The bulk modulus of the new amorphous modification was
appreciably higher (80% more than its original value), giving rise to residual densification as high as 18%
under normal conditions for densification at 700 K (for densification temperature 545 K at Fig. 5.25 the
residual densification is 12%). It was shown that the transformation pressure shifted to a lower pressure
of about 3-4 GPa with a rise in temperature up to the crystallization interval. Heating of the dense sil-
ica glass with the rate 20 K/min at normal pressure showed a reverse transformation into the low-density
phase at 1000-1100 K. The studied before densification of a-SiO2 from above 9 GPa at normal tempera-
ture was demonstrated to be a manifestation of the same phase transformation accompanied by tetrahedral
rearrangement similar to quartz-coesite transition.

The authors of [58] made a conclusion about the existence of at least two pressure-induced phase transi-
tions accompanied by structure rearrangement in a-SiOs. They suggested a nonequilibrium phase diagram
for a-silica (Fig. 5.26a). The hatched gaps correspond to the straight and forward transitions between the
usual cristobalite-like silica glass (LI) and the densified tetrahedral coesite-like glass (LII). The blank gaps
correspond to transitions between tetrahedral LII phase and octahedral stishovite-like phase (LIII). The
solid lines limit the straight transitions, the dashed lines — the forward ones. Phase diagrams for SiOq
transformations in the solid and liquid states are compared at Fig. 5.26b.

Similar baric transformations are known for many glasses, in particular for another famous glass-former
oxide, BoO3 [59]. The measurements of the relative volume change under compression together with the
structure investigations and computer simulations reveal the basic features of the phase transitions in BoO3
glass. Similar to a-silica, both direct and reverse transitions are smeared in pressure. Analogous results
were obtained for a-GeO5 [60], too.

5.4 Quartz and Some of Its Properties

Ancient Greeks knew quartz and named it “cold similar ice”, i.e. kpvoTailo( that means a crystal. Thus,
quartz as the most ambient terrestrial mineral with its striking regular faceting and transparency gave its
name for designation of solids at all. By its contemporary name quartz is obliged to Bohemian miners
of the XIV*" century. They named gob and nonmetallic minerals as Querz, and in contrast to the ancient
Greece, quartz have gotten its special name from a collective name of the large class of minerals.

Quartz is the most widespread mineral in the earth’s crust after feldspars. Quartz is ubiquitous in nature;
it is a part of sedimentary and igneous rocks, as well as crystalline slates. It is also an important constituent
of vein and mineral deposits of the various origin. Because of its high hardness and low solubility quartz
accumulates as sands and pebbles.

The general information on quartz properties with links to other databases on quartz is presented in
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[61]; the full-length explanation of physical and chemical basic of the quartz properties one can find on The
Quartz Page [22]. Here we review in more detail some of the properties being of considerable importance
for practice but little known especially regarding their physical nature.

5.4.1 Enantiomorphism of Quartz

Absence of planes and a center of symmetry among symmetry elements of low-quartz gives it a possibility
to form right as well as left handed structures which are mirror equal or enantiomorphic. L3 axes of quartz
are polar because chains of tetrahedrons form spirals along these axes with right or left screw. Crystals of
right and left quartz are different in their crystallographic form (Fig. 5.27) and they differ from each other
in some physical properties, too.

Figure 5.27: Habits of left and right handed quartz.

Plane of polarization rotates clockwise in right quartz and anticlockwise in left one. Right and left
quartzes differ in their etch figures, in percussion patterns on crystal face (11 0), in patterns of Brazilian
twin seams; but they are indistinguishable of each other in constants of their thermal, electrical and optical
properties (except rotation of plane of polarization).

5.4.2 Twins (Zwillinge) in Quartz

The Great encyclopedia of Kyrill and Methody defines twins as regular joins of two similar crystals in
which one crystal differs from the other with a mirror-reflection plane, or with turn around a symmetry
axis or with reflection in an inversion center. A joint plane in the twin is not a phase boundary because the
structure turn or reflection takes place at this plane without bond breaking.

Twins may be different in nature. Growth twins form by coalescence or reciprocal intergrowth of
crystals, but the mechanism of these processes remains incompletely comprehended. Transformation twins
arise under structure transformation during polymorphic transitions. For example, when hexagonal high-
quartz transforms under cooling into trigonal low-quartz, some parts of the structure may be turned through
180° relatively to each other around the L3 axis and form so-called Dauphiné twins which are very typical
for quartz. Deformation twins arise under mechanical loading of a crystal during plastic deformation.
Twins of this kind appear only in crystals with hindered sliding deformation, quartz and tiff being striking



5.4  Quartz and Some of Its Properties 61

Figure 5.28: Twinning boundaries revealed by etching a basal plane (0001) (perpendicular to L3 axis): a) according to
the Brazilian law; b) according to the Dauphiné law.

examples. An ordinary pressure by a knife blade on an edge of the tiff rhombohedron shifts a part of the
crystal into a twinning position.

Problems of quartz twinning were systematically studied in the course of 30 years by E. V. Tzinzerling
and then described in a very interesting monograph [62]. She began to work under the direction of the
famous Russian crystallographer A. V. Shubnikov and realized his idea of artificial transformation of a
twinned quartz crystal into single crystal and back. In the subsequent text of this section we briefly review
her main results.

Figure 5.29: A scheme of twinning of Dauphiné type under a shifting force according to A. V. Shubnikov: a) low-
quartz structure in projection on the basis plane (0001); b) a Dauphiné twin in low-quartz. An arrow shows the direction
of the force action. “Grey” atoms keep their positions, “white” and “black” atoms are moved.

Twinning laws are especially multiform for quartz because of its enantiomorphism, which represents
capability to form irreducible right and left crystals. Besides the mentioned Dauphiné twins', Brazilian?
and Japanese® twinning laws are abundant in quartz* (Fig. 5.28). From the optical point of view twinned

Dauphiné twins consist of an aggregate of two right or two left quartz crystals with parallel L3 axes.

2Brazilian twins represent joins of right and left quartz crystals with antiparallel L3 axes.

3Japanese twins are twins of growth. Axes [0001] of separate crystals are inclined to each other at an angle of 84°34’.

4The typical view of Japanese and Dauphiné twins in quartz as well as many other kinds of twins is accessible at the site “Twins in
the world of crystals” (in Russian)
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quartz is a single crystal and may be used in optical industry but it is not convenient for electronics if the
twins contained are Dauphiné or Brazilian. Electrical axes are antiparallel in components of these types
of twins. If the twin contains 50% in area extent of one and 50% of other twin components, the total
piezoelectric effect of the crystal is zero. Free from twins conditioned single crystals are infrequent for
quartz and therefore quite expensive but just these crystals are needed for electronics.

Figure 5.30: Effect of the double low-high-low inversion on Dauphiné twins in quartz: a) a pattern of the initial twins
on the quartz plate; b) a curtain pattern on the same plate after retwinning procedure. Size of the plate is 25x22 mm?.

Artificial twinning and untwinning (transformation of a quartz crystal with twins into the single crystal)
is possible only for Dauphiné twins, for other types with non-parallel twin axes untwinning is equivalent to
destruction of the crystal. At the process of Dauphiné twinning, the atoms rearrange in twin position inside
the unit cell and without macroscopic displacement of crystal matter (Fig. 5.29).

As a consequence of the laborious investigations Tzinzerling brought out clearly that twinning as a
result of any kind of mechanical deformation as well as a result of only thermal action on the crystal
or of voltage failure is a mechanical phenomenon by its nature. The difference is only in origin of the
shifting strain: an outside force or internal stresses in the crystal as a result of anisotropy of quartz thermal
expansion. The latter is maximal just below the «(3 inversion point, from 573 to 550°C, and remains
significant until 300°C. Retwinning occurs readily in this temperature interval, it was pointed out, in quartz
crystals even during some technological procedure following with heating like a brazing at a sputtered metal
layer. Investigators noted a random character of thermal retwinning patterns. Tzinserling showed that the
system in the twinning pattern becomes evident only for pure crystals, free from impurities, inclusions and
internal cracks. She discovered the method to free ill-conditioned quartz crystals from twins by double
low-high-low temperature inversion with following slow cooling. As a result crystals with a twin affection
of 50 % in area extent and with zero piezoelectric effect converted into predominantly single crystals with
only 12 % of twins concentrated at the edges of the quartz plates. The typical form of twins after this
retwinning procedure is presented at Fig. 5.30 and received the name ‘“‘curtain”. Making of “curtains”
has some similarity with single crystal growing: a moderate temperature gradient is necessary together with
careful and slowly heating and cooling in the vicinity of the inversion point. After the retwinning procedure,
edges of the “curtains” should be carefully deleted by a polishing and as the result the piezoelectric ability
of the quartz plate is completely recovered.

The first successful experiments of Dauphiné twins elimination from quartz by torsional deformation

http://files.school-collection.edu.ru/dlrstore/16774b92-93f0-80a6-2d02-aed3alc1784e/48-51_01_2003.pdf
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were performed in [63, 64] simultaneously with the author of [62]. The latter author showed that all types
of Dauphiné twins independently of their origin, defects and patterns can be untwinned into single crystals
by a multiple prolonged and enlarged loading together with a subsequent heating. However quartz with
impurities keeps the memory about its initial twins. After complete untwinning by torsional deformation,
quartz crystals restore the initial twins with faithfully copy of former twin boundaries if they undergo low-
high-low transformation. These works provided a possibility to create the industrial untwinning of quartz
crystals.

5.4.3 Anisotropy of Quartz

A variety of physical properties shows a sharp anisotropy for quartz crystals predominantly in directions
which are parallel and perpendicular with the major axis L3 [65]. The anisotropy shows up not only in
structural but in all vectorial properties such as thermal, mechanical, optical, electrical and so on. Durability
of quartz is maximal and thermal expansion is minimal in L3 direction because the structure is harder in
this direction than in perpendicular one. Table 5.4 (according to [62, 66]) gives an indication of anisotropy
for some physical properties of quartz.

Table 5.4: Anisotropy of some properties of quartz.

Physical property in parallel with L3 perpendicular to Ls
Thermal expansion at 40°C, K1 7.81-10°F 14.19-10°F
Electroconductivity, Ohm~tm™! 2.50 0.16
Resistivity at 20°C, Ohm-cm 1-1014 2-1016
Thermal conductivity at 0°C, | 0.0325 1.0173
cal/(cm-s-K)

Refractive index, np 1.553 1.544
Breaking point, kg/cm?

compressive 28020 27380
tensile 1210 930
bending 1790 1180
Hardness, dyn/cm2 22.5-109 30.2-109

Quartz possesses a very low positive birefringence. The optical axis in quartz corresponds to the L3
axis of the unit cell, so there is no birefringence when light passes the crystal from tip to tip. The maximum
birefringence occurs when the light passes perpendicular to the optical axis. Light that passes the crystal
along the L3 axis will also not be split into two rays of opposite polarization [67].

5.4.4 Thermal Expansion of Quartz

Many people do not distinguish quartz and quartz glass and properties of the glass which is more known
for users, arrogate also to crystals. It is a widespread opinion that quartz has a very low thermal expansion
coefficient and can be easily heated to high temperatures and quenched from them without appearance of
mechanical stress. This is true not for quartz but for silica glass which has a thermal expansion coefficient
about 1/18*" of that of ordinary glass. This uncommon property permits one to use silica glass for chemical
glassware production.

Common Features of Thermal Expansion of Solids

Near to room temperature quartz has a thermal expansion coefficient that is only slightly lower than that
of ordinary glass but at higher temperatures the thermal expansion of quartz becomes very unusual. The
reason is the following.
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Figure 5.31: Potential energy of interaction between two atoms for the case of anharmonic oscillations in dependence
on the distance between the atoms. Here r, is the equilibrium atom position at zero temperature; X1, X3, X3... are the
mean atom positions at temperatures 77 < T> < T3...

For most of the solids their thermal expansion is determined by the skewness of the atomic potentials
resulting in anharmonicity of lattice thermal vibrations (Fig. 5.31, [68]). A coefficient of anharmonicity -y is
defined by the third derivative of the potential energy. The linear thermal expansion coefficient « is directly
proportional to v, and their signs coincide. Thermal expansion of crystalline solids is usually anisotropic;
a typical example is presented at Fig. 5.32. Both parameters are given at the same scale. We see that
magnesite becomes longer at heating predominantly along the c-axis and almost not at all expands along
the a-axis. If we cut out a ball of a single crystal of such a material and heat it, the ball will change its form
and transform into an ellipsoid in correspondence with the thermal expansion coefficients along each of the
crystal axes.

A parabolic law gives usually a good interpolation for thermal expansion of solids resulting in the
constant . In some cases the structure of solids is such that at heating it contracts in one direction and
expands in others, similar to an elastic band, but in doing so its volume increases with temperature.

Specific Features of Thermal Expansion in Low Quartz

The sketched above consideration was made to describe the usual thermal expansion and to appreciate the
uncommon thermal behavior of quartz [69, 70, 71] which is presented at Fig. 5.33. As we can see, the
thermal behavior of the low and high modifications of quartz are radically different and the both are far
from the standards described in the previous section. The parabolic law does not hold for fitting of the
low-quartz thermal expansion.

It is known that after a correct fitting the experimental points are located in a random manner on both
sides of the approximating curve. An improper approximation leads to an alternation of groups of the
experimental points lying on one and on other side of the curve. The parabolic law gives just this case of
approximation. A proper approximation for the low-quartz expansion is a power function with a fractional
index and a vertex in the point of the high-low inversion:

Alow = Qhigh + ka (Tcr - T)n Clow = Chigh + kc(Tcr - T)ﬂ P
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Figure 5.32: Temperature changes of the unit cell parameters of magnesite MgCO3.

where a0, Clow and Gpigh, Chign are the unit cell parameters of the low and high phases, correspondingly;
k., and k. are coefficients, T, is the inversion temperature and 7 is the fractional index which may be
considered as pointing to an order of the transition: 1/2 for first order and 1/3 for second order. Both indexes
give comprehensible approximation, but need use of some adjustable parameters. In the case of n = 1/2 an
appropriate approximation can be achieved by correcting the inversion temperature, 7. = T, + A, with a
value of the temperature lag A about 7-9°C. As we shall see later, this approach corresponds to a first order
transformation although the opinion to treat it as a second order transformation is rather widespread.

The proportions of the unit cell of quartz changes with temperature (Fig. 5.34) since the a-axis lengthens
quicker than the c-axis. From room temperature to 500°C, ¢/a value changes linearly but above 500°C the
slope of the plot increases. The latter fact shows a specificity of the thermal expansion process in low-quartz
in a relatively wide vicinity of the transformation. In high-quartz changes in the ¢/a proportions are very
small but quite measurable.

Thermal Expansion of High Quartz

It is obvious from Fig. 5.33 that both parameters of high-quartz decrease at heating, with constant a,, =
—3.8-107" K ! and a. = —1.31-107% K1, therefore, its volume decreases too, that is high-quartz is
compressed at heating. Such a phenomenon meets rather seldom and needs an explanation.

Linear Thermal Expansion Coefficient of Quartz

Temperature change of both linear thermal expansion coefficients is presented at Fig. 5.35 according to
[69]. At negative temperatures both «(7") for low-quartz can be considered linear but above zero the rate
of their change begins to increase and above 450 - 500°C grows up critically at approach to the high-low
inversion temperature at 573°C and reaches rather high values.

At change of temperature thermal expansion occurs almost instantly; in these conditions such behavior
of the thermal expansion coefficient near the inversion point results in a frequent fracture of the samples and
underlies a thermo-crushing method. In this method quartz flinders are heated up to 900-1000°C and then
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Figure 5.33: The unit cell parameters of high purity standard polycrystalline quartz in dependence on temperature [69].
The break in the interpolated curves corresponds to the o — (3 inversion point.

dropped into water. A violent contraction of quartz below the inversion point and presence of temperature
gradient in depth of flinders bring about their destruction.

Our X-ray experiments with thin single-crystal plates will be describes later; in these experiments tem-
perature slowly varied around the inversion temperature over 3-5° interval. As a result about every second
plate has burst because of the small temperature gradient along the plates. For comparison - a red hot silica
glass rod can be dipped into water without cracking. It is also known that clays involving quartz sand crack
at heating up to 575°C but not far from this temperature. Quartz is not used for refractory production;
cristobalite and tridymite have jumps of the volumes at high-low transformation, which are comparable
with that of quartz, but their thermal expansion coefficients have no critical behavior in the vicinity of the
transformations and this is sufficient in order that products from them are not destroyed at the transforma-
tion.

The Nature of Thermal Expansion of High and Low Quartz

We know that the quartz structure is built up from only one type of structural units, namely tetrahedrons
Si04 connected by vertexes. X-ray structural analysis allows one determining co-ordinates of each atom
in the unit cell and permits to follow temperature changes of a single tetrahedron. The high-temperature
modification of quartz belongs to the highest crystal system, hexagonal, and tetrahedrons in that structure
are regular, with equal Si-O bonds. Low-temperature quartz belongs to lower trigonal system, and under
the action of the crystal field skewness the tetrahedrons are distorted. Two of four Si-O bonds in each
tetrahedron have one length and two others - another. Fig. 5.36 shows how tetrahedral Si-O bonds change
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Figure 5.35: Temperature dependencies of linear thermal expansion coefficients of quartz along the a-axis (o) and
c-axis (o). Above 600°C, « virtually coincides with an abscissa axis on the scale of the figure.

with temperature.

In low quartz both types of bonds, Si-O1 and Si-O2, behave in the same way — they contract with
temperature. At heating from room temperature up to the high-low inversion at 573°C the Si-O1 bond
decreases for 1.1% and Si-O2 for 1.6%. At approach to the point of transformation, the rate of contraction
of tetrahedrons increases, whereas the structure, which is built from these tetrahedrons, steadily expands.
It is obvious that the thermal expansion of low-quartz comes from a rearrangement of tetrahedrons. In the
inversion point the bond lengths Si-O1 and Si-O2 become equal. At the further heating we observe in high
quartz only a very slow contraction of regular tetrahedrons with the thermal expansion coefficient of the
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Figure 5.36: Temperature dependence of Si-O bonds in quartz tetrahedrons [72].

order of -1.2-10° K~! which is suitable for explanation of the thermal expansion in high quartz.

| a=1 >
|
|

Figure 5.37: Projection of right handed high-quartz structure onto the (z, y)-plane and perpendicular the c-axis directed
on the onlooker. The figures in the circles show the relative height of the Si-atoms above the (z, y)-plane. The tilt axes
d1, ds and d3 are indicated.

Let us consider a geometric model explaining the mechanism of thermal expansion in low-quartz
(Fig. 5.37, [73]) in suggestion that the tetrahedrons are regular as is the case of high-quartz. All lengths in
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the model are dimensionless and given in units of the a-axis in the high-phase. Then the lattice constants in
the high temperature phase are:

@ 1
2 1+3'

R being the Si-O distance. Vertical displacements of tetrahedrons in Fig. 5.37 (numbers in the circles) are
also given in the same units. For “regular” quartz (regular SiO4 tetrahedrons) there is no open parameter
in the high-phase except for a scaling factor. As the authors [73] wrote, “the conditions of rigid and con-
nected tetrahedra leave only one way to produce the low temperature phase from this structure. This is the
simultaneous tilt of the tetrahedra around the three axes d;_3... Because of tetrahedra being linked, this
“tilt operation” shortens the dimensions (a, ¢) of the unit cell.”

A simple geometrical consideration allows one to formulate the structure of “regular” low-quartz in
terms of only one parameter — the tilt angle J. In particular, for the unit cell parameters of low-quartz the
authors got the following expressions:

c=2V3R, R=

a=1,

a=1-2R(1—cosd), c¢=2V3Rcos§ .

The unit cell parameters of low-quartz do not depend on the sign of the tilt angle § but the atomic co-
ordinates do, and the J-sign determines the kind of Dauphiné twin. Checking the validity of the tilt model
for “regular” quartz by comparing these equations to the relevant experimental result at room (§ = 16.3°)
and at 600°C (6 = 0, above the phase transition) shows a surprisingly good agreement (Table 5.5).

Table 5.5: Comparison of tilt model of “regular” quartz with experiment. By convention the a parameter of high-quartz
is taken as unity.

Variabl 25°C 600°C
ariables Exp. Model Exp. Model
a 0.9831 0.9745 1.0 (fixed) 1.0 (fixed)
c 1.0813 1.0539 1.0921 1.0981
16
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§ 12
210
<
o8
BN
g 6
£ 4
2
0

20 100 200 300 400 500 600
Temperature, °C

Figure 5.38: Comparison of experimentally determined tilt angle J with expected temperature dependence of § on the
basis of a Landau type expansion for the free energy [73].
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The authors [73] considered the tilt angle J as the order parameter. They proposed the analytical form
of §(T) assuming a free energy expansion of the Landau type to be valid and suggesting that the high-
low transition is of first order. As Dauphiné twins are energetically equivalent, only even powers enter in
the expansion of the tilt angle 4. The authors also obtained an equation for calculating the angle § from
X-ray structural data. Combining the results they calculated that a jump of the tilt angle at the transition
temperature has to be 7.3° (Fig. 5.38). A temperature lag for the developed model was estimated as 10°C
that is close to the lag derived for approximation of the unit cell parameter by a power function with a
fractional index n = /.

The Origin of Thermal Contraction of the Tetrahedrons

The nature of thermal contraction of the XOY ™ tetrahedral ions are well explained in [74] with the significant
title “Role of 3d-orbitals in w-bonds between (a) silicon, phosphorus, sulfur, or chlorine and (b) oxygen or
nitrogen”. As the author writes, “two strong 7-bonding molecular orbitals are formed with the 3d,>_,> and
3d2 orbitals of X and the appropriate 2pm and 2p7’-orbitals”. The author illustrates the electron structure
of the tetrahedral ion with the help of handmade models (Fig. 5.39) Thermal expansion of these orbitals
results in increasing their overlapping and growth in the bond order. The bonds become stronger and shorter
at heating.

Figure 5.39: On the left — overlap of X(d,2_,2) with oxygen 2p7 in XO} ™ ; on the right — overlap of X(d.2) with
oxygen 2pm [74].

It is obvious from [74] that not only silicon but also its neighbors in the third group of the Periodical
System can create tetrahedral structures with similar properties, although some tetrahedral ions are much
more complicated as compared with SiO, tetrahedron. Today the list of tetrahedral ions is much more
extended. In particular a quartz-like structure of AIPO4 expands at heating in the low-phase and has almost
constant volume in the high phase [75]; hence aluminum and phosphorus should be added to the list (a) and
(b) of [74], correspondingly. Specific features of high-low transitions in quartz and quartz-like AIPO, are
similar, too [76].

Contraction of SiO, tetrahedrons takes place not only in quartz but in all silicas, for example in cristo-
balite (Fig. 5.40). We see again that when relative displacements of tetrahedrons are exhausted the structure
loses its ability to expand. The mechanism of thermal expansion of low-cristobalite is described in [77]
together with a review of cristobalite-like structures constructed of tetrahedrons and showing a similar type
of the thermal expansion.
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Figure 5.40: Thermal expansion of low and high cristobalite [78].

Low-quartz and low-cristobalite have “corrugate” structures; a straightening of them provides their
thermal expansion at heating in spite of absence of the expansion of the “constructive bricks” — tetrahedrons.
A structure of silica glass is loose (Fig. 5.17c) with a minimal corrugation. As a result, relative tilts of
the tetrahedrons at heating are insignificant and the thermal expansion depends on the inherent thermal
expansion of the tetrahedrons or rather on its absence.

5.4.5 High-Low or o — 3-Transformation in Quartz

To the high-low transition in quartz the attention of researchers is directed to intensively within the last
sixty years and to less extent even considerably earlier [79, 80] because it is accompanied by very specific
phenomena and anomalies [81, 82, 83, 84, 85, 86, 87]. The literature on this question is numerous; it seems
that it is the most intensively investigated phase transformation at all. Nevertheless, new investigations lead
to new questions. Here we make only a very brief review of some aspects of the transition.

Order of the High-Low Transition in Quartz

A lambda-like behavior of the second derivatives of the thermodynamic potentials, what thermal expansion
coefficient is, is typical for the second order transitions. Other properties of this kind (such as the heat
capacity [88], and elastic modulus and light scattering (Fig. 5.41)) gave rise to the firm opinion that high-
low transformation in quartz is of a second order still in the fifties of the last century. Nevertheless not
lambda-like trend of the second derivatives is a decisive criterion of a second order transition but also the
absence of a jump of the first derivatives and in the first place of the volume.

In the sixties the powder diffraction study [88] seem to allow one to suggest that the unit cell parameters
of quartz undergo a jump at the inversion point but this conclusion could be easily disputed because of
deficient accuracy of temperature measurement and insufficient number of measurements in the transfor-
mation region. To avoid these problems a special method has been developed [69, 91], the so-called X-ray
radiography with oscillating temperature. Temperature on the sample varied continuously around the inver-
sion temperature within the limits +2°C. If the crystal structure uninterruptedly changes with temperature,
the measured 26 values of the selected reflection should be distributed normally in the narrow temperature
interval because of accidental errors. If the function 26(7T’) has a break inside the limits of the temperature
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Figure 5.41: Temperature dependencies of elastic modulus perpendicular to the optical axis of quartz (a, [89]) and
scattered light (b, solid dots - heating; open dots - cooling [90]).

variation, two nearly normal distributions of 26 should be registered. The reflections 214 (20 ~95° at Cug,,
radiation) and 231 (26 ~104°) have been measured for quartz powder approximately hundred times every-
one, the result is presented at Fig. 5.42. Two separate distributions of the 26 angle frequency are observed
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Figure 5.42: Bar graphs for 26 values of quartz reflections 214 and 231 in the inversion point. The left distributions
belong to high-quartz, the right ones — to low-quartz.

for both reflections. In both cases a forbidden band is found for 26, for the reflection 321 it reaches a value
which is larger than the width of the 26 distributions.

A similar investigation was carried out for a single crystal of quartz. The reflection 060 (20 ~150°)
was measured nearly fifty times with the similar result; for such remote reflection a distance between the
peaks of the high- and low-quartz distributions reaches 0.8°. In no experiments it has been registered any
reflection within the forbidden bands. We observe here a jump of the structural parameters of quartz during
high-low inversion, thus this is a first order transformation. The unit cell volume jump, calculated by using
these data, is only 0.6%. This value is significantly smaller than the volume jump (2.5—5%) which can be
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found for the quartz inversion in the literature because the latter relates to a “destructive” part of thermal
expansion. Real jump of the volume is small, but it does exist. Investigations performed by other sensitive
methods also confirm the first-order character of the transformation [92, 93].

Transitional Opalescence

Molecular light scattering in transparent solids has been first discovered in 1928 by the Soviet physicists
G. S. Landsberg and L. I. Mandelstam and first it was revealed and investigated just in crystalline quartz.
At room temperature, molecular light scattering in quartz is very low, about 10~7 of the incident light
intensity. Intensity of molecular light scattering in quartz linearly increases with temperature up to 450°C
(Fig. 5.41b) and then begins to rise critically when the high-low inversion temperature approaches [90].
In the latter work performed in 1956-1957, the high-temperature optical chamber has been designed with
temperature gradient in the direction of the incident light beam from 0.03 to 0.1°/mm and with the vertical
gradient of 0.01°/mm. In this condition, the authors have observed, as they have thought, a “critical”
opalescence in quartz in very narrow temperature interval, nearly 0.1°C, near the high-low inversion point
at 573°C (Fig. 5.43). At these photos low-temperature quartz lies on one side of the nebulous band and
high-quartz — on another side. Under continuous heating the opalescent band moves from the hot side of
the chamber to the low one.

Figure 5.43: Photographs of opalescence in quartz with horizontal temperature gradient of 1 (a) and 0.03 (b) de-
gree/mm. White dashed lines show the direction of the incident light beam. The exposition time was one second; the
width of the opalescence zone at the photo (a) is 0.5 mm, in (b) — 3 mm; light scattering by the nebulous band in the
direction of observation is by a factor of 1.4 - 10* more intense than at room temperature or in high-quartz at 600°C.

The described phenomenon is reversible and can be repeated as many times as one wants until the crystal
is destroyed. The authors [90], following an independent theoretical consideration [94], concluded that the
presence of the narrow nebulous band between two polymorphous modifications of quartz does not leave
any possibility to interpret the low-high inversion in quartz as a first order transition. They supposed that
the observed phenomenon is light scattering on optical inhomogeneities produced by thermal fluctuations.

Since then the transitional opalescence in quartz was studied repeatedly [95, 96, 97]. Intensity of the
transitional opalescence depends on lattice defects, the size and form of which can be diagnosed relying
on frequency and angle dependencies in the opalescence region [98]. A quality control method for piezo-
electric quartz was suggested based on intensity measurement of isofrequency light scattering at o — 3
phase transition [99]. The idea that the opalescence in quartz is originated by thermal density fluctuations
was not confirmed by later investigations. The opalescence is not a dynamic but static phenomenon, the
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optical inhomogeneities are invariable in time and space [98, 100, 101] and produced by so-called incom-
mensurate phase [95, 102] (the latter work is a review with the indicative title: “The a— <incommensurate
phase> —( transition of quartz: a century of research on displacive phase transitions”). A suggestion of
irregular Dauphiné microtwinning as a reason of the opalescence was developed, too [62, 100].

Incommensurate Phase

Figure 5.44 schematically presents formation of an incommensurate or modulated phase (in the literature it
may be designated as IC or inc) in a crystal [103]. In modulated phases, the atoms are slightly displaced
from their lattice positions following a periodic law. A superposition of two or three displacement waves
can coexist in the crystal. In the case of a single wave, the modulated phase is referred to as 1q, if two
or three waves coexist the modulated phases are denoted as 2¢ and 3¢, respectively. When the ratio of the
lattice parameter of the modulated phase to the modulation wavelength is an irrational number, this phase
is termed incommensurate. However, since the exact value of the actual ratio is unknown, it is usually
represented in the form of an irreducible fraction such as 20/41 in [104].

a b c

> >
a 2a

Figure 5.44: Superstructure formation in the model two-dimensional crystal: a) the normal phase with the unit cell
parameter a; b) the commensurate phase with the doubled parameter in one of the directions; ¢) the incommensurate
phase, a period of the displacement wave is incommensurate with the unit cell parameter.

In dielectric crystals, the modulated phase arises from the high-symmetry commensurate (normal) phase
due to a phase transition, which “is caused by the disappearance of the acoustic mode with a wave vector
lying within the first Brillouin zone” [104]. In quartz upon cooling the following sequence of phase trans-
formations is observed: normal phase (high-quartz) — 1q — 3q — commensurate phase (low-quartz) [104,
105]. It was shown that the incommensurate phase near the o — (3 transition point in quartz is improper fer-
roelastic and should be split into domains [106]. On an electron microscope image of the domains one can
see, for example, in [101], a review of simulation methods for the sequence of transformations presented
in [104] as well as the author’s simulation of the domain structures formation at the different stages of the
inversion. Acoustic and light scattering anomalies observed in the IC phase are qualitatively consistent with
the ferroelastic nature [106].

5.4.6 Pressure-Induced Amorphization of Crystalline Silica

After discovery of pressure amorphization of ice, the crystalline-to-amorphous transformations in the solid
state became the subject of intensive study (see the review [107]). It was established [108] that quartz and
coesite transform to amorphous solids at 25-35 GPa and 300 K, as well as other materials with quartz-
type structure like Sig 56P0.4401.56Np.44 or AIPO4-GaPO4 [109]. The phenomenon was confirmed by
molecular dynamics simulations [110] and a similar behavior was predicted for cristobalite [111]. It was
also shown that melting is the physical phenomenon responsible for pressure-induced amorphization and
that the structure of a “pressure glass” is similar to that of a very rapidly (10! to 10'* K/s) quenched
thermal glass.
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5.5 Hydrothermal Synthesis of Quartz

The basic principles of single crystal growth were repeatedly expounded; one can find them, for example,
in books of R. A. Laudise [113, 114] together with a description of the hardware implementations. The
monographs [112, 113, 114] have been employed in writing of this part.

Hydrothermal synthesis is a special case of solution growth. This method is used if solubility of a
growing crystal phase is too low. The main ways to raise it are addition of an appropriate mineralizator
and temperature and pressure increase. Many minerals were formed in such conditions in the Earth interior
by very low growth rate from water solution at high temperature and pressure. The most abundant mineral
formed by this way is quartz. That is the reason why geologists were the first who began to experiment on
hydrothermal synthesis of quartz to understand how it could be formed on Earth.

5.5.1 Brief History

K. Schautheutl and independently H. de Senarmont first grew microscopic crystals of artificial quartz from
water solutions in the middle of 19th century. These works as well as the subsequent ones had a miner-
alogical task to explain natural quartz formation; therefore, the authors were quite satisfied with small size
of crystals. In 1880-1881 brothers Pierre and Paul-Jacques Curies discoved direct and inverse piezoelectric
effect for quartz (see also [65] for details of the phenomenon) and some other non-central symmetrical
crystals. It permitted to use quartz for transformation of electric signals to sound and back. However for
this purpose quartz crystals should be large, perfect and free of twinnings. Thus interest to artificial crystals
production arose because the natural crystals with necessary properties are very rare. The first large quartz
single crystals were grown on seeds only in 1905-1909 by G. Spezia. His single crystals were produced
from sodium silicate solution with addition of NaCl and after five-month experiments had nearly 2 cm
length along the c-axis.

Radio engineering expansion brought very soon to insistent need in large quartz single crystals. Massive
defect-free crystals were necessary to develop systems for frequency stabilization by means of piezoelectric
quartz resonators. In the thirties of the last century, systematic efforts were directed at development of a
method suitable for commercial production of piezoelectric quartz. R. Nacken in Germany succeeded in
growing of relatively large crystals (up to 5 g) in isothermal conditions (400°C) with silica glass powder as
a feed material. Solubility of silica glass is an order of magnitude higher than of crystalline quartz; hence
the solution was supersaturated with respect to quartz and growth was possible. It seems that the process of
glass solution with subsequent transfer of the dissolved silica to a seed may proceed until the glass exhausts
and large crystals may be produced by this way. Unfortunately, quartz grew not only on the seed but on the
glass, too. Crystallization stopped dissolution of the glass, and cyclical renewal of the feed material made
crystal quality worse. Nevertheless, these first experiments showed that free of twinning quartz can grow
relatively fast on high-quality single-crystal seed. The largest crystals synthesized by Nacken reached 2 cm
after 90 days. Hence, the task of artificial growing of piezoelectric quartz was solvable in principal.

World War II gave an impulse to advancement of radio industry. After the war, strong attempts were
made to find a way for industrial synthesis of piezoelectric quartz in UK, USA and USSR. At the end of
the forties it became evident the Nacken’s method has no perspective at many points. The most important
of them is that the method should not be isothermal. The English scientists W. Wooster and L. A. Thomas
were the first who showed the principal possibility to produce large enough quartz crystals by continuous
transfer of matter from a feed material to the seed under temperature drop conditions. This work had a
profound impact in further industrial development of hydrothermal synthesis of quartz.

In the USA the “Bell Telephone” has achieved the most considerable success. In 1956, the general
procedure for synthetic piezoelectric quartz was laid down and the industrial production was organized by
“Western Electric”. They started up in 1958 with a pilot plant in Massachusetts and soon to a considerable
degree satisfied with quartz the requirements of radio-electronic industry. Independently, T. Sawyer made
a major contribution in development of the temperature drop method. In 1956, he organized his own firm
“Sawyer research production” and began to produce high-quality quartz crystals.
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Japan has no own deposits of natural piezoelectric quartz. An electronics firm “Toyocom” was one of
the first, which was interested in creation of independent source of raw materials. In 1955, the firm began
with experimental investigation in piezoelectric quartz synthesis and already in 1960 mass-production of
large crystals has been organized.

In the USSR, A. V. Shubnikov undertook his first exploring work on quartz synthesis in 1939. After the
war this work was resumed in the Institute of Crystallography of the Academy of Science of the USSR. In
the beginning of the fifties, a new Scientific Research Institute for piezoelectric raw materials (“VNIIP”)
was created together with a pilot shop in Alexandrov city not far from Moscow. Later the institute was
renamed as “VNIISIMS” — All-Union Scientific Research Institute for synthesis of mineral raw materials.
In 1957, the first production regulation for piezoelectric quartz synthesis at a serial plant was elaborated,
and the industrial production of synthetic quartz was started in 1961-1962.

5.5.2 Temperature Drop Method

The method consists in creation of some temperature difference between dissolution and crystallization
chambers and is useable if the material solubility in a working medium changes with temperature. As a
rule, solubility of quartz in used solvent has a positive temperature coefficient at working conditions.

Temperature 77 is set in a region where the charge dilutes and lower temperature 75 is set in a region
of the crystal growth, the growth chamber placing under the dilution chamber (Fig. 5.45). As a result,
the solution in the hot chamber with temperature 73 begins to float upwards and arrives into the colder
upper chamber. As quartz solubility at 77 is greater then at 75, the solution is found to be supersaturated
at T, and may feed the growing quartz seed. Then the liquid with 75 moves downward and ascending
and descending flows form together under the action of buoyancy force a common closed loop of free
convection. Convective mass transport is very important for the process realization because it provides
continuous entry of the supersaturated solution from the hotter charge to the colder seed. In a rare instance
of retrograde solubility, location of the chambers for dilution and growth should be inversed.

A liquid growing medium has to assure a sufficiently large absolute value of solubility for the crystal
growth. Weakly concentrated soda and alkaline water solutions are usually used for quartz growth because
of higher in comparison with pure water quartz solubility; fluoride, acid and some other solutions are also
used for special purposes. For the major part of manufacturing technologies, a sufficient level of quartz
solubility is reached at temperatures above 300°C. Diluted water solutions may exist at these temperatures
only under high pressure; the last also stimulates the crystallization process and permits to produce crystals
of higher quality. In practice, pressures of 70-200 MPa are commonly used. The choice of a particular level
of pressure for a given technology depends on specifics of growth and desired quality of the crystals.

For practical realization of hydrothermal synthesis, it is important that the relation between the necessary
levels of temperature and pressure allows one going without external source of pressure and performing the
process in isochoric conditions. In this case, the necessary pressure at the given temperature may be created
only due to temperature expansion of the working medium (the water solution) and depends on the relative
value of the working space infill. The infill factor is the main pressure governor for hydrothermal synthesis;
the necessary value of it may be found from the p-v-T diagram of the working solutions, the latter being
constructing from independent investigations.

From the above considerations it appears that hydrothermal synthesis of quartz should be realized in up-
right autoclaves (autoclave is a high-pressure vessel without an external source of pressure) with controlled
systems for heating and heat shield. Specially oriented quartz seeds are placed in the growth chamber at
metal frames, the quartz charge is placed into the dilution chamber in metal containers. As a rule, natural
crystalline materials in size from 20 to 40 mm are used as a charge. Surface area of the charge should be
fully five times larger than the total surface area of the seeds; in this case charge dilution does not restrict
the seeds growth.

The volume of the autoclaves may vary in wide limits, from a few cubic centimeters for laboratory
bombs till a few cubic meters for an industrial equipment. It was shown that the overall growth rate is higher
in smaller reactors than in larger, all other parameters are being equal (temperature and the temperature
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Figure 5.45: The scheme of crystal growth by the method of temperature drop. Here 77 > T%; 1) the pressure vessel
with water solution; 2) the growing quartz seed; 3) the perforated diaphragm; 4) the container with diluting quartz
charge. Arrows show convectional circulation of the solution.

drop). Small-size vessels with an internal diameter less then 300 mm are in considerable use because they
are not heavy and are convenient in manufacturing and sealing during following exploitation. However, the
autoclaves of chief commercial importance have an internal diameter of above 600 mm. Large autoclaves
provide a possibility to grow larger and more perfect crystals because keeping of stable growth parameters
is aided by large mass and thermal inertia of the vessel. They are also more economical in exploitation
because they need less maintenance staff, working area and so on.

The geometrical shape of the working space plays a great role for the successful synthesis. Ratio of
the height of the working space to its diameter has to be in limits of 8 — 15 because some instabilities of
the thermal regime arise in too much elongated reactors. Nevertheless, autoclaves with elongation factor
of 20 — 30 are producing and successfully working in Japan. An additional constructional feature, which
helped to solve the problem of stable and controlled mass transfer providing, is a perforated diaphragm that
divides the reactor into two parts: a hotter chamber for quartz charge dilution in the bottom of the reactor
and a colder chamber for crystallization above it. Structure of the diaphragm often undergoes various
modifications to improve and optimize the mass transfer in the vessel. However, the structure complication
leads to reliability degradation and does not compensate a probable improvement of the solution circulation.
For this reason, relatively simple perforated diaphragms are usually used in practice, but the choice of a flow
section value is one of the fine problems of synthesis.

At once before the process beginning, the working space is partially filled with a working solution
according to the chosen infill factor. Pressure starts to grow on heating but this growth is not uniform
(Fig. 5.46). In an early stage of heating the working medium is in two-phase state, the working solution and
its saturated vapor being in the vessel. At this stage, pressure depends only on temperature and not depends
on the infill factor. Pressure growth is relatively slow at this stage, 0.01-0.05 MPa/degree. If heating
proceeds, the system reaches the critical point at p., T, and converts into a single-phase state. Temperature
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Figure 5.46: Schematic temperature dependence of pressure for the working solution inside the heated autoclave.

growth of pressure in homogeneous stage becomes approximately linear (1-2 MPa/degree) and uniquely
depends on the infill factor.

Processes of charge dilution and crystal growth are energy-reciprocal, so a moderate energy is necessary
to keep the mass transfer at a given temperature to the condition of appropriate thermal protection of the
autoclave. Duration of quartz growth by hydrothermal method can reach about 300-400 days, and accuracy
of temperature and pressure maintenance has to be in limits of 0.5-2 °C and 0.5—-1 MPa correspondingly.
Autoclaves must be safe and reliable; at the same time they should be serviceable for assembling and
dismantling because of recurrence or the growth process and necessity to clean internal parts of the vessel
from spontaneous crystals at the top and heavy fluid at the bottom.

5.5.3 The Main Problems of Hydrothermal Synthesis of Quartz
Phase Equilibria in the System SiO,-H>O

Hydrothermal synthesis is a recrystallization process under relatively high temperature and pressure condi-
tions. This process is realized by means of continuous mass transfer from a dissolving charge to a growing
seed, the driving force of the process being the supersaturation. To create the supersaturation, which is
necessary for the crystal growth in a preset dissolvent with a given rate, it is necessary to know the phase
diagram of the system that is the temperature and pressure dependence of the matter solubility. A region
with appropriate value of temperature solubility coefficient may be then chosen at this dependence to pro-
vide the mass transfer, but some additional kinetic requirements should be taken into account to provide the
desired high quality of the grown crystals.

The first qualitative information on solubility of different forms of silica was obtained in the middle of
the thirties of the last century. Two kinds of scientists applied their efforts to the problem solving; those
who were interested in artificial crystal production and geologists. The latter ones faced with consequences
of wide occurring hydrothermal synthesis in nature, in particular with abundance of crystalline quartz.
Clarification of the mechanism and conditions of formation of quartz single crystals was for geologists the
way to comprehend the Earth’s crust formation. This is why so much information on the theme we find in
the geological literature.

The most comprehensive study of phase equilibrium in the system quartz-water over a wide range of
temperature and pressure was performed in 1950 by G. C. Kennedy [115]. He investigated in details the
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Figure 5.47: Temperature dependence of quartz solubility in water in hydrothermal conditions according to [115].

temperature region in the range from 160 to 610 °C and pressures up to 170 MPa that is just that hydrother-
mal conditions which are typical for quartz formation in nature. Quartz solubility was studied in isothermal
conditions by the quenching method but not quartz samples but the overall autoclaves were quenched.
Quartz solubility was determined from mass loss of the sample stated at regular intervals. The attainment
of a steady state was found from stopping in mass loss changes, the non-change behavior examining over a
long period. The results of this great laborious work are presented at Fig. 5.47.

Three different regions may be singled out for the system from the presented phase diagram: a three-
phase region for heterogeneous equilibrium “quartz + water solution + vapor” and two regions for two-
phase equilibriums, “quartz + water solution” and “quartz + vapor”. A dividing line between two-phase
regions is conventional and may be considered as corresponding to the critical temperature for water, i.e.
approximately 374 °C. Water solubility of quartz increases with temperature in the three-phase region as far
as nearly 332°C and reaches here its maximal value 0.075 %. On further heating to the critical temperature
(very close to 374.11 °C for pure water) the solubility begins to reduce to 0.023 %.

Solubility of quartz in the saturated vapor in equilibrium with liquid water and quartz (that is along the
low boundary of the three-phase region) is extremely small up to 7'=360 °C and p =21 MPa. At moderate
temperature and pressure, a percentage distribution of diluted silica between liquid and vapor phases is
proportional to a ratio of densities for these phases; therefore, it is rather small. However, it begins to
increase rapidly over 360 — 374 °C interval and reaches 0.023 % in the critical point. In the point A,
(Fig. 5.47) at critical temperature and pressure, the liquid and its vapor become indistinguishable and form
a so-called fluid phase or supercritical liquid. Since water solubility of quartz is rather low, the point A,
is very close to the critical point of pure water. Above this point, the system is in two-phase state: “quartz
+ fluid phase”. The point A, is the lower critical point of the system SiO,—H>O as distinct from the upper
critical point of the three-phase region “quartz + water solution + vapor” concerning to a region of the
melts. In the region of homogeneous state of the solvent, i.e. above the curve of the three-phase equilibrium
(Fig. 5.47), aretrograde water solubility of quartz takes place under pressures below 70 MPa, the solubility
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Figure 5.48: Solubility of quartz in supercritical water according to [116].

being temperature independent at 70 MPa and sharply increasing at pressures above this value.

Kennedy’s data were later supplemented by investigations of other researchers which studied water
solubility of quartz up to 900 °C and 1.0 GPa [116] (Fig. 5.48). As it follows from the experimental data,
the main factor, which is responsible for solubility of quartz in near-critical and supercritical water, is a state
of the fluid, and first of all - its density. If the density is kept constant, the solubility of quartz grows with
temperature. Thermodynamic analysis of the experimental data showed that solubility of quartz against
temperature and density of water phase in temperature range 200 — 600 °C and pressures below 200 MPa
may be described by the following equation [117]:

2
¢= D exp (RT+h> ’
where c is the molar fraction of dissolved silica; D is the density of the water solution; @ is the differential
heat of solution which is equal on average to 39.6 Joule/mol; h = 0.362 is the constant of integration.

Another approximation for Kennedy’s data was suggested by F. G. Smith [118] but the extrapolation of
the found equation to the region of high p—T" values gave a significant deviation from the experimental data
of the work [116]. A similar extrapolation of the equation of the work [117] gives only a little better result.
Because different forms of silica have a different solubility, the o — ( transformation of quartz on heating
and the further transformation into tridymite can be the possible reason of these failures. It is also possible
that the deviations are related to particular features of structure and properties of supercritical water under
high temperature-pressure conditions, especially, its degree of dissociation.

The presence of two critical points at a phase diagram is typical for binary systems if one of the com-
ponents has a very high volatility like H»O and the other component has low solubility like SiOy. Already
the first schematic phase diagram for the SiO,—H5O system [119] predicted two critical points and was
in many respects true. The fist quantitative experimental study of the upper critical point of the system
was performed in [120] for " = 1000 — 1300°C and p = 120 — 200 MPa but the final phase diagram
was constructed again by G. C. Kennedy together with coauthors [121]. They stated the position of the
invariant curve up to 1080 °C and 970 MPa and constructed the full diagram involving the previous results
(Fig. 5.49).
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Figure 5.49: The melting curve of silica in equilibrium with water [121].

Presence of water reduces the melting temperature of silica even at a moderate pressure of steam. The
cristobalite melting temperature decreases with the steam presence as the pressure rises up to 40 MPa.
At the higher pressures, cristobalite becomes metastable but tridymite is stable up to 150 MPa. Quartz is
stable at still larger pressures and similar to other forms of silica it gives the melt with significant water
content. Hence, there are two quadric points in the system SiO3—H3O according to the presented diagram:
the first point (1" = 1160°C, p = 150 MPa) corresponds to equilibrium between quartz, tridymite and two
fluid phases (the melt and the vapor); the second point that corresponds to equilibrium between tridymite,
cristobalite, melt and vapor, is located at 7" = 1470°C and p = 40 MPa. It was also shown [122] that quartz
can retain stable at temperatures considerably above its quadric points if the pressure is sufficiently large.
Neither cristobalite nor tridymite can keep their stability under elevated pressure.

One can see from the diagram (Fig. 5.49), that the melting temperature of silica is sharply diminished
with pressure in the fields of cristobalite and tridymite stability but remains much the same in the field
of quartz. Thus, change in pressure from 200 MPa to the critical value of 970 MPa reduces the melting
temperature of quartz by 50°C only. By comparison, in waterless conditions the melting temperature of
quartz grows with pressure from 1870 °C in vacuum to 2150 °C at 700 MPa and 2300 °C at 1200 MPa
[123].

Compositions of two fluid phases coexisting along the upper three-phase boundary were also estab-
lished in [121] (Fig. 5.50). The left branch of the cupola relates to the water-rich vapor, which is being in
equilibrium with the silica-rich melt and the solid phase. The right branch relates to the melt, which is being
in equilibrium with the solid and the vapor. The solubility of quartz in water-rich fluid (vapor) changes with
pressure from 5.7 % at 200 MPa to nearly 75 % at 970 MPa in the vicinity of the critical point. On the
contrary, water content in the silica-rich melt rises slowly from 4.4 % at 200 MPa to nearly 6 % at 600 MPa.
At further elevation of pressure water content in the melt rises steeply up to 25 % at the critical pressure.
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Figure 5.51: Water solubility of quartz (1), chalcedony (2), cristobalite (3) and amorphous silica (4) according to [2].

Comparison of Figs. 5.49 and 5.50 shows the difference of the upper and lower three-phase regions
in the system SiO3—H2O. Compositions of the both fluids vary over wide limits in the upper three-phase
region and change moderately in the lower region, reaching the maximal value for silica solubility in water
of 0.075 %. Hydrothermal synthesis is usually performed in p — T conditions close to the lower critical
point.

The effect of water on silica melting is in accordance with the thermodynamic treatment [121]. However
a theoretical melting curve calculated with regard to thermodynamic data is distinguished appreciably from
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the experimental data for pressures 200900 MPa, i.e. when the melting temperature of quartz change very
slowly but water solubility in the melt and silica solubility in the vapor rise regularly. The simulated curve
is S-shaped but the experimental curve is nearly straight. This appears to be related to specifics of water
solution in the melts and changes in steam state with pressure [2].

Silica Dissolution in Water Solutions of Salts and Liquid Phase Separation at Hydrothermal
Conditions

For the purpose of hydrothermal synthesis, it is important to increase the solubility of the charge. It was es-
tablished that different phases of silica has different solubility in water (Fig. 5.51), and the highest solubility
is shown by amorphous silica. Unfortunately, as it was mentioned above, crystallization ability of amor-
phous silica is very high, too, and spontaneous crystallization stops soon the dilution process. Additions of
salts to water can significantly elevate water solubility of quartz and therefore were much investigated; some
of the typical results are presented at Figs. 5.52 and 5.53 (citation according to [112]). At the same time, as
it is often the case in hydrothermal synthesis, the phenomenon appears to be much more complicated and
its application is rather limited.

20 3
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Figure 5.52: Temperature dependence of solubility of quartz in water solutions of NapCOs for different content of
soda. The infill factor is 70 %. Citation is according to [112].

Already one of the first systematic works on quartz solubility in the system HyO-NasO-SiO4 [124] re-
vealed the main problems of this method although the later studies of the same and many others researchers
significantly refined and supplemented the obtained information. The authors of [124] performed their hy-
drothermal experiments with NaOH solutions at 250, 300 and 350 °C (temperatures of 400 and 500 °C
were studied later), content of sodium hydroxide changing from 1.5 to 38.8 wt. %. Autoclaves of minor
capacity did not permit to measure pressure, but temperature only. This is the reason why the constructed
phase diagrams were specified as polybaric; one of the diagrams is presented at Fig. 5.54. The area investi-
gated is divided into two principal regions by the complicated curve HoO-A-B-C-D-E-F. All compositions
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Figure 5.53: Temperature dependence of solubility of quartz in water solutions of NaH4F for different content of the
solute. Citation is according to [112].

to the left of the curve are unsaturated at 250 °C, and all the mixtures to the right of the curve consist of

two liquids or of one liquid and one or more crystalline phases. Let us consider this ternary diagram from
the point of view of hydrothermal synthesis.

quartZ + NaZSi205
+ liquid D

quartz + liquids AAND C

A\

Y, quartz  Jiquid HaQ-A ™ V2 <

HzO 10 20 30 40 50 60 70 80 90 SiO2
wt. %

Figure 5.54: Polybaric saturation relations at 250 °C in the system HoO-Na2O-SiO4 [124].
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The lower axis of concentration triangles corresponds to the binary system HoO-SiO5. As it was dis-
cussed above, water solubility of silica is quite low but addition of alkali increases it; that is the solubility
increases when a figurative point presenting the system composition moves upwards from the side HyO-
SiO,. After the first alkali oxide additions the point gets into the narrow two-phase region where silica is
in equilibrium with the liquid which has a composition between HoO and A. The further addition of alkali
leads to the further motion of the figurative point upwards and it comes into the spacious triangle A-C-SiOs.
This region is of great importance for the purpose of hydrothermal synthesis because it includes working
compositions. Quartz coexists here with two liquids. One of them is a “thin” water-rich liquid A, and an-
other one is “a clear water-soluble glass” with composition represented by point C [124]. In the Tuttle and
Friedman experiments, the glass always occupied the lowest point in the bomb and therefore was named
as a heavy phase. As the temperature increases, the point C shifts to the right, towards the Nay;O-SiOq
system and the heavy phase enriches silica. If after heat treatment at 250 °C this quenched glass has a
hardness of about 2.5 and is readily soluble in water, after treatment at 300°C it is noticeably less soluble,
and the 350 °C glass is very brittle, has a hardness of approximately 5 and is slowly soluble in water. At
the temperatures of experiment, the glass was shown to be a liquid, and was quenched during the bomb
cooling.

Liquid phase separation of the working solution is a damaging factor for crystal growth by hydrother-
mal synthesis. In this case, the water-rich liquid plays the role of the working medium. The heavy phase
localizes at the bottom of the autoclave and partially covers the batch preventing its dilution in the working
medium. In addition, small drops of the heavy phase are carried away with convection upstream, incor-
porate into the growing crystal as a non-structural admixture and thereby worsen its quality. Decrease in
the temperature drop will cause the convection rate to diminution and prevent the heavy phase admixture
incorporation into the crystal, but at the same time, it decreases its growth rate.

The further increase in alkali content leads the figurative point moving into regions where sodium sil-
icates have to be crystallized. Silicates formation is also detrimental for hydrothermal synthesis because
the crystals precipitate on walls of the working chamber, cover the batch and stop its further dilution. As
a result, it becomes necessary to clean the autoclave periodically. Increase in temperature aggravates the
situation because it leads to a broadening of silicates crystallization fields. From the above it appears that
attempts to increase quartz solubility in water by increasing its alkali content may start some detrimental
processes. Hence, the right choice of the synthesis parameters including the nature and content of additions
is a delicate question, the successful solution depending in many respects on the operator’s experience.

The phase diagrams constructed in [124] give the principal understanding of the problems but unfor-
tunately they are quantitatively incorrect. Weight losses of quartz in the presence of two liquids do not
define its solubility at the given temperature (as it correctly took place in the Kennedy’s experiments and
as it was incorrectly assumed in Fig. 5.54) because silica diluted is divided in some proportion between
the two liquids. The knowledge of the true quartz solubility in a “thin” water-rich phase is necessary for
hydrothermal synthesis because it is precisely this phase which is a convective medium of the synthesis.
The later investigations significantly refined the quantitative data [124] on quartz solubility. At Fig. 5.52
the curve for 2 % NasCOg belongs to the solution without phase separation, but the curves for 5 and 11 %
correspond to phase separated liquids.

Seeds

A specific feature of quartz growing on a seed consists of using plate seeds instead of usual point ones. In
any physicochemical conditions of the synthesis, quartz crystals are essentially not building upon m-faces
of the hexagonal prism. As aresult, a crystal in the form of a needle extended along L3 axis grows from the
point seed. The shape, size and crystallographic orientation of the seeds determine appreciably the shape
and size of growing quartz crystals. To produce a large crystal of quartz it is necessary to set its size in the
section perpendicular to the c-axis by a lengthy seed. Besides the plates with (0001) ¢ orientation, (1120)
(£z), (1011) R and (0111) r orientations are often used, the two latter are employed for jewelry quartz
production. Other orientations including irrational ones may be also used for special purposes.
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Figure 5.55: The cellular relief on the faces of the c-crystal of quartz grown on a seed with (0001) c orientation.

Capture of structural and non-structural impurities depends on the crystallographic orientation of the
seed to a considerable degree. Impurity distribution over growth pyramids and zones leads to formation of
sectorial and zonal structures together with parasitic growth pyramids (a secondary sectoriality) and twins
in the growing individual crystals. As a result, real faces of crystals produced by hydrothermal method
are not ideal planes but always have some specific for the given crystal face relief. The mechanism of
some types of the crystal face reliefs like cellular structure on Fig. 5.55 (named also a cobblestone road) is
comprehended in a general way [113].

If the crystal grows not from its melt but from a solution, concentration gradients evolve near the grow-
ing faces. In some conditions it leads to so called concentration supercooling in the close vicinity of the
crystallization front (Fig. 5.56). If in the growing crystal the equilibrium concentration of the admixture
is lower then in the feeding solution, the admixture is rejected by the crystal and accumulated in the near-
boundary layer (Fig. 5.56a). It is well known that commonly an admixture reduces the melting temperature.
At Fig. 5.56b melting temperature of the crystal, T,,, decreases to 7,,_; if in the close vicinity of the
boundary 7;,,_s is lower than the medium temperature, the crystal growth stops. Furthermore, if there is a
sufficiently small temperature gradient near the growth surface, temperature of the solution may occur lower
than 7}, (the region of concentration supercooling) in the near-boundary layer of the solution and crystal
growth is possible here. It means that any bump on the smooth crystal surface has a tendency to move in
solution until it reaches the point D where the temperature is equal to the melting temperature. Diffusion
along sidewall of bumps makes this process easier. Size and form of the cells on the crystal face depend
on several factors such as temperature gradient, concentration and diffusion rate of the admixture, surface
free energy on the crystal-solution boundary for the different crystallographic planes. The morphology of
the crystallization front changes with temperature gradient and cellular growth changes into dendritic one
under very high supercooling. Frost flowers (patterns) on window glasses are the most prominent example
of this case. Natural quartz crystals never have cellular relief [21] because an extreme slowness of the
growth processes in nature results in concentration equalization in the solution. For industrial production
of high-quality piezoelectric quartz, it is necessary to create and regularly supplement a bank of seeding
material produced from defect-free single crystals of natural quartz.

The main factors, which act on the growth rate in the temperature drop method, are:

e The value of the temperature drop, AT, between the dilution and growth chambers;

e Surface area of the seed plate;
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Figure 5.56: Cellular growth caused by concentration supercooling: a) concentration of admixture in the crystal (cc,)
and solution (cs); b) temperature gradient near the growth surface (dashed line) and melting temperature of the crystal
in dependence on the admixture content (T, and Tr,—s); ¢) a form of the growth surface in the region of concentration
supercooling.

e Area of the active surface of the diluting charge;
o Intensity of the solution circulation (mass flow) between the chambers of dilution and growth;

e Thickness of the diffusion layer around the growing crystal faces;

e Diluting surface of the quartz charge.

The growth rate of the crystal faces is a linear function of AT, but there is an upper limit for legitimate value
of AT, above which a spontaneous crystallization begins on the inner walls of the autoclave. The limit is
equal approximately 15-17 °C for soda solutions, but has a higher value in NaOH solutions and permits
to reach in them higher crystallization rates (up to 4 mm/day for short-term experiments). In long-term



88 5 Silica Phases and Some of their Properties

experiments, spontaneous crystallization appears even at the growth rate of 3.5 mm/day. Because of the low
temperature coefficient of quartz solubility in NaOH solutions, the specific growth rate is lower as compared
with soda solutions. The latter phenomenon is of great practical importance since for NaOH solutions there
is no need in so fine temperature control as for soda solutions. If all other crystallization conditions are
fixed, increase in pressure leads to the increase in the crystal growth rate because of increasing in solubility
of quartz and sodium silicates, the latter may form simultaneously with quartz and disturb the process.

5.6 Concluding Remarks

Quartz is usual sand under our feet but it is a very unusual substance. A large number of researches is
devoted to studying of its properties, but they often put more questions than give answers. I tried to tell
about its important, but poorly known properties, as physical as well mysterious. I also tried to present
an explanation of these properties, at least, of the physical ones. This explanation is connected with the
electronic structure of the silicon atom and its interaction with oxygen. The same reason - presence of
empty d-orbitals in silicon - leads to very different consequences: to the great variety of structural forms
of silicas and silicates; to unusually high chemical reactivity that permits to form heat-resistant crystals at
low temperatures; to thermal contraction of the SiO4-tetrahedrons. May be, it explains also the mysterious
properties of quartz? Who knows?!

5.7 Appendix: The Crystal Skulls

A recent film about Indiana Jones adventures in search of the mysterious crystal skull seems to be a fully
made-up story. However this is not the case because crystal skulls do exist in reality. Here, I do not mean
present-day objects made of semiprecious stones and priced from tens of dollars to tens of thousands dollars.
These crystal skulls of all shapes and sizes are being usually done by carvers in Brazil and China. But
there are others: enigmatical artifacts that can be found on display in such famous museums as the British
Museum, Musée de I’'Homme (Trocadéro Museum) in Paris or the National Museum of the American
Indians in New York. The presented here discussion on this topic is based on press and internet sources.

Figure 5.57: The large skulls from opaque quartz minerals. The Rose Quartz Skull was found in Mexico and called
Rosie (a). The Amethyst Skull made from unbroken pieces of Amethyst; it was discovered in the early 1900s, in
Guatemala, and now is kept in Japan (b). The Mayan Crystal Skull was discovered, in the early 1900s, in Mexico (c).

There are two kinds of ancient crystal skulls. Wikipedia attributes smaller bead-sized skulls as actual
Mesoamerican beads or as rosary beads of Mexican Catholics that have been carved not so long ago (the first
specimens appeared in the mid-19th century). However, there is evidence that smaller crystal skulls were
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rather widespread in the XV and XVI centuries, in Italy and South America. Larger skulls are practically
life-sized; some of them are quite primitive and carved from opaque quartz minerals (Fig. 5.57), while others
are transparent, as the skull from the British Museum, and also have an amazing degree of perfection, as
the famous Mitchell-Hedges Skull (Fig. 5.58). All of the photos were taken from [125]. Some other high
quality photos can be found in [126].

Figure 5.58: The large transparent skulls produced from unbroken pieces of quartz: a) The British Museum skull. It
had been brought from Mexico by a Spanish officer before the French occupation (in 1863) and was sold to an English
collector. The details can be found at the web site of the British Museum [127]. b) The Mitchell-Hedges Crystal Skull.
The most famous and most studied skull. It was found in 1924 by F. A. Mitchell-Hedges in Lubaantun, Belize. A
history of the skull and its famous owners can be found in [128].

Independent experts investigated these skulls, carefully and repeatedly, in attempt to establish the period
of their making but the results obtained were contradictory. Let us briefly consider the main problems that
exist in connection with large skulls. There is no foolproof and independent method for determining the
age of quartz handicrafts. Quite effective geological methods allow one to determine the age of quartz to
be determined with an accuracy of millions years. But when were the skulls carved from it? Contrary to a
popular belief, no satisfactory scientific technique is available for an accurate determination of the period
when a stone object was carved. There are two ways to answer the question: either to find a place of given
artifacts in a known culture of some nation or to investigate the manufacturing technique and to relate it to
history of technology.

All large crystal skulls were found in more or less modern time, and none of the skulls in museum col-
lections came from documented excavations. All of them were cut from unitary blocks of quartz materials,
and the transparent skulls were made from quartz single crystals. A detachable jaw of the Mitchell-Hedges
Crystal Skull was produced from the same crystal of quartz as the cranium. The majority of the large skulls
were investigated by scientists who faced an unusual problem: it was impossible to carve the skull using
modern methods.

Crystalline quartz is a substance with the hardness of 7, which is lower than that of diamond, whose
hardness rates 10. It requires either other quartz crystals or special diamond tools to attempt to carve a
crystal skull. The hardest parts to duplicate in carving a crystal skull are the various angles and shapes
of the bone, which comprise the skull and the jaw. Even utilizing the most sophisticated lasers of today, it
would be an incredible challenge to precisely cut a crystal skull to exactly match our own human skull [129].
Art restorer Frank Dorland, who studied the Mitchell-Hedges skull for six years, set up the hypothesis for
making the skull, according to which, it was roughly hewn out with cutting by diamond tools, this procedure
being followed by a thorough finishing treatment with the use of a mild mixture of silicon sand and water.
The exhausting job — assuming it could, possibly, be done in this way — would have required man-hours
adding up to 300 years to complete [130].
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Several ancient crystal skulls have been brought to Hewlett-Packard (HP) Laboratories, located near
the San Francisco area in California. HP has long been known as a manufacturer of computer printers
and systems, in addition to having one of the most extensive scientific and crystal research laboratories
in the world. The Mitchell-Hedges skull was there lowered into a vat of benzyl alcohol, where it became
nearly invisible. This proved that the skull was actually quartz crystal (alcohol and quartz have the same
refraction index). The HP researchers also determined that the skull was carved from a single piece of
quartz [131]. It was reported that “the lab found that the skull had been carved against the natural axis
of the crystal. Modern crystal sculptors always take into account the axis, or orientation of the crystal’s
molecular symmetry, because if they carve ”against the grain”, the piece is bound to shatter — even with the
use of lasers and other high-tech cutting methods”. The other strangeness consists in that Hewlett-Packard
lab could find no microscopic scratches on the crystal which would indicate it had been carved with metal
instruments [130].

As well as the Mitchell-Hedges skull, other skulls presented in Fig. 5.57 were studied at HP, and they
were also found to be inexplicably cut against the axis of the crystals. The later investigations of some
skulls (the British Museum skull and the Smithsonian Institution skull) undertaken by the British museum
using high-powered microscopy has shown some traces of rotary lapidary tools on the surface of the skulls.
The tool marks on the skulls are very different to those on ancient Mexican rock crystal objects, which were
carved by hand. Pre-Columbian MesoAmerican lapidary techniques never included rotary wheels, thus the
skulls could not be carved in ancient time. More detailed and critical description of the skulls investigations
with citation of original scientific papers, including SEM images of the skull surfaces, is presented in [132].

According to [125], the enigma of the skulls, however, does not end with just their making. The zygo-
matic arches of the Mitchell-Hedges skull (the bone arch extending along the sides and front of the cranium)
are accurately separated from the skull piece, and act as light pipes, using principles similar to modern op-
tics, to channel light from the base of the skull to the eye sockets. The eye sockets, in turn, are miniature
concave lenses that also transfer light from a source below, into the upper cranium. Finally, in the interior
of the skull, there is a ribbon prism and tiny light tunnels, by which objects held beneath the skull, are
magnified and brightened. It seems the skull was designed to be placed over an upward shining beam. The
result, with the various light transfers and prismatic effects, would illuminate the entire skull and cause the
sockets to become glowing eyes.

Certainly, some unusual phenomena have occurred around the Crystal Skulls. Observers of the Mitchell-
Hedges skull have reported that it appears to influence all five human feelings. It changes color and light, it
emits odours, it creates sound, it gives off sensations of heat and cold to those who touch it, even though the
crystal has always remained at a physical temperature of 70 degrees. Observers have seen strange scenes
reflected in the eye sockets, buildings and other objects, even though the skull is resting against a black
background [125, 129, 133].

A considerable amount of information on crystal skulls is available in internet, books and documentary
films. Returning to Indiana Jones, it is necessary to say that some espionage interest was indeed involved
and theft took place, in connection with ancient skulls, but not from the direction of KGB. The secret
mystical organization of Nazis, Ahnenerbe, tried to purloin from museums the crystal skulls of ‘the Goddess
of Death’. A few agents of Ahnenerbe were detained in 1943, in Brazil, and gave evidence that they had
fulfilled the Abwehr task to get hold of the Brazilian skulls. It is possible that some of non-caught agents
succeeded in their mission. Some of the larger crystal skulls were purloined, in reality. The so-called Rose
quartz (a skull compared, in its perfection, with the Mitchell-Hedges skull) has enigmatically disappeared
in Honduras.

The enigma of the large crystal skulls is not something unique. For example, a large quartz dish in form
of three-leafed flower is kept in the Historical museum of Cairo. Similar to the skulls, the dish is carved
from a quartz single crystal against its natural axes. In St. Petersburg, two large Egyptian sphinxes look, for
many years, towards each other on an embankment of the river Neva, opposite to the St. Isaac’s Cathedral.
The surface of the sphinxes is performed with surprising quality and radically differs from machined surface
of great columns of the St. Isaac’s Cathedral. At present, riddles of ancient technologies are not understood
to the full, and time for their solution has not come yet.
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Writing a book is an adventure. To begin with it is a toy and amusement.
Then it becomes a mistress, then it becomes a master,
then it becomes a tyrant.
The last phase is that just as you are about to be reconciled to your servitude,
you kill the monster and fling him out to the public.

Winston Churchill

Abstract

An analysis is given of the main physical properties of the crystalline and amorphous modifications of silica, the main
emphasis being directed to their thermodynamic characterization, determining both their position in the phase diagram,
and their synthesis and possible applications. An approximative method is developed allowing one to estimate the
standard entropy and enthalpy of all the modifications of silica, based on the knowledge of their respective density
data, only. In this way the thermodynamic properties even of those silica modifications can be computed with suffi-
cient accuracy, for which at present the corresponding measurements are lacking or have given controversial results.
Particular attention is also devoted to the possibilities to determine the solubility of the modifications of silica in water
and in aqueous solutions at hydrothermal conditions: thus new possible variants of hydrothermal synthesis are antici-
pated. In addition, various possible methods of synthesis of one of the crystalline forms of silica - of cristobalite - are
analyzed in detail because of the interesting properties both its modifications have: the negative value of the Poisson
coefficient of its a-modification and the high temperature resistivity of its S-form. A detailed analysis of pre-activated
sinter-crystallization, of sol/gel methods of its formation is given together with estimates of the utility of classical
hydrothermal synthesis routes of this modification. The problems of silica deposits, their mining and the possible ex-
traction of SiO2 from industrial or natural waste products, even of plant origin, are also discussed at the end of the
present review.
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6.1 Introduction

At present, in the international scientific literature claims are pronounced on the existence of more than 40
different modifications (or better said: structural varieties) of silicon dioxide, SiO., traditionally called sil-
ica. More or less well defined and internationally scientifically recognized modifications of SiO2 at normal
pressure are, however, only the four well known crystalline modifications: quartz, tridymite, cristobalite
and quartz glass.

Quartz and cristobalite have both a low temperature o- and a high temperature 3-modification. More-
over, for tridymite several, usually three modifications («, (3, and ) are in discussion. However, in present
day literature the opinion prevails that tridymite has not to be considered as a “full constituent of the SiO,-
family” and of the crystalline silica modifications: its existence and stability is due to the influence of
different chemical stabilizers, in most cases alkaline oxides. This is why in the present contribution rel-
atively little place is given to this SiO> modification (or better structural variety) of silica. Nevertheless,
tridymite has enormous significance in several industrial applications, mainly connected with the produc-
tion of refractory materials for glass industry and metallurgy (the so-called “tridymitization” of DINAS —
refractories).

In the mineralogical literature there is also widely discussed the structure and the properties of a great
variety of SiOy forms: both crystalline and amorphous or semi-crystalline. Some of these varieties are of
significance as gemstones (mostly different vitro-crystalline variants of quartz-like silica, sometimes with a
relatively high aqueous content): like chalcedony, opals etc. or as the SiOs-constituent of magmatic rocks.
In the present review, we consider, however, mainly (or even only) these SiOs-modifications (crystalline
or amorphous) to which more or less distinct positions can be attributed as pure SiO,-forms in the ther-
modynamically more or less precisely founded phase diagrams at both normal and especially at increased
pressure, p.

In this respect of particular significance from an academic point of view are the two high pressure,
high density crystalline modifications of SiOs, called coesite and stishovite. They possess a well defined
structure, significantly differing from that of the other modifications of SiO, and thus they display also
specific thermodynamic properties. This applies especially to stishovite, to which many investigations have
been devoted in the last twenty years. To the third high pressure modification, keatite, also artificially
synthesized at the end of the 60s of the 20" century, relatively little attention is given in the present review:
It is assumed in literature, that it (similarly to tridymite) exists in the presence of stabilizing dopants, only.
Its chemically stabilized structure is intermediate between that of quartz and coesite.

Of particular geophysical and even cosmological significance are the newly described, the so-called
post-stishovite silica modifications. They are at present only artificially synthesized at colossal pressure
values (80 — 100 GPa). Most probably, they are of importance for the structure of the Earth’s mantle and
especially for the propagation of earthquakes etc. It is assumed in geology that stishovite is synthesized
in nature in the depths of the Earth at 300 km below the surface of our planet. The structure of these
new high pressure phases of SiO; and especially of stishovite can be compared with that of some of the
structural forms of elemental carbon — with diamond, in particular. In some respects only carbon has so
numerous structural varieties as shown by SiOs: graphite, diamond, fullerenes, nanotubes, vitreous carbon,
and the still experimentally not realized hypothetical structure of liquid carbon. The newly synthesized
post-stishovite modifications of SiO- are (as well as stishovite itself) the hardest known oxides, matching in
hardness with diamond and with cubic boron nitride (BN), only. In eliminating the mentioned mineralogical
varieties of quartz and the amorphous modifications of SiO5 as well as structures like tridymite and keatite
(existing only in the presence of stabilizing dopants), the crystalline modifications of SiO5 are reduced to
nine properly defined modifications, only. In geophysics and in Earth’s geology, they play it seems a role,
similar to the role of carbon and its organic compounds in life structures. In discussing the structure of SiO,
modifications, usually their analogy with the structures of water and ice and of the known seven or eight
crystalline modification of the latter is underlined.

Water, similarly to SiO, and carbon, plays an essential role in geophysics, cosmophysics and life. In
this sense, it is also interesting to mention here the great number of investigations connecting the structure
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of the crystalline modifications of SiO- with those of water. The interplay between SiO- and H2O is
of great significance for both the synthesis of the different modifications of SiOy and for the existence
of life on our planet. Particular interest in Earth science literature is also given in the last years to the
mechanism of penetration of water through the most densely structured SiOs modifications: stishovite
and post-stishovites. The particular significance of stishovite and of its higher pressure analogues is the
circumstance, that in them the highest possible density of structural packing of oxygen is achieved.

The present review is organized in the following way: First an analysis is given of the way we made
our literature research, then the general phase diagrams of SiO, are discussed, followed by the analysis
of existing or possible methods for the synthesis of all the modifications of pure SiOg, beginning with
those stable at normal pressure: quartz, cristobalite and of silica glass. Then the particular thermodynamic
properties of both the “normal” and high pressure modifications of SiOy are discussed. Special attention
is attributed in this analysis to those thermodynamic properties, which are of importance either for the
synthesis or for the industrial applications of the existing SiO-modification. As far as all the crystal forms
of SiO5 can be synthesized hydrothermally, particular emphasis is given to the thermodynamics of the
SiO4 aqueous solutions. In one of the following sections also consideration is given to the possibilities of
cristobalite synthesis and of the stabilization of its high-temperature $-modification. Both modifications
of cristobalite display exceptional properties and in this respect both “ceramic” and sol/gel methods of its
synthesis, known from other fields of silicate technology, have been of particular interest. Traditionally the
methods of quartz synthesis are usually discussed in more details in reports, connected with the different
modifications of silica. Knowing the high importance of quartz single crystals in present day optics and
instrument-building, we have also attempted a small historical survey on the hydrothermal synthesis of
quartz.

Hydrothermal synthesis in its different variants gives the possibility to synthesize practically all nine
above mentioned crystalline modifications of silica. A thorough knowledge of the thermodynamic proper-
ties of all the crystalline and amorphous modifications of silica is necessary in any possible way of their
synthesis. However, the analysis and description of thermodynamics of silica in general and of any of its
modifications in particular is a difficult task: high temperatures and extreme pressures are required. Even
more difficult turn out to be the solubility determinations of the silica modifications at hydrothermal condi-
tions, involving high temperatures (around and above 1000°C) and pressures in the GPa-region (as in the
case of stishovite synthesis). This is why we developed, in the framework of the present analysis, a partic-
ular semi-empirical method to calculate the solubility of all the crystalline and amorphous modifications of
SiO-, using only one structurally significant property — their density, p. This method, based on the generic
application of the thermodynamics of known SiOs modifications is developed in details in Section 6.6. It
is performed in order to calculate the solubility and to predict a way for the hydrothermal synthesis even of
the less investigated modifications, for which only their density, p, is known with sufficient accuracy.

Particular attention in this generalized analysis of the hydrothermal synthesis of the crystalline silica
modifications is given to the solubility of silica glass and to the possible synthesis of quartz, cristobalite,
keatite, coesite from aqueous solutions of silica glass. Also the possibilities are discussed for production
of stishovite (and maybe even post-stishovite) in an industrial scale via the hydrothermal way. Such a pro-
duction could be eventually of practical importance, considering the extraordinary interesting mechanical
properties of substances like the low-temperature c-cristobalite or of stishovite and post-stishovite.

The main source of silica are the geochemically well investigated quartz deposits of both hydrothermal
and magmatic origin, in industrial quantities known to exist in Brazil or in the Ural mountains. On these
deposits mainly depends the world’s industrial production of pure silica in its ten or eleven modifications. In
the last sections of the present review also some information is summarized on another possibility to obtain
silica in industrial scales: out of natural plant products, containing a relatively high percentage of SiO5 and
of natural waste products, like rice husk, as possible raw materials for high purity silica production.

As far as the chemical nature of silicon (Si-Si) and silica (Si-O) bonding and of the structural and
chemical similarities of carbon compounds and of silicates are given in greater details in the review of
Dr. Irina G. Polyakova (Chapter 5 in the present monograph), we abstain here from a discussion of these
problems.
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6.2 Literature Sources and Ways of Literature Search in the Field
of Silica Modifications

The present review is based on a thorough literature harvesting in which we used three different possibilities
to obtain information about the properties, the synthesis, the thermodynamics and the general physicochem-
ical properties of the various modifications of SiO,. First a search was made through the classical reference
literature, connected with SiO5 and silicates.

6.2.1 Classical SiO, Literature

The physical chemistry of the SiOy modifications, of silicates and of glasses, of natural and synthetic
silicates are refereed in Eitel’s book, “The Physical Chemistry of Silicates”, in its two editions: from 1954
and from 1976 [1, 2]. Further on comes the book of Iler [3] on the chemistry of silica and Toropov’s
reference books on the phase diagrams of silicate systems [4, 5]. Also was taken into account Levy’s well
known classical reference book on the phase diagrams of silicates.

The data on the thermodynamic properties of SiOy modifications were mainly taken from Landolt-
Boernstein [6, 7] and from the Russian series of reference books on the thermodynamics of inorganic
substances, published under the editorship of Glushko [8] and compared with Barin and Knacke’s thermo-
dynamic reference data book [9]. Also of significance were several of the classical books on the proper-
ties of silica [10, 11], published in Russian literature, summarizing the results obtained in the Leningrad
(St. Petersburg) Institute of the Chemistry of the Silicates. Of general use were also the two volumes of
Hinz’s book [12], “Silikate”. The books “The Thermodynamics of Silicates” by Babushkin, Matveev and
Mchedlov — Petrosyan [13], the book of Gutzow and Schmelzer on the properties and the thermodynamics
of vitreous state [14] and Morey’s “Properties of Glass” [15] were also of significance in generalizing the
necessary thermodynamic data.

In structural problems, “The Structural Inorganic Chemistry” of Wells [16] and “The Structural Chem-
istry” of Evans [17] were mainly taken into account. Also were consulted several of the well known German
encyclopedic reference book series and especially the newest editions of “Roempp’s Chemistry Lexikon”
[18] and “Ullmann’s Encyclopedia of Industrial Chemistry” [19]. The mineralogical side of the SiOo-
modifications was compared with several reference books out of which we would like to cite here the optical
mineralogy of Winchell [20], Betechtin’s course of mineralogy [21] and the “Crystal Habits of Minerals”
by Kostov and Kostov [22]. Also of significance for the present review were two books on the properties of
silicate glasses written by Vogel [23] and by Scholze [24].

6.2.2 Literature Connected with the Different Silica Modifications

Particular emphasis was directed to the original literature on the synthesis, the properties, the thermody-
namics and the transformations between different phases of SiO as it is given mostly in the mineralogical,
geochemical and cosmo-chemical publications. The respective literature is cited in the following text in
details. Here we would like to mention only several general review articles which are of significance in
analyzing the thermodynamics and the phase status of the silica modifications (Swami and Saxena et al.
[25], Holm et al. [26], Dorogokupets et al. [27] and Richet, Botinga et al. [28]). We also consulted several
papers in which an attempt is given for a calculation of the thermodynamic properties of SiO2 out of first
principles: by using more or less known molecular-statistics models. A typical example in this respect is the
paper of Keskar et al. [29]. However, it turns out that this and similar papers are based mainly on Lennard
- Jones potentials and the mentioned first principle calculations are far from giving useful information for
the task of the present review.
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6.2.3 Internet Search Engines

Of general informative significance was also a search through the Internet literature, we performed in a fan-
like manner in which we browsed the database for keywords in the abstracts in the time scale starting 1999
up to present days publications. This resulted in approximately 950 resumes from international scientific
literature, connected with the general properties of SiOs and its main modifications (quartz, tridymite,
cristobalite, keatite, coesite and stishovite were our key words).
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Figure 6.1: Fenner’s phase diagram of SiO» in the representation given by Eitel [1]. Bold lines give the expected
course of the vapor pressure of the phases, stable in the respective temperature range. Their broken extrapolations
denote metastable states. With open points equilibrium temperatures indicated at the abscissa are given. The nearly
vertical dashed lines present anticipated change of the equilibrium temperatures with increasing pressure.

Also were employed standard search engines in Internet to obtain an additional update mainly on prod-
ucts of technical use. This gave us also an output of about 50 literature sources, mainly connected with

natural plant products containing SiOs.

6.3 Phase Diagrams of SiO,

There are several variants of phase diagrams of SiO2. Some of them are only of historic interest and mostly
illustrative, in many details even misleading, but from most of the present day phase diagrams really distinct
conclusions can be made.

6.3.1 Fenner’s Classical Diagram

The study and the discussion of the different crystalline and amorphous modifications of SiO5 begin usually
with the classical phase diagram of Fenner from 1913 (see Fig. 6.1). However, this diagram gives only a
qualitative picture of the relative stability of the SiO, modifications using as an illustrative criterion of
phase stability the virtually constructed temperature dependence of the vapor pressure of the considered
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amorphous and crystalline forms of SiOy. These vapor pressures of the silica modifications are in fact
extremely low, they can not be measured experimentally and they can be only calculated from the respective
thermodynamic potential differences, which were not known in Fenner’s times. Thus, Fenner’s diagram is
only a qualitative illustration of the thermodynamic potential diagram, which could be constructed only
from the present-day knowledge of the thermodynamics of SiOy. Moreover, this diagram is criticized for
the inclusion of tridymite as an independent stable phase of SiO5. More recent investigations have shown,
however, as mentioned above, that the three modifications of tridymite can be formed and exist only in the
presence of a measurable amount of dopants, mostly alkali oxides and especially K5O. In Fenner’s diagram,
the high pressure crystalline modifications of SiO5, synthesized many years after Fenner had published his
phase diagram, are not to be seen: neither coesite, nor keatite and stishovite appear on this picture.

6.3.2 Florke’s Diagram

Another diagram often referred to in literature has been established supplementary to Fenner’s diagram by
Florke [30] in 1956 (see Fig. 6.2). Here, the stability regions of the three modifications (quartz, cristobalite
and liquid SiOy known at the time when this diagram was constructed) are again schematically indicated,
however without tridymite. Florke was in fact the first author to prove that tridymite is not formed in the
absence of alkali oxides.
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Figure 6.2: Florke’s phase diagram [4, 30] of SiO2. The vertical bold lines give the stability ranges of the respective
modifications at normal pressure. Shaded regions indicate the corresponding metastable states.

Also schematic in the description of the low-pressure phases is the diagram (see Fig. 6.3), usually
given up to the end of the 1970-ies in one of the best known reference books of Russian silicate literature
[4], where, however, (already) coesite was introduced. The most interesting point in this diagram is that
here the coexistence curve quartz-coesite was constructed using thermodynamic measurements, supported
by evidence on the transition kinetics among the different phases. Here again, tridymite is schematically
considered as a natural member of the silica family, while stishovite, just synthesized at this time, is still
not present on the diagram. The synthesis of stishovite was carried out under pressures exceeding 80
kbar. Further on, coesite was also synthesized and exists in the field of pressures exceeding 10 kbar and at
temperatures higher than 1400°C, as seen from Fig. 6.3.
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6.3.3 Contemporary p — 7T-Diagrams of the Phases of SiO,

Quantitative phase diagrams of SiOy were constructed only according to the thermodynamic properties of
the SiO, modifications, investigated and experimentally determined. However, calorimetry of the SiOq
modifications even at normal pressure is a very difficult task: the specific heats have to be measured up to
2000 K and the melting enthalpy has to be determined at approximately 2000 K. The transformation heats
between the stable SiO- phases at normal pressure are traditionally determined by solution experiments
in hydrofluoric acid, performed in platinum calorimeters. However measurements of the specific heats in
the indicated temperature limits are a tedious task and such investigations were performed only in several
cases (see [26, 27, 28]). There is a lack of direct determinations of the melting enthalpy of cristobalite:
here in reference literature usually only the difference between the dissolution heats of SiO» glass (not as
necessary: of the melt) and of stabilized (i.e chemically doped) high temperature (-cristobalite is given.
Moreover, in such measurements (necessarily performed at room temperatures) often even low temperature
a-cristobalite is employed and considered as (-cristobalite (and vice versa). In this way only estimates
of the melting enthalpy A H,,, of cristobalite are given in fact in literature. The transformation enthalpies
between the high pressure modifications (coesite, stishovite) are also usually determined only at normal
pressure and extrapolated using Hess’es law. Nevertheless in this way quantitative data of eight of the
crystalline modifications of SiO- are to be found in the reference literature [8, 9].
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Figure 6.3: The thermodynamically calculated (p,T)-phase diagram of SiO2 in its preliminary form (still without
stishovite). The (p,T')-lines of the "normal” phases are more or less qualitatively drawn, the quartz - cristobalite
- coesite line is thermodynamically calculated accounting for the respective volume changes. The open squares are
kinetic experimental results confirming the general thermodynamic expectation (according to [4]).

In our present calculations of the solubility of quartz, cristobalite, coesite and stishovite we use as an
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estimate for AH,,, the following dependence
~ 298
AH,, =2AH™(T) ,

where AH?(T) = (HES, _g1ass — Hauare>) is the difference between the enthalpies of quartz glass
and of a-quartz at room temperature. This estimate followed from an empirical dependence, first mentioned
60 years ago by G. Tammann and widely discussed in [14] (see also literature cited there). It is employed
here in the series of calculations, summarized in Section 6.7. At present the validity of this approximation is
confirmed for more than 100 substances (various silicate, borate, phosphate and organic glasses) for which
it is known that in fact AH, ~ (1/2)AH,, [14]. That is why we preferred to use this estimate in our
calculations in Section 6.7 as a better, empirically founded approximation, instead to take the difference

between the enthalpies of glass and the respective stable crystal modifications as a measure for A H,,,.
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Figure 6.4: Thermodynamically constructed phase diagram of SiO2 with kinetic data from different authors summa-
rized by Swami, Saxena et al. [25]. This in fact is the continuation of Fig. 6.3 and a next stage in the development of
the construction of the SiO2 diagram. Generalization made by Swami, Saxena et al. [25].

Stishov went a significant step further as compared to the evidence given on Fig. 6.3: he proposed, using
thermodynamic data and the respective p(7T')-dependencies, the following approximation (see [4])

p = (97500 + 5000) + 20.33T

for the line dividing the T'(p)-fields of coesite (given on Fig. 6.3) and stishovite. This border line (not
introduced on Fig. 6.3) is very essential for the whole physics and structure of SiOs in its different modi-
fications. It divides the regions of the two main structural fields in the crystalochemistry of this substance:
quartz or coesite-like from stishovite-like structures. In some respect it is similar in its significance to the
Simon-Leipunskii-line in the physics of carbon, dividing graphite-like from diamond-like structures (see
[31D.

The further developments of the thermodynamics of the SiO5 modifications were due mainly to the
particular importance of the high temperature modifications of SiO in Earth science and in tectonics. It
was assumed, and thermodynamic calculus verified this hypothesis, that in the depth of the Earth’s mantilla
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the predominant modifications of SiO, are coesite and stishovite: latter being stable at depths below 300
km. Later on coesite and stishovite were found in meteoritic impact craters on the Earths surface (the most
significant example being the Arizona crater) and the thermodynamics of stishovite and coesite became of
significance in cosmology and cosmogony.
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Figure 6.5: The enlarged SiO2-diagram generalized by Swami, Saxena et al. [25] in its full pressure and temperature
ranges. Note that Fig. 6.4 is only a part of Fig. 6.5.

From a series of measurements performed from the end of the 1960s to the end of the 1980s mainly
in geological laboratories the specific heats and enthalpies of transitions of quartz, cristobalite and SiOq
glass, coesite and stishovite are known at least for their stable modifications [25-29]. Using the expected
and calculated change of the thermodynamic properties with pressure (i.e. at the quartz/coesite and the
coesite/stishovite p(7T')-lines) the real phase diagrams of SiO; (including stishovite) were constructed as
they are presented on Figs. 6.4, 6.5 and 6.6. On Figs. 6.4 and 6.5 the experimentally determined kinetic
transition points are seen, on which these diagrams are additionally based. Fig. 6.6 is given in the more
convenient representation: pressure, p vs. temperature, 7. A comparison of these three phase diagrams
shows the way the final, usually employed diagram on Fig. 6.6 is constructed. It is seen that Figs. 6.4, 6.5
and 6.6 are comparable in a qualitative way: the differences between them are due mainly to the lack of exact
experimental thermodynamic data on the molten SiOs-modifications. Nevertheless the most significant
features of the SiOy phase diagram are clearly seen on these figures. They illustrate the stability regions
of the high temperature phases (stishovite and coesite) and their relation with the phases of silica, stable at
normal pressure (quartz and cristobalite).

6.4 The Modifications of SiO, and Their Synthesis

6.4.1 SiO,-Modifications and their Mineralogical Characteristics

At present the following crystalline and amorphous SiO2 modifications are considered in literature and are
discussed here: a- and 3-quartz, a- and G-cristobalite, keatite, coesite, stishovite, SiO5 — glass, amorphous
precipitates (or disperse amorphous), and molten SiO5. Their space groups and temperature stability ranges
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Figure 6.6: A present day representation of the SiO2 phase diagram as it is recommended in the reference literature
[18] and used throughout the present review. The densities of the corresponding phases are given in brackets. It is based
on diagrams like those given on Figs. 6.4 and 6.5. Note, however, that here the more comfortable presentation with
temperature as an abscissa is used.

are given in Table 6.1, while the main structural types of SiO; are seen on Fig. 6.7. Besides, Table 6.1 also
contains data for several “non-systematic” modifications.

6.4.2 Synthesis of Quartz

The formation of quartz in Nature follows both a hydrothermal way [1, 2] and via crystallization of mag-
matic rocks. The first artificial synthesis of quartz was performed hydrothermally using the different solu-
bility of crystalline quartz and of quartz glass [32, 33, 34].

Isothermal Methods: Wooster and Nacken

As discussed in more details further on, the increased thermodynamic potential of quartz glass as a frozen-
in system determines its higher solubility as this was expected by both Wooster [33, 35] and Nacken [34] in
England and Germany respectively during the years of World War II. In both cases, the relatively high super-
saturations at the temperatures and pressures reached in the autoclaves (see Section 6.6 and our calculations
there) brought about very poor results: no growth of greater quartz crystals (which was the task of both
authors) could be realized with these isothermal methods. The details of the isothermal synthesis in which
the route SiO; (glass) — SiO9 (quartz) was exploited are given critically and in great details in Smakula’s
book [32] and may be followed in both Wooster’s two publications [33, 35] and in Nacken’s report [34] (see
also [36]). In the already mentioned survey of Dr. Polyakova in the present volume some additional details
of this way of synthesis may be also found.
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Figure 6.8: Impurity distribution in quartz single crystals (from Ullmann’s Encyclopedia, 1993 [19]): types of fluid
inclusions. V' - vapor, L - liquid in the system HoO — CO2 — SiO2. Squares, rectangles and triangles represent
schematically different crystals.
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The failure of the isothermal SiOsglass — «a-quartz route is the reason why soon different temperature
gradient methods were developed for single crystal quartz synthesis (see [32, 36] and Barrer [37]). In this
way of synthesis, silicate glasses, quartz glass, quartz crystals were suspended in autoclaves, in which su-
percritical aqueous solutions of NaOH and of Na,SiO3 were formed and an externally applied temperature
gradient determined a relatively low supersaturation between the SiOs-precursor and the growing crystal.
Thus, large quartz single crystals were grown, which could be directly used in the piezo-technique. In both
World War I and II the hydrophones used in the anti-submarine warfare were constructed exploiting the
singular piezo-electric properties of quartz single crystals.

Isothermal Synthesis of Quartz from Cristobalite

The isothermal synthesis of quartz and especially of fine grained quartz was also attempted using as a
precursor in the autoclaves a- or (-cristobalite. These two SiOq-modifications being metastable at the
temperatures used in hydrothermal synthesis have an elevated thermodynamic potential and thus higher
solubility than quartz. On this subject there are several literature data (see [38] and references cited there).
In Section 6.6 a thorough discussion on this subject is given in terms of the solubility curves, we constructed
there.



Table 6.1: Silica polymorphs.

Different Modifications of Silica

Name Crystal system Space group Stability range
Low quartz (@) trigonal (312 and C322 Upto 573°C
High quartz () hexagonal C622 and C643 573 - 870°C
Low tridymite («) orthorhombic -
Middle tridymite hexagonal - 870 — 1470°C
(61 or ) (trigonal)
High tridymite hexagonal C % mc
(B2or7)
Low cristobalite («v) | tetragonal P4,24 280°C
(trigonal)
High  cristobalite | isometric P23 1470 - 1713°C
B) (cubic)
Keatite (silica K) tetragonal P4,2; and P432, -
Coesite (silica C) monoclinic C % or Cc 1300°C
Stishovite tetragonal - 800°C
(rutile type)
Post-stishovite 1 Tetragonal - ?
(CaCls type)
Post-stishovite 2 tetragonal - ?
(a-PbOs type)
Lechatelierite amorphous - 1100°C
(silica glass)
Amorphous silica amorphous - -
Chalcedone trigonal - -

Inclusion of Impurity Droplets into Quartz

Usually the synthesis of quartz is discussed in literature having in mind the formation and growth of nearly
perfect large quartz single crystals. For the synthesis of ultra pure glass out of quartz is also of interest the
synthesis of fine grained quartz where the crystals are so small, that the inclusion of bubbles containing
residual alkaline traces, filled with the precursor aqueous solutions is minimal (see Fig. 6.8). This problem
was discussed in more details in the technological literature [19].

Of particular significance in performing hydrothermal synthesis of quartz and of other modifications of
Si0Og are the solubility diagrams of SiO as given on Fig. 6.9 (as an amorphous SiO2-phase in pure HyO).
The pressure resulting in an autoclave with a given degree of initial filling with an aqueous solution is seen
on Fig. 6.10. In [19, 32] detailed information is given on the construction and the maintenance of different
autoclave models both for industrial and laboratory applications and for scientific investigations.

6.4.3 Synthesis and Stabilization of 3-Cristobalite

Cristobalite is one of the most interesting and promising modifications of SiOs. Its low temperature or a-
modification possesses a negative (auxetic) Poisson ratio, i.e. it becomes wider when stretched and thinner
when compressed [40, 41]. The high temperature, S-form of cristobalite is stable up to the melting point
of SiO5 (1725°C) and it is characterized by a very low coefficient of thermal expansion (almost tending to
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Figure 6.9: Solubility diagram of amorphous SiO in pure water at approximately 80 MPa. Mineralizers (NaOH,
Na2CO3) additionally increase the indicated SiO2 solubility (according to [19]).
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Figure 6.10: The (p — T')-diagram of H2O: Isochores for various percentages of autoclave filling (given as a parameter
to each line). With C the critical point of water (22.04 MPa, 574.4 K) is indicated (after [19]).

zero) [42-46]. However, there is a general disadvantage in using J-cristobalite as a refractory material. At
about 250°C cubic S-cristobalite transforms, by what is usually described, as a first order displacive phase
transition into its low temperature polymorph - into a-cristobalite possessing a tetragonal structure. This
transition is connected with a considerable volume dilatation (of about 5%) resulting in crack formation or
even in the destruction of pure (-cristobalite samples in their down-cooling to room temperatures. That
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is why for many years intensive investigations have been performed to stabilize the high temperature (-
modification of cristobalite in such a way as to avoid or at least to suppress its § — « transition [44,
47-58].
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Figure 6.11: The content Xz of the (,-cristobalite-like phase in glass-ceramic samples obtained by the activated
reactive sinter-crystallization method. (a) Dependence of Xz on of the dopant concentrations Cg,p. All samples in
Fig. 6.11a are heat-treated employing two stage heat-treatment regime: 1 h at 1350°C and 18 h at 1500°C. Here "O”,
”1” and 72 denote the pure cristobalite sample and samples containing 6.5 and 13.5 mol% dopants (CaO and Al2Os3
in equimolar ratios), respectively. (b) Kinetics of formation of X g-cristobalite-like phase in glass-ceramics samples
containing 13.5 mol% dopants at 1450°C. The values of X3 are also given for three other temperatures: 1350°C
(hollow square), 1400°C (hollow circle) and 1500°C (hollow triangle) after 6 h exposure.

One way to inhibit the 3 — « transformation of cristobalite is by the so-called “stuffing” mechanism
analogous to that used for the stabilization e.g. of the high temperature modifications of quartz or of
zirconia (ZrOz) [59-61]. The suppression of the 3 — « transition by this mechanism is due, as first stated
by Buerger, to the incorporation of appropriate (alkaline or alkaline-earth) “stuffing” cations into the large
voids of the cristobalite structure built up by six-membered rings of SiOy4/, tetrahedra [48]. The charge of
the dopant “stuffing” cations is compensated by replacing a part of the Si** ions in the SiO network by
APt or by other three valence cations. This way of stabilization is also known as chemical stabilization as
it is connected with a change of chemical composition, determined by the dopants introduced.

Li [50] was as it seems the first who synthesized alkali-free glass-ceramic materials containing as the
main crystalline phase stabilized (-cristobalite-like solid solutions. For this purpose Li used a conventional
glass-ceramic technology: glasses with the desired dopant concentration (up to several molar percent, typ-
ically 3-6% Ca0, 3-6% Al>03) were synthesized just above the melting point T;,, of silica and then sinter-
crystallized at lower temperatures. A serious disadvantage of this technology is, however, the extremely
high temperatures (nearly 1800°C) and the prolonged melting times (of about 100 h) needed to produce
the initial silica reach precursor glasses with a homogenous dopant distribution. The uniform dopant dis-
tribution as shown by a number of investigations is an obligatory prerequisite to prepare glass-ceramics
with a high content of stabilized (3-cristobalite (or more correctly a (3-cristobalite-like solid solution). Very
long heat-treatment times (also up to 100 h) are also necessary for the second stage of the synthesis: for
the formation of the stabilized (3-cristobalite phase by sinter-crystallization of the powders, obtained after
milling of the pre-melted glasses.

Another possible route for the synthesis of stabilized (-cristobalite is connected with the application
of different sol/gel techniques [52-58]. Their most important advantage are the relative low temperatures
needed to achieve homogeneous distribution of stabilizing cations of the above mentioned concentration in
the SiO2 network of the precursor glass. Shortcomings of this way of synthesis are, however, the high prices
of the reagents usually employed in the SiO5-sol preparation and the complex and time consuming sol/gel
transition procedures. That is why alternative intermediate approaches, also involving sol-gel routes, are of
particular interest, e.g. the so called “incipient-wetness” techniques [62]. Other methods for the synthesis
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Figure 6.12: Influence of the dopant content on the thermal (a), structural (b) and dilatational (c) behavior of the
stabilized (-cristobalite glass-ceramics investigated. Here ”T” denotes the sol/gel derived sample doped with 3.25
mol% CaO and 3.25 mol% Al>Os3 and synthesized according to Sections 6.3.1 and 6.3.3. Samples 1 and 2" have
the same dopant percentage as the respective samples in Fig. 6.11a. Sample "T” is heat-treated 4 h at 1350°C, two
stage heat-treatment regime is employed to samples ”O”, ”1” and ”2”: 1 h at 1350°C and 18 h at 1450°C. Sample
”2a” possesses the same composition as sample ”2”, however, with respect to sample ”2a” a longer second heat-
treatment stage of 30 h instead of 18 h is employed. (a) The heat flow curves proportional to the specific heat Cp(T)-
dependencies of the samples. (b) The relative change v(7T') = (V — V,)/V, in the volume V' of the elementary cell of
the pure cristobalite phase crystallized in the reference sample ”O” and of the cristobalite-like solid solutions formed in
samples 717, ”2” and ”T”. (c) The relative elongation AL(T')/L, of the samples as a function of temperature. Here,
AL(T) = L(T) — L, where L(T") and L, are the lengths of the samples at temperature 7" and at room temperature,
respectively. Note the shift of peak positions in the heat flow curves and of the ’inflection” points in the v(7')- and
AL(T)/Lo-curves to lower temperatures with the increase of the dopant concentration from sample “O” to sample
72”7, Note also the absence of a thermal effect and of a stepwise change in the v(7')- dependence of sample "T”
indicating for the full inhibition of the «/3-cristobalite transition in this sample.

of (3-cristobalite glass ceramic materials were also developed by the authors of the present review. One of
them, we called the activated reaction sinter-crystallization approach [63], and modified sol/gel techniques
[64] are described in two of the next sections.

Activated Reaction Sinter-Crystallization Approach in 3-Cristobalite Glass Ceramics Synthesis

The main advantage of such an approach in the synthesis of stabilized (-cristobalite glass-ceramics, which
could be also useful in other cases, is that the high temperature glass pre-melting stage typical for the con-
ventional glass-ceramic technology is avoided. It is based on an activated reaction sinter-crystallization
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process of precursor mixtures containing all necessary components in a chemically, mechanically or ther-
mally pre-activated state. The stuffing Ca2™ cations are introduced as freshly de-carbonated highly reactive
calcium oxide (CaO), instead of CaCOj3 conventionally used. Finely milled alumina (Al;O3) and quartz
glass (both with particle sizes smaller than 40 pm) are employed as pre-activated sources of the Al>*
cations and of the SiO itself. In this way, it becomes possible glass-ceramic materials with a high per-
centage of stabilized (3-cristobalite-like phase to be directly synthesized in the course of a single chemically
activated sinter-crystallization process at relatively low temperatures (not higher than 1450°C) and short
heat-treatment times (of about 20 h), omitting the usually employed high-temperature pre-melting proce-
dure.

Two main problems are to be considered and resolved in applying this technique for the synthesis of
stabilized (3-cristobalite glass-ceramics:

1. the influence of the dopant concentration and the sinter-crystallization heat-treatment regime on the
stability and on the content of 3-cristobalite-like phase formed;

2. the influence of concentration of the stabilizing dopants on the nature of & — (3 cristobalite transition.

Figs. 6.11a and b illustrate how the concentration of the stabilizing additives and the sinter-crystallization
heat-treatment regime influence the content of 3-cristobalite-like phase.

The nature of the & — f cristobalite change was studied in details in [63]. The main results of these
investigations are shown in Figs. 6.12a-c. As seen in these figures the increase of the dopant concentration
Caop lowers the thermal effect and diminishes the step-like first-order type of volume changes. Moreover,
the temperature of this transition is shifted to lower temperatures with the increase of Cg,,,. Such a lowering
of the @ — [-transition point was observed with respect to the c-and S-modifications of quartz [65].

The analysis of Figs. 6.12a and b and the results of the high temperature X-ray investigations shown
in Fig. 6.12c indicate that increasing the dopant concentration the conventionally assumed as a first order
displacive transition can be transformed into a second order change between the a- and g-polymorphs of
cristobalite. The shift to lower temperatures of the & — (3 transition point immobilizes the building units
of the system (both in cristobalite and in quartz) and converts the modification change from its originally
displacive mechanism to a more or less pronounced process of tilting of the SiOy /; tetrahedra. In increasing
the dopant percentage the formation of «- and [J-cristobalite-like solid solutions with nearly equal lattice
parameters becomes possible. Thus, the volume change at the o — [-transition is minimized or even
nullified as in the case of the sol/gel derived sample “T” (see Figs. 6.12a and b). This conversion of the
first order displacive o — (3 transition into a second-order phase change caused by the incorporation of an
appropriate concentration of stabilizing cations into the cristobalite structure is most probably of significant
technological importance.

Hydrothermal Synthesis of Cristobalite

On the hydrothermal synthesis of cristobalite there are several publications up to now in which mainly the
production of micro- or even nano-sized cristobalite powders is described out of alkaline aqueous solutions
at hydrothermal conditions: both in small experimental apparatus, but also in relatively large autoclaves [66,
67]. In this way of cristobalite synthesis, only alkaline solutions were employed up to now, which makes
it difficult or even excludes the use of hydrothermally prepared cristobalite as a constituent of materials,
which have to be alkaline-free. Here, the possibility of introducing Ca?*- and Al>*-ions into the aqueous
solution should be investigated at conditions, described in more details in Section 6.6.4. It is interesting
to note that according to [66, 67] hydrothermally synthesized high-temperature (-cristobalite is relatively
stable at room temperature because of the high content of alkaline dopants included into it from the host
solution. However, the thermal stability of 3-cristobalite and the mechanism of & — (3 transition between
hydrothermally grown a- and (3-cristobalite modifications are according to our experience not sufficiently
cleared up to now. Usually, the low-temperature c-cristobalite is obtained at lower autoclave temperatures.
Its use as an auxetic material (i.e. as crystals or micro-crystals with a negative Poisson ratio) is discussed
also in Section 6.6.4 and at the end of the present review article.
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Sol-Gel Methods of Synthesis

Three different sol-gel techniques were developed for reproducible synthesis of glass-ceramic materials
with a high content of the stabilized (-cristobalite like phase. The first one is analogous to those used
in previous publications of one of the present authors for the preparation of optical materials, especially
of silica doped with Ho®**t or Tb®t ions [68, 69]. The second and the third methods are derivatives of
the so called “wet impregnation methods” also used in the preparation of optical materials, in which the
precursor oxide powders are impregnated with a doping solution containing a soluble nitrate or chloride
dopant. Bellow, these three methods for stabilization of cristobalite are discussed in details.

A)

B)

“Pure sol/gel method”

As a first step in this way of synthesis a homogenous, transparent sol with a composition ntgos :
nptom : 2o = 1 : 1 : 4 is prepared at room temperature by mixing of the necessary amounts of
tetraetoxysilane (TEOS) used as a SiO4 source, ethyl alcohol (EtOH) and 0.55M aqueous solutions of
Ca(NO), and AI(NO)3 for the introduction of the stabilizing cations. After that it is followed by acid
hydrolysis at pH=2 (2 h under stirring), catalyzed by HCI and the successive gelation of the sol (48
h at 50°C in closed boxes). Typical starting amounts of TEOS are 5 ml. As a result transparent gels
were obtained, indicating with their transparency that a molecular distribution of the dopand in the gel
has taken place.

It is well known from sol-gel chemistry, that gelation times can be decreased by increasing the pH-
value of the gelation temperature. In such sol-gel procedures, the possibility always exists for an
unwanted phase separation of the doping oxides. The next steps were druying (120 h at 50°C), grind-
ing, second drying (1h at 90°C) and sintering (4h at 700°C). The amorphous powders thus obtained
were milled again and pressed using as a binder aqueous solution of polyvinyl alcohol (PVA). The
compact pellets were heat-treated at different temperatures in the range from 1350 up to 1500°C. It
turned out that the highest content of the stabilized (-cristobalite like phase (of about 95-98 vol%) was
achieved for the sol-gel synthesized samples containing 3.25 mol% CaO and 3.25 mol% Al,O3 and
heated 4 h at 1350°C in air.

The disadvantage of this sol gel technique is the relatively high amount of the residual water (about
25%) in the samples which makes difficult their sintering. To overcome this problem two ways were
tested. The first one was to modify the described sol-gel technique by increasing the drying time (from
1 to 4 h) and the temperature and the duration of the sintering (from 4h at 700°C to 5h at 800°C).
Further enhancement of sample sintering was achieved by replacing 2% of SiOs by TiOs. The X-ray
diffractogram of a sample prepared by this second improved sol-gel method is given in Fig. 6.13. The
samples synthesized in this way are characterized by a full suppression of the o/ cristobalite transition
and are used as reference samples in the investigation of the glass-ceramics obtained by the activated
reaction sinter-crystallization approach (see Figs. 6.13). Typically, sintered powders prepared using a
“pure” sol-gel method do not contain mullite traces, they contain only cristobalite.

“Mixed sol/gel method”

Another significant aim of the present investigations was to find cheaper substitutes for the expensive
sol-gel reagents (e.g. TEOS) usually used as a SiO,-source in the sol-gel techniques. For this purpose
a “mixed” sol/gel method was developed in which the main part of silica (up to 90 wt%) is introduced
using a micrometer grained quartz glass powder suspension under stirring, containing 0.174 mol Si/l.
The rest (10 wt%) of SiOy was added in the form of an acid silica sol with a SiOy concentration of
about 2.75 mol 171, The idea of this preparation way was to check the use of commercial sol products
like LEVASIL® (BAYER AG, Leverkusen) for the preparation of larger amounts of B-cristobalite.

The stabilizing dopants were introduced using 0.55 M aqueous solutions of Ca(NOs ), and AI(NOs)s.
The as prepared suspension was stirred (24 h at room temperature) and thus was followed by solvent
evaporation at heating and drying of the obtained powders. After grinding the samples were sintered
for 4h / 700°C and than sintered for 4 h at 1350 °C to obtain B-cristobalite.
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Figure 6.13: X -ray diffraction patterns of the sol/gel derived reference sample T (see Figs. 6.12a and 6.12b). The
sample is doped with 3.25 mol% CaO and 3.25 mol% Al2O3 and heat-treated 4 h at 1350°C. In the insert the X-ray
diffractogram of a pure cristobalite sample obtained by sinter-crystallization of quartz glass powder is also shown. Note
that in the X -ray diffractogram of the reference sample ”T” the two characteristic peaks of a-cristobalite (denoted by
arrows in the insert) are missing which indicates for the full suppression of «/[3-cristobalite in this sample.

C) “Wet impregnation method”

In addition, a third preparation method, close to the above described procedure, but without using of a
colloidal silica sol was also employed in the framework of the described sol/gel techniques in order to
obtain B-cristobalite. This method can be characterized as a “wet impregnation method”. As a silica
source, only a micrometer grained quartz glass powder suspension under stirring containing 0.174 mol
Si/l is used. The impregnation, stirring, evaporation, drying and heating conditions are the same as
described in the “mixed sol-gel method”.

The sol-gel techniques proposed and more especially the “wet impregnation method” could be used
for the relatively low cost production of small cristobalite articles (e.g. for details with a high electric
resistance at elevated temperatures, e.g. for application in the electronic industry). Employing this “wet
impregnation method” glass-ceramics samples were obtained containing up to 60-70 vol% stabilized
[-cristobalite phase. It seems, that the 3-cristobalite content is not substantially affected (only about
a 10% increase) by the use of colloidal silica suspensions. On the other hand, a content of 70%
stabilized [-cristobalite phase can be obtained by improving the homogenization conditions of the
“wet” impregnation method.

It is important to note, that powders obtained by the “wet impregnation method” and by the “mixed sol/gel
method” contain mullite as a second phase after heating 4 h at 1350 °C. The “pure sol/gel method”, however,
leads to a high content of B-cristobalite (about 95%) and «-cristobalite traces only.

Another important feature of the sol/gel synthesis of cristobalite and cristobalite-reach materials is,
that a high percentage of the stabilized (3-cristobalite phase is achieved at temperatures about 100°C lower
and at heat-treatment regimes times substantially shorter than those, needed in the production of the glass-
ceramic materials, synthesized by the reaction sinter-crystallization approach. This effect in the sol/gel
approach is again due to the formation of chemically very active nano-sized dopants: here of silica nano-
particles, facilitating the low temperature homogeneous distribution of the stabilizing dopants and their
incorporation into the SiOs-matrix. However, up to now both the analysis of international literature and
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evidence from experimental work, obtained in the framework of the work on the present review, indicate
that it is impossible to form via the sol/gel route articles of dimensions and with the technological properties,
obtained via direct ceramic technologies indicated above.

In comparison with the also discussed hydrothermal methods of synthesis of cristobalite the sol/gel
route also offers some advantages: the expensive (and requiring very particular attention, e.g. anti-explosion
measures and provision) hydrothermal autoclave equipment is not necessary. On the other side present-day
sol/gel equipment cannot secure production and yields in industrial scales, possible for both hydrothermal
methods and in the also discussed sinter-crystallization glass-ceramic ways of production of cristobalite
or any other of the silica modifications. Maybe the also mentioned small scale production of particularly
important cristobalite wares or of cristobalite in sand-pile state could be the perimeter for both hydrothermal
and sol/gel technical synthesis.

6.4.4 Synthesis of Keatite: Classical Aspects

The SiO, modification called after its initial synthesizer P. P. Keat is the first artificially synthesized SiOq
modification, obtained under hydrothermal conditions in 1954. The conditions employed are described in
great details by Keat himself in the respective publication in the journal Science [70]. He determined the
density of keatite and drew attention to the fact that the refractive indexes of SiO5 modifications changed
linearly from vitreous silica via tridymite, cristobalite, keatite and quartz (from 1.460 to 1.540) with their
densities (increasing from 2.20 for vitreous silica to 2.60 for a-quartz).
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Figure 6.14: Dependence of the coefficient of optical refraction, 7, on density, p [in g/cm®] for the different phases of
silica and of water (according to Iler [3]).

Later on, it turned out that keatite could exist in the form of solid solution only and that it possesses a
structure intermediate between those of quartz and coesite. Nevertheless, the success of P. P. Keat brought
about the search for other possible high pressure crystalline modifications of silica. They were soon found
by Loring Coes, Jr. and S. M. Stishov and S. V. Popova [18, 19] with the two modifications bearing the
names of two of the mentioned scientists, who first synthesized them. These two modifications obtained
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under considerably increased pressure showed the same linear dependence of the refractive index, n, on
density, p, as seen on Fig. 6.14. An important result of this development was that stishovite had a structure
differing from all other up to now known crystalline silica modifications: its structural units are not the
classical SiOy /o-tetrahedra, but SiOg /5 octahedra (see Fig. 6.7).

6.4.5 Synthesis of Coesite

The structure of coesite is constituted (as that of cristobalite and quartz) of SiOy 5 tetrahedra, however, in a
particular, denser arrangement, than in quartz and cristobalite.

Coesite is usually synthesized at 500 — 800°C at 35 kbar and is characterized by a relatively high density
(p =2.93). In nature it is found in meteorite impact craters on sandstone soils and in the kimberlite tubes.
In both cases these locations are rocks with a prehistory of enormous pressures and high temperatures (the
South African kimberlites are a well known deposit of natural diamonds). According to our estimate of
the solubility of coesite (we have made using thermodynamic data, calculated via density relations (see
Section 6.6)), this silica modification could be also synthesized hydrothermally. At normal pressure coesite
decomposes at 1300°C giving quartz. Up to now no technological process is developed for its industrial
production: only microscopic crystals are obtained of this SiOy polymorph.

6.4.6 Stishovite: Synthesis and Thermal Stability

For the synthesis of stishovite two general methods have been employed up to now: hydrothermal nucleation
and growth at high temperatures and pressures greater than 80 kbar [71] in Belt, and anvil and hammer
cameras similar to those employed for the synthesis of diamond. However, up to now only stishovite micro-
crystals have been synthesized and their price is even higher than that of diamond micro-crystals of good
quality. The initial synthesis of stishovite was performed by Stishov under pressures of approximately 100
kbar. In the last ten years in the literatures are published several investigations in which the synthesis of
the so-called post-stishovite modifications of SiOs is described: these are crystalline silica modifications
obtained and stable as it seems at even higher pressures than stishovite (up to 800 kbar!).

—
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Figure 6.15: The small ultra-high pressure autoclave cell of Lityagina, Dyuzheva et al. [71] used to synthesize
stishovite crystals at 9.5 GPa and 1170-1770 K: 1) current feed-through; 2) metal disk; 3) graphite heater; 4) inner
autoclave ampoule; 5) outer part of autoclave.
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The interest in stishovite comes from the circumstance that both experimental findings and theoretical
predictions [72, 73] indicate that stishovite and post-stishovite structures are most probably the hardest
oxides ever known and ever synthesized. It is claimed in [72, 73] that their mechanical properties are
surpassed only by diamond and by cubic boron nitride (BN). However, the thermal stability of stishovite
is even less than that of coesite: it decomposes at normal pressures even below 800°C into SiO»-glass and
than — into cristobalite and at the end of the process — into quartz (see Fig. 6.15). Stishovite has been also
found (like coesite) in the meteorite impact crater of Arizona.

Hydrothermal Methods, Anvil and Hammer, and Belt Cameras. Direct High Pressure Synthesis

In a recent paper of Litiyagina et al. [71] the hydrothermal synthesis and growth of stishovite is described
in great details. The synthesis is performed in the system HoO/SiO5 in a high pressure cell (in fact a little
autoclave with a high filling percentage) at pressures from 90 to 95 kbar (see Fig. 6.15). This pressure is
developed by heating the autoclave to 1200 K. In this way, stishovite crystals up to 1 mm large have been
obtained and thoroughly investigated [71]. This investigation, performed in the Institute of High Pressure
Physics of the Russian Academy of Sciences in Troitzk, indicates the technical developments which could
be used in order to grow even larger stishovite crystals. A schematic picture of the cell employed in [71] is
given on Fig. 6.15. The habit of the stishovite crystals thus grown is illustrated on Fig. 6.16.
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Figure 6.16: Stishovite crystal synthesized by the authors of [71]: a) real crystal and b) face symbols.

Post-Stishovite Modifications of SiOQ, with CaCl, Structure and PbO Structure

The hammer and anvil and Belt high pressure cameras for direct synthesis of stishovite are described by
Dubrovinskaya and Dubrovinsky [72, 73] in their papers, in which the synthesis of stishovite-like structures
with a-PbO and CaCls structure is given. As mentioned, stishovite has been observed in meteorite impact
material on the Earth. Typical in this respect are results described in several publications [74, 75].

Amorphization of Stishovite under Normal Pressure and at Elevated Temperatures

It was pointed out above, that stishovite, when heated up to 600 — 1000°C disintegrates into amorphous
silica; the product thus obtained has a structure analogous to the structure of the usual silica-glass obtained
e.g. by the melting of quartz. This process has been thoroughly investigated in [75, 76, 77], mostly by
employing DSC and DTA techniques. Further heating of the amorphous SiO5 thus obtained leads to the
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formation of quartz crystals (see Fig. 6.17). Here, it is to be especially mentioned that this is the interesting
phenomenon of the phase transition of a crystal (stishovite) stable only under very high pressures to another
crystal (cristobalite, quartz) through the intermediate structure of an amorphous solid: the silica-glass. It
seems that the direct transformation of crystalline stishovite into crystalline coesite is impossible or very
difficult to be realized because of the enormous structural change connected with this process. The change
of stishovite to amorphous SiO5 was investigated from its thermodynamic point of view in the already cited
literature [25, 28].
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Figure 6.17: Change of coesite (a) and stishovite (b) and (c) during heat-treatment at normal pressure. The heat released
during the process is indicated as a parameter to the respective curve: (a, b) heating runs obtained at 5 K/min and (c) at
20 K/min. The first peak on (b, c) represents the transition of stishovite to amorphous SiO2 (glass); the second peak the
subsequent crystallization of cristobalite (according to [38]).

From a technical point of view the disintegration of stishovite into amorphous SiO5 and quartz strongly
limits its possible application at normal pressures as an extra hard oxide to temperatures only below 600 or
700°C. The mentioned stishovite transition is, however, very significant from a geochemical point of view,
because it is a process taking place in the Earth’s mantle. It is also of interest for all the possible changes
stishovite — coesite — quartz taking place in volcanic eruptions and in catastrophic meteorite impacts on
the Earth’s surface. These problems are analyzed in many publications in the geological literature.

6.4.7 Synthesis of the Amorphous Modifications of Silica

The synthesis of SiO-glass via the direct melting of quartz is a well known process and needs no particular
description here. Of greater technical significance are at present chemical methods of synthesis of super-
pure SiO, via the following gaseous reaction:

SiCL;(g) + HQO(g) — SiO4 (S) + 4HCl(g) .

It leads to a condensate called Suprasil and to similar products, which are obtained according to the above
reaction in a voluminous cotton-like form. These products are, however, relatively expensive and their
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technical application is restricted only to special cases.

The production of microsized SiO»-glass spheres (ballotines) is also well-known: this is a process in
which SiOs-glass powder of the desired fraction is heated up above the melting point of silica on carbon
soot powders. The synthesis of SiOy in amorphous form via sol-gel reaction is clear from Section 6.4.2,
where the sol-gel synthesis of cristobalite is described. In this way super-clean SiO5-glass can be obtained:
however, again at a very high cost.

The Problem of Stishovite Glasses

It is not clear as yet, whether stishovite, melted e.g. at 80 kbar, could produce a 6-fold coordinated stishovite
glass. In some respects this possibility is analogous to the attempts to synthesize beside “normal” graphite—
like sp? structured vitreous carbons, also carbon glasses with a diamond-like sp>- structure.

The usual amorphous SiOz-modifications synthesized and existing in stable form at normal pressure
are built (as quartz, cristobalite, and coesite) of four coordinated SiOs, i.e. out of SiO/p-tetrahedra. There
have been suggestions in literature that similarly to water and liquid carbon a “poly-amorphism” of vitreous
silica could be also expected if melting of this substance should proceed at extremely high pressures (in
the stability region of stishovite (see Fig. 6.6)). In this sense, stishovite and maybe coesite-like liquids and
glasses could be expected in the development of further synthesis of the amorphous modifications of SiO5
(coesite glass: with a denser stochastic arrangement than the “normal” quartz glass). Up to now, no direct
synthesis of these possible structural polymorphs of amorphous SiOy has been performed or reported in
literature.

6.5 Thermodynamic Properties and the Structure of the
SiO,-Modifications

As mentioned in the introduction, SiO4 is the major constituent of rock forming minerals in Earth’s mag-
matic and metamorphic rocks. It is also an important component of sediments and soils. Bound in the form
of silicates, SiO2 accounts for approximately 75 wt% of the Earth’s crust [19]. Free silica predominantly
occurs in nature as quartz, which makes 12-14 wt% of the lithosphere. Quartz is the thermodynamically
stable modification of silica at ambient pressure (see Figs. 6.1-6.6), occurring as one of the main products of
slowly cooled silica rich magmas, granites, granodiorites and related rocks. Despite of its chemical simplic-
ity SiO displays as seen from above evidence a remarkable diversity of crystal structures. Apart from the
ultra-high pressure modification, stishovite with ocathedrally coordinated silicon (see Fig. 6.7) and some
artificial silica products where chains of edge sharing tetrahedral occur, all other crystal structures of silica
are made from a three dimensional framework of corner sharing tetrahedra (see Fig. 6.7 and [16, 17]).

The non-crystalline silica phases existing and stable at normal pressure also consist of continuous ran-
dom three-dimensional networks of corner sharing tetrahedra [14]. The Si-O-Si bond has a mixed character:
about 50% ionic and 50% covalent. The bonding results in inter-tetrahedral Si-O-Si bonds which are bent in
the range from 120 to 180° with a mean value of about 147° (see again Fig. 6.7). The strong bonds and the
three dimensional connectivity of the SiO4/; tetrahedrons are the reason for the following properties: high
hardness of SiOs-modifications (quartz has a Mohs hardness of 7, stishovite, however, approaches 10), the
lack of good cleavage, for the high elasticity, the high melting point (approximately 2000 K of cristobalite),
the high activation temperature of the quartz/cristobalite transformation (ca. 1300 K), and for the high glass
transition temperature, T, of silica glass (1300 K). In contrast to these properties, the resistivity of silica to
irradiation damage is relatively low.

Silica in all its forms is an insulator, a property that is utilized in the fabrication of silicon based micro-
electronic devices and in the semiconductor technique. The SiO, tetrahedra of the crystal modifications,
stable at normal conditions can be considered as rigid structural units which remain almost unchanged upon
thermal expansion or compression by high pressures. They can only rotate or tilt instead. The variability
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Figure 6.18: Volume changes at the phase transitions of the SiO2 modifications upon heating at normal pressure:
(a) cristobalite, tridymite, coesite after [25]; (b) cristobalite, and ¢) quartz after Ullmann [19].

of the inter-tetrahedra Si-O-Si angles and the unrestricted torsion angle of connected tetrahedra account for
the topological diversity of crystal structure of silica and of its high tendency for glass formation.

Quartz is, as already pointed out, the stable SiOy-form under ambient conditions. Thermal expansion
of a-quartz is relatively high ay; = 13.3 - 1076 K=, a33 = 7.1 - 1075 K~ and drops to even slightly
negative values at the displacive phase transition to the high temperature 3-quartz modification at 573°C
(Fig. 6.18). The respective volume change (AV/V') is seen on Fig. 6.18.

Cristobalite is the low pressure high temperature modification of silica. It persists as a metastable phase
(a-cristobalite) at low temperatures. A displacive phase transition from the tetragonal low temperature a-
cristobalite form to the cubic high temperature form ((-cristobalite) takes place at nearly 540 K. This
transition is usually accepted to be of the first order (as witnessed by the AV change in Fig. 6.18a and b)
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with a hysteresis of more than 20 K (at heating! — which is quite unusual) and a volume discontinuity of
approximately 5%. However, there are also opinions expressed in literature that this /3 transition is of
mixed first and second order. Our own experimental results, given here in some details in Section 6.4.3, are
strongly supporting this second assumption. The crystal structure of 3-cristobalite is a derivative structure of
the diamond structural type, in which carbon is replaced by silicon and oxygen is located midway between
neighboring Si-atoms. This network can be described as a stacking of parallel layers of six membered rings
of tetrahedra, alternately pointing upwards and downwards.

Table 6.2: Volumetric properties of the SiO2-phases (* at 623 K; ** at 1673 K, however, in fact as a glass).

Phase Density, g cm 3 Molar volume, cm® mol !
Low quartz («) 2.65 22.69
High quartz (3) 2.60 22.86
Low tridymite () 2.30 26.53
Middle tridymite (G1) | 2.30 -

High tridymite (32) | 2.27 2751
Low cristobalite () 2.32 25.74
High cristobalite () 2.21 27.40 *
Glass 2.20 27.31
Keatite 2.50 24.04
Coesite 3.01 20.64
Stishovite 4.35 14.01
Amorphous - 30.04
Liquid ** ? 27.20 (7

A very particular property of a-cristobalite is that the low temperature form of SiO, exhibits a negative
Poisson coefficient, i.e. at elongation the crystal is not thinned, but swelled. The high volume discontinuity
at the transition of «/f-cristobalite leads to the generation of micro-cracks. Up to now the displacive
cubic to tetragonal § — « transition could not be suppressed by quenching, however, the structure of (-
cristobalite can be stabilized in the way of chemical stuffing and toughening as this was already discussed
in the previous sections. Other compounds with a-cristobalite type of structure are the high temperature
forms of AIPO4 and GaPO, [57]. This is also used as an idea for possible toughening of the structure
of a-cristobalite with the help of these compounds. At high temperatures (-cristobalite has a nearly zero
value coefficient of thermal expansion. For more details in this direction we refer to both the mentioned
paragraphs in the present review, as well as to the papers [44, 45] entirely devoted to face this problem.

Tridymite is formed in the range 1200 — 1800 K at ambient pressure, however, only in the presence
of foreign ions (K™ or Na™), as already pointed out. Its crystal structure is a derivative of the hexagonal
wurtzite type. With respect to the structural bonding requirements tridymite is much less balanced than
cristobalite. As a consequence tridymite undergoes a cascade of displacive phase transitions (c, 3, v, see
Fig. 6.1). In the present analysis, as far as we are interested only in modifications of pure SiOs, no further
discussion of tridymite and of these modifications is given.

Coesite is the high pressure modification of silica with the densest framework of SiO,,-tetrahedra.
It is composed out of four membered rings of tetrahedra which are linked in the form of chains of rings.
Coesite exists as a metastable crystalline silica polymorph at normal ambient pressure and at temperatures
up to 1300 K, then it is transformed to quartz (see Figs. 6.3 and 6.6).

Stishovite crystallizes in the rutile structural type with silicon atoms in the mentioned six fold oxygen
coordination. The SiOg 3-octahedra form chains by sharing opposite edges. The arrangements result in a
very close packing of oxygen even though the Si-O-bonds are longer than in SiO4 tetrahedra (see Fig. 6.7).
Stishovite is about 43% denser than coesite. In the mentioned post-stishovite modifications with CaCly
or a-PbOs structure the highest density of packing of oxygen atoms, theoretically possible, seems to be
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achieved. The change to the even denser CaCl, structure type is expected to involve a peculiar tilting of the
octahedra.
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Figure 6.19: Difference AG [in cal/mol] in the thermodynamic potential between the SiO2-phases existing in stable or
metastable equilibrium at normal pressure. This difference is expressed with respect to G'ags of B-cristobalite (given as a
zero ordinate). The numbers above or below the arrows indicate the temperatures for transition to or from J-cristobalite
(data [13]).

Moreover, in mineralogical crystallographic literature several additional modifications of SiO, are dis-
cussed which are essential for the structure of chalcedones, chalcites and opals. Accounting for the purpose
of the present analysis, we are not going into detail with respect to such varieties of crystalline and amor-
phous SiO5 as moganite, melanophlogopite etc.

Keatite has a tetragonal framework of corner sharing SiO, /,-tetrahedra similar to the structure of 3-
spodumene (LiAlSi5Og). Another variety of SiOs is also known which is formed above 1500 K according
to the reaction

Hy + SiOy — SiO + H50O .

This is in fact a silicon monoxide (SiO) rich modification.

In the mineralogical literature, glassy silica of natural occurrence is called lechatelierite. It originates
from molten silica formed by lightning strikes (forming the so called fulgurites) or by meteoritic impacts
on quartz sand or silica rocks. The volumetric properties of the SiOs-modifications are summarized in
Table 6.2. The thermodynamic properties of the SiO3-modifications, as they are given in the literature [8, 9,
25, 26, 27] are reproduced here in Tables 6.3, 6.4 and 6.5. The heats and entropies of transition between the
different phases, stable or metastable at normal pressure, are best illustrated according to [13] on Fig. 6.19,
where the respective Gibbs free energies of transition are given with respect to cristobalite.

6.6 Solubility of the Different Modifications of SiO,

6.6.1 General Thermodynamic Dependencies

The solubility of the different modifications of SiOs is considered and calculated in the present section, us-
ing available thermodynamic data, results of our previous investigations summarized in [14] and a classical
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Table 6.3: Thermodynamic properties of the silica phases at 298 K and normal pressure. Note that the authors of [25]
indicate in fact as liquid the SiO2-glass.

Phase Enthalpy of | Entropy of | Enthalpy of | Entropy of | Enthalpyof | Entropy of
Literature formation formation formation formation formation formation
source Jmol ™! Jmol ' K~! | Jmol™! Jmol 'K ! | Jmol™! Jmol ' K!
[25] [25] [8] (8] [103] [103]

Low quartz | -910.70 41.46 -910.57 41.80 -870.70 42.22

(@)
High quartz | -910.50 41.70 - - - -
(B)
Low - - - -
tridymite -906.91 45.12
(@)
Middle - - - -
tridymite
B
High - - - -
tridymite
(82)
LOW cristo- -906.03 46.06 -904.55 43.47 -859.41 43.26
balite ()

High cristo- -907.39 42.64 - -
balite (3)
Glass - - -900.70 46.80 [13] - 46.82
Keatite - - - - - -
Coesite -906.90 40.50 -905.00 40.34 - -
Stishovite -864.00 29.50 -860.70 27.76 - -
Liquid -901.00 [25] | 49.00 - - - -
Amorphous | - - -895.98 - - -
(disperse)

approach, introduced by I. F. Schroeder into the physical chemistry of solutions many years ago — at the
end of the 19-th century (see [78] and literature cited there).

In calculating the solubility of the different modifications of silica we assume, that the solubility of SiOq
under hydrothermal conditions at temperature 7" can be described with sufficient accuracy according to the
dependence

AHQQS A5298
e r 6.1
23RT | 23R ©.1

log C,, =

Here AH?2% and AS2%8 indicate the molar enthalpy and the molar entropy of dissolution of the respective
r—modification in the hydrothermal solution, respectively, and R is the universal gas constant. As known,
hydrothermal SiO2-solutions are much diluted: in pure water C, corresponds to concentrations in the order
of several ppm at temperatures of 300 — 500 K. In this case, the classical dissolution model of Schroeder
can be employed according to which in Eq. (6.1)

AH?® = A8 (6.2)

mx

and

AS298 ~ NGB (6.3)
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Table 6.4: Specific heats of the SiO»-phases at 298 K and normal pressure.

Phase Specific heats, Specific heats,
Literature sources Jmol ' K1 [25] | Jmol ! K~ [8]
Low quartz () 44.59 44.39

High quartz () 44.59 -

Low tridymite (c) -
Middle tridymite (31) 44.25 -
High tridymite (03s) -
Low cristobalite (o) 44.14

High cristobalite (3) | +4+30 4456
Glass - -
Keatite - -
Coesite 42.79 45.35
Stishovite 42.16 42.93
Liquid 44.22 -
Amorphous (disperse) - 43.47

Low quartz («) - -

Table 6.5: Molar enthalpies and entropies of transition between the different phases of SiOa.

Transition T, [8] AH, [8] AS, [8] AH,[26] | AS,[26] AH,[103] | AS,[103]
K Jmol™ | J mol™ | Jmol™' | J mol™' | Jmol™* J mol™!
K! K! K!
a-quartz — 846 0.63 0.75 - - 0.75 -

[-quartz
[-quartz — 1140 0.50 0.46 - - - -
tridymite
a-quartz — 1883 8.53 4.51 - - 14.21 -
melt
a-~cristob. — 515 1.30 2.51 - - - -
[-cristobalite
[B-cristob. — 2001 7.70 3.85 - - 8.78 -
melt
a-quartz — - - - 2.68 - - -
cristobalite
a-quartz — - - - 5.06 - - -
coesite
a-quartz — - - - 8.99 - 12.54 -
silica glass
quartz — - - - 49.32 - - -
stishovite
cristobalite - - - 6.31 - - -

—

silica glass
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have to be substituted. Here AH,,,, and AS,,,, denote the molar enthalpy and entropy of melting of the
considered SiO5 modification, respectively. Thus, in correspondence with Schroeder’s model of dissolution
of very slightly soluble crystals [78], we assume that AH"* ~ () and AS™® ~ 0, where AH™* and
AS™ are the molar enthalpy and the molar entropy of mixing corresponding to the dissolved quantity
of the respective substance — in our case the considered silica polymorph. Because of the low solubility
of SiOy both quantities (AH ™ and AS™* ) can be neglected, as indicated here. Accounting for the
mentioned low concentrations of the SiO, modifications at hydrothermal conditions (in molar terms: C' =
10~ to 10~% mol 1) this is a quite acceptable approximation.
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Figure 6.20: Experimental data on the solubility C,, of simple inorganic glass-forming systems in coordinates log C'
vs. (1/T) according to Eq. (6.1). As a measure of the solubility the respective molar fraction C' is used. Solubility of
SiO3 in water (from hydrothermal autoclave experiments); Solubility of Se in liquid CS2; Solubility of As2O3 in water.
In all cases with 1 is indicated the respective crystalline phase (quartz for SiO2, monoclinic Se and cubic As2O3z) and
with 2 - the respective vitreous phase (from [14]).

From a more general kinetic and thermodynamic point of view, Eq. (6.1) with constant AH— and
AS— values is a typical case of the so-called first approximation of Ulich [70] which is widely accepted
as a most direct way in thermodynamical calculus of chemical reaction kinetics and solubility. This second
approximation (the assumption of AH,, = AH(T) = const. and AS,, = AS(T) = const.) is quite
satisfactorily in our case at temperatures T < T,,,(SiO3). It is shown experimentally that for temperatures
lower than the critical temperature of HyO, the log C vs. 1/T dependencies give in fact straight lines
corresponding to Ulich’s approximation. This is seen from the three cases of solutions of glass-forming
systems, illustrated on Fig. 6.20. Schroeder’s model of dissolution of crystals assumes that the process
determining the dissolution of a slightly soluble crystal is the melting of its crystalline structure in order to
reach the liquid state of the considered solution.

In order to determine the enthalpy and the entropy of melting indicated with Egs. (6.1)-(6.3) we could
use in the framework of Ulich’s approximation the following estimate

AH?8 = q2% (liquid) — H2%(solid) ,

i.e. we can assume that AH,,,;(T,,) ~ AH?2%%. Under “solid” in above approximations we could include
also the enthalpy of dissolution of the respective vitreous modifications of SiO or of any other solute. How-
ever, as a rule we do not know the respective melting enthalpies and entropies of the SiO, modifications.
This is so, because of the extremely high temperatures of melting of cristobalite (approaching 2000 K and
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even the calculated temperature of melting of quartz is ~ 1880 K). Usually are known only the differences
between the enthalpies A H, and the entropies AS; between the SiO, glass and the respective crystal mod-
ification because these quantities can be easily determined in any dissolution calorimeter operating with
hydrofluoric acid as a solvent. This is why we decided to use two empirical dependencies known in glass
science [14] according to which

Am%%Amm (6.4)
1
ASy % ZAS, . 6.5)

These two dependencies, proposed years ago by Tammann (1932) and by Gutzow (1971), are satisfactory
fulfilled for more than 100 cases of glass-forming systems. This is why we decided to use them in a reverse
way in order to estimate from the known values of AH, and AS, which can be found in reference literature
[8, 9, 13] the values of AH,, and AS,,. However, in the case of SiO, even the standard values of AH,,
and AS,, (i.e. the values extrapolated to 298 K) are not known for all modifications.
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Figure 6.21: Molar entropy of formation S2%% at 298 K of the SiO» modification in dependence of their density, p. Only

the data for those cases are presented (as black points) for which in the reference literature [8, 9] the thermodynamic
data are given (c.f. Tables 6.2 and 6.3). The dotted line presents the value of the entropy S2°® of the melt according to
Eq. (6.5). The straight line corresponds to Eq. (6.6) with the constants given there.

This is why we decided to find an easier way to predict the solubility of the different modifications of
Si04 via Egs. (6.1)-(6.5) by exploiting the simple fact that many properties of the SiO2-modifications can be
related to their density, p. From a more general standpoint such a dependence of AH,,, and AS,, could be
expected as far as both thermodynamic quantities are essentially configurational in their nature: they have
to depend on the relative free volume of the respective crystal, determining its configurational properties.
Especially in the case of melting entropy it could be expected (see [14]) that AS,, ~ RIn(AV,) where
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Figure 6.22: Molar enthalpy of formation H?°® of the modifications of SiO» for which data are given in [8, 9] in
dependence of the respective density, p. With a solid line the quadratic dependence (Eq. (6.8)) is drawn with the values
of the constants given there. The horizontal dotted line presents the enthalpy H?2%% of the SiO2 melt, using Eq. (6.4)
with AH?*® = HZ)%. . — HZ2Y,: in accordance with points 2 and 5 (presented by bold squares).

AV, is the difference in the relative free volumes V,, of the melt and of the respective crystal. Expanding
the logarithm in above simple approximative dependence at V,, < 1, we could even expect that

AS%QS =a,+bp, (6.6)

where a, and b, are constants. As seen from Fig. 6.21, such a dependence between the known AS2%8 —
values and p gives an acceptable straight line for all the modifications, with a, = 61.9 and b, = -7.2, when
AS is expressed in J mol~! K~ It is seen that this dependence in some respects corresponds to the already
cited linear relation (see Fig. 6.14) between the refractive index, n, of the crystalline and of the amorphous
modifications of SiO» and their density, p.

The enthalpy difference AH should be in general a more complicated function of the density: in fact
the enthalpy according even to very simple mean field models described in [14] is a quadratic function of
the free volume (e.g. AH ~ const.(1 — p)p as indicated in [14]). In fact as seen from Fig. 6.22

AH 2 o+ gp+ hp? (6.7)

with the values of the constants being equal to ¢, = —746, g = —119.3, h = 21.6, when A H is expressed
in kJ mol~! and p is given in g cm~3. Thus, we can write Eq. (6.1) in the form

AHZQS ASZQS
log C, = — —ma m 6.8
8 =03k T 23R 6.8)

_ 17 H?%(liquid) — H**®(cryst)
23R T

) + (8% (liquid) — S*% (cryst))
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The respective enthalpy and entropy values can be taken, where known, from reference literature. In our
case using Egs. (6.6) and (6.7), we obtain from Eq. (6.8)

1
log Cp = (Ao —gp— hpg)f + Bo — bp} : (6.9)

1
2.3R
Here A( and By are constants depending on the units in which C,, is expressed.

When we know the solubility and the respective log C' vs. (1/T) line of one of the modifications

(e.g. for x = 1), the solubility ratio with another substance (z = 2) can be expressed via the following
dependence

lo ﬁ _ !
¢\¢c;) " 23R
In a more condensed form the above expression can be written as

G\ _  (pr—p2) [g+(pr—p2)h
log <@)— 23R [ T b}. (6.11)

2
_9(p1=p2) +T(p1 =)y m)] , (6.10)

In this way by knowing the solubility curve of one of the modifications of SiO, we can calculate using
above described simple formalism the solubility curve of any other of the SiO5-modifications with a known
density, p.

In the respective calculations performed in the next paragraph we construct the solubility curves of all
the SiO5 modifications using the van Lier dependence (see Iler’s book [3]). According to this relation from
room temperature to the critical point of water the solubility of quartz is expressed via

log Cquart> = 0.51 — % . (6.12)
In this way using Eq. (6.12) for Cyyqr» We constructed Fig. 6.23 presented in the next section for all other
modifications of SiOs. By accepting Eq. (6.12) as a sufficiently good approximation for the solubility data
of quartz at hydrothermal conditions, we change in fact the value of the right-hand side additive member
in Egs. (6.1), (6.8) and (6.11) to [(AS2?8/2.3R) + const.]. Here the value of the constant depends on the
dimensions used in expressing C,.

6.6.2 Solubility Diagram of SiO,. Ostwald’s Rule of Stages

We constructed the solubility diagram of SiO2 shown on Fig. 6.23 using Figs. 6.21 and 6.22, which represent
the 5278 vs. p and the H??® vs. p dependencies. In doing so we first introduced into both Figs. 6.21 and
6.22 the values of S?%8(liquid) and H?%3(liquid) as

5?8 (liquid) = S (quartz) + 3AS2% (6.13)
and

H?*®(liquid) = H*®(quartz) + 2AH, (6.14)
according to Egs. (6.4) and (6.5). In this way taking

5298 (quartz) = 56.8 Jmol 'K~ | H*8(liquid) = —891 Jmol ™"
and

AS, =5Jmol 'K™!' | AH, =9.87Jmol !
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Figure 6.23: The calculated solubility of all SiO2 modifications (including tridymite) in water using the data from
Figs. 6.21 and 6.22 and Eqgs. (6.8) and (6.10) with the constants given there. In order to make possible qualitative com-
parison with the experimental data in Fig. 6.24, the solubility of quartz is calculated according to van Lier’s dependence
(Eq. (6.12)) and introduced as C1(1/T) into Eq. (6.10). Note that Egs. (6.8) and (6.10) refer only to aqueous solutions
below the critical point of water. In the insert the solubility of stishovite is presented calculated under the assumption
that it is not transformed into SiO2 glass at the hydrothermal experiment. Note the positive slope of the log C' vs. (1/T")
dependence for stishovite.

(c.f. Table 6.6), we obtain
H®8(liquid) = —895Jmol™" ,  $2%(liquid) = 56.8 Jmol 'K ! .

In order to compare our thus calculated diagram with existing experimental data we used further on (as
already pointed out) for the solubility of quartz the equation of van Lier, Eq. (6.12) in which the solubility C
is expressed in ppm. On Fig. 6.24 is given the known data for the solubility of several different modifications
of Si0Os, stable at normal pressure, as they are summarized in the book of Iler [3]. In this figure are shown
results not only for temperatures below the critical point of water (647 K) but also such corresponding
to solubility above the critical point (see the solubility data on the figure below the left-hand maximum).
As seen our schematic construction on Fig. 6.23 is in satisfactory agreement with existing experimental
data given on Fig. 6.24 as compiled by Iler [3] for the solubility of quartz, cristobalite and vitreous SiOs.
For each of the SiO2 modifications we constructed the respective log C' vs. 1/T" straight line in order to
determine the values of AH2% = H?%(liquid) — H2%® and AS?%® = $298(liquid) — S2°8 in Eq. (6.1). It
is seen that from vitreous SiOs to coesite the logC' vs. 1/T solid lines follow the expected course, using the
H and S values given in Figs. 6.21 and 6.22.

With respect to its solubility, stishovite takes a very particular position. If this SiO2-modification could
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Table 6.6: Peer values of the thermodynamic properties at 298 K and normal pressure of the phases of silica used in the
calculation of the solubility at hydrothermal conditions: ® Data according to Glushko et al. [8] compared and corrected
employing the data of Swami and Saxena [25]; ® Haog (liquid) calculated as Hags (quartz) + AH, 538 (quartz) and Sags
(liquid) calculated as Saog (quartz) + AS2%® (quartz); ¢ AH,, and AS,,, were calculated according to known empirical
dependencies like AHy, = (1/2)AH,, and ASy = (1/3)AS,; “¢) estimates given by Glushko et al. [8].

Phases and Enthalpy of formation (*), | Entropy of formation (*),

phase transitions H, J mol~! S,Jmol~! K—!

Liquid ® -890.83 56.80

Amorphous (disperse) -896.00 22.74

Glass -900.70 46.80

High cristobalite () -907.39 42.64

Low cristobalite () -904.55 43.47

Low quartz («) -910.57 41.80

High quartz () - -

Coesite -905.00 40.34

Stishovite -860.70 27.76

Phase transition Enthalpy of change (9, Entropy of change (¢),
AH, Jmol™! AS, Jmol-! K1

Melting of low quartz (a) (©) 19.74 15.00

Glass transition — 9.87 5.00

low quartz ()

Melting of high cristobalite (3) | (7.69) (3.85)

Glass transition — - -

high cristobalite (3)

exist at pressures of the order of 300 — 400 bars and temperatures up to 800 K at hydrothermal conditions,
its solubility would be many times higher than that of glassy SiOy. Accounting for the particular six fold
symmetry SiOg,3 structure of stishovite and the extremely low values of its entropy and high value of its
enthalpy at 298 K, the solubility of stishovite in the coordinates of Fig. 6.23 would be represented by a
straight line as it is given in the insert of this figure. However, as already mentioned stishovite decomposes
rapidly at elevated temperatures and low pressures (i.e. outside its field of stable existence): it forms SiO,
glass (see [75, 76, 77] and Fig. 6.17). In this way it seems impossible to measure at “normal” pressures the
real solubility of stishovite obtained at hydrothermal synthesis in “normal” autoclaves (i.e. not at ultra-high
pressures).

A similar situation although not so drastic is also to be expected with respect to coesite. The latter
also decomposes outside its stability region (see the phase diagram on Fig. 6.6). At the conditions of
“normal” autoclave synthesis it could be expected that coesite should grow in the presence of amorphous
or glassy SiOy as all other modifications. However, in considering further applications of coesite it should
be remembered that it decomposes rapidly at normal pressure when heated above 1300 K.

The SiO5 diagram we constructed and show on Fig. 6.23 illustrates that glassy or any other amorphous
form of SiO; could be used as a precursor phase in the isothermal hydrothermal synthesis of all other
modifications of SiOs except stishovite. Accounting for the already cited results on the synthesis of post-
stishovite modifications of SiOy (of the a-PbOs and CaCl, type) they should have even higher values of
H?%® and lower S?%®—values when compared with the respective thermodynamic properties of stishovite.
Hence, it could be expected that log C' vs. 1/T-curves for these modifications should lie higher than that of
stishovite and should also have a positive slope (see the insert on Fig. 6.23). Above summarized findings can
be of distinct significance for the industrial production of any SiO5 crystal modification for which relatively
cheap amorphous (i. e. glassy) SiO» is obtained as a technological residual product with sufficient purity.
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Figure 6.24: Hydrothermal solubility of the SiO2 modifications according to data compiled by Iler [3]. Above the
critical point of water (574.4 K) the log C' vs. (1/T") dependence changes its slope. With different letters are indicated
Quartz: A, Van Lier equation (dashed line); B, Morey; C, Morey - 1000 bars; D, Willey - in sea water; E, Mackenzie
and Gees; F, Morey, Fournier and Rowe. Cristobalite: G, Fournier and Rowe. Amorphous: H, Stober; I, Elmer and
Nordberg; J, Lagerstrom, in 0.5 M NaClOy; K, Willey; L, Jones and Pytkowicz; M, Goto; N, Okkerse; O, Jorgensen,
in 1.0 M NaClOy.

In considering the solubility and the relative stability of the different modifications of SiOy it is of
interest to compare them with another system with many modifications — the carbon system. In making
this comparison it is of interest to note that the metastable form of carbon — diamond which is thermo-
dynamically stable only at high pressures (exceeding 50 kbar) begins to graphitize at normal pressures at
temperatures exceeding 1600 K. In this way diamond can grow either under metastable conditions (i.e.
at elevated temperatures and at normal pressure) or in solution (e.g. in metallic solutions like Ni-alloys).
However, at temperatures lower than 1600 K sufficiently high attachment rate for diamond growth is to be
expected. The same can be anticipated as it is experimentally verified in [31] at temperatures from 1000 to
1300 K also at gaseous exchange reactions in which diamond grows using vitreous carbon as a precursor of
C-saturation (see evidence and literature, given in [31]).

The low stability of stishovite at normal pressures and elevated temperatures gives no possibility, so it
seems, to grow or synthesize this SiOs — modification at metastable conditions (i.e. at normal pressure)
either hydrothermally or using gaseous exchange reactions, as done with diamond. The foregoing results in
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international literature and our experience summarized in Fig. 6.23 shows, however, that all other “normal”
or high pressure modifications of SiOy could be hydrothermally synthesized or grown in a way analogous
to the growth of diamond either by gaseous reactions or from solution using vitreous SiO5 as precursor. The
diagram on Fig. 6.23 gives also a direct possibility to determine the thermodynamic driving force Ay 2 and
the relative supersaturation y; o for the synthesis of any of the SiOs-modifications from any other crystal
form of SiO5 employing the well known formalism of the theory of crystal nucleation and growth [14, 79,
80, 81].
According to this formalism, in our case we have
Gy

A =RTIn | — 6.15
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where R is again the universal gas constant, 7" is the considered temperature at which the phase 1 with
solubility C is the precursor for the growth of the phase 2 with solubility C. The relative supersaturation
playing a cardinal role in determining nucleation and growth conditions is given as

o Am,z
V1,2 = BT (6.16)
Thus, in our case we have
Cl Cl Cl - 02
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Now we can see that in the already cited experiments of Wooster [33] and Nacken [34] the relative
supersaturation for quartz growing with a precursor substance amorphous SiOs, relative supersaturations
(71,2 > 1) are obtained leading to nucleation. On the other hand, if we imagine a process of quartz synthesis
at hydrothermal conditions and using cristobalite and not directly SiO»-glass as a precursor substance the
value of 7 7 is considerably lower guaranteeing at ;2 < 1 the smooth growth of quartz. On contrary,
the synthesis of high dispersity quartz should require relative supersaturations 1 2 > 1 approaching even
Y2 =2—4.

In this way, the synthesis of ideal single quartz crystals should be realized under other conditions when
compared with the also interesting case of formation of micro- or even nano-sized quartz populations e.g. in
using pre-crystallization in order to purify SiOy [38]. The same applies also for the crystallization of cristo-
balite. The sequence of straight lines plotted on Fig. 6.23 gives in fact the sequence of supersaturation or
relative supersaturations using Egs. (6.15), (6.17) and the respective In(C1/C>) data for chosen T'. However,
the real sequence of formation of the different SiO2-modifications should be governed not directly by the
thermodynamics of nucleation (i.e. by the y; » values) but by the kinetics of these processes, i.e. by kinetic
restrictions and recommendations following from Ostwald’s Rule of Stages [14, 81, 82, 83, 84]. According
to this rule at a given supersaturation y; o, not the formation of the thermodynamically most stable phase
is to be expected as the first precipitate as indicated by Fig. 6.23 but in another sequence, as it is given by
the contemporary formulation of Ostwald’s Rule of Stages. It says in these formulations, that nucleation
is being determined from the phase which formation is kinetically most favorable. Thus, in most cases of
condensation from vapor phase the initially formed phase is not the most stable one but an intermediate
metastable liquid phase, which afterwards transforms into the thermodynamically more stable crystalline
condensate.

The kinetic interpretation of Ostwald’s Rule of Stages was initially proposed by Stranski and Totomanov
[83] and was then further developed in a series of publications by Gutzow and Avramov [84] and Gutzow,
Schmelzer and Moller [14, 84, 85, 86]. Remaining in the framework of classical theory of nucleation, it
can be derived as done in [14, 84] that the fulfillment of Ostwald’s Rule of Stages, i.e. the formation of the
metastable phase f from an initial supersaturated phase ¢will then take place instead of the formation of the
stable phase ¢ from ¢, when the inequality
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is fulfilled. Here p(;_.c) and p;_, yy indicate the thermodynamic driving forces, the supersaturations, deter-
mining the change from the initial phase 7 into either the metastable phase f or into the stable phase c. With
0;f, 0;,c and oy are denoted the interfacial energies at the i-phase/c-phase and i-phase/f-phase interfaces,
respectively. With the symbols ¢; . and ¢; r are indicated the nucleation activities of eventually introduced
active nucleation cores favoring the formation either of the metastable phase f or of the stable phase c.

The inequality Eq. (6.18) is easily derived taking into account that according to the classical theory of
nucleation, the rate, J, of nucleation of a given phase is determined via
AG;_y ]

(6.19)

J = consty N; Z;. exp [_RT

where Z; is the impingement rate of ambient phase molecules to the growing critical clusters of the newly
formed phase x, AG,_,, is the nucleation barrier in the formation of this critical cluster and N; is the
number of molecules ¢ per cubic centimeter of the ambient phase. The thermodynamic barrier AG;_, . is
called in the theory of nucleation the nucleation work and it is written in a spherical shape approximation
for the critical cluster as

3 2
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In all above given formulas V;, (or V, and V) indicates the molar volume of the respective phases.

Now, in following the ideas of Stranski and Totomanov in giving a kinetic explanation for Ostwald’s
Rule of Stages we have to compare at a logarithmic scale the rates .J;  and J; . assuming an equal impinge-
ment rate Z; in both cases. From Eqgs. (6.19), (6.20) we thus arrive directly at Eq. (6.18). In considering
the applicability of Eq. (6.18) we have to know o, for both phases. This is not so easy to be done and here
in developments given by Gutzow and Schmelzer [14] the formula of Stefan, Skapski, Turnbull is used,
according to which the specific interfacial energy at the ix interface can be estimated via

AH, ,

ag— 6.21)
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where A H;, is the respective change of enthalpy when going from the i to the = phase, N4 is Avogadro’s
number and V, is the already introduced value of the molar volume of the newly formed phase.

Thus into Eq. (6.18) can be introduced instead of the interfacial energy, the respective values of the
molar enthalpy of change A H; , upon the corresponding phase formation or the respective entropies AS; ,,
(AH; , = AS; ;T,). In this way, the inequality Eq. (6.18) can be transformed (as done by Gutzow, Dobreva
and Schmelzer [85]) into dependencies, stating that under given conditions, usually out of the initial phase 7
this phase will be formed from two or more possible phases which having the nearest structural resemblance
with the initial phase. Using such a line of ideas and possible computations, Fig. 6.23 can be transformed
from a thermodynamic picture into a kinetic scheme giving the way, the probability and the paths in which
from one phase 7 the desired phase f or c or any other one can be predominantly formed.

We have also to mention here that according to the investigations performed in [87] the formation
of cristobalite is observed in the presence of Cu or Au nucleating cores of micrometric dimensions. In
this sense, Eq. (6.18) gives also possibilities to induce the formation of different phases by introducing
nucleation active cores favoring the formation either of the c or of the f-phase. The nucleation activity of
different substances and especially of noble metals is analyzed in details in [88].

6.6.3 Size Effects in the Solubility of SiO,

According to a well known formula of the classical thermodynamic theory of nucleation, the formula of
Thomson-Gibbs, the radius 7 of the critical cluster can be expressed as

- QOi}IVm

r= iz, (6.22)
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Thus, the solubility C). of a phase x of radius, r, when compared with its solubility C, of sufficiently large
crystallites can be given by Ap,., where

Ap, = RTIn (g ) . (6.23)

o

Thus from Eq. (6.22) it follows that at 7" = const. the solubility C' changes with r, as
Qgi,ac Vel

InC, = BT +InCy . (6.24)
By adopting again the equation of Stefan-Skapski-Turnbull, Eq. (6.21) and accounting for the simple rela-
tion
Vo /3
— ~dyw, 6.25
(%) = (6.25)

where d,, is the mean intermolecular distance in the phase x, we can write

C ASp 2 Tz 1
In [ =) = 20y 22mer Lmaz 2 2
n(co) TR T el (6.26)

Thus, from known values of the entropy AS,, , of dissolution, of the melting point 7}, ., and of the inter-
molecular distance d, ,, of the phase , we can determine o from latter relation or directly via Eq. (6.21).
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Figure 6.25: Solubility of amorphous nano-grained SiO2 at 25°C in dependence on mean particle diameter.

In Iler’s book [3] is given the size dependence of the solubility of amorphous (or glassy) SiOs in hy-
drothermal solutions at 25°C at pH-values ~ 8. In coordinates logC'. vs. reciprocal particle diameter the
experimental data give a straight line with a slope of 1.5.10~7 cm~! (see Figs. 6.25 and 6.26). This gives
with Eq. (6.26) at oy = 0.5 for AS,/R a value of 0.4. This is a satisfactory value when compared with
the value of AS, for quartz glass given in Table 6.6, according to which ASy/R = 0.6. It is evident that
a change of o by 20% would give the expected value of (AS,/R) obtained experimentally. Expressing
AS,, through the well known dependence AH,,, = AS,,,T,,, we can introduce in Eq. (6.26) AH,,, , when
this quantity is known from direct experimental observations. From the slope of the log C' vs. 1/r de-
pendence in Fig. 6.26 a value of 155 - 1072 J m~! is obtained for the specific surface energy o; , at the
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Figure 6.26: Experimental data on the solubility of amorphous SiO2 vs. the reciprocal particle diameter according to
Eq. (6.26). Data in Figs. 6.25 and 6.26 are taken from Iler [3].

SiO4 glass/aqueous solution interface. Comparing this value with the data from solubility experiments with
various substances it can be claimed that the classical theory of nucleation as in many other cases gives
nearly satisfactory results when the processes of nucleation are treated in the framework of its capillary
approximation.

In this way, the results on the size dependence of the solubility of amorphous quartz indicate that the
treatment of the precipitation kinetics in terms of Ostwald’s Rule of Stages, introduced in the framework
of the classical theory of nucleation, could also give satisfactory results — at least appropriate for initial
technical use.

6.6.4 Possibilities of SiO,-Nucleation and Growth at Hydrothermal Conditions
and Their Technological Aspects

In the foregoing Section 6.6.3 we discussed the possibilities to synthesize by a process of nucleation and
growth different modifications of SiOs using quartz glass as a precursor phase in the autoclave. More con-
venient could be the use of cristobalite as a precursor, e.g. in the growth of quartz crystals. According to
the general conclusions of the classical nucleation theory, growth could be expected in the cases when the
relative supersaturation -y; o is limited in the range from 1.5 or even down to 0.1 - 0.2. Under such condi-
tions, especially at 1 2 < 1, smooth growth of single crystals could be expected. Our solubility diagram
(Fig. 6.23) shows that such a possibility exists firstly for the growth of a-cristobalite single crystals out
of SiO; glass. Even more interesting could be the possibility of growing directly S3-cristobalite by using
SiOs glass as a precursor. According to Fig. 6.23 it is obvious that the growth of introduced (3-cristobalite
micro-crystals could be performed smoothly at relatively low temperatures. There are indications in litera-
ture [38] that in fact by changing the temperature the hydrothermal synthesis of the different modifications
of cristobalite is possible. Our diagram gives the possibilities to discuss and initiate experiments in which
at relatively low temperatures hydrothermal growth of large cubic (-cristobalite crystals could be realized
if in the solution appropriate cations stabilizing the high temperature form of cristobalite are added. There
are in the literature proposals to stabilize hydrothermally grown S-cristobalite by introducing sodium and
aluminum cations into the hydrothermal solution. It is interesting to investigate the possibility of cristo-
balite hydrothermal synthesis by using instead of NaOH-solutions, Ca(OH)s-solutions when the presence



134 6 Different Modifications of Silica

of alkali cations has to be excluded. This would require a particular study of the solubility and of the precip-
itation of Ca(OH), under hydrothermal conditions. It could give a new way of toughening of -cristobalite
with Ca?* and AI** in hydrothermal solutions. Another interesting possibility following from our results
summarized on Fig. 6.23 is the possibility to nucleate at high temperatures and grow large coesite crystals
at hydrothermal conditions.
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Figure 6.27: Solubility of phenolphtaleine in water as a crystal (1) and as a glass (2) according to measurements of
Grantscharova and Gutzow [14, 89]. With T, is indicated the melting point of phenolphtaleine and with 7, its glass
transition temperature.
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Figure 6.28: Dissolution curves of phenolphtaleine in water at two temperatures: at 22°C (the upper two curves) and
at 13°C (the bottom two curves) for crystalline (1) and for vitreous (2) phenolphtaleine.

In foregoing model experiments by Grantscharova and Gutzow [89, 90] growth experiments from aque-
ous solutions of a model glass-forming system, phenolphthalein, were performed. On Fig. 6.27 the solubil-
ity of phenolphthalein is given as a glass and as a crystal in the temperature range from 10 to approximately
100°C. The respective solubilities were determined by analyzing the kinetics of dissolution of both crys-
talline and glassy phenolphthalein as shown on Fig. 6.28. Such experiments carried out with the different
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modifications of SiOy could give more precise solubility values than those calculated or given in litera-
ture and leading to pictures like Figs. 6.20 or 6.24. Usually, in existing measurements the solubility is
determined under static conditions and not by kinetic experiments as done on Fig. 6.28. With the phe-
nolphthalein/water system we performed (see [89, 90]) growth experiments under isothermal conditions,
demonstrating the smooth growth of phenolphthalein single crystals using phenolphthalein glass as a pre-
cursor. In the experiments of Wooster and Nacken [33, 34] quartz glass was also used as a precursor.
However, as seen on Fig. 6.23 relatively high supersaturations 7y, o are to be expected in the temperature
interval (300-400 K) used by these authors and they resulted as already mentioned in the nucleation of many
small quartz crystallites and not in the smooth growth of large quartz single crystals.
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Figure 6.29: Two possibilities to use glass as a precursor for crystal growth at isothermal conditions: a) ampoule
growth of diamond (2) from vitreous carbon (1) using gas transport reaction at 1050°C (here: C + Sz — CSa; see
Gutzow et al. [31]). b) The growth of crystalline phenolphtaleine (2) from glassy phenolphtaleine (1) in aqueous
solution (Grantscharova and Gutzow, [14, 63]).

The hydrothermal growth of [3- and «-cristobalite crystals to relatively large dimensions could be of
particular scientific and technological interest. In a number of present day investigations [91, 92] it is
demonstrated, that a-cristobalite exhibits the unusual property of becoming wider when stretched and thin-
ner when compressed: thus it is a material with negative Poisson ratio. Such auxetic properties of larger
crystals could be of exceptional significance in instrument making industry. From Fig. 6.23 is also ev-
ident the possibility of growth of coesite at hydrothermal conditions using J-cristobalite as a precursor,
guaranteeing very low supersaturations and smooth growth even at high temperatures.

In our foregoing experimental investigations on the solubility of vitreous phenolphthalein and of the
crystalline modification of the same substance we also constructed a simple apparatus shown on Fig. 6.29b.
On Fig. 6.29a is also seen the principal scheme of the growth of diamond single crystals at isothermal
conditions using vitreous carbon as a precursor and the gaseous reactions as the carrier agent. In both cases
(phenolphthalein and diamond) glass was used as a precursor for the growth of single crystals either in
solution or at chemical transport reaction. In the case of diamond, these transport reactions involved CCly,
CS; or CHy4 and the respective chemical equilibria [31].

The hydrothermal growth of SiO2 in closed volumes supplies us with an exceptional possibility to
regulate the pressure resulting in the autoclave by the relative filling of its volume. On Fig. 6.10 is given
the pressure obtained in an autoclave by its filling to different degrees and heating the system to different
temperatures. On Fig. 6.9 this dependence is enlarged to include the known solubilities of SiO2 beginning
from room temperatures and ending at temperatures higher than the critical point of water. In this sense
hydrothermal synthesis gives extraordinary possibilities of regulating temperature, pressure and solubility
in the autoclave in a simple way within wide limits.

In a recent publication, the construction of a simple camera autoclave (Fig. 6.15) with relatively small
volume was reported in which the growth of stishovite crystals up to dimensions of several millimeters was
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realized (see Fig. 6.16). The same device could be also used for coesite growth. Stishovite according to
a number of literature sources is one of the hardest materials ever known and the hardest oxide ever syn-
thesized. In this respect the synthesis of stishovite single crystals could bring materials with exceptional
properties, however, at prices nearly equal or even surpassing the price of diamond and cubic BN. In com-
paring the properties of stishovite and coesite as single crystals and the possibilities for their metastable
growth (i.e. at pressures outside the stability pressure region of both crystals) it should be remembered
that stishovite and coesite decompose to SiO- glass at temperatures approaching 600 — 800°C and 1300°C,
respectively.

6.7 Mineral and Natural Resources of the Silica Modifications

Silicon dioxide is the major constituent of rock forming minerals and an important component of sediments
and soils. In the form of silicates it accounts for 75 wt% of the Earth’s crust. It is also a constituent of many
plants in a measurable quantity.

6.7.1 The Mineral Resources of Quartz

Quartz in its low temperature a-modification forms 12 wt% of the Earth’s lithosphere and is after feldspars
the most widely spread mineral on the Earth. At hydrothermal conditions in the Earth crust single crystals
are formed, reaching up to 1.5 and 2 m in size. The SiO2- tetrahedra in quartz are arranged along its trigonal
c-axis. Two types can be distinguished in this arrangement: left- and right-handed and this property results
in the optical activity of quartz with a considerable polarization power for visible light. The right- and left-
handed crystals are mirror images of each other. The two-fold symmetry axis perpendicular to the screw
axis is polar and mechanical stress along the axis produces a direct piezo-electric effect. The reverse effect
is utilized in oscillatory devices. Mainly due to this property, high quantities of quartz crystals are produced
most often hydrothermally. The thermal expansion of a-quartz is high (13.3.10~% K=!) and drops to even
slightly negative values after the displacive transition into its high temperature modification, into -quartz.

Many special, trade and trivial names exist for silica rocks often with various meanings and imprecise
definitions. Different classifications are accordingly given in literature. Silica rocks typically contain up to
more than 90 wt% SiO». Ordinary sandstones contain only about 65 wt% silica, mainly as quartz grains.
The rest is matrix and cement (feldspars, CaCOjs, mica, clay, etc.). Different transformation processes occur
in silica rocks with increasing the burial depths in the Earth’s crust which results in a reduction of porosity
and water content. Thus, quartz can be solidified to quartz sandstone and grades by crystallization into
quartzites under pressure at elevated temperatures. Similarly, non-crystalline biogenic silica remnants of
diatoms, radiolarian etc. are transformed under compression into porcelanite and finally to chert. When
the biogenic origin is known these rocks are designated as diatomite, radiolarite or spiculite. Lidite is a
rock formed from the remnants of radiolarites from the Paleozoic era. A great number of different semi-
crystalline or quasi-amorphous minerals are known and described in mineralogy and geology.

Of technical importance for all silicate industries, and in particular for the glass, ceramic and porcelain
industries are high quality (especially: free of iron oxides) quartz-sand deposits like the quartz-sand fields
in Hoehenbocka or Weferlingen in Germany. Of global significance for the production of high-purity quartz
single crystals are the huge quartz deposits on Madagascar, in Brazil and in the Ural Mountains: in most
cases they are the result of processes of growth under natural hydrothermal conditions. In several places
(also in Europe) venous quartz formations of magmatic origin are also in technical utilization.

6.7.2 The Plant Resources of Silica

Of great significance in future developments may be also the SiO; content in organic residuals and espe-
cially in rice husks, bamboo, cocoa shells, oats, etc. There are several different methods to obtain and use
the so called white ash of rice husk (i.e. the amorphous SiO5 resulting from the oxidation heat treatment
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of rice husk). Micro- and nano-cristobalite crystalline phases are easily obtained at relatively low tempera-
tures (of 850 — 950 °C) upon oxidation heat-treatment or directed pyrolysis. Taking into account that rice
is a basic food of millions of people in the Asiatic regions of our world, rice husk can be considered as a
possible natural source of SiO5 of industrial importance.

Two points are of significance in this respect: First, the circumstance that a relatively great percentage
of alkali oxides (either Na;O or K5O) are usually present in rice husks and any other natural product. Such
impurities which some times form three or five percent of the mentioned white ash can be, however, easily
washed out with mineral acids. Secondly, it is of importance that in plant silica heavy metals are to be found
only in relatively low concentrations: the plants themselves decline to absorb oxides, toxic for their growth.
The third essential point in possible plant silica production and purification is the circumstance that SiOs is
contained in the plants structure in an amorphous nano- or micro-sized form and is obtained in the “white
ashes” both as amorphous silica, or (in dependence of heat-treatment history and of dopants present) as a-
or (-cristobalite. Plant silica is thus chemically very active and can be easily dissolved by mineral acids
and can in this way be subjected to various purification procedures.

The present day status of the both scientifically, ecologically and technically very important problems of
the state of SiO» in the plants, the processes of plant pyrolysis [93, 94, 95, 96], the possibility of formation
and of directed synthesis of silicon carbides, of silica and of active carbons (all of them with possible
industrial applications!) is treated in great details in international literature, an extract of which is given
here with the mentioned papers and especially with [94]. It is also to be noted that the results obtained
by one of the present authors with plant silica [97] and with the analysis of the respective processes of
pyrolysis [98, 99] and of active silica crystallization initiated some of the developments, connected with the
polymorphous transitions of cristobalite and amorphous SiOs, with quartz etc., described in more or less
detail in the present review. It is also to be noted, that biological activities of the animal world (of worm
populations [100]) and of enzymes [101] have been proposed as possible methods of degradation of rice
husk waste products and their following transformation into more or less useful forms of silica and silicon
compounds .

6.7.3 Industrial Waste Sources of Silica

Fly ashes from the chemical and metallurgical industry can also supply SiOs in a highly active form. How-
ever, here, contamination with toxic oxides and heavy metals can be a severe problem. It has only to
be mentioned that the active amorphous phase formed out of plant SiOs is directly transformed into high
temperature S-quartz, which, however, at low temperatures gives again «-cristobalite.

6.7.4 Coesite and Stishovite as Impactite Remnants

Coesite and stishovite which initially were artificially synthesized are not only found in impactite minerals
at meteoritic craters like the great Arizona meteorite crater. Of greater significance is the experimentally
verified geological fact, that in the depths of the Earth’s crust quartz minerals are transformed into coesite
and stishovite and thus these minerals are of exceptional significance in following, predicting and analyzing
earthquakes and other processes in the Earth’s crust.

6.8 Several Particularly Interesting Properties of the Silica
Modifications

We would like to emphasize here finally several aspects on the properties of silica both in the form of
its crystalline and amorphous modifications. Usually one thinks only about the properties of quartz and
quartz sand and some of the already mentioned unusual properties of some of the modifications of SiO5 are
disregarded. They can be, however, of significance not only in technology and instrument production but
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could be also of commercial interest. This is why we repeat here several of the properties we did already
mention in the previous sections.

In order to reconsider the possible significance of SiO, materials in a new light, beginning with the
most dense and most unusual modifications of SiOs, it should be repeated that stishovite and the two post-
stishovite modifications are the hardest synthesized oxides up to now. Their hardness is surpassed only by
cubic BN and by diamond. In comparing stishovite and post-stishovites with BN and diamond it should
be, however, encountered that stishovite has a lower thermal stability than diamond under normal pressure:
diamond can be used up to 1100 — 1200°C while stishovite transforms into SiO, glass at temperatures
beginning from 650 — 700°C. Nevertheless, it could be a very useful material for the production tools
when only silicon and oxygen should be in contact with the material which has to be treated. The already
mentioned hydrothermal synthesis at super-high pressures of stishovite could be maybe developed to an
industrial scale.

Cristobalite in its high temperature (3-form is the SiO5 crystalline phase with the highest refractoriness:
it could be used at temperatures above 1500°C. Moreover, 3-cristobalite has a coefficient of thermal expan-
sion at high temperatures which approaches zero and this gives additional perspectives to the employment of
[-cristobalite as a major constituent in both glass-ceramic materials and — in the form of little appropriately
preformed substrates etc. — in the high temperature electronic technique. Of particular significance is on the
other side the circumstance that a-cristobalite has a negative Poisson ratio. This is a property a-cristobalite
shares with only four or five inorganic substances. Materials, possessing such a property are extraordinary
resistant against the impact of projectiles entering its structure even with a very high speed (e.g. bullets in
a modern chain-plated armor). Many other applications of such auxetic materials are discussed in present
day literature, partially mentioned above (see [91, 92]). It is interesting to note also, that only the low tem-
perature a-modification of cristobalite possesses this property: in the a/f3 transition the high temperature
[-cristobalite emerges without the auxetic properties of the a-modification. On the other side it is also to
be noted that with quartz the reverse case is observed: here as already noted the high temperature (3-quartz
is slightly auxetic, while the low-temperature a-modification has a normal (positive) Poisson ratio.

Also into account has to be taken the chemical resistivity of cristobalite which makes this material a
promising and competitive substance for the construction of high temperature refractory chemical resistant
building material for chemical applications. The same applies also to (3-cristobalite chemically stabilized
in the already described way with CaO and Al;Os.

Silica in its amorphous form as a glass has exceptional applications because of its chemical inertness,
temperature resistance (however only to 1000 — 1050°C! Then, crystallization begins) and its extraordinary
low coefficient of thermal expansion (0.3 - 10~% K~1). The properties of amorphous SiOs in disperse form,
as it results e.g. from the oxidation heat treatment of natural plant products, are also well known and used
in applications connected with absorption, etc.

6.9 General Discussion in Terms of Technical Perspectives

The foregoing sections give the possibility for several conclusions:

1. The most promising material (with exception of quartz glass) out of all possible modifications and
forms of existence of SiO- is stabilized (J-cristobalite. Its particular properties concerning the co-
efficient of thermal expansion, thermal stability, chemical stability makes this modification a very
promising material with many applications. The results described in literature concerning its synthesis
show that it can be synthesized in several quite different ways, any of them applicable for different
purposes:

(a) The activated reaction sinter-crystallization approach of synthesis with the introduction of chem-
ical stabilizers (CaO + Al2Os3) developed recently by the authors of the present review shows
that this method could lead (eventually combined with hot pressing) to the production of different
technical parts.
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(b) Results obtained with a combined sol-gel - ceramic way of synthesis (the so-called “wet impreg-
nation” method) could also be a promising method of developing objects even on a larger scale.
This method could give additional perspectives because it requires lower temperatures of sinter-
crystallization.

(c) As amethod of direct formation of small dimension objects useful in high temperature electronics
could be the direct sol-gel method of synthesis of chemically stabilized 3-cristobalite described in
one of the previous sections.

(d) Cristobalite can be also synthesized by hydrothermal methods as this is demonstrated in litera-
ture and it could be produced in such a way as to give micro- or even nano-sized powders of
(-cristobalite, stabilized, however, with alkaline oxides.

. The hydrothermal method of synthesis can be used to produce in commercial quantity and in different

forms and sizes not only quartz (as known for more than 50 years) but also cristobalite and coesite
using either SiO5 glass (in the synthesis of cristobalite, coesite and quartz) but also cristobalite for
the synthesis of quartz. However, it has to be accounted for that in most applications the autoclave
hydrothermal method works efficiently only in alkaline solutions: in this way only crystals with a
measurable content of alkaline pollutants can be formed.

. It should be of interest to develop methods of hydrothermal synthesis based either on pure aqueous

solutions of SiOy (without any alkalizing additives) or on the development of hydrothermal methods of
synthesis in which solutions with high pH-values could be formed by exploiting the basic character of
CaO or other alkaline-earth oxides. Here, however, up to now no experimental evidence or theoretical
considerations are known to the authors of this review.

. Hydrothermal synthesis could be also considered as a method of purification of both quartz crystals

and quartz micro- and nano-crystals, e.g. in synthesizing micro-quartz crystallites from either glassy
SiOs, or cristobalite as a precursor. Due to the small sizes of the micro-crystals, the number of included
bubbles, containing initial solvent could be brought to a minimum. However, the alkaline solutions,
with pH ~ 8-9, employed in present day hydrothermal synthesis could bring additional problems.
Vitreous or any other form of amorphous SiO, can be more easily purified.

. The synthesis of cristobalite as micro-disperse powders could give other possibilities for the method

of production of quartz glass macro-tubes employing the plasma technique. Here, a role could play its
density, which for G-cristobalite is nearly equal to this of quartz glass. This, however, should require
chemically stabilized §-cristobalite to be used. This would bring CaO and Al;Oj5 into the quartz glass.

. SiO- is a substance which, like carbon, exists in a great variety of modifications. Up to now only two of

these forms — quartz glass and quartz macro-crystals — are implemented in industry. We hope that the
theoretical predictions made for the water solubility of SiO2 modifications reveal new perspectives for
the synthesis and the future applications not only of the “common” ambient pressure forms of SiO5 but
also of the their “exotic” high pressure forms. The method of activated reaction sinter-crystallization
synthesis of stabilized [-cristobalite glass-ceramics developed by the authors of this review opens the
possibility for their economically profitable industrial production and many fields for their application.

In the last time, attempts have been made to use different “unusual” sources of SiO, for the synthesis

of stabilized (-cristobalite glass-ceramics e.g. purified diatomite [102]. Here, the most important prob-
lem is to find effective, simple and affordable methods for the purification of similar biogenic resources
of SiOy. Lately, new possibilities were realized in this respect, namely in the purification of rice husk
ashes considered as mentioned as a promising plant source of active silica. Since in these ashes SiOs is in
amorphous nano- and micro-sized form it can be expected that the preparation of stabilized (3-cristobalite
glass-ceramics as well as of other SiO»-containing materials could be realized at substantially lower tem-
peratures and shorter heat-treatment times.
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Manche Minner bemiihen sich lebenslang,
das Wesen einer Frau zu verstehen.
Andere befassen sich mit weniger schwierigen Dingen
z.B. der Relativitiatstheorie.

Albert Einstein

Abstract

New results of experimental low temperature investigations of the thermal conductivity of solid ethanol in various
phases have been obtained at 7' > 2 K. The effect of annealing in the thermal conductivity of solid ethanol in the
orientationally — ordered phase has been observed in a wide range of temperatures. This phase was obtained as a
result of a first — order phase transition from an orientationally — disordered crystal of cubic structure. The temperature
behavior of the thermal conductivity of the sample obtained at Ty pneq: = 109 K is similar to the dependence typical of
an imperfect fine grained crystal of 1-butanol in the so-called “glacial” state. The thermal conductivity was observed to
increase as the monoclinic lattice changed from a less stable phase to a more stable one. The growth may be due to the
improved quality of the completely orientationally — ordered crystal.

7.1 Introduction

Pure ethanol is without doubt the most interesting object among molecular substances for investigations of
thermal properties of one-component molecular solids with disordering. Solid ethanol at some conditions
can have three metastable long-living states with molecular disorder in addition to the thermodynamically
stable fully orientationally-ordered crystalline phase (FOC, monoclinic, Z=4, Pc): a structural glass (SG),
an orientational glass (OG, bcc) and a crystal with orientational dynamic disorder (e.g. [1-6]). Hydrogen
bonds afford a diversity of metastable states in the alcohols. In the condensed phases of alcohol the H-bond
determines the behavior of all the molecules forcing them to fit into the linear chains. The chains are bonded
by the van der Waals forces. The H-bonded chains play an important role in the local structure of any phase
of condensed alcohol. The glass-formation process in alcohols is dependent on the force of the molecular
dispersion interaction and the structural difference between the liquid and crystalline phases.

On fast cooling the normal liquid ethanol becomes supercooled and transforms into a structural glass
below the glass transition temperature, Ty,. Structural glass is an amorphous solid that can be obtained by
cooling a liquid below the glass transition temperature, T}, at a rate allowing no crystallization. At T}, the
motion of molecules is frozen, and the formed molecular glass has neither translational nor orientational
molecular ordering. Molecular glasses have been attracting special interest because some of them enable
one recognizing the importance of orientational degrees of freedom in the dynamics of glasses [3-11].

The phase of orientational glass (OG) in solid ethanol is formed in molecular crystals at freezing of
orientational disorder in cubic crystal structure (orientational glass-like transition). In [2-4, 12] was shown
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that the OG phase of ethanol is formed by cooling a metastable state of plastic crystal (i.e., crystal with
rotational disorder, RPC). In ethanol the temperature of freezing is about the glass transition temperature
T, of supercooled liquid. Since these temperature regions coincide for the SG and OG states of ethanol,
it is easy to compare the temperature dependencies of the thermal conductivity of these states within one
temperature interval and see how the orientational degrees of freedom of molecules influence the heat
transfer in a glassy state of alcohol.

At low temperatures the properties of structural glasses are essentially different from those of the cor-
responding completely ordered crystals. For example, the heat capacity is always higher and the thermal
conductivity is always lower in glasses than in corresponding crystals. The thermal conductivity, x(T'), of
a glass exhibits a universal behavior and is weakly dependent on the structure or the chemical composition
of a substance [13]. The temperature dependence of the thermal conductivity of a glass has three distinct
regions: a low temperature region in which x(T') grows with temperature as x(T') ~ T2, a plateau in the
interval ' = 5 — 30 K and a region above T},j4¢¢q. in Which k(T continues to increase by a quasi-linear
law.

According to recent data [10], ethanol glass is a special case in the mentioned series of glasses. It
belongs to type II glasses which form an orientationally — disordered plastic phase. The investigations
by the methods of calorimetry, Brillouin light scattering and X -ray diffraction have shown [12] that the
phase diagram of solid ethyl alcohol under equilibrium vapor pressure is more complex than it was thought
before. At least four types of different monoclinic structures (denoted as «, (3, 7y, and ¢ structure), which
appear at different preparation conditions, can be separated in the orientationally — ordered phase having
a monoclinic lattice with orientational long-range order. The metastable monoclinic state (« structure) is
formed at solid-state transformations of cubic structure (RPC) to monoclinic structure.

In this study the thermal conductivities of the structural and orientational glasses of ethanol as well
as the orientationally — ordered crystalline phase in the course of changing its monoclinic structure on
approaching the thermodynamic equilibrium have been analyzed and compared.

7.2 Experimental Details

The thermal conductivity was measured under equilibrium vapor pressure by the steady-state potentiometric
method using setup [14] (see Fig. 7.1). The sample container (1) is a stainless steel 40 mm long tube 22 mm
in diameter with the wall thickness 0.3 mm, with a copper bottom (6) and cap (4). The container bottom was
fixed in the cooled zone of the cryostat connected to a helium bath (10). Two copper wires 1| mm in diameter
were passed through the container perpendicular to its axis, which permitted measurement of the average
temperature along the isothermal plane running across the sample. At the outer surface of the container
copper sockets were soldered to the wires to cartridge two temperature sensors (2, 3). The upper sensor
(2) is a Cernox — SD resistance thermometer (Lake Shore Cryotronics, Inc.) measuring the temperature
difference; the lower sensor (3) is a TSU2 resistance thermometer (VNIIFTRI) used to stabilize and control
the temperature. Thermometer was used to measure the temperature along the sample with the heat flow
on and off. The liquid ethanol sample was put in the container (1) of the measuring cell under He4 gas
flow. The helium gas was used to improve the heat exchange between the sample and the container. The
container with the sample was vacuum-tight covered with the copper cap (4) and an indium ring. A heater
was fixed on the container cap to generate a downward heat flow in the sample.

A vacuum jacket with a removable bottom part (cup) (15) separates the measuring cell from the outer
helium bath (10). The upper part of the vacuum jacket is connected to the cup with an In-seeled flange
(16). In the course of measurements of thermal conductivity the vacuum in the jacket was maintained at
1075-10~* Pa. Sample preparation and thermal conductivity measurements were completely automated
including recording the thermal history parameters such as the temperatures registered by the upper and
lower thermometers, the power of the sample heater, the current time, etc.

Liquid ethanol CoH5OH 96% (SWW 2442-90) produced by Polskie Odczynniki Chemiczne S. A. was
purified up to 99,9% (according to chromatogram method) directly before the thermal conductivity mea-
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Figure 7.1: The scheme of low-part setup for measuring of the thermal conductivity samples: (1) is a sample container;
(2) is a Cernox — SD resistance thermometer; (3) is a TSU-2 resistance thermometer; (4) is a copper cap with heater;
(5) is an upper unit; (6) is a copper bottom (a cold zone, a thermal link); (7) is the thermal shield; (8) is the helium
volume; (9) is the heat exchanger; (10) is a helium bath; (11) is a tube; (12) is the low-temperature faucet; (13) is the
throttle with filter; (14) is the line of helium pump; (15) is a removable bottom part (cup) of a vacuum jacket; (16) is an
In-seeled flange.

surement.

The different phases were prepared within the container using different cooling — heating cycles for the
same sample and taking into account the thermal history. The processes of preparing different states of
ethanol are explained in Fig. 7.2 [2, 5, 12]. The structural glass (route 1) was prepared by very fast cooling
(above 50 K min~1!) of the room-temperature liquids through their glass transition regions to the boiling
temperature of liquid N». Since the glass transition temperature T, of CoHsOH is higher than the boiling
point of nitrogen, the glass sample was prepared by immersing the container with the sample directly into
liquid nitrogen. The measurements of thermal conductivity of structural glass were performed at gradually
decreasing temperature. After reaching the lowest point of the experiment the measurement was continued
at increasing temperature. Above T}, the glass sample transforms into a supercooled liquid (SCL). By
further heating the SCL, a first-order phase transition into the plastic crystal (route 2, Fig. 7.2) irreversibly
occurs around 105-110 K. The orientational glass (OG) phase was obtained on cooling a plastic crystal
below the temperature of its transition to an orientationally-disordered phase. The thermal conductivity
k(T) of the OG phase was measured first at a successively lowering temperature (down to 2 K) and then at
an increasing temperature.

The moments of the liquid - plastic crystal and plastic crystal — orientational glass transitions show up
as features in thermogram curves of sample preparation. The features of some heating and cooling curves
are shown in Fig. 7.3. The phase transitions in ethanol entail a heat release/absorption [2], which was
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Figure 7.2: Schematic state diagram of ethanol [2, 5, 12] and thermal routes (arrows 1-4) followed in the experiments.
Ty is the glass transition temperature; 15, is the melting temperature; SCL is the supercooled liquid; SG is the structural
glass; OG is the orientational glass; FOC, « is the fully orientationally ordered crystal, structure o; FOC, g is the fully
orientationally ordered crystal, structure (3.
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Figure 7.3: The typical features of the curves of heating/cooling solid ethanol in the course of the phase transforma-
tions: a) heating: structural glass — supercooled liquid transition; b) cooling: a first-order irreversible phase transition
from a supercooled liquid to a plastic crystal (RPC); c) heating: transition from an orientational glass to a plastic crystal;
d) heating: a first-order irreversible phase transition from a plastic crystal to a monoclinic FOC.

clearly registered with two thermometers (see the heating/cooling curves). Near the temperature of glass
formation the heating rate decreases and the structural glass (SG) changes into a supercooled liquid (SCL)
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(see Fig. 7.3a). On cooling the SCL transforms into a plastic crystal (RPC) (Fig. 7.3b). This transition
occurs with a heat release below T ~ 125 K, which suppresses significantly the rate of the sample cooling.
The change in the heating rate during the OG — RPC transition is illustrated in Fig. 7.3c. The sharpest
feature in the sample heating thermogram (Fig. 7.3d) is caused by the heat release during the irreversible
first-order phase transition from the metastable plastic crystalline phase to the monoclinic phase of a fully
orientationally-ordered crystal (FOC). The sample heating curve has no sharp features in the orientationally
— ordered crystal in the interval from 2 K to 7;,, = 159 K (7},, is the melting temperature).

7.3 Structural Transformations in Solid Ethanol

As mentioned above, among the simple alcohols, ethanol is noted for its rich polymorphism. Each of its
states — structural glass, orientational glass, a fully orientationally-ordered crystal — has distinctive features
that are clearly evident in the temperature behavior of the thermal conductivity. The effect of thermal
conductivity relaxation caused by annealing the sample was first observed on ethanol in the completely —
ordered phase (FOC) formed due to the OG — RPC — FOC transition.
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Figure 7.4: Thermal conductivity relaxation during SG — SCL — RPC (0J), and RPC — FOC phase transitions at
T = 109 K (A); subsequent annealing of FOC at the average T" = 124 K (o) and T' = 156 K (x). Lines are calculated
dependencies k(t) = k(o0) — Ak exp(—t/7), where 7 is the characteristic relaxation time, Ak is the change in the
thermal conductivity, x(co) is the thermal conductivity of saturation.

The RPC — FOC transition (see Fig. 7.2, route 3) was carried out at the average temperature 7' = 109 K.
In the course of the transition, the thermal conductivity increased slowly and exponentially with time x(t) =
k(00) — Akexp(—t/T) (1 = 58.5 h is the characteristic relaxation time, Ax = 0.095 Wm~ 1K~ is the
change in the thermal conductivity) for 200 hours (see Fig. 7.4). When k(t) stopped growing and reached
its saturation value, x(oc0) = 0.214 Wm 1K™, the thermal conductivity, x(7'), was measured as a function
of temperature in the interval ' = 109 — 2 K. The dependence «(T") corresponding to the structure «; of
FOC (see Fig. 7.5, curve o) was noticeably different from «(T") of an orientational glass.

Further relaxation of the thermal conductivity «(¢) was observed for 70 hours at 7' = 124 K with the
characteristic relaxation time 7 = 24 h and Ax = 0.013 Wm 'K~ (see Fig. 7.4). The dependence x(T)
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Figure 7.5: The temperature dependence of the thermal conductivity of solid ethanol sample in various structural states:
OG (O) [11], after annealing FOC at 7' = 109 K (structure o1 (A)), 124 K (structure a2 (o)) and 156 K (structure 3
(x)). Lines — fitting the experimental data with the theoretical curves calculated within the Debye-Peierls model [13].
Straight lines — the dependencies (1) ~ T2 and x(T) ~ T*5.

taken after the relaxation at 7' = 124 K is shown in Fig. 7.5 (curve «s). This dependence corresponds to
the new relaxed monoclinic structure s of FOC whose thermal conductivity is considerably higher than
that of FOC «;.

The annealing of the FOC as structure in the pre-melting region at 156 K (Fig. 7.2, route 4), where
the monoclinic structure FOC-( is formed, led to a fast sharp increase in x(T") of FOC-3 (Fig. 7.5). The
dependencies k(t), taken at different temperatures (109 K, 124 K and 156 K), are shown in Fig. 7.4. The
dependencies k(T for different FOC structures are illustrated in Fig. 7.5. It is seen (see Fig. 7.5) how the
curve k(T') of OG phase transforms into the curve x(¢) of the thermodynamically - equilibrium phase of
a FOC with low contents of defects (structure ) passing in turn through various structural states (mon-
oclinic structures «; and ) at increasing of annealing temperature. The curves describing the thermal
conductivity of completely orientationally — ordered crystals FOC (a1, as, () are similar to the curves
#(T) with a phonon maximum that are typical for dielectric crystals. The sample obtained through the
solid phase transformation at ' = 109 K (structure ;) has an anomalously low thermal conductivity. The
thermal conductivity of the crystal with structure «; of the ethanol sample is slopping smoothly. At low
temperatures the thermal conductivity is considerably lower than x(7") of the OG crystal. x(T") grows with
increasing temperature and at 7' =~ 8 K becomes equal to the thermal conductivity of the OG crystal. The
fact that at low temperatures the thermal conductivity of the FOC crystal with the structure «; is even lower
than the thermal conductivity of OG suggests that the ov; —phase of FOC is most likely an intermediate state
with a large number of defects. Below 8 K the thermal conductivity of crystal with structure «; is propor-
tional to 7135, which suggests intensive phonon scattering by point and linear defects. As the temperature
rises, the thermal conductivity increases and reaches its maximum, K, q, ~ 0.25 Wm—'K~!, whichis only
20% higher than K4, of the OG crystal. The smeared maximum in the thermal conductivity of crystal
with structure oy appears at a temperature identical with that of the k4, of the OG crystal (7" = 51 K).

After annealing at ' = 124 K, the crystal with structure «; transforms into a crystal with structure
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. Its maximum thermal conductivity (Kpqr =~ O.36Wm_1K_1) exceeds K,qz Of the structure oy and
the temperature of the maximum shifts towards low temperatures (7},,, = 25.3 K). The k-curves of ay
and OG structures intersect at 7' ~ 5.5 K; below this temperature the thermal conductivity of the crystal
with structure a is lower than x(7") of the OG but higher than «(T") of the crystal with structure a;. In
the low temperature region the thermal conductivity of crystal with structure a5 rises more steeply than in
the crystal with structure o and is proportional to 77, This indicates that the structure as is superior to
the structure 7 in quality and has fewer defects. The crystal with structure 3 obtained by annealing the
crystal with structure g at 7' ~ 156 K has the highest thermal conductivity which is about an order of
magnitude higher than «(T") of the crystal with structure «; at low temperatures. In this series the crystal
with structure 3 is noted for the highest quality and the lowest content of defects. It has a distinct maximum
of thermal conductivity (Ke: = 2.32 Wm~'K~!) which is almost an order of magnitude higher than
Kmaz Of the crystal with structure 1. It occurs at T},,,, = 11.2 K. Below 77,42, the thermal conductivity
of the crystal with structure 3 is proportional to the quadratic temperature dependence, which corresponds
to the scattering of phonons by linear defects (dislocations).
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Figure 7.6: Temperature dependence of the thermal conductivity of 1-butanol in three states — SG (A), “glacial” (V)
and stable crystal (o). Data of [15] and [16]. Straight line is the dependence #(T) ~ T3,

Fig. 7.5 shows the temperature dependencies x(T) ~ T 2 and x(T) ~ T '-35 (straight lines) along
with the fitting of the experimental results for FOC (a1, as, ) to the theoretical curves calculated within
the Debye-Peierls model [13] allowing for the resistive U — processes of phonon scattering and the phonon
scattering by point and linear defects. It is seen that the model describes quite accurately the experimental
data for the three completely orientationally — ordered crystals. The difference in the thermal conductivities
of the FOC-q; structure and FOC-{3 structure may be connected with improving quality of the crystals in
the course of annealing.

It is interesting that the x-values in the curve of the structure «; with the highest content of defects are
very low (see Fig. 7.5). This is a basically new result obtained for the first time on an ethanol sample. A
very similar behavior of the thermal conductivity was observed previously on a sample of 1-butanol in its
exotic metastable so-called “glacial” state [15, 16] (see Fig. 7.6). The state (its nature has been discussed
much in literature [17-19]) was obtained from a supercooled liquid at 7' ~ 122 K. At low temperatures the
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thermal conductivity of “glacial” 1-butanol is dependent on temperature as 7% [16]. The highest x(7)
of the “glacial” 1-butanol state occurs at 7' = 51 K which is T}, of 1-butanol structural glass (Fig. 7.6).
Besides, kpmq, Of the “glacial” state is about 25% higher than k,,,, of 1-butanol structural glass. The
similarity of the thermal conductivities of “glacial” state of 1-butanol and ethanol obtained through the
solid-state RPC-FOC phase transition (Fig. 7.5, curve «;) suggests a common origin of both. It is likely
[15, 16] that the so-called “glacial” state is a mixture of two coexisting phases — nano-crystalline grains of
a stable crystal in a disordered phase.

7.4 Conclusions

The effect of annealing in the thermal conductivity of solid ethanol in the orientationally — ordered phase
has been observed in a wide range of temperatures. This phase was obtained as a result of a first — order
phase transition from an orientationally — disordered crystal of cubic structure. The temperature behavior
of the thermal conductivity of the sample obtained at T}, ;=109 K is similar to the dependence typical of
an imperfect fine grained crystal of 1-butanol in the so-called “glacial” state, which suggests their identical
origin. The thermal conductivity was observed to increase as the monoclinic lattice changed from a less
stable phase to a more stable one. The growth may be due to the improved quality of the completely
orientationally — ordered crystal.
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Abstract

Spectra of the cluster surface equilibrium fluctuations are treated by decomposition into the bulk and net capillary ones.
The bulk fluctuations without capillary ones are simulated by the surface of a cluster truncated by a sphere. The bulk
fluctuations spectrum is shown to be generated primarily by the discontinuity in spatial distribution of cluster internal
particles. The net capillary fluctuations slice spectrum is obtained in molecular dynamics simulation by subtraction
of the bulk fluctuations spectrum from the total one. This net spectrum is in the best agreement with a theoretical
estimation if we assume the bare surface tension to be independent of the wave number. The wave number cutoff is
brought in balance with the bare surface tension and excess surface area induced by the capillary fluctuations. It is
shown that the ratio of the ordinary surface tension to bare one can be considered as a universal constant independent of
the temperature and cluster size. Data obtained by molecular dynamics simulation are used to find the effective surface
tension for the capillary fluctuations, which characterizes the deviation of Fourier spectrum obtained in simulation from
the spectrum of macroscopic capillary waves. The variational method was used to recover this quantity from simulation
data. It is revealed that the effective surface tension is almost constant within a rather wide wavelength range.

8.1 Introduction

The capillary wave model [1, 2] (CWM) is now considered as a promising way of doing interface inves-
tigation, which can remove discrepancies between theory, experiment, and numerical simulation. Among
widely discussed items are, e.g., the problem of interface thickness divergence and the form of density
dependence on the coordinate normal to the interface. CWM considers an imaginary fluctuation surface
assigned to any instant configuration of molecules at the interface. Fluctuations of this surface are treated
in a macroscopic way using the classical capillary wave Hamiltonian. Unification of CWM, microscopic
definition of the fluctuation surface, and density functional theory is now in progress [3, 4].

In recent studies, attention was focused on the microscopic structure of the interfaces between liquid and
vapor or two immiscible liquids. Such studies assume numerical simulation by Monte Carlo [5] and molec-
ular dynamics (MD) methods [6, 7]. Microscopically defined fluctuation surface was treated by Tarazona
and Chacén [5] and Chacén et al. [8] for the liquid—vapor interface, and by Chowdhary and Ladanyi [6, 7]
for the liquid-liquid interface. These simulations revealed strong oscillations of the density defined relative
to the fluctuation surface. The same effect for water was displayed in Ref. [8]. The wave number spectrum
of capillary fluctuations showed relatively fast decay, and the effective bare surface tension seemed to in-
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crease substantially with the wave number [5]. Models for the interacting surfaces of immiscible liquids
and their wave number spectra led to the conclusion about the importance of both the bulk fluctuations,
which dominate in the short-wavelength spectral region, and a correct wave number cutoff criterion [7].
The importance of a correct identification of capillary and bulk fluctuations was discussed by Stillinger [9],
who proposed to introduce a subset of inherent structures and to define an intrinsic density profile free of
the capillary fluctuations.

Study of clusters is an independent field of research, which can represent a complementary method for
the investigation of liquid—vapor interface. The surface of a sufficiently large cluster is a good approxima-
tion to the flat interface; at the same time, variation of cluster radius allows investigation of the curvature
effect. The wave number and frequency Fourier spectra were calculated in MD simulation of the Lennard-
Jones clusters in Ref. [10], where the surface particles that mark the fluctuation surface were defined as
the most external cluster particles, which form percolating umbrellas over the internal particles [11]. The
main conclusion of this study, which we will refer to as the previous study, is a considerable discrepancy
between the calculated spectrum and predictions of the early version of CWM applied to liquid clusters
[12] both in the wave number and temperature spectral dependencies. However, theoretical analysis in the
previous study was restricted to an order of magnitude estimate of the spectral density. To our knowledge,
no analysis of the liquid cluster surface fluctuations was undertaken in the literature.

The objective of this paper is to give a detailed analysis and theoretical interpretation of the results
obtained in the previous study. The spectral densities calculated in this MD simulation are treated as a sum
of two components, the net capillary and bulk fluctuations. The latter are estimated using the procedure for
a free cluster surface applied for the clusters truncated by a sphere, which removes the surface and some
adjacent particles. Truncation is assumed to prepare a particle configuration with the surface particles most
closely approaching an ideal sphere undisturbed by the capillary fluctuations. Thus, we can associate such
configuration with the absence of capillary fluctuations and calculate the bulk fluctuations wave number
spectrum. This spectrum estimated using MD data can be reproduced to a good accuracy in a simple model
assuming random uniform spatial distribution of the internal (bulk) particles. Therefore, discontinuity of
cluster bulk rather than instantaneous density nonuniformity proves to be a reason for the bulk fluctuations.
Net capillary fluctuations spectrum is then obtained as a difference between the total and bulk spectrum. The
net spectrum associated with CWM is restricted by a short-wavelength cutoff that confines the curvature of
capillary fluctuation surface. Such cutoff turns out to be of the order of several interparticle distances and
is therefore larger than the cutoff of common occurrence.

To compare the CWM with modified cutoff and MD simulation results directly, a recalculation of the-
oretical 2D spherical spectra to one-dimensional slice spectra was performed. Here, net slice spectra were
calculated for individual spherical harmonics. The sum of all spectral amplitudes was found to be in a
reasonable agreement with net slice spectra obtained in MD simulation, which corroborates a theoretical
approach developed in this paper.

We introduce the effective surface tension that allows for a finite-width region of spectral amplitude
vanishing as a alternative to their cutoff. It appears that, at [ > A, the contribution of spherical harmonics
to the slice spectra drops abruptly. A direct restoration of 'y;ffl (1) from the cross section spectra is a typical
example of an ill-posed mathematical problem. To solve this problem, different trial functions for the
'ye_ffl (1) dependence, the values of which were best fitted using the data of molecular dynamics simulation,
were used. Results of calculations testify to the fact that, irrespective of the form of trial function, resultant
spectra qualitatively comply with the assumption of an abrupt vanishing of spectrum.

The paper is organized as follows. In Sec. 8.2, the bulk fluctuations are defined and determined from
MD data and theoretical considerations, in Sec. 8.3, the bare surface tension and short-wavelength cutoff de-
pendent on the excess surface area are discussed, and in Sec. 8.4, theoretical estimates for one-dimensional
slice spectra are obtained and compared with the spectra calculated using MD simulation. A smooth de-
pendence of the bare surface tension on the wavelength is treated in Sec. 8.5. The results are summarized
in Sec. 8.6.
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8.2 Bulk Fluctuations

In the present section, a method of capillary and bulk fluctuations decomposition is developed. In Sec-
tions 8.2-8.4, the presentation follows Ref. [13]. The system under consideration consists of an isolated
cluster in the state of unstable equilibrium with surrounding vapor of monomers (clusters in the vapor are
ignored). The system is characterized by the constant temperature 7' and vapor number density n,,. Such
system was simulated in the previous study using the (P, T')-ensemble method, in which the cluster under
investigation is situated close to the center of a spherical cell; the cell surface performs the function of
vapor particles generation and removal. The Lennard-Jones interaction potential between two particles has
the form

o(r) —ov(re), r<re,

0, r>Tre,

12 6
o(r) = de ( - %) ,

r r

8.1)

where r is the interparticle distance; 7. = 2.5a is the cutoff radius; € is the well depth; and a is the length

scale. In this paper, we use the MD units: 79 = a+/M /24¢ for the time (M is the particle mass); a for the

distance; a2 for the particle density; ¢ for the energy and temperature, and ¢/a? for the surface tension.
Calculation of the wave number spectra was performed in the previous study for the surface particles

confined within two parallel planes at the distance h/2 = 1/ 2\/§nz/ % from cluster center-of-mass each.
Here, ny is the number density of internal cluster particles, i.e., the bulk number density. We will call
such one-dimensional spectra the slice spectra. The definition of surface particles is given by Eq. (2) of
Ref. [10]. It is based on widely discussed assumption concerning the spatial homogeneity of a cluster (or
liquid slab in the simulation with a flat interface) and abrupt drop of particle number density at cluster
surface (see Refs. [10] and [11] and references therein). This implies existence of a single monolayer of the
surface particles that have a reduced number of nearest neighbors as compared to the internal particles. The
above-mentioned definition of these particle types postulates that for each internal particle of a sufficiently
large cluster, there exists at least one outermost surface particle, whose “umbrella” of the radius A covers
this particle. Note that such definition of the outermost layer of particles and resulting identification of the
fluctuation surface is qualitatively similar to that proposed by Stillinger [14]. The value h = 1/ \/gné/ 3
was selected to ensure the best fit of surface and internal particle distributions over the number of bonds to
respective Gaussian exponents in the expansion of total distribution in the pair of exponents. In the slice
snapshots like Fig. 4.3 in Ref. [15], the surface particles really seem to form a monolayer over the internal
particles. One can verify that small variations of & would not change this situation. However, a substantial
change leads to obvious surface layer distortions. Thus, the decrease in h depletes the monolayer (internal
particles take the place of surface ones); the increase of h results in the intrusions of surface particles in the
bulk of a cluster. In both cases, the distributions over number of bonds for both particle types deviate from
the Gaussian type. Therefore, an appropriate choice of the surface particles allows using them as pivots for
the fluctuation surface and its cross sections analyzed in the previous study.

To decompose the surface and bulk fluctuations, we will focus our attention on the latter and formulate
the procedure that makes it possible to estimate the bulk fluctuation spectrum. At the first step, we will
define a configuration with zero capillary fluctuation. It is natural to assume that for such configuration, any
thermodynamic potential quantity (in treated case, the Gibbs free energy) includes no term corresponding to
the fluctuations other than the ones that occur in the bulk. Therefore, we must construct such configuration
solely of internal particles. If all surface particles would lie on a spherical surface, the capillary fluctuations
were equal to zero identically. However, the probability to find such configuration is equal to zero. It is
then necessary to select a set of configurations in the vicinity of such improbable one (this conforms to the
idea of Ref. [9]). To make this selection usable for numerical simulation, we define a configuration with
no capillary fluctuation as the cluster truncated by a sphere with the radius R smaller than the minimum
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distance between a surface particle and the cluster center-of-mass. In other words, all the surface and some
internal particles at the distances larger than R are removed.

The slice spectra were calculated for truncated clusters following the method discussed in detail in
the previous study. We used also the cluster configurations obtained therein, which have been stored for
the runs at 7 = 0.75 and the clusters including initially g = 30000 particles. Truncation at R = 18.4
guaranteed that only the internal particles were retained; the cluster size was decreased down to 20000.
Then, the surface particles were identified and isolated for truncated clusters in the same way it was done
for the free surface (for truncated clusters, the result is naturally insensitive to the removal of virtual chains).
A slice was formed by the particles falling between two planes at the distance h = 0.6, with the cluster
center-of-mass at the half-distance.
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Figure 8.1: The slice snapshots of surface particles for the free surface (left) and truncated cluster (right) at g = 20000
and T' = 0.75.

Figure 8.1 presents snapshots of the surface particles for the free surface and the surface of a trun-
cated cluster. Long-wavelength fluctuations are recognizable on the free surface, and the amplitude of bulk
fluctuations with predominantly short wavelengths on the truncated surface is noticeably high.

The slice surface particles with polar coordinates (r;, ¢;) were considered as pivots for a continuous
periodical function P(¢), whose values are known at random points, P(p;) = ;. P(y) was resampled to
the analytical grid and then Fourier analyzed for different slices corresponding to cluster rotation relative to
the slice plane. Its squared spectral amplitude was averaged over the rotation angles and cluster configura-
tions to calculate the spectrum of bulk fluctuations Ry as a function of the mode number %£. Note that for
Ry, the convergence of averaging is much faster than that for the free surface. Variation in R in relatively
wide limits reveals scaling property of k£Rj, which is much more accurate than for the total spectrum (see
Fig. 4.8b of Ref. [15]). Given the temperature, k Ry, is a universal function of k/g.s, where g, is the average
number of surface particles in a slice. After scaling, respective dots almost coincide. The bulk fluctuation
spectrum scaled to the initial cluster size is shown in Fig. 8.2. At small k, Ry, varies slowly; at large k, Ry
vanishes due to finiteness of g.s.

It will be shown below that R can be calculated within a simple model. We will assume a random
uniform spatial distribution for all cluster particles and ignore correlations of their positions. Then ¢ is
uniformly distributed on the interval 0 < ¢ < 27, and the value of function P(¢), on R— A < P(y) < R,
where A is the distribution width. Hence, the probability to find a particle at the distance between 7 and
r + dr from the origin of the coordinate system, which is assumed to coincide with the cluster center-of-
mass, is

& R-A
pr(r)dr = (8.2)
0, 7<R—A or r>R,
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Figure 8.2: Bulk fluctuations spectra scaled to the cluster size g = 30000 at 7" = 0.75 calculated from MD simulation
data (truncated clusters, dots) and by Eqgs. (8.2) and (8.3) (line).

and the distribution for ¢ has similar form. The probability to find a surface particle in a given slice is
Des = h/ 2R < 1. If gs 1s the total number of surface particles, g.s = p.sgs coincides with the variance of
the number of surface particles in a slice g.;. Hence, the probability distribution to find g, surface particles
in a slice has the Gauss form

1 cs 705 2
pg(gcs) = Wexp [_ (g 2'{7(2 ) ] . (83)

An independent numerical simulation of the bulk fluctuations was performed as follows. First, the number
ges Was generated at random with probability distribution Eq. (8.3), where g.s = 76 was calculated from
MD data. Then g., pairs of polar coordinates were generated with distribution Eq. (8.2). The function
]3(90) obtained in such a way was resampled to an analytical grid and Fourier analyzed. Averaging over
106 realizations of this procedure yields a model bulk fluctuations spectrum shown in Fig. 8.2. In this
simulation, A was adjusted to fit the distribution obtained from the MD data; the best fit value proved
to be of the order of the distance between surface particles, A ~ QWR/ Jes- A good correlation between
independent estimations of Ry seen in Fig. 8.2 is evidence of the fact that the basic reason of the bulk
fluctuations treated in this paper is the discontinuity of cluster bulk.

For a crude estimation of Ry, we can assume that ]5(<p) has the uniform distribution, and distribution
Eq. (8.3) has a zero width, i.e., g.s = g.s. Then the bulk fluctuations are white noise, and R}, is constant in
the interval of mode numbers from 1 to g.s, which in this simplified case is the highest mode number. The
contribution of bulk fluctuations to the total fluctuation variance defining the interface width is then

g

2 JR—
b 2 12

DN | =

Jes _ 2

CcS A
Y Ry=? B _ A" (8.4)
k=1

Estimation Eq. (8.4) is indicative of the fact that o7 does not diverge both at small and large g. The scaling
law is obvious from Eq. (8.4):

kA2
6gcs

kR = kR; = (8.5)

i.e., kR, depends solely on k/g.s. Since g.s o< R, kR, is also scaled with k/R.
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As is seen in Fig. 8.2, the bulk fluctuations spectrum deviates from the white noise one. This is caused
by converting the random values of ¢ to analytical grid. To conserve the variance of original pivots, their
number must be less than that of points on the analytical grid (see the discussion in Sec. 8.4), whence it
follows that some values of p(gp) at neighboring grid points are equal. This implies a buildup of Ry, for
small k. If we did not ignore particle correlations, less number of P(ap) values would coincide, and Ry,
would be less different from white noise in the long-wavelength region. This clarifies the less pronounced
buildup in this region for R}, calculated from MD data.

In spite of the deviation of MD Ry, from the white noise distribution, its variance can be to high precision
approximated as follows [see Eq. (8.4)]:

kxx;ax

A? )
oh = R~y +0g7 (5.6)
k=1

where for T' = 0.75, A = 2.0 and 6 = —0.8; summation extends up to k = kpax, at which Ry vanishes;
this approximation is valid at g > 400. Equation (8.6) defines the contribution from bulk fluctuations to the
total interface variance. As regards the spectral density of net capillary fluctuations )y, one can write it in
the form

Qr =Sk — Ry, (8.7)

where Sy is the total spectral density.

8.3 Capillary Fluctuations

Consider the CWM for an isotropic cluster. We will use the formalism proposed first by Rayleigh [16]
for treatment of liquid drop oscillations. Since any real configuration includes the bulk fluctuations, a net
capillary fluctuation does not exist, and, therefore, it is impossible to formulate an appropriate microscopic
definition. We will treat the fluctuations not included in the set of bulk ones, which give rise to some
mesoscopic excess surface area, and call them the capillary fluctuations. According to CWM we write the
additional Gibbs free energy of their formation in the form

$ = AA = %/ IVer) 2 ds (8.8)
Q

where 7y, is the bare surface tension; A A is the excess surface area induced by a fluctuation. The integral
Eq. (8.8) is taken over the entire cluster equimolar surface 2 with the radius R, and &(r) is the position of
fluctuation surface relative to €2, so that

Q/dS:AmRQ, Q/g(r)dszo.

It is assumed that in the spherical coordinates (r, 9, ), the fluctuation surface is defined by the equation
r = R+ £V, p). Note that Eq. (8.8) implies that v, is independent of the wave vector (see Sec. 8.4) and
the fluctuation amplitude is small so that |VE&(Y, ¢)| < 1. In contrast to the previous study, we use 7o
instead of the ordinary surface tension +.

We expand &(¥, ) in spherical harmonics Y}, (9, ¢),

£, 9) =R amYim(¥, ¢), (8.9)
lm
where —1 < m < [, to derive

Yo R?
2

2
® = 7021% / IVEW, )]? sind didp =
Q

S aim* (1= 1)1 +2) . (8.10)
lm
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Note that if |a;,,| < 1, expansion Eq. (8.9) conserves the cluster volume,

/ d*r = (47/3)R?
|4

where V' is the volume bounded by the fluctuation surface » = r(¥, ¢); the momentum conservation
dictates that [ > 2.
The expression for average squared expansion amplitude follows from the equipartition theorem

2\ T
<|‘”m| > T R2(I-1)(1+2) @11

This means that <|alm|2> is independent of m, and Eq. (8.11) is actually the approximation of linear

independent modes. The latter is a consequence of the assumptions that |a;,,,| < 1 and 7 is independent
of [, m.
We average Eq. (8.10) to deduce the excess surface area

(@) R?
) == 5 2 (laml) (=D +2) . 8.12)

Substitution of Eq. (8.11) into Eq. (8.12) yields
(AA) = (T/290) (20 + 1),
l

which diverges at large [. We introduce the largest (cutoff) number [ = A to make (A A) finite:

2
:212 20 +1) ~ TAY , (8.13)

A
P 270

if A > 1. Since the cluster is isotropic, averaging Eq. (8.8) yields one more relation for (A A):

(AA) = %/<|V§(19, (p)|2> dS = 27 R2K? (8.14)

Q

where

(IVe@. @))

is the root-mean-square gradient of the capillary fluctuation surface. According to the previous study if we
exclude virtual chains of particles (overhangs), for which |V&(¥, )| 2 1, the remaining surface satisfies
the condition |VE(9, ¢)| < 1. Hence, one could expect that x was some constant of the order of unity
and that the ratio (AA) /47 R? = k2 /2 was independent of the temperature and cluster size. We compare
Egs. (8.13) and (8.14) to deduce the cutoff number

Y0
A =2Rk Y T (8.15)

It follows from the definition of the ordinary surface tension ~y, 47 R%y = 47 R?~yy+(AA) 0, and Eq. (8.14)
that vy is related to y as
2
o145 (8.16)
Yo 2
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Thus, the ratio /7 is a constant greater than unity (k% > 0). We substitute v, from Eq. (8.16) into
Eq. (8.15) to eventually derive

87y 1/2
AK)=RK | —5—= . 8.17
(w) = Rr {(2+n2)T} @-17)
The maximum wave number corresponding to cutoff Eq. (8.17)
A 8y 1/2
max — 5 — 7o T o\ 8.18
1 R " {(2 + /-;2)T} (8.18)

is for treated conditions several times smaller than that corresponding to the interparticle distance.
The contribution from the capillary fluctuations to the total interface variance is [see Ref. [12] and
Eq. (8.31)]

R? A 2
2\ 2+ROT  (2A —1)(2A +5)
o2 —4 §: 20+ 1) <|alm| >_ ] - . (8.19)

Since A < R o g'/3, 02 [Eq. (8.19)] diverges as In g, which is similar to the variance divergence of a flat
interface in the absence of gravity as the surface area is increased [2].

8.4 CWM Slice Spectra

An objective of this section is to calculate the slice spectra of net capillary fluctuations ) given its 2D spec-
trum [Eqgs. (8.11) and (8.17)] and to compare the result with the slice spectra obtained in MD simulation. A
single adjustable parameter in this calculation will be . The simplest way to do this is to create configura-
tions with the net capillary fluctuations in the form of individual spherical harmonics. As in the foregoing,
fluctuation modes are assumed to be independent. Therefore, each spherical harmonic with the numbers
I, m must contribute additively to the squared spectral amplitude of the slice mode with the number k and
can be treated separately.

We take an arbitrary configuration of particles stored during MD simulation corresponding to desired
cluster size and isolate the surface particles. Within the accuracy of our calculations, the result proved to be
fully insensitive to the choice of a concrete configuration because for each surface particle with the spherical
coordinates (r;, ¥;, @; ), we substitute r; for the coordinate of a capillary fluctuation in a special form. We
use the relation Y}, (9, ¢) oc P™(cosd) e™™¥, where P/™(cosd) is the Legendre function, to pass from
the complex Fourier series Eq. (8.9) to real one and to write the new coordinate r; as

T

i =R+ Ay | ———F7——=
" A\ TS0+ 2)

P (cosv;) cosmp; . (8.20)

Here, the normalization constant is

x —1/2
{ 2m [ [P/ (cosd))? sin ¥ d , m=0,
A = 0 (8.21)

n —1/2
{gf [P/ (cos )] 51n19d19} , m>0,
0

and we use the exact expressions for P/ (cos ) at] < 5orl = m [P}(cos¥) o sin' 9 ], and the asymptotic
representation

HrrL(COS 0) ~ SiIl_l/Q('lg) COS |:<l + ;) 9 —— + :| ) (822)
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for [ > 5 and [ # m. Note that mode Eq. (8.20) corresponds to the average squared amplitude

(laml?) = T/7R2 0= 1)1 +2).

which includes ~ rather than vy [see Eq. (8.11)] because the latter depends on yet unknown . However,
the problem linearity allows to correct this factor later.

For each surface particle configuration formed in such a way, we perform the slice Fourier analysis; i.e.,
we define a periodic function plm) (¢s) = r; and expand it in the Fourier series (for a detailed discussion,
see the previous study)

(1,m) Emax Emax
~ (% (,m) €m)
Plmig) = 20— 1y " coskp+ Y 5" sinky (8.23)
k=1 k=1

where k.« is the maximum mode number, at which @), is assumed to vanish. Then the cluster is rotated
around the Euler angles 1/, and -, and the contribution from all [ th spherical harmonics corresponding
to the case 79 = 7 to the slice spectrum mode with the number k is calculated by averaging over slice
amplitudes and summing over m:

R

m=0

8.24
(o) 0r 0 ®29

The rotation starts from random values of ¥); and 1), generated for each spherical harmonic to eliminate the
interference with zeros of spherical harmonics (result was found to be insensitive to these values). Hence,
in the approximation of modes linearity and independence, we arrive at the capillary fluctuations slice
spectrum

I€2 A(x) B
Qe=(1+5) 250, (8.25)
=2

where the factor in parenthesis corrects the replacement of vy by v in Eq. (8.11), and the cutoff number
A(k) is defined by Eq. (8.17).

We adjusted « to fit Qy, [Eq. (8.25)] to the net spectrum of capillary fluctuations obtained in MD simula-
tion. Calculations were performed for two temperatures (Fig. 8.3) at k = 0.548, which provided the best fit.
The slice widths h = 0.60 and 0.59 corresponded to the bulk liquid number densities n, = 0.76 and 0.80 at
T = 0.75 and 0.69, respectively. Figure 8.3 shows a fast decay of (), as k is increased. The spectral density
of bulk fluctuations exceeds Q) at k > kg, where the threshold value kg is noticeably smaller than k.. It
is noteworthy that for both temperatures at & < kg, Qr [Eq. (8.25)] was found to be almost independent of
the slice thickness as it was varied within 15%.

One can estimate () roughly assuming that the contribution from spherical harmonics with certain [ is
evenly distributed between slice modes with & < [ (then the cutoff for k is A, same as for [). In addition,
the harmonics with even [ contribute solely to {/2 even slice modes (even k), and the harmonics with odd
I contribute to 1/2 odd slice modes (odd k). If a fluctuation was formed by the harmonics with a certain
[ > 1, the surface variance would be

l

1 Sp(l) R? T T
— = — ~ . 8.26
2 2 47 m;l YR2(1-1)(1+2) 27yl (8.26)
Then it follows from Eqgs. (8.25) and (8.26) that
A

K2\ 2T 1 1 K\ T /1 1
Qk(H?)m?lle(H?)m(kl\)’ ©20
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Figure 8.3: Net slice spectra of the cluster capillary fluctuations for (a) g = 30000 and 7" = 0.75 and (b) g = 19300
and 7" = 0.69. Calculation by Eqs. (8.25) and (8.17) (solid line), rough estimation of Eq. (8.27) (dashed line), and
estimation from MD simulation data (solid circles). The bulk fluctuation spectra (open circles) are shown for reference.

where the factor 1/2 accounts for the summation over even or odd /.

As is seen in Fig. 8.3, estimation Eq. (8.27) is in reasonable agreement with the numerical calculation
of Qi [Eq. (8.25)] at £k < A. Vanishing of Eq. (8.27) at K = A arises from the neglect of the spherical
harmonics contribution to the slice modes with k£ > . This contribution is unavoidable under the conditions
that the ratio of spectral amplitudes at [ ~ 1 and the maximum [ is about 103. The low tail of capillary
fluctuations spectrum at k£ > A indicates the level of accuracy of the calculations including resampling
procedure and numerical Fourier analysis rather than any physical reality: though cutoff Eq. (8.17) excludes
capillary fluctuations at [ > A, it is hard to eliminate the effect of harmonics with [ < A on the modes with
k > A in slice spectra.
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The scaling law follows from Eq. (8.27):

kQr = = (1 - Ck) , (8.28)
Y0 Jes

where C' = Gos/A = (Th/4r2k)(T/my0)Y/2, T = gs972/3 =~ const, and r, = (3/4mn,)'/3. At fixed
temperature, kQ)y, is a function of a single quantity k/g.s. It follows from scaling law Eq. (8.5) and Eq. (8.7)
that the total slice spectral density kS, = kQr + kRj is also scaled, as revealed in the previous study.
For 1 < k < A, kQy ~ T/7vyo, which, accurate to the substitution of vy for ~, coincides with the
spectral density of capillary fluctuations of a flat liquid interface at zero gravity [2]. Hence, in this limit, the
difference between the cluster surface and a flat interface vanishes.

One can estimate the boundary k£ = k( between the small wave number region of capillary fluctuations
and the large wave number region of bulk fluctuations by the relation @, = Ry,. We derive the following
from Egs. (8.5) and (8.27)

-1
TyAZ 1
= — . .2
ko (6§csT + A) (8.29)

For Figs. 8.3(a) and 8.3(b) s = 76 and 66, respectively, and g., = Thg/3/2r;, oc g'/3 if h o ry;
corresponding ko [Eq. (8.29)] are equal to 21 and 19. This agrees with the results of numerical calculations
of Qr and Ry: ko = 25 and 21, respectively (Fig. 8.3). It is worth mentioning that, unlike A [Eq. (8.17)], ko
increases with the increase in temperature. However, these quantities are still not much different, A = 29
for both temperatures.

Since the cluster relaxation time is defined by the harmonics with [ = 2 and it is relatively long,
corresponding slice spectral densities S; may be in error for the smallest k. To inspect this possibility,
MD simulation of cluster evolution was performed once more for the same 7" = 0.75 and initial cluster
size ¢ = 30000 as in the previous study but for the vapor number density n,, = 0.01402, which was
adjusted so that the cluster was very close to equilibrium (simulation cell radius was increased up to 42).
Consequently, the cluster size did not change noticeably, and a single run was recorded in this simulation
with the total time of cluster evolution of 36000 that was considerably longer than in the previous simulation
(~ 7000). Cluster configurations from run start to the time of 8500 were ignored as nonequilibrium ones.
It was found that during the averaging procedure, Sy converged to the value of 0.7804 at h = 0.6, so that
previous simulation underestimated this quantity by nearly 10 percent. A new run was performed for the
lower temperature 7' = 0.69. For the cluster sizes, which varied from g = 20000 to 18700 during cluster
evolution, this temperature was somewhat higher than the melting one. At this temperature and cluster size,
the cluster is close to equilibrium with surrounding vapor if n,, = 0.00771. After the equilibration time of
10000, cluster configurations during the evolution time of 17500 were used to estimate the quantities Sk,
Ry, and Qi with h = 0.59. For both temperatures, when the slice thickness was varied, Si and Ry, changed
but their difference ) was almost independent of the thickness.

Figures 8.3(a) and 8.3(b) demonstrate a good correlation between the estimation from MD simulation
and calculation by Egs. (8.17) and (8.25). The oscillations of @y [Eq. (8.25)] at k& > 5 are caused by
the transfer from exact Legendre functions to their approximation [Eq. (8.22)]; insignificant discrepancies
at k > A are of no interest because of a minor role of the capillary fluctuations in this region. Similar
calculations were performed using the cluster configurations from the previous simulation for g = 3000
and 7" = 0.75 and 0.67. The same x = 0.548 provides the best fit to @ in these cases as well, whence
it follows that this value is independent of the cluster size (if the cluster is sufficiently large to isolate its
surface particles) and can be applied to a flat liquid—vapor interface. Moreover, the constancy of « is also
indicative of a nontrivial fact that the ratio v/~ is temperature independent.

Based on the results of previous and recent MD simulations discussed above, the total variance of the
cluster surface o2 defining the interface width was calculated (Fig. 8.4). This quantity can be evaluated by
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a direct calculation of the surface particles radial unweighted variance

1 & 1 & 2
o2={ = TZZ N - , (8.30)
<gs 1:21 s ;

where g, is the total number of cluster surface particles; averaging is performed over cluster configurations.
kmax

The second estimation comes from the relation 02 = (1/2) ) Sk. It can be seen that both estimates
k=1

are close. The direct estimate is insignificantly higher than spgctral one, probably, due to overestimated
unweighted large deviations and somewhat depressed short-wavelength region of slice spectra.
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Figure 8.4: Surface variance as a function of cluster size: direct calculation of the surface particles radial variance
(triangles), estimation by the slice spectral amplitudes (circles); theoretical estimations with [solid line, Egs. (8.6) and
(8.19)] and without the account of bulk fluctuations and bare surface tension [dashed line, Eq. (8.31)].

The surface variance can be analytically estimated using Eqgs. (8.6) and (8.19): 0% = o2 +02. Figure 8.4
demonstrates a good agreement with the results arising from MD simulation both in the slope of a curve
and its height. The slope is noticeably improved as compared to the early version of CWM [12], where

2 T (2A0 — 1)(2A0 + 5)

=1 Ay = 2.29"/3 8.31
4777 n 7 ) 0 g ) ( )

due to the difference between v and ~y, not taken into account in Eq. (8.31). The neglect of bulk fluctuations
results in the underestimation of the line height (Fig. 8.4).

It was noted in the foregoing that )y, is almost independent of simulation parameters, in particular, of
the slice width, at least, in the region of capillary fluctuations £ < A. However, the form of the spectrum
depends on the number of points of the analytical grid. If we adopt a certain definition of the surface
particles, a problem of the fluctuation surface determination arises. It has been proposed in Ref. [5] to find
a surface that includes the surface particles and has the minimum surface area. We have adopted other
definition: the fluctuation surface has the same variance as the surface particles. This definition makes it
possible to calculate straightforwardly one of the most important properties of the interface, its width. For
the sake of simplicity, consider one-dimensional slice spectra. Since the coordinates (r;, ;) of surface
particles form a random grid, the weighted variance is

2
1 Ges 1 Yes
2 ) _or V2 | ) — in )
o = <27r E (Pir1 — @i)r; [27T E (pit1 gDJ?”J| > ) (8.32)

i=1 i=1
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which includes two integral sums, and the surface particles are numbered counterclockwise. If we pass
on to the analytical grid, it is sufficient to select any constant difference between the points satisfying the
condition Ay < min{y;+1 — ¢; } to rewrite Eq. (8.32) in the form

1 2kmax 1 2kmax ?
2 2 _ } : .
o~ <2k E T o7 rj > , (8.33)
max ]:1 max J:1

where 2kmax = 27/ A is the number of analytical grid points and 7; = r;(¢;); ¢; is the random grid point
closest to the j-th point on the analytical grid. However, if Ay is too small the unphysical tail area of the
spectral density extends too much. An optimum value used in the previous and this study, which was found
to agree on the average with above-mentioned condition, was found to be ky,.x = 0.9g.s. The procedure of
the numerical Fourier analysis conserves the variance for each slice,

2
2kmax 2kmax 1 Fmax

! 2 1 (1.m)\ 2 @m)\ 2
a | T3 8.34
2kmax Jz::l T 2 ; i 2 ;; [(O‘k ) + (ﬂk ) } ) (8.34)

so that the spectral analysis performed in this paper ensures a correct width of the liquid—vapor interface.

8.5 Effective Surface Tension for Thermal Capillary Fluctuations

In previous discussion, the fluctuation spectrum was limited in the short-wavelength region by a cutoff.
This implies that the spectrum vanishes abruptly at [ = A. In this section, we consider a more realistic
situation, in which the bare surface tension vanishes in a finite region, i.e., it is a smooth function of /. This
discussion follows Ref. [19].

The objective of this study is to introduce and estimate the effective surface tension that can account for

the thermal fluctuation at the liquid-vapor interface. Assume that the average spectral amplitudes <|alm \2>
are independent of the number m, i.e., <|alm|2> = <|alo\2>. Then we can define the effective surface

tension e (1) as a coefficient that relates <|alm |2> to the same quantity <|dlm|2> calculated in the macro-
scopic capillary wave theory

<|&zml2> = <Idzol2> = & _11)([ ok (8.35)

so that
<|azo|2> =17 (1) <|dl()|2> . (8.36)

In the molecular dynamics simulation discussed in Sec. 8.4, slice spectra are determined. In the approx-
imation of linear non-interacting modes, the spectral amplitude of k-th mode for the slice spectrum can be
written as

R2 00 - . l
Qu =52 v O (Jawl*) D= sult.m), (8.37)
=2 m=—I
klnax
where s (I, m) are geometric coefficients, for which > sx (I, m) = 1. Thus, the effective surface tension
k=1

can be found by solution of the set of linear equations Eq. (8.37) with the coefficients

l

(R2/2m) (Jawol*) D" su(t, m) .

m=—1
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Figure 8.5: Effective surface tension for the two-parameter (/, 2) and three-parameter trial function (3, 4) at g = 30000,
T =0.75(1, 3)and g = 19400, T' = 0.69 (2, 4).

This system is characterized by the substantial peculiarity.

In a physically significant region 1 < k < A, the quantity () can be determined with a good accuracy
about several percent. However, in the range A < k < knax, capillary fluctuations are dominated by bulk
ones and decrease rapidly. Therefore, in this region, the accuracy of @y, values drops sharply. At k ~ kpax,
they are determined by computational noise rather than by capillary fluctuations. Due to the same reason,
matrix elements of the set of equations Eq. (8.37) are also rapidly diminished and poorly determined at
k > Aorl > A. Thus, the solution of this equation set turns out to be an ill-posed mathematical problem.
This is exhibited in the irregularity of direct numerical solution of Eq. (8.37): at [ ~ A, the accuracy of
solution is so low that it is determined only by the order of magnitude, while at [ > A, the ﬂwe}fl (1) values
corresponding to consecutive [ values become randomly scattered to a great extent differing in both the
order of magnitude and sign. Small change in () leads to large change in 'y'y;ffl (1). All of this makes a
direct solution meaningless.

If the pattern of solution is a priori known, e.g. from theoretical considerations, a variational method is
often used to solve ill-posed problems. According to this method, the function ~.(l) can be calculated by
minimization of the variance

2

A 9 Kmax 1
A? = kzzlkz [Qk - % > <|alo|2> > sl m)] : (8.38)

=2 m=—1

where ), is the spectral amplitude of k-th slice mode obtained from molecular dynamics simulation, f(I) =
v'y;ffl (1) is the trial function. The summation above is extended to k.« rather than to co because we assume

that <|alm|2> — 0ory; (1) = 0atl — cc.
Calculations performed with the two-parameter trial function,

FO) =y 'L =0(1—A)], (8.39)

and the three-parameter trial function (here, parameters are g, A, and \),

F() = 2% [1 — tanh (Z_AAH , (8.40)
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Figure 8.6: Cluster capillary fluctuations spectra at g = 19400, 7" = 0.69 (/) and g = 30000, T" = 0.75 (2). Dots
represent the simulation; lines, calculation with the three-parameter trial function.

show close results (see Table 8.1 and Fig. 8.5). The value of vy appears to be close to the theoretical value
of bare surface tension, which is smaller than the ordinary surface tension -y; A, to the cutoff for the number
[. The quantity X is the width of the region where %}fl(l) vanishes. Both trial functions provide a good
correspondence between theory and molecular dynamics calculations (Fig. 8.6).

Table 8.1: Optimum parameter values for different trial functions.

T g Number of parameters | v/v | A | A
0.75 | 30000 2 1.10 | 33 | -
0.75 | 30000 3 1.09 | 37 | 13
0.69 | 19400 2 1.08 | 31 | —
0.69 | 19400 3 1.13 | 34 | 20

The main conclusion of this study is the decrease of \ with the increase of temperature (with the de-
crease of cutoff A). Hence, at higher temperatures, vanishing of spectral amplitudes at large | is abrupt, as
it was assumed in the previous study.

8.6 Conclusions

In this paper, we have evaluated the contributions from capillary and bulk fluctuations to the total equi-
librium fluctuations of cluster surface. Since we see no way to expand each individual configuration of
the particles at the free cluster surface into the sum of certain bulk and capillary fluctuations, the configu-
rations with zero capillary or bulk fluctuations were created artificially. The case of the bulk fluctuations
was shown to be realized for clusters truncated by a spherical surface. The wave number spectrum of bulk
fluctuations proved to be generated primarily by the discontinuity of cluster particles spatial distribution,
which can be considered as a uniform random one. Since the spectrum of bulk fluctuations depends on the
ratio of the wave number to the radius of a truncated cluster, it can be calculated for any cluster size by
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scaling. Subtraction of the bulk fluctuations spectrum from the total equilibrium spectrum of a free surface
yields the net spectrum of capillary fluctuations. To evaluate the slice spectra obtained in MD simulation,
we constructed the surface particles configurations in the form of individual spherical harmonics with zero
bulk fluctuations. The slice spectra obtained for such configurations can be compared with the MD net
capillary spectra.

The one-dimensional Fourier analysis of the slice spectra seems to be the only appropriate one, in
contrast to a 2D analysis. In fact, the ratio of the average squared amplitude of a capillary fluctuation with

Il =A, R? <\aAm|2>, to the squared bulk liquid length scale 77 is

R (laaml®) /13 = T/5orA®
[Eq. (8.11)]. For T = 0.75, g = 30000, T/~or? ~ 3.91, and
A =29, R? <|aAm|2> /r2 ~4.6-1073 .

Apparently, amplitudes of the shortest-wavelength capillary fluctuations are too small to perform a 2D
spectral analysis numerically.

A comparison between the slice spectra of constructed capillary fluctuations and MD net spectra shows
that it is sufficient to introduce the bare surface tension 7, which is independent on the wave number, in
contrast to the effective surface tension introduced for the total spectrum [S]. This property of v, allows
one to deduce a balanced relation between the excess surface area induced by the capillary fluctuations
(rather than the bulk ones) and their equilibrium spectral amplitudes defined by the constant ratio 7y /7
[Eq. (8.16)]. Note that the excess surface area is also defined by the cutoff A, which is appreciably smaller
than A corresponding to the interparticle distance (for g = 30000, Ag/A =~ 2.4).

It was shown in this paper that the net capillary fluctuations spectrum obtained in MD simulation can be
fitted by the theory with a single adjustable parameter x = 0.548, which is independent of the cluster size
and temperature. Therefore, it can be considered as a universal one and it is suitable for a flat interface as
well. Apparently, this universality can be accounted for by formation of virtual chains, which can be treated
as the development of an instability of the fluctuation surface with a considerable curvature. Since s is of
the same order of magnitude as the maximum of |V£(9, ¢)|, we can suppose that virtual chains are formed
at those surface points, where |V&(V, ¢)| 2 1. Hence, the curvature radius must be of the same order
of magnitude as the interparticle distance, which is much smaller than the cluster radius if g > 1. This
explicates why « is independent of g. Formation of a virtual chain seems to be weakly dependent on the
temperature. The reason for this may be expanded temperature region of a transition between the compact
and virtual chain cluster structure [17]. It was noted in Ref. [18] that highly curved regions of the interface
detach clusters thus limiting its curvature. In Ref. [18], MD simulation was performed at high temperatures
not far from the critical point. Since our simulations correspond to temperatures closer to the melting point,
we can assume that in our case the curvature is limited due to formation of the virtual chains, which are in
turn the source of evaporating particles.

We have defined the effective surface tension as a function depending on [ that relates the fluctuation
amplitudes calculated with the ordinary surface tension to real amplitudes and determined this quantity
from the variational procedure. It proved to be qualitatively independent of the choice of trial function and
the number of variational parameters, and the values of these parameters are close not only for different trial
functions but also for different temperatures and cluster sizes. At small /, the relation vegr (1) = 70 < v was
obtained. Moreover, as in the theory with an abrupt cutoff, the 7/ ratio is nearly independent of cluster
size and temperature (Fig. 8.5). Thus, in this region, the amplitude of fluctuation modes is determined
by the quantity =y, whose value is smaller than the ordinary surface tension for a flat surface. At large [,
amplitudes decay, which, according to theory, is associated with the formation of virtual chains. In this
study, it was discovered that the width of decay region noticeably increases with a decrease in temperature.

The definition of surface particles used in this study, which made it possible to treat the fluctuation
surface, is most suitable at the temperatures not too far from the triple point. It is of special interest how
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close to the critical point this definition can be applied. As the temperature is increased from the triple point
to critical one, the ratio of liquid and vapor densities decreases, and the average interface width becomes
large compared to the molecular diameter. At sufficiently high temperatures, the concentration of small
clusters in the vapor phase may be comparable to that of monomers. One can speculate that such clusters
may be attached to the liquid—vapor interface rather than virtual chains, which may require a sophisticated
definition of the surface particles including the procedure of overhangs elimination. The situation may be
complicated by the fact that the contribution from overhangs to the average system density distribution is
no longer negligibly small. Strong nonideality of the vapor may force a reconsideration of the liquid phase
identification as well. On the other hand, it follows from Ref. [18] that the instantaneous interface density
profile is abrupt even at the temperatures compared to the critical one, albeit the surface form fluctuations
are great. Since our definition is based on this interface property, one can assume that it may be valid
for the most part of the interval between triple and critical temperatures. An investigation of the surface
fluctuations at high temperatures including the mechanism of overhangs formation will be addressed in the
future work.

References

1. J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1982).
2. F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).
3. T. Hiester, S. Dietrich, and K. Mecke, J. Chem. Phys. 125, 184701 (2006).
4. P. Tarazona, R. Checa and E. Chacén, Phys. Rev. Lett. 99, 196101 (2007).
5. P. Tarazona and E. Chacén, Phys. Rev. B 70, 235407 (2004).
6. J. Chowdhary and B. M. Ladanyi, J. Phys. Chem. B 110, 15442 (2006).
7. J. Chowdhary and B. M. Ladanyi, Phys. Rev. E 77, 031609 (2008).
8. E. Chacén, P. Tarazona, and J. Alejandre, J. Chem. Phys. 125, 014709 (2006).
9. F. H. Stillinger, J. Chem. Phys. 128, 204705 (2008).
10. D. I. Zhukhovitskii, J. Chem. Phys. 125, 234701 (2006).
11. D.I. Zhukhovitskii, J. Exp. Theor. Phys. 94, 336 (2002).
12. N. Pavloff and C. Schmit, Phys. Rev. B 58, 4942 (1998).
13. D. I. Zhukhovitskii, J. Chem. Phys. 129, 194511 (2008).
14. F. H. Stillinger, J. Chem. Phys. 76, 1087 (1982).

15. D. L. Zhukhovitskii, Nanoscale Structure of the Liquid—Gas Interphase Surface and the Capillary Fluctuations,
in: Nucleation Theory and Applications, J. W. P. Schmelzer, G. Ropke, and V. B. Priezzhev, Eds. Dubna, JINR,
2008, p.17.

16. L. Rayleigh, Proc. R. Soc. London 29, 71 (1879).
17. D. 1. Zhukhovitskii, J. Chem. Phys. 110, 7770 (1999).

18. S. I. Anisimov and V. V. Zhakhovskii, Pis’ma Zh. Eksp. Teor. Fiz. 57, 91 (1993); V. V. Zhakhovskii and S. I.
Anisimov, JETP 84, 734 (1997).

19. D. I. Zhukhovitskii, Colloid Journal 72, 188 (2010).






9 Charging of Small Particles in Ionized Gases
Boris M. Smirnov

Joint Institute for High Temperatures, Russian Academy of Sciences,
Izhorskaya 13/19, Moscow 125412, Russia

Man sollte nie soviel zu tun haben,
dass man zum Nachdenken keine Zeit mehr hat.

Georg Christoph Lichtenberg

Abstract

Charging of a particle located in an ionized gas consisting of an atomic gas with an admixture of electrons and ions is
considered under various conditions. The particle charge and a self-consistent particle field depend on the parameters
of the charging process.

9.1 Introduction

When a small particle is located in an ionized gas, plasma electrons and ions attach to the particle and
later recombine on its surface. Due to attachment processes, the particle becomes charged and creates
with a surrounding ionized gas a self-consistent electric field that influences the process of electron and ion
attachment. As a result of this process, a small particle becomes a sink for atomic charged particles of the
ionized gas. The principal results for this problem were obtained half a century ago and are the basis of the
contemporary understanding of this problem. But contemporary studies of new physical objects or other
aspects of known objects leads to a new glance on some specific features of the general problem. The goal
of this paper is to combine the old principal solutions for charging of a small particle in an ionized gas with
simple models and practical algorithms for specific conditions of this process.

Charged particles are some of the components of a dusty plasma [1, 2, 3, 4, 5, 6, 7]. The self-consistent
field is created around the particle due to surrounding electrons and ions which interact with the particle.
It is significant that electrons and ions attach to the particle surface, and their subsequent recombination
proceeds onto the particle surface. Due to absorption of electrons and ions by the particle surface the
screening of the particle field by electrons and ions differs from the Debye screening [8, 9]. Our goal is
to analyze the self-consistent field near a particle located in an ionized gas that consists of atoms with a
small admixture of electrons and ions. Simultaneously this analysis allows one to determine the particle
charge and the radius of action of the particle field that follows from the equilibrium of electron and ion
currents towards the particle surface. Of course, the character of this equilibrium depends on parameters of
the particle and ionized gas, and we consider various conditions for this equilibrium.

9.2 Particle Charging in a Dense Buffer Gas with Rareness Plasma

Modeling a small particle located in an ionized gas as a spherical particle of radius r,, we use the following
criterion for a dense buffer gas

To > A, 9.1
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where A is the mean free path of buffer gas atoms. In characterizing the drift of electrons in a buffer gas by
the diffusion coefficient D, and the mobility K. of electrons, we have for the rate J.(R) of intersection a
sphere of a radius R by electrons

dN.

J. = 41 R? (—DedR

- weNe> y we = KK, , 9.2)
where N, (R) is the electron number density at a distance R from the particle center, w, is the electron drift
velocity, and E(R) is the electric field strength on this distance R from the charged particle, that is directed
opposite to the electron current. The minus sign in the second term accounts for an opposite direction of
the electron flux and electric field strength. Within the framework of the Fuks theory [10] we assume the
electric field strength to be relatively small, so that the electron drift velocity is proportional to the electric
field strength and ignore a screening of the particle field by an ionized gas, so that the electric field strength
is determined by the Coulomb field of the negatively charged particle
Ze
E = R 9.3)
where —Z is the particle charge in units of electron charges (Z > 0).
Since formation and recombination of electrons and ions is absent near the particle, Eq. (9.2) may be
considered as the equation for the number density of electrons [V, that has the form (with accounting for
Eq. (9.3))

9.4

2
J. = 4nD, <dN Ze Ne> ’

di T

where we used the Einstein relation [11, 12] between the diffusion coefficient and mobility of electrons in
a gas

K, = , 9.5)

with the electron temperature 7. Solving this equation under the condition N,(r,) = 0 and introducing the
reduced potential energy of an electron in the particle field u(R) = Ze? /RT, we obtain

dR' , J.T Ze?  Ze?
Ne(R) = 47TD/ 7 xp [u(R) — u(R)] = W[l‘em(m‘m)]-@'@

Using another boundary condition far from the particle N.(oco) = N,, we obtain the Fuks formula [10]
for the rate of electron attachment to a particle of a negative charge

47D N, 7 e>
T {exp (:%f) — 1}

From this relation one can find the rate of attachment of positive ions to a particle by replacing Z7 — —Z
and the electron parameters by the ion ones. This operation gives

Je =

9.7

4nDy N, Ze?
Ji = T4 loae . 9.8)

T [1 —exp( T)}

The equilibrium particle charge follows from the equality of electron and ion current to the particle surface

rod = K,
62 an7+ 5 (99)

7 =
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where we assume the particle to be negatively charged and the electron and ion temperatures to be identical.
Since we assume that attachment of an individual electron or ion to the particle surface does not influence
the character of electron and ion motion near the particle, the above consideration requires the fulfillment
of following criterion

Z>1. (9.10)

In addition, the used assumption of a weak screening of the particle field by a surrounding plasma holds
true under the criterion

DS, ©.11)

where rp is the Debye-Hiickel radius [8, 9] for an ionized gas.
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Figure 9.1: From left to right: The reduced number density of electrons ne = N./N, as a function of u at u, = 4,
o = 6 and the reduced number density of ions ny = N4 /N, at u, = 4, uo = 6.

We give also the limiting cases of the Fuks formulas Egs. (9.7) and (9.8) for the total flux of atomic
charged particles to the surface of a cluster or small macroscopic particle. In the limiting case of a neutral
particle Z — 0 the Fuks formulas Eqgs. (9.7) and (9.8) are converted into the Smoluchowski equation [13]

J, = 47D, Nor, . (9.12)

In the case of a large particle charge Ze?/(r,T) > 1 for an attractive interaction potential (a particle and
ion have charges of opposite signs) Eq. (9.8) is transformed into the Langevin formula [14]

_ AnZe?N,D.y

J
+ T

=4nZeK | N, . (9.13)

Let us analyze, now, some specific aspects of particle charging. For this purpose, we rewrite the space
distribution for the number densities of electrons N, and ions IV; near the particle in terms of the reduced
potential energy of an electron in the particle field, v = u(R)
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where u, = u(r,). Fig. 9.1 illustrates the dependencies given by Eq. (9.14) at some values of u,. Note that
for a plasma consisting of electrons and ions u, > 1 because K. > K_ . One can see that at low values of
u

Ny~N,, N.=N,(1-u). (9.15)

From this condition it follows that only electrons give a contribution to screening of the particle field.
Let us consider the character of particle field screening by a surrounding plasma. Poisson’s equation

_ 1 d(Ru) _ 47e?[N4(R) — N_(R)|

Au(R) = 7oAl - T (9.16)
at low u takes the form
2
dBu) _ RulR) 9.17)

dR2 2

where the Debye-Hiickel radius rp is determined by electrons and is given by

[T
rp = W . (918)

Correspondingly, the electric potential of the particle ¢ = uT'/e has the form

¢(R) = Ze exp (—R) . 9.19)

From this relation, one can evaluate the screening charge AZ from the plasma around the particle when the
criterion Eq. (9.11) holds true

AZ = / 4TR*dR(Ny — N_) = / 4rR*dRN,u = 7 , (9.20)

where we use Eq. (9.19) for the particle electric potential and assume that the main contribution to this
integral is determined by large distances from the particle R ~ rp > 7r,. Thus, the shielding charge
compensates the particle charge.

Let us define the radius of action [ of the particle field in a plasma such that the particle interaction
energy with electrons or ions is comparable to their thermal energy, i.e., u(l) = 1. Since u(R) = Ze?/RT
and the particle charge is given by Eq. (9.9), we have

K
l=7,In (Kj-> , 9.21)

and [ exceeds the particle radius 7,,.

The Fuks theory relates to a dense buffer gas Eq. (9.1) under criteria where the particle charge is large
Eq. (9.10), the electron 7, and ion T; temperatures are identical, and the plasma density is small according
to the criterion Eq. (9.11). One can generalize the Fuks formula Eq. (9.9) for the particle charge to the
case where the Maxwell energy distributions of electrons and ions hold true, but the electron 7, and ion 75
temperatures are different. Because the expressions for electron Eq. (9.7) and ion Eq. (9.8) fluxes on the
particle surface are independent, these formulas are conserved for different electron and ion temperatures,
and then from their equality we have for the particle charge [15, 16]

role | K_(T.)
= n .
> K (T3)
If the energy distribution function differs from the Maxwell one, in accordance with derivation of

Eq. (9.7) the value T, = eD,. /K, is used as the electron temperature [15, 16]. Note that the Fuks theory is
based also on the linear dependence of the electron and ion drift velocities on the electric field strength.

(9.22)
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9.3 Particle Charging in Rareness Gas Discharge Plasma

If the particle is located in a gas discharge plasma, simultaneous action of an external electric field of gas
discharge and the particle field results in a complex character of attachment of electrons and ions to the
particle. In particular, Fig. 9.2 gives the electric potential

Ze
= F = 9.23
© z+ o (9.23)
that is created by a discharge electric field of strength E' and by a particle of charge Z. Here the origin is
taken at the particle center, and x is the direction along the discharge electric field. As is seen, equipotential
curves are closed at distances from the particle below 71, where

o= ,/% . (9.24)

One can see that the problem of particle charging in a gas discharge plasma may be reduced to the Fuks
theory of particle charging if the criterion r, < r; holds true. In this case it is necessary to take into account
the real dependence w,(E) for the drift velocity of electrons on the electric field strength in high electric
fields.

\\

]

10

A\

. .

Figure 9.2: Lines of identical electron potentials in the plane passed through the particle center if an electron is located
in the Coulomb center of a charged particle and constant electric field, the length units are such that r1 = \/ze/E = 4.

Below for definiteness we consider the case of a helium plasma of a high electric field strength, so that
the typical electron energy exceeds significantly the thermal energy of atoms and ions. But this energy
is not so high in order to be ignored by ionization processes. Because of small exchange by energy in
elastic electron-atomic collisions, the thermal energy of ions is close to the thermal energy of the atoms
in a wide range of electric field strengths where a typical electron energy exceeds those significantly [17].
Below we consider this range of electric field strengths and assume the diffusion cross section of electron-
atom collisions to be independent of the collision energy, as it is found in the helium case. Then the
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electron distribution function in a range of electric field strengths under consideration is determined by the
Dryvesteyn formula [18, 19], that leads to the following formulas for the electron drift velocity w. and its
diffusion coefficient (for example [20])

M\ Y4 EX A4 [eBX
D, = 0.29 () M EL D we =090 (m ) A AT, (9.25)
Me Me M Me

where A = 1/(N,0*) is the mean free path for electrons, so that o* is the diffusion cross section of electron-
atom scattering, m. and M are the electron and atom masses, 7" is the atomic temperature. In the helium
case (0% ~ 6 A2, M /me = 7700) these relations have the form

D, =270 BN Z 0007 [EA = Do ogy (9.26)

Me Me We

We have now another dependence on the particle electric field strength for the electron drift velocity
and electron diffusion coefficient as compared to those obtained in the Fuks case, and hence we solve
once more the transport equation Eq. (9.2) as the balance equation for the electron number density at other
dependencies w.(E) and D, (FE). Taking

Z
r €1y = /fe 7 9.27)

where F is the electric field strength far from the particle, the rate of electron attachment to the particle
surface is given by

dN,
“dR
Considering this relation as an equation for the electron number density, we use the above dependence of
the electron diffusion coefficient D, and the electron drift velocity w,

ZQ 2 2
De:DO\/1+R—€2=DO 1+%, We = W 1+%, (9.29)

where D, and w, are the electron diffusion coefficient and electron drift velocity of electrons in a buffer
gas far from the particle. In the range R < 7 the expression for the electron attachment rate has the form

/ 2 dN, N,
L =4rR%4 /1 iDO _WVe | Ve .
Jo =4mR +R2 IR + I (9.30)

where a = D, /w, = 28\. Solution of this equation for the case 1 > a > r, gives

R
Je R dR’ R Je R
Ne(R) = =7 V[ e (- )~ = m(a/r)exp (), 931
) 47fDoeXp(a>/R' r%+(R’)2eXp( a> irD, n(a/r)exp<a> 3D

To

J.=-D +w,N, . (9.28)

and this solution holds true at R < r;, whereas the minus sign means that the electron flux is directed to
the particle. In this case we have
47 DO’I’l N, 0
Jo = ——F—"F—
In(a/r,)
The particle charge Z follows from equality of rates of electron and ion attachment to the particle, where

the latter is given by the Langevin formula Eq. (9.13). It is convenient to use this equality as an equation
for 1 = \/Ze/E that has the form

exp(—R/a) , r1>>R>a. 9.32)

1 1 D,
— — R = . 9.33
a P ( a ) EK.aln(a/r,)’ nsa ©-33)
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Table 9.1: Parameters of a gas discharge helium plasma and particle charging in it.

E/N, Td | T.;, eV | & eV | r, pm | Z, 10
1 0.46 0.61 52 5.1
2 0.92 1.22 48 8.6
4 1.85 243 46 16
6 2.78 3.65 41 19

Note that the particle charge depends weakly on the particle radius r, that is located in arange a > r, > A.

Table 9.1 contains parameters of particle charging under certain conditions, namely, the pressure p =
1 atm that gives for the mean free path A = 0.6, the particle radius is r, = 1pum, that gives a = 17um.
Table 9.1 contains the effective temperature T¢ ¢ of electrons and the electron average energy € far from the
particle that are given by the formulas

D.E M M
T.p === —0.325 eEX,  E=0427)] —eE\. (9.34)
me

We Me

The data of Table 9.1 correspond to the criterion
rL>a>r, > . (9.35)

Though this sequence of the size parameters holds true, the accuracy of the formulas used is restricted
and Eq. (9.33) gives only rough estimates for the particle charge. Note that the particle charge according
to Table 9.1 data is approximately by 30 times larger than that according to Eq. (9.9). This shows that the
presence of an electric field in an ionized gas can increase significantly the charge of a particle located in
this gas. We also note that even in a narrow range of parameters Eq. (9.35) the numerical values of Table 9.1
require the absence of ionization processes near the particle while a large particle charge corresponds also
high electric field near the particle, i.e. the above results transfer the tendency in the influence of an external
electric field on the value of the particle charge.

9.4 Particle Charging in a Dense Plasma and Double Layer of Gas
Discharge

In considering the particle charging in a dense plasma where the criterion Eq. (9.11) does not hold, we
assume the criteria

To >TD , rp > A\ (9.36)

to be fulfilled and use firstly Eqgs. (9.14) for the electron and ion number densities as an approximation.
Then the relative difference of the number densities of ions and electrons is given by

Ny(R) — Ne(R)  [1—exp(u—u)][1 — exp(—u)]

n(u) = N o) , (9.37)

and Fig. 9.3 gives the dependence n(u) that is symmetric with respect to the transformation v — wu, — u
and has the maximum at v = w, /2, where it is equal to

1-— exp(_uo/2)

= T oxp(—ug2) -39

nmaz

As is seen, n(u) < 1, and at low u we have n(u) = u.
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Figure 9.3: The reduced difference of the number density of electrons n(u) = (N4 — N¢)/N, for u, = 2 (1) and
Uy = 2 (2).

Let us refuse from the criterion Eq. (9.11) of a low density of charged atomic particles. Approximating
the number densities of electrons and ions by Eq. (9.37), we obtain the Poisson equation as earlier in the
form

d*(Ru)  Ru(R)

= 9.39
dR? TQD ’ ( )
and its solution is
ze R
= = - 40
() Rexp( rD) : (9.40)

where z is an effective particle charge shielded by ions, and z < Z, while if the criterion Eq. (9.11) holds
true, z = Z.

One can apply the above results to the layer near the walls of the gas discharge chamber where the
positive column is located. In this case electrons and ions of the gas discharge plasma attach to the walls and
transfer them the charge, whereas the plasma far from the walls is quasi-neutral, and the criterion Eq. (9.36)
holds true. Using Eqs. (9.37) for the number densities of electrons and ions and assuming u, > 1, one can
obtain that the relation N, = N, is violated only close to the particle surface. Using this fact in the Poisson
equation, we write it in the form

d*u N, z

— =1-— = — 9.41

d.’IJ2 N, o ’ t D ’ ( )
where z is the distance from the walls, and the Debye-Hiickel radius is given by Eq. (9.18). In this case the
walls are charged negatively, so that this field creates the electric field that prevents attachment of electrons
to the walls and equalizes the electron and ion currents toward the walls. The reduced electric potential is
given by Eq. (9.21) if the electric potential is zero far from the walls. As a result, we have the following
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equation for the reduced electric field strength

d*>u exp(u) —1
@_W7 U(OO)—O, U(O)—Uo—ln|:

Ke(Te) ] (9.42)

K. (T)

Let us decrease the order of Eq. (9.41) by multiplication of this equation by du/dx and integration the
equation under the boundary du/dz(x = co) = 0. We obtain

du _ [2(e* —u)

=4/ —FF. 9.43

dx eto —1 ( )
From this we have for the electric field strength E, at the walls
T. du T.V?2 U — 1 T.V?2

__Tedw_ Tev2 [y = V2w, (9.44)

erp dx erp elo — 1 erp

Under real conditions u, > 1 we have f(u,) ~ 1. Indeed, f(2) = 0.92, f(3) = 0.95, f(4) = 0.97.
Therefore in reality we have for the electric field strength E, at the walls
Tev2
E,=— V2 . (9.45)

erp

9.5 Particle Charging in Rareness Ionized Gas with Free Ions

Particle charging in a rareness ionized gas corresponds to the criterion
A1, (9.46)

where [ is a radius of action of the particle field, and this criterion is opposite with respect to the criterion
Eq. (9.1). Let us assume that positive ions screen the negative particle charge. Defining by U(R) the
potential energy of a self-consistent field that is established in the course of ion flight in the particle field,
we below determine this potential that acts on positive ions. In determination of this self-consistent field,
we go over from dynamics of ion motion in the particle field to statistical mechanics on the basis of the
ergodic theorem [21, 22] that gives the space distribution function [9, 23] of free ions in the particle field.
In this transfer we assume the probability dP; of ion location in a given space region to be proportional to
a time range dt during which a given ion is located in this space region. Correspondingly, the ion number
density is proportional to the above probability N;(R) « dP;. In turn, a time range d¢ for ion location in a
space region of distance between R and R 4 dR from the particle follows from the equation of motion [24]
dR dR

dt = — = 9.47
t VR U\/l—pQ/RQ—U(R)/e, ( )

where vg(R) is the normal velocity component of an ion at a distance R from the particle, v is the ion
velocity far from the particle, ¢ = m;v?/2 is the ion kinetic energy far from the particle, so that m; is the
ion mass, and p is the impact parameter of collision.

On the other hand, we have the ion number density N;(R) at a distance R from the particle as

J pdpdP;
ATR2dR

Normalizing this relation such that in the absence of interaction the ion number density is equal to the ion
number density N, far from the particle, we have

N; (9.48)

p(R)
pdp

/ / 2 U(R)
0 1_%_%

(9.49)
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where for free ion motion U (R) = 0 the impact parameter of ion-particle collision is p(R) = R if R is the
distance of closest approach.

Let us divide the ion trajectories into two groups, so that the first group includes the trajectories with ion
capture by the particle p < p., where p,. is the impact parameter of collision above which the ion-particle
contact is impossible. This impact parameter of ion capture in the self-consistent field with the particle
radius 7, as the distance of closest approach is given by [24]

p? =12 {1 — U(;“o)] . (9.50)

If an ion moves along a trajectory of the second group, it goes to infinity after approach to the particle.
Summarizing both types of trajectories in the ion number density, we obtain Eq. (9.49) in the form [25]

9.51)

Averaging on the Maxwell distribution function of ions

2e1/2 €
f(€) = NO\/,TTTZ_S/Q exp <_E> y (952)

we obtain for the ion number density in the range of strong ion-particle interaction [25]

NAR) = N, Wﬁfﬁ)'* \/|U<R>—Wthgro>|r3/R2 V@IS T. 053

We are guided in this formula by ion-particle attraction.

We now determine the potential energy U (R) for a self-consistent field that is created by the particle
charge and is screened by free ions. The particle has a negative charge Z such that |Z|e?/r, > T;.
Therefore the ion number density in the region of strong ion attraction is N; > N,, and because the
electron number density in this region, V., electrons do not take part in screening the particle field, and
hence we below neglect the presence of electrons in a region of strong ion-particle interaction and assume
that the radius of action of a self-consistent field [ exceeds the particle radius (I > 7).

Let us introduce a current charge z(R) inside the sphere of a radius R that is the sum of the particle
charge and a charge of ions located inside this sphere. According to the Gauss theorem [26, 27] we have

dz 41U (R)|
= = —4A7R?*- N;(R) = —47R* - Ny | ——* 54
p i(R) R o > 9.54)

where z(r,) = |Z| and we restricted by a region R >> r, in Eq. (9.53). The potential energy U(R) of the

self-consistent field is

2(R)e?
R 9

U(R) = / E(R)dR ~ (9.55)
R

and the used simplification leads to an error AU in the potential energy that may be determined in the
following order of the perturbation theory.

We give in Fig. 9.4 the ratio of the accurate value in the right hand side of the equation for z(R) to its
approximated value depending on a distance R from the particle and will use below its approximated value.
Then the equation for a current charge z(R) is

dz 4ze?
—= = _47R? N,
dR R TR’

(9.56)
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and has the following solution

R\ %/2
1= (>
l

where R, = |Z|e?/T;, and R, >> r,. Note that according to the derivation of this formula, it holds true
until |[U(R)| > T; and if this criterion violates, we use the above formulas as an approximation.

2
9.57)
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Figure 9.4: The correction to the simplified potential energy U(R) = z(R)e?/R of self-consistent field leads to a

replacement of this potential ener the value — = [ ze . Dark triangles relate to shieldin,
pl f this potential energy by the value U(R) — AU = [ ze*dR/R?. Dark triangles rel hielding by
R

free ions, whereas open triangles correspond to screening of the particle charge by trapped ions.

In determination the particle charge Z, we assume that each contact of an ion or electron with the
particle surface leads to charge transfer and take into account that electron and ion currents to the particle
surface are originated in a region with a weak particle field. Then we have for the rate of ion .J; and electron
J. attachment to the particle surface [24]

8T, Ze? ST, Ze?
Jo= Ny B0 (4 12 mr?, Jo=No/ 712 exp _1Zle 7 (9.58)
™m; rol; TTMe Tole

where N, is the number density of electrons and ions far from the particle, T;, T, are the ion and electron
temperatures correspondingly, m., m; are the electron and ion masses. Equalizing the rates of ion and
electron attachment to the particle surface and introducing the parameter = = | Z|e?/(r,T.), we obtain

1 Temi Te
=1 —In(1 — ] . 9.59
z=3ln o n( —HCTi) (9.59)

Taking xT, > T;, we have the following equation for x [28]

p = S L (9.60)

n .
2
2 x?Tem,

In particular, for an example of a gas discharge argon plasma with the parameters 7, = 1 eV and T; =
400K Eq. (9.60) gives x = 2.86 or |Z|/r, = 2.0 nm~!. Note that we are guided by a large particle
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charge |Z] > 1, so that attachment of one electron or ion does not influence on the subsequent process of
attachment of electrons and ions. For the above example this corresponds to 7, > 0.5nm. We note also that
Egs. (9.59) and (9.60) require that the potential energy of an electron on the particle surface is | Z|e?/r,.
This holds true if the radius of action of the particle field, [, exceeds the particle radius 7.

The above consideration is based on the criterion Eq. (9.46) that has the form

Nylo* < 1, 9.61)

where o* is diffusion ion-atom cross section of scattering that is assumed to be independent of the collision
velocity. If an atomic ion is located in a parent gas, the diffusion cross section of ion-atom scattering is
expressed through the cross section o,..s of ion-atom resonant charge exchange as o* = 20,5 [29], and the
criterion Eq. (9.46) takes the form

OIN 0 res < 1. 9.62)

In particular, the cross section of resonant charge exchange at the collision energy in the laboratory frame
of reference 0.01 eV is equal to 0,5 = 83A2 [30], and the regime under consideration is realized at the
pressure p < 0.1 Torr, if the particle radius is 7, = 1um and the ion temperature is comparable to the
room one.

One can see that criteria Egs. (9.1) and (9.46) relates to two opposite regimes of particle screening in
an ionized gas. Note that in reality [ > r, and, in particular, for the above example of the argon plasma
with parameters T, = 1 eV, T; = 400K, r, = 1 ym and |Z| = 2000 we have | = 90um and | = 36um
for N, = 10°cm ™3 and N, = 10'%cm~3 correspondingly. In addition, the cross section of electron-atom
scattering at low energies is small compared to the ion-atom cross section of scattering. For example, in the
helium case the electron-atom diffusion cross section lies in the range of 5 — 7 A2, while the cross section
of resonant charge exchange at the ion energy of 0.01eV is 43 A2. From this it follows that there is a large
range of particle sizes between the cases given by Egs. (9.1) and (9.46).

9.6 Particle Charging in Rareness Ionized Gas with Trapped Ions

Along with free ions, trapped ions, i.e. captured in a closed orbit, may be responsible for particle screening
[31]. These ions are formed as a result of the charge exchange process in the particle field, where a formed
atom transfers its energy to a formed ion, and the latter occupies a closed orbit. Though the probability of
resonant charge exchange is small for an ion propagated through a region of particle field action, this small
probability is compensated by a large lifetime of a trapped ion captured in a closed orbit. The trajectories
of trapped ions are different for the Coulomb particle field and a screening Coulomb field [24, 32], as it is
demonstrated in Fig. 9.5.
The role of the captured ions in screening of the particle charge was studied widely, in particular, in
[1, 33, 34, 35, 36, 37, 38, 39, 40, 41]. We below represent a simple and practical version [25] with
using that the cross section 0,5 of resonant charge exchange is independent of the collision energy and
exceeds significantly that for elastic ion-atom scattering; as a result, colliding particles in the resonant
charge exchange process are moving along straightforward trajectories [42, 43] (the relay-race character of
charge transfer). Accounting for these facts allows us to restrict a number of parameters that determine the
ion capture in a closed orbit as it is given in Fig. 9.6. We below determine formation of trapped ions in
appropriate range of parameters and spread the results as a model in the other parameter range.
We use the criterion
|Z]e?
R, = T >, (9.63)
and take into account that a captured ion may become free if it is located near the boundary of particle
field action, i.e. if R ~ [, whereas ions captured at distances R > /7, R, are moving along stable closed
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Figure 9.5: The trajectories of the trapped ions captured on the closed orbit in the Coulomb center (left) and the
screened Coulomb center (right). 1 is the particle, 2 is the trajectory origin, 3 is the end point of the trajectory part.

trajectories. Hence, trapped ions influence the screening of the particle field at the criterion

I>\/71R, . (9.64)

In this case a subsequent charge exchange process transfers the ion in closed orbits that are nearby to the
particle. If a distance from the particle is less than /7, R,, a subsequent charge exchange event leads to ion
capture by the particle. Thus, under the criterion Eq. (9.64), the kinetics of a trapped ion consists of a series
of ion transitions in nearby closed orbits of this ion, and in the end the ion attaches to the particle surface.
Because of many acts of subsequent events of charge exchange, the number density of trapped ions may
be high enough and can exceed the number density of free ions in the particle field for a rareness plasma.
Therefore in this limit trapped ions determine the screening of the particle field.

Because the cross section of resonant charge exchange exceeds significantly that for elastic ion-atom
collisions, colliding ion and atom in this process are moving along straightforward trajectories, and the
formed ion acquires the energy e and the direction of motion of the former atom [42, 44]. Assuming
that the ion trajectory does not touch a particle surface (the distance of closest approach r,,;, exceeds the
particle radius r,), we have from the orbital momentum conservation [24] for ion transition into a stable
close orbit [25]

2
R TR U (9.65)
T €
where U(R) is the particle potential energy for an ion at a capture distance R. For simplicity we consider
the range of parameters

|U(r0)| > |UR)| > ¢, (9.66)

at which a trapped ion cannot go to infinity and is captured into a closed orbit. If an ion is formed with an
energy ¢ at a distance R from the particle, the probability P;,.(R, ¢) of capture of a free ion in a closed orbit
or the probability py,. (R, ) of transition of a trapped ion in another closed orbit are given by

cos 0,
roR
Pi.(R,e) = p(R,e) = / dcosf =cosf, = /1 — ORzO , R> /TR, . (9.67)
0

Spreading this result on a wide range of distances in accordance with the parameters indicated in Fig. 9.6
and accounting for the possibility for an ion to leave a closed orbit at the boundary of the region of action
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of the particle field, we represent the probability of ion capture in a closed orbit as

R2

Py (R,e) =4/1— rofty (1 - é) . 1>\/roR, . (9.68)

Figure 9.6: Used ion parameters of a trapped ion formed in the resonant charge exchange event that proceeds at a point
R: 7min, "mae are the minimum and maximum distances from the particle center for the trajectory of a captured ion,
0 is the angle between the direction of ion motion after the resonant charge exchange event and the vector R. 1 is the
particle, 2 is the point of resonant charge exchange.

In order to find the connection between the number density of free V; and trapped N, ions in the region
of particle field action, we use the balance equation

NGUT'CSNiPtT'Ui = Na07'esNtTUtT(1 - ptr) ) (969)

where v; , vy, are the relative velocities in the charge exchange process for a free or trapped ion and atom,
P;,, p:, are the probabilities of ion transition in a closed orbit for a free and trapped ion correspondingly.
For ion distances R from the particle under consideration we have |U(R)| > ¢, and the velocity of a free
ion is v; = /2|U(R)|/m;. The kinetic energy of a trapped ion is in the average |U(R)|/2 according to
the virial theorem [45] if the ion is located in the Coulomb particle field. This gives for the velocity of a
trapped ion vy, = /|U(R)[/m;, and v; /vs, = v/2. Since Py, = p;,, we obtain from the balance equation
Eq. (9.69)

R2\/2 R, oo l
Ni(R) = Ni(R) . ]\{ 1— TRQ (1 +1/1— TRQ > (1 - R) , I>R>+\/Roro, (9.70)

and the last term takes into account existence of closed orbits for a trapped ion only at R < [. Though
our derivation corresponds to middle ion distances from the particle and is spread to the particle field
boundary, the results may give reliable evaluations. From this it follows that at a low number density [V,
of a surrounding plasma trapped ions dominate in screening the particle field, whereas at a high plasma
density trapped ions are absent and free ions determine the screening of the particle field.

9.7 Particle Charging and Screening in Rareness Ionized Gas

Simultaneous participation of free and trapped ions in screening the particle field complicates the calculation
of screening parameters. We use below a simple algorithm taking into account only free or trapped ions and
at parameters when the contributions of free and trapped ions in the particle field screening are comparable,
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we use both these versions. A proximity of the results of these limiting versions justifies this algorithm. We
below represent this algorithm.

As in the case of a dense buffer gas, we introduce a current charge z(R) for a total charge in a sphere of
aradius R and use a simplified expression for the potential energy U (R) of a self-consistent field,

(9.71)
and in Fig. 9.6 is indicated the accuracy of this simplification. In the case where free ions dominate

in screening of the particle field, the number densities of free N; and trapped N, are determined by
Egs. (9.53), (9.57) and (9.70)
5/2
- (3)
l

and the function ®(R) is given by

B(R) = £y /1 - Teflo (1 4+ /1— roR") . (9.73)

2
2R2\/2
rolR,

1R,
TR

®(R) (1 - ?) . (9.72)

Ni(R) = Ny |1+ . Nep(R) = Ny(R)-

2 R? R?

In the other limiting case when trapped ions dominate we are based on the equation for a current charge
z(R)

dz

— = —47R?- N;(R) , 9.74
drR ~ " () (9.74)
with the boundary condition z(r,) = |Z|, and use the number density of trapped ions Ny, in this equation
instead of N;(R). The accuracy of this approximation is given in Fig. 9.4 by open triangles for trapped
ions. Solution of this equation gives

R\ 9/2
1()
l

From this we have for the number density of free and trapped ions for the second version when trapped ions

dominate
R 9/2
1 ( )
l

and the particle charge Z given by Egs. (9.59) and (9.60) is independent of the version because electron and
ion currents Eq. (9.58) are started outside the particle field.

On the basis of the above expressions for the number densities of free and trapped ions we find the
screening charge due to free (); and trapped @)y, ions for each version according to formulas

2

z=1Z|

2/9
: l_l.OS(W) . (9.75)

N,®(91/11

2
R

22V 4 ) (1 - z) , (9.76)

TolR,

4R,
TR

Ni(R) = Noy |1+ , Nu(R) = Ni(R)

l l

Q; = / 47N;(R)R*dR , Qi = / 47N;(R)R*dR , (9.77)

and according to definition of the action size [ of the particle field action we have

Q=Qi+Quw=1|2|. (9.78)
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Figure 9.7: The part of the screening charge due to trapped ions Eq. (9.78) for an argon plasma with the electron
Te = 1eV and ion T; = 400K temperatures. Open circles correspond to version when free ions dominate in screening
of the particle field, and closed circles describe the version when trapped ions dominate.

From this we find the part of the screening charge ¢ that is determined by trapped ions

_ Qtr
Qi + Qtr .

Fig. 9.7 gives the dependence of the part of screening charge ¢ due to trapped ions Eq. (9.79) on the
reduced number density of a surrounding argon plasma far from the particle for the electron 7, = 1eV and
ion 7; = 400 K temperatures. As is seen, two versions where the number density of ions is determined by
Egs. (9.72) and (9.76) give nearby results. In particular, at the reduced number density N,72 = 100cm~*
of the plasma the contribution of trapped ions into the charge screening is £ = 0.53 and £ = 0.50 for the
first and second version correspondingly.

In accordance with two versions under consideration, where the number densities of ions are given by
Egs. (9.76) and (9.77), we have on the basis of Egs. (9.57) and (9.75) for the reduced radius of action of the
particle field /¢,.. when free ions dominate and for the radius action I, if trapped ions dominate in the
particle screening. We then have

i3 (9.79)

lfree _ A lt7-ap _ B
To - (NOT3)2/5 I To - (No’l"g)2/9 ) (9.80)
_ (\Z\/To)2/5 _ 105 2/9 1/9

A=066 508 B = = (121 (Ro/r) 9.81)

Fig. 9.8 gives the reduced radius of action of the particle field in accordance with Eq. (9.81) as a function of
the reduced number density of a surrounding plasma for an argon plasma with the electron 7, = 1eV and
ion T; = 400K temperatures. In particular, for N,r2 = 100cm ! Egs. (9.81) give for the reduced radius of
particle field action I /7, correspondingly 28 and 29 for the first and second versions.

Note that from the above analysis it follows that parameters of particle field screening depend on the
number density of a surrounding plasma N, and particle radius 7, through the combination N,r2. The same
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Figure 9.8: The reduced radius of action of the particle field in accordance with Eq. (9.81) as a function of the reduced
number density of a surrounding plasma for an argon plasma with the electron 7, = 1leV and ion 7; = 400K

temperatures. Open circles relate to the first version if free ions dominate in particle field screening and the ion number
densities are given by formulas Eq. (9.76), where as the dark circles correspond to the second version with the number
densities of ions according to formula Eq. (9.77).
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Figure 9.9: The number densities of free (squares) and trapped (circles) ions in a surrounding argon plasma with the
electron T, = 1eV and ion T; = 400K temperatures as a function of the reduced distance from the particle. Dark signs
correspond to Egs. (9.57), while Egs. (9.75) relate to open signs.
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contribution of free and trapped ions for the above example of an argon plasma takes place roughly at the
reduced plasma density N,r2 = 100cm ™!, whereas trapped ions disappear at the reduced plasma number
density N,r2 = 103cm™! in the example example of an argon plasma. In addition, Fig. 9.9 gives the
space distribution for the number density of free and trapped ions at an indicated reduced number density
N,r2 = 100cm~! of a surrounding plasma.

From the above analysis we conclude that in a rareness buffer gas in accordance with the criterion
Eq. (9.46) the particle charge Z depends weakly on the character of shielding of the particle charge by a
surrounding plasma because the electron and ion currents to the particle surface are created in a region where
ion-particle interaction is absent, and Eq. (9.60) allows one to determine the particle charge on the basis of
a simple algorithm with using the two versions where the free or trapped ions give the main contribution to
the particle screening. In addition, parameters of the particle screening are expressed through the parameter
combination N,72.

Let us consider the limiting case of a low plasma density if this plasma does not screen the particle field
and ! = R,. Trapped ions dominate in this case, and their number density according to Eq. (9.70) is given
by

4v2 N, R3/? R
Ny (R) = f% -~/ (1 - R> . R,>R>\/Ror,. (9.82)

From this formula it follows that the maximum number density of ions is found at the distance R, =
0.6 R, from the particle and is equal to

Nin(R) = 059N, 22 . (9.83)

To
This number density exceeds significantly the number density /N, of electrons and ions far from the particle.
We have from Eq. (9.82) for the charge of ions inside a sphere of a radius R,

4mV2REN, NoR}
Qur(Ry) = TV2RNoe o sgNoFs (9.84)
To To
This leads to the following criterion for a smallness of the particle charge @, < |Z|e, that is
Ti o
N,RS <« —2 (9.85)
e

In particular, for the above example of an argon plasma with 7, = 1eV, T; = 400K and a particle radius
r, = lym we have R, ~ 210nm, and the criterion Eq. (9.85) gives N, < 3 - 10°cm™3, so that under
laboratory conditions the particle field screening is of importance.

Note that the above consideration is better for a non-equilibrium plasma 7, > T;. Indeed, we have
two boundaries for trapped ions, so that ions are captured in closed orbits at R > /r,R,, and the other
boundary of existence of trapped ions corresponds to R < I (I < R,). The above formulas for the number
density of trapped ions are better, the stronger is the difference between these two boundaries. In particular,
for the above example of an argon plasma at T, = T; we have for the ratio of distances for these boundaries
\/Ro/ro ~ \/ln(mi/me) ~ 3.3, while in the case of a non-equilibrium plasma T, = 1eV, T; = 400K we
have

VRo/To = \/|Z|€2/(Tiro) =~ \/T./T; - In(m;/m.) = 18 (9.86)

in the limit of a low number density of this plasma.

9.8 Conclusion

In analyzing screening and charging of particles in an ionized gas, we restrict ourselves only to the part
of these problems related to a large particle charge. In this case fluctuations of the particle charge are
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relatively small, and the particle charge is grouped around its average charge that is considered as the
particle charge. Next, we assume the rate of ionization in a plasma surrounding the particles is large
compared to the recombination rate due to attachment of electrons and ions to particles. This condition is
fulfilled in a laboratory plasma, but is violated in an astrophysical plasma. In addition, the basic concepts
under consideration have been worked out more than fifty years ago, and now reliable simple models and
realistic simplified formulas are of interest for the analysis of these problems, that was the goal of this paper.
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Abstract

We discuss here the excitation of soliton-like intrinsic localized excitations in two-dimensional atomic systems at the
nano-scale level. First we study the excitation, the propagation and the speed of solitons created using appropriate
initial conditions near to the lattice boundary hence by sudden addition of momentum, which simulate hard knocks or
shocks. Then we investigate the spontaneous generation of solitonic structures in thermal systems at moderately high
temperature. We show that due to polarization effects at the nano-size, electrical structures are induced which may
influence the transport properties.

10.1 Introduction

It is known that some non-linear discrete one-dimensional systems can support localized excitations as soli-
tons [1-4] and discrete breathers [5]. These excitations of one-dimensional (1d) nonlinear lattices are well
explored, starting with the Fermi-Pasta-Ulam models [1] and several analytical solvable other models like
the Toda lattice [2]. Continuing Davydov’s and Scott’s works [6, 7] making use of the Morse potential
we have discussed how electron trapping by solitons leads to a new form of electric conduction on anhar-
monic 1d-lattices [8-16]. These excitations bring a new form of “dressed” electrons formed as compound
of two superposed nonlinearities: (electro-soliton)-lattice soliton dynamic bound states. In the ld-case
these bound states have been called, in short, “solectrons” to mark the difference with Davydov’s original
electro-solitons. Indeed, the investigation of nonlinear excitations in 1d- or quasi-1d discrete structures was
stimulated in part by studies of biomolecules.

We shall consider here the excitations of lattice solitons in two-dimensional or quasi-twodimensional
lattices. This work was stimulated by recent studies of nonlinear excitations in the layers of cuprate-like
lattices and related materials [29, 30, 31]. The mentioned work was concentrated on the observation of
moving breathers. Here our main attention is devoted to soliton-like excitations. As lattice solitons we
denote strong, localized compression-expansion waves (we shall focus on the compression) able to travel
practically undeformed with sound velocity or even, supersonic velocity. In two-dimensional (2d) systems,
solitonic effects are expected to play also a similar role as in 1d-systems [14, 15, 16]. We are, however,
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aware that solitons in 2d-systems are difficult to rigorously define. However as in 1d-systems we still may
find compression waves or, in other words, intrinsic localized modes running approximately with sound or
supersonic velocity. In the field of hydrodynamics, the existence of 2d-solitonic excitations moving along
surfaces and in falling films is known both in theory and experiment [17-20]. For optical lattices, the exis-
tence of soliton-like excitations in 2d-systems was also shown theoretically [21] and found experimentally
[22, 23].

Further, several authors [24-28, 32] have shown the existence of soliton-like excitations in 2d-molecular
square and hexagonal lattices with in-plane displacements. Eilbeck, Marin, and Russell found in a 2d-
hexagonal lattice model propagating breathers, and reported about nonlinear excitations, they called guodons
[29, 30, 31]. These authors aimed to study the nonlinear excitations in the layers in cuprate-like lattices and
postulate a connection to phenomena of high-temperature superconductance. We are using here a similar
model neglecting so far however onsite interactions. Further we mention interesting experimental studies of
strongly localized dynamical structures in Uranium and other materials [33, 34]. In this context we mention
also several hotly contested claims about dynamical stripe structures observed in the copper oxide materials
notoriously used as high-temperature superconductors [35, 36, 37].

The present work is on a more abstract level. We study here strongly nonlinear local phenomena in 2d-
lattices of molecules with Morse interactions excited either by hand through appropriate initial conditions or
by thermal effects. We investigate here transient nonlinear structures at the nano-scale including not more
as 10 — 100 molecules and lasting not longer than several pico - seconds (ps). Such local phenomena we
consider as ”dynamical clusters” which bear some analogy to the standard clusters of molecular physics. In
[15] we presented a first study of soliton-like excitations in 2d-lattices at zero temperature. Here we continue
to study the properties of 2d-excitations, in particular their velocity and the interaction of the soliton-like
excitations. These soliton-like excitations were excited by choosing appropriate initial conditions. Further
we present examples demonstrating the excitations under the influence of temperature, demonstrating this
way the spontaneous onset of 2d-excitations in such heated lattices.

10.2 The Dynamic Model of Atomic Layers

Let us specify now the model which will be studied in the following. The classical lattice Hamiltonian
models a 2d-set of atoms arranged in a plane

_m 2 1
Hy = ;vn +3 ;V(m, ;) . (10.1)

The subscripts locate atoms sitting near to lattice sites and the summations run from 1 to N. The charac-
teristic distance determining the repulsion between the particles in the lattice is 0. We shall assume that
the lattice particles repel each other with exponentially repulsive forces and attract each other with weak
dispersion forces. We limit ourselves to a potential depending on the relative distance r = |r,, — 71| and
use a modified Morse potential (see Fig. 10.1) with a smooth cut-off at 1.50

V(r) = 2D {exp [-2b(r — )] — 2exp [~b(r — 0)]} {1 + exp[(r — d)/20]} " . (10.2)

In Fig. 10.1 the original Morse potential is shown by a dotted line and the modified one Eq. (10.2) with
parameter value d = 1.35 by a full curve. Beyond the cut-off radius the potential is set equal to zero.

To study, at varying temperature, the nonlinear excitations of the lattice and the possible electron trans-
port in a lattice in the simplest approximation it is sufficient to know the lattice (point) particles coordinates
at each time and the potential interaction of lattice deformations with electrons. Coordinates of particles
are obtained by solving the equations of motion of each particle under the influence of all possible forces.
The latter include forces between particles which are supposed to be of the Morse kind and the friction and
random forces accounting for a Langevin model bath in the heated lattice. For convenience in the 2d-lattice
dynamics we use complex coordinates Z = x + 4y, where x and y are Cartesian coordinates. Then the
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Figure 10.1: Interaction between the atoms: Comparison of the original Morse potential (dotted line) and the “trun-
cated” (modified) Morse potential (solid line) used for our computer simulations (parameter values bo = 4, d = 1.350,
v = 0.020).

Langevin model brings the equation for the lattice units

a2z, Zn .
g = Fur(|Zuk])znr + =902+ V2Dy (§nw +ny) | (10.3)
k

where the index n identifies a particle among all N particles of the ensemble, 7 is a friction coefficient, D,
defines the intensity of stochastic forces, &, , denotes statistically independent generators of the Gaussian
noise, Zn, = Zn — Z. Further z,;, = (Z,, — Zi)/|Z,, — Zi| is a unit vector defining the direction of the
interaction force Fi,;, corresponding to the Morse potential, between the n-th and the k-th particles.

To have dimensionless variables we consider the spatial coordinates normalized to the length o used
in the Morse potential Eq. (10.2). Time is scaled with the inverse frequency of linear oscillations near
the minimum of the Morse potential well, w;/ll. As earlier noted, the energy is scaled with 2D, where
D is the depth of the Morse potential well. Further the parameter b defines the strength of the repulsion
between particles. In view of the above only those lattice units with coordinates Zy, satisfying the condition
|Z,, — Zk| < 1.5, are taken into account in the sum in Eq. (10.3). In computer simulations the interaction
of particles is considered to take place inside a rectangular cell L, - L, with periodic boundary conditions
and L, ,, depending on the symmetry of an initial distribution of units and their number . For illustration
we consider a distribution corresponding to the minimum of potential energy for an equilibrium state of a
triangular lattice 100 - 10y/30 /2 for N = 100 or 200 - 20v/35 /2 for N = 400.

We introduce now two methods for the visualization of nonlinear lattice excitations. Since the excita-
tions we want to study are on the nanoscale and comprise just some 10 — 100 atoms, we need appropriate
methods to see and to identify the dynamic structures we are searching for. Let us first discuss a method of
visualization tracking the atomic electron densities. The lattice units, molecules or atoms, may be modeled
as points on a plane which are surrounded by little spheres formed by the “atomic” electrons. We will
assume that these atomic electrons may be represented by a Gaussian distribution centered on each lattice
site

Z — Z;(t)]?
p(Z,t) = Z exp {'2”()'} . (10.4)
|Z—2Z:(t)|<1.5

Beside the method of visualization based on atomic electron densities we developed also a second
one based on the polarization fields which an injected charge say an electron moving between the atoms
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would feel. As known since Debye and Frohlich the atoms interact with charges by an induced polarization
potential. Let us assume that the charge (the electron) is located at the (complex) position Z and the atoms
are located at the (complex) positions Z;. Let i be a characteristic distance and U, the maximal polarization
energy. For the potential generated by the atoms with number ¢ at the (complex) position of the charge Z
generated by the atomic positions Z;(t) at time ¢ we assume

h4
UZt)=-U. Y, [(|Z—Zi(t)|2+h2)2

|Z—2Z:(t)|<1.50

(10.5)

In accordance with our model potential we also here truncate the polarization potential at the cut-off distance
r = 1.50. This generates some distribution of the potential acting on test charges (electrons) due to the
interaction with the lattice units. Looking at Eq. (10.5) we see that any cluster of atoms generates a potential
hole in which the electron density might be concentrated. Further any displacement of the atoms changes
the polarization energy. The electron will try to follow up these changes what in a zeroth approximation may
be described by a Boltzmann distribution [16]. This is the basic effect leading to the solectron formation
which we considered in other work [16]. Looking at Eq. (10.5) we see that any cluster of atoms generates
a potential hole in which the electron density will be concentrated.

p
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Figure 10.2: Propagation of soliton-like excitation in a triangular lattice. Left we visualized the density of the atomic
cores of N = 400 particles. In the center we represent the polarization potentials and at the right we show a cumulated
representation. In order to study the evolution of perturbations we changed the initial positions of the atoms at ¢ = 0 in
a small region. The parameters values are: N = 400, bo = 4, A = 0.3, T = 0.01.

There is one special feature of the polarization potential wells in 2d-systems: The potential wells are like
moving valleys with a small extension in the direction of the moving and a larger extension perpendicular
to the direction of the soliton speed. In spherical valleys the resulting repulsion energy is too large, the
formation of bisolectrons in spherical potential wells is practically impossible. However in longer valleys
the situation changes. We note that for some parameter values, namely if the polarization energies are larger
than the Morse energies, self-trapping effects may give the determining effects as shown by Davydov, Scott
and others [6, 7]. Here we remain by purpose in a region where the mechanical effects are strong and the
electrical self-trapping gives only small corrections.
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We checked that in the considered parameter range the deformations are mainly determined by the
mechanical forces. However the influence of the deformations on the forces acting on the electron are
rather strong. Since the energy landscape, which the injected charge will feel, depends strongly on the
local configurations of the atoms in the neighborhood we can use the polarization field as a detector for
deformations. The local electric potential is a quite sensitive measure of the local excitations. We are using
this measure as an alternative method for the visualization of the dynamics of the nonlinear excitations.
We want to underline that the electrical structures we study here are restricted to nano-scales since at
macroscopical scales the screening effects make such structures impossible.

10.3 Excitation of Soliton-like Modes by Externally Given Initial
Conditions at the Border

Let us assume a triangular lattice with all atoms at rest. Now we give some initial conditions of the atoms
near to the boundary with a sudden addition of momentum, this might simulate an initial knocking or a
sudden shock arriving at the boundary. Already in several preliminary studies [15, 16] we demonstrated
that under such conditions the evolution of localized soliton-like excitations is possible.
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Figure 10.3: Speed of the solitons in dependence on the width of the profile. The density of atomic electrons of
N = 400 particles in a triangular lattice: In order to study the evolution of perturbations we changed the initial density
att = 0 in a small region (N = 400, bo = 3, A = 0.3, T = 0.01).

The parameters values are: N = 400, bo = 4, we used a modified Morse potential with a cut-off 1.50.
The excitations we have found move clearly with supersonic velocity. In order to check this in more detail
we have shown in Fig. 10.2 the dependence of the velocity on the soliton width parameter « of the initial
excitations. We observe a wide range of supersonic excitations. In order to check for solitonic properties
we investigated also the interaction of oppositely moving excitations. The density distribution (the left
column), the electric” potential landscape (the right column) are presented for three time moments. We
observe a transformation of the initial piece of a plane wave to the soliton-like horseshoe-shaped supersonic
excitation (it is shown best of all in the representations for the polarization potential). With respect to the
velocity we see that the excitation overcomes the distance of about 16 units in the time ¢ = 8, that is velocity
is 16/8 = 2 in units of the sound velocity in a 1d-lattice. We remind that vs,yq = 1 in our variables for
1d-lattices. Further we mention that in a triangular 2d-lattice the sound velocity is slightly larger than the
sound velocity in a 1d-lattice.

In a subsequent set of simulations we studied two solitons excited initially, the left one propagates to
the right, the right one - to the left. The parameters are the same as in the one-solitonic case above. We
observed that both wave fronts move against each other and pass through each other without changing their
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form. This is one of the characteristic indicators for solitons [1]. This way our simulations prove with some
confidence that the localized non-linear waves in triangular lattice may indeed be considered as soliton-like.
Of course, they are rather not solitons in a strong mathematical sense because we do not prove that they are
stationary waves (and indeed our 2d-excitations are transitory waves) but we demonstrate that they behave
like surface solitons at interfaces [17, 18, 20]. They are of course quite different with respect to their size,
our phenomena are of nano-size in difference to the hydrodynamic phenomena which occur usually at the
cm-scale (or the kilometer scale in the ocean).
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Figure 10.4: Interaction of two highly energetic quasi-one-dimensional solitons moving in a triangular lattice in oppo-
site directions during the interval ¢ = 0 — 7 (both with the same parameters N = 400, bo = 4, A = 0.3, 7" = 0.01).

We study now the special case of solitons with a very short wave front and correspondingly with rather
high energies and velocities up to 2vg5,nqg. What we see in Fig. 10.4 are two solitons with rather high
energies and strongly supersonic velocities. Each of them quickly transforms to a horse-shoe wave with
decreasing length and size of the wave front. Finally the transverse size of the wave reduces to just one
layer excited at a time. The solitons shown in Fig. 10.4 comprise just a few lattice sites and are therefore
very much based on the discrete character of the lattice, we cannot expect to find these kind of solitons on
continuous 2d-lattices.

By studying this and numerous other examples we came to the conclusion that the quasi-one-dimensional
“adapted Toda solitons” with stiffness b.ys ~ 1.5b which are running along chains in the main crystal-
lographic directions are of particular high stability and have a quite long life-time (see Fig. 10.5). For
shorthand notation we call these creatures Highly Stable Solitons (HSS). In Fig. 10.6 we show the velocity
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distribution of the particles in the direction of the soliton propagation and perpendicular to it. We notice a
high peak of the distribution in the direction of soliton motion and a small dispersion in transversal direction
corresponding to oscillations perpendicular to the soliton propagation. We underline that only the particular
choice be sy ~ 1.5 and initial directions pointing to the crystallographic axes provide a high stability with
respect to perturbations.

x/c x/o

Figure 10.5: Filtered density of core electrons near to quasi-one-dimensional solitonic excitations running in a trian-
gular Morse lattice along a crystallographic axis. The initial condition is an “optimized Toda profile”. We show 4
subsequent moments of time and demonstrate this way: The “adapted Toda profile” is very stable and runs along a
chain for a long time nearly without any visible changes. The last figure is a ”bubble-chamber-representation” (includ-
ing memory). (N = 400, boc = 4, A = 0.3, 7 = 0.01).

This way we have found for the highly stable quasi-one-dimensional solitons also a quite good analytical
representation (the representation as a Toda soliton with b,y ~ 1.5b. We have shown that this type of
excitations is stable also for all other crystallographic axes. We expect that this property holds also for other
symmetries, e.g. in the case that rectilinear chains of atoms are realized, as e.g. in NaCl crystals. This
remains to be studied in detail.

10.4 Excitation of Soliton-like Modes by Thermal Heating

Finally, in Figs. 10.7 and 10.8, we demonstrate the excitations in thermal systems by simulations for sev-
eral temperatures. We will show that the highly stable solitons (HSS) demonstrated above are among the
most stable and most frequently observed thermal excitations. This means that the fluctuations in a two-
dimensional excitable thermal system are organized in stripes. We may expect that the electrons essentially
will follow this organization.

Our idea for explaining this phenomenon is the following: For a generic Hamiltonian, H, the probability
of occurrence of an excitation is proportional to exp(—H/kpT). Among the spontaneous excitations we
expect to see also the solitonic excitations along with others. Excitations which are favorable” with respect
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Figure 10.6: Filtered density of core electrons near to a highly stable soliton running along a crystallographic axis
in a two-dimensional triangular Morse lattice (“bubble chamber representation”). The right picture shows a velocity
distribution of the particles. The peak in z-direction corresponds to the propagating soliton, the lateral distribution in
y-direction corresponds to oscillations transversal to the direction of the soliton propagation. (N = 400, bo = 4,
A=0.3,T =0.01.

to the Gibbs measure are expected to occur more often, but in principle all possible excitations should occur.
As a rule of thumb we may use the observation from thermal physics that one may see a phenomenon
already if the mean thermal energy is about 10-20 percent of the needed activation energy. Then in the tail
of the Boltzmann distribution there are already enough events to see activation processes. The essential
point determining the observability of an excitation is the mean life-time. Since solitonic excitations are
conservative phenomena, connected with an invariant of motion, the have a longer life-time as other thermal
excitations. This is the idea which we wanted to check by simulations. The evolution of the core density
defined by Eq. (10.4) in a heated system is illustrated in Fig. 10.7.

Our methods of visualization tracks excitations in the 2d-system of Morse molecules. The initial po-
sitions on the triangular lattice at zero temperature (“cold” lattice) are used as initial conditions. Then
the lattice is heated by the stochastic source (white noise) to the temperature 7 = mD,,/~. This corre-
sponds to the mean kinetic energy of a particle (T}, ) reaching the value T'. The obtained values of Z,, and
V., = dZ,,/dt are subsequently used as new initial values Z,,(0) and V,,(0) for the lattice at corresponding
temperature while setting D,, = 0. Notice that by varying Z,,(0) and V,,(0) it is possible to specify a local-
ized excitation in a lattice. Using data about trajectories of particles Z, (¢) and the evolution of velocities
V,.(t) we can calculate the mean kinetic and potential energies of the particles, the temperature of the en-
semble, and in particular snapshots of the particle distribution p(Z,t). The snapshots may tell us about the
most frequent excitations. By studying many snapshots of the excitations we may find ones are quite long
lasting and of particular high stability, and may expect that they will often be realized in thermal systems.

Let us repeat the general idea: Following the Boltzmann-Gibbs approach we may expect that, when
heating the lattice, in principle, all possible static and dynamic excitations may spontaneously appear with
some non-vanishing probability. In our case the candidates for highly probable dynamical structures are the
highly stable solitons or stable dynamical stripes found above.

In order to check this idea we performed many simulations. The problem which arises is however that
the probability may be quite low, to find structures with higher energy and, further, to identify them in the
sea of fluctuations. So we need some filtered representation to select salient events. Fig. 10.7 provides a
cumulative sequence of the highest excitations in a thermal system which occurred in an interval of 50 time
units. The traces shown in Fig. 10.7 may be considered similar as the traces in a bubble chamber. In our
case the traces represent the film the time evolution of high energetic events within the observational time
interval. We see quite many localized modes which live some 10 - 20 time units, most of them oriented along
the three basic crystallographic directions of the triangular lattice. We may conclude that many excitations
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Figure 10.7: Thermal excitation of long lasting highly stable solitons. The figure shows a “bubble-chamber picture” of
the high-energetic solitons in a thermal triangular Morse lattice. The lattice has N = 400 units, the stiffness is bo =
4, X = 0.25 and is heated to the temperature 7" = 5 (in units of 2D) with periodic boundary conditions. We represent
the time evolution sequence of highly energetic events leading to local increases of density of the atomic electrons.
The picture shows the time evolution of the highest peaks in a cumulative representation of the amplitude-filtered
density peaks for a time interval of about 50 time units. In particular the strongest compressions show the features of
high-energy solitons, as these compression waves, or intrinsic localized modes, move with supersonic velocity (around
1.2v50unq) and have a life-time of a many time units.

we see in the thermal system have the character of the localized quasi-one-dimensional modes described in
the previous section.

The strongly localized excitations of the lattice change the electrical situation in which the electrons are
moving. For illustration we have studied the distribution of the polarization potential and the densities in
the Boltzmann approximation at several temperatures (see Fig. 10.8).
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Figure 10.8: Snapshots for a thermal 2d-Morse lattice with N = 100 units. Distribution of the polarization potential
at a temperature 7" = 0.01 (left panel) and at T" = 2.0 (right panel). (bo = 2).

The left panel in Fig. 10.8 illustrates first the polarization potential for the case of the low temperature
T = 0.1. The minima of the polarization potential and the corresponding maxima of the density of free
electrons are well separated. The right panel in Fig. 10.8 corresponds to the moderately high temperature
T = 2. Note that in this region the specific heat is C,, ~ 1.8, significantly smaller than the Dulong-Petit
value and we may expect that many solitons are excited. The snapshots shown in Fig. 10.8 demonstrate that
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the electrical potential (and correspondingly the Fermi surface) in a system with strong nonlinear excitations
is highly structured. In a dynamical picture including memory effects we would see that stripes have some
bias. The electrical structures are expected to follow more or less the dynamical clusters described in this
work.

10.5 Conclusions

As well known, in the linear approximation the fluctuations in condensed matter are mainly determined
by the spectral distribution of phonons, nonlinear fluctuations are less explored in spite of the fact that
there is some theoretical and experimental evidence of strong local fluctuations as the intrinsic localized
modes (ILM), quodons and others [5, 29, 30, 31]. We refer also to several experimental studies of strongly
localized dynamical phenomena in Uranium and in other materials [27, 33, 34]. The strongly localized
structures we investigated here bear some analogy to the standard cluster phenomena. The main difference
between standard clusters and the “dynamical clusters” investigated here, is the very short life-time of our
strongly localized dynamical structures. Of course nonlinear (strong) fluctuations are interesting not only
per se but also for the electronic properties of materials, because of the strong interactions of the state of
the atoms with embedded electrons, e.g. by polarization interactions. We are very interested in particular
in the implications of strong local deformations for the electronic properties of materials. Some hints to the
electrical structures give the snapshots of the polarization potential shown in Fig. 10.8.

In this context we mention also several hotly contested claims about the way electrons behave in the
copper oxide materials notoriously used as high-temperature superconductors [35, 36, 37]. Supposedly,
they form highly organized patterns called quantum stripes - but only on the picosecond timescale - so the
patterns average away over longer periods through the electrons’ constant quantum dance. The dispute
has lasted so long only because it has proved very hard to nail down such behavior. We suppose here that
the formation of stripes in the quantum electron system is supported by the organization of the classical
nonlinear fluctuations in stripes as demonstrated here.

In this work we have shown by means of numerical experiments the existence of localized nonlinear
excitations, or intrinsic localized modes, at the nano-scale in 2d-systems of Morse atoms at moderately high
temperatures. They arise as thermal excitations, made visible in an appropriate way that we have specified.
Both front profile and front velocity, show these excitations as soliton-like. They propagate in general with
slightly supersonic velocity. Therefore these excitations bear similarity to the soliton solutions in Toda’s
1d-lattices and the corresponding soliton — like excitations we have observed in cold and in thermal Morse
lattices [14]. In some respect the soliton-like excitations in two-dimensional atomic systems arising at the
nanoscale level, are analogs to the soliton excitations at fluid surfaces [17, 18, 20]. However in 2d-systems
the nonlinear excitations at the nanoscale show several differences. As we have shown here, the highly
stable solitons which we identified as frequently occurring, are quasi-one-dimensional excitations. Further
we have shown that these nanoscale excitations induce electrical polarization fields which may influence
electron dynamics thus leading to a kind of trapping in stripe structures [16].
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Abstract

An analytical self-similar solution of the problem of unsteady diffusion growth of a droplet in a vapor-gas medium has
been derived with allowance for the Stefan flow of the medium, for motion of the surface of the growing droplet, and
for dependence of the diffusion coefficient of the condensing vapor in the medium on the vapor concentration. The
expressions for the diffusion concentration profile of the condensing vapor and the droplet growth rate have been found.
It is shown that the combined effects of the Stefan flow of the medium, the motion of the surface of the growing droplet
and the dependence of the diffusivity of vapor in the medium on the vapor concentration lead to a renormalization of
the droplet growth rate compared with its stationary diffusion growth rate. For small deviations from the regime of
stationary growth, non-stationary diffusion and dependence of diffusion coefficient on the composition of the gas-vapor
mixture, as well as the Stefan flow, give, generally speaking, corrections of the same order of magnitude.

11.1 Introduction

We are interested in this paper in the description of non-stationary diffusion growth of a condensing droplet
in a vapor-gas medium with allowance for the Stefan flow of the medium, for the motion of the surface
of the growing droplet, and for the dependence of the diffusion coefficient of the condensing vapor in the
medium on the vapor concentration. As it is known [1-3], the Stefan flow compensates for the diffusion
outflow of non-condensing gas molecules from the surface of the growing droplet to provide the constancy
of total pressure in the vapor-gas medium. This flow can be stationary or non-stationary, depending on
the stationary or non-stationary regimes of droplet growth. These regimes of isothermal condensation
onto a markedly supercritical droplet (i.e., a droplet over which the saturated vapor pressure can be set
approximately equal to the saturated pressure over the flat surface of the liquid) will be analyzed below,
first at a constant diffusion coefficient of the vapor in the environment, and then at linear dependence of the
diffusion coefficient on the vapor concentration.

We will recall here first the main results of solving the problem of a stationary isothermal diffusion
growth of a droplet in the atmosphere of passive gas and vapor with allowance for the Stefan flow and
constant coefficient of diffusion, given by Fuchs in Ref. [1]. These results will be needed for further
comparison with the solution of the problem of non-stationary diffusion growth.
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Let us set the origin of the spherical reference system into the center of the droplet. We denote the
stationary bulk concentrations of the condensing vapor and passive gas at an arbitrary point 7 in the system
asn(r) and n’(r), respectively. The temperature of the droplet and the environment in the process of droplet
growth remain fixed and is the same everywhere. With taking into account the hydrodynamic flow of the
medium with radial velocity v,.(r), the density j(r) of steady flux of vapor molecules can be written as

on(r)

() = =D

+p(r)n(r) | (1L.1)

where D is the constant diffusion coefficient of vapor molecules in the vapor-gas mixture. Similarly, the

density j'(r) of the steady flux of passive gas can be written as

on'(r)
or

jl(r) =-D + Ur(r)n/on) ) (112)
where the diffusion coefficient is the same as in Eq. (11.1). It follows at constant total pressure of the
vapor-gas medium in the approximation of the ideal gas that

on(r) on'(r)

e N (11.3)

We denote the radius of the droplet as R. Note that when calculating the vapor flow in the approximation
of stationary diffusion, the radius R is assumed to be fixed. Consider the concentric with the droplet sphere
of radius » > R. Under spherical symmetry of the problem and steady vapor flux at any value r > R, we
have

j(r)yr? = j(R)R? . (11.4)

In view of the impermeability of the droplet surface for the passive gas molecules, the steady flux density
of the passive gas molecules equals j'(r) = 0. As a consequence, in view of Egs. (11.1) - (11.4) we find

j(r)r? = w,(r)r® = j(R)R? (11.5)

where 7 = n(r) + n/(r) = constant is the total local concentration of molecules in the vapor-gas medium.
Substituting the expression

2
o) = J(R) 2

(11.6)

nr2
for the radial velocity of the Stefan flow (which follows from Eq. (11.5)) into Eq. (11.1) and taking into
account Eq. (11.4), we obtain finally

on(r) j(R)R:Z . R
or ~ apr " =IBpa

(11.7)

Integration of Eq. (11.7) with the boundary conditions n(r)|,_, = N (N is the concentration of
vapor saturated over a flat surface of the condensate) and n(r)|,_ . = no (it is required ny > nq for
the growth of the droplet) gives [1] for vapor concentration n(r) and density j(R) of the vapor flux the
following expressions

n(r) =n+ (no — i) exp (ﬁ?f) , (11.8)

(11.9)
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In the approximation of small vapor content in the gas-vapor medium, i.e. at ng < n and no, < n,
Eq. (11.9) for the vapor flux density transforms into

. . 1ng+ neo
J(R) = js(R) [1+2ﬁ} , (11.10)
where
D
Js(R) = == (no = nc) (11.11)

is the density of the steady vapor flux in the absence of Stefan’s flow (the Maxwell formula [1-3]). As
follows from Eq. (11.10), the corrections to the density of the steady vapor flux due to the Stefan flow are
of the first order of smallness in the parameter ng/n < 1.

We did not find in the literature a solution of the problem of non-stationary diffusion with allowance
for the Stefan flow which would be in any way analogous to the previous consideration. There are known,
however, self-similar solutions of the problem of non-stationary droplet diffusion growth in absence of the
Stefan flow [4, 5].

11.2 Equation of Non-Stationary Vapor Diffusion to a Growing
Droplet with Allowance for the Motion of the Droplet Surface
and the Stefan Flow

We consider now the problem of unsteady growth of a droplet, taking into account the motion of the surface
of the droplet and the non-stationary Stefan flow. Let us choose again the origin of coordinates at the center
of the droplet. The radius of the growing droplet at time ¢ we denote by R(t). To find the velocity of
hydrodynamic flow of the environment, we consider a moving sphere of some radius R, () > R(t) that is
concentric with the droplet. If the rate of variation of radius R; () in time coincides with the radial velocity
vy (1, t) of hydrodynamic flow of the gas-vapor mixture at r = Ry (t), so that

Ri(t) = v.(r = Ry(1),t) , (11.12)

then the total number of vapor and passive gas molecules within the sphere of radius R (¢) does not change
in time. In this case, the relation

n R3(t) + @ (R (t) — R*(t)) = constant (11.13)

is valid where n; is the number of molecules per unit volume of the liquid condensate, n = n(r,t) +n'(r, t)
is the total concentration of molecules in the vapor-gas medium (72, as in the stationary case, does not
depend on the point r and time t).

Differentiating Eq. (11.13) with respect to time at arbitrary R (¢) = r, we find the relation between the
radial velocity v,.(r, t) of the hydrodynamic flow of the vapor-gas mixture and the rate R(t) of growth of
the droplet radius in the following form

o (r,t) = R(t) E () (1 - @) . (11.14)

r2 n

Since, as follows from Eq. (11.14), the field of hydrodynamic velocity v,.(r, t) corresponds to the motion of
an incompressible medium (V@ = 0), then, to determine the concentration n(r,¢) of vapor molecules, we
have the following equation

on(r,t)
ot

on(r,t)
or

= DAn(r,t) — v.(r,t)

(11.15)
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where D is the constant coefficient of diffusion of vapor molecules in the vapor-gas medium, just the same
as in Section 11.1. The boundary conditions for this equation are similar as in the stationary case

n(r, )], — gy = Moo n(r,t)|,_ oo = N0 - (11.16)

Obviously, the droplet can grow only in a supersaturated vapor, so that ng > n... Taking into account the
spherical symmetry and Eq. (11.14), we rewrite Eq. (11.15) as

811((91; t) _ TBQ% (7’2 on(r, t)) _ R Riét) (1 3 E) 5‘né:, t) '

or

(11.17)

11.3 Self-Similar Solutions of the Equation of Non-Stationary
Diffusion with a Hydrodynamic Flow

To find a self-similar solution of Eq. (11.17), let us pass to a new independent dimensionless variable p,
defined as [4, 5]

p= R n(r,t)=n(p(t)) . (11.18)

Substituting Eq. (11.18) into Eq. (11.17) transforms it into equation

d’n 2 RR ¥ dn
i 2y L)l ==0 11.19
i |p "D <p pQ)] dp (1
where a new notation
N=1— @ (11.20)
0

has been used. The boundary conditions Eq. (11.16) on the vapor concentration can be rewritten in variable
p as

n(p)] =1 = Noo 11.21)

n(p)l, oo = N0 - (11.22)

It is evident that Eq. (11.19) leads to a self-similar solution of the problem only when the dependence of
droplet radius on time satisfies the condition

R(t)R(t) = const. (11.23)

To elucidate the possibility of the condition Eq. (11.23), we need to consider the balance equation
of the condensate molecules at the droplet surface. Conservation of the number of vapor molecules at
condensation into droplet leads to the equation

on(r,t)

mR(t) = — {Dar + o (vr(r, t) - R(t))} (11.24)

r=R(t) .
In view of Eq. (11.14), Eq. (11.24) for the growth rate R(t) of the droplet radius can be rewritten as
D on(r,t)

or r=R(t)

ny (1— nfo)
n

R(t) =

(11.25)
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Passing with the help of Eq. (11.18) to the self-similar variable p transforms Eq. (11.25) to the form

dn(p)

RR — M (11.26)

)
n

Thus, as we see from the right-hand side of Eq. (11.26), the condition given by Eq. (11.23) is valid. There-
fore, self-similar regime of droplet growth is possible.
Integration of Eq. (11.19) with boundary conditions Eqs. (11.21) and (11.22) yields

P
/ dz { bz b }
—Zexp{ —— — =
z 2 z
n(p) = Noo + (N0 — Now) 5= , (11.27)
/ dz { bz? b }
—exp{ —— —
z 2 z
1
where a new dimensionless parameter b has been determined as
RR
b= — . 11.28
) ( )
In accordance with Egs. (11.26) and (11.28) we have
dn(p)
d _
T (11.29)

(1=
n

Substituting Eq. (11.27) into Eq. (11.29), we obtain an equation for the parameter b:

a exp {—b(v + ;)}

b= = , (11.30)
Noo dz bz? b
1= [ Sexpy -2 - 2
( n / 22 exp{ 2 z }
1
where an additional dimensionless parameter a has been determined as
g= 10" Mo (11.31)

n

Egs. (11.27) and (11.30) together with Eqgs. (11.18), (11.28), and (11.31) determine the required self-similar
solution of the problem of non-stationary diffusion droplet growth with allowance for the motion of the
boundary of the droplet and non-stationary Stefan flow.

11.4 Hydrodynamic Contributions to the Vapor Flux onto a
Growing Droplet

The flux I of vapor molecules through the surface of the growing droplet is given by the expression

I = —47R*Rn, , (11.32)
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which can be rewritten with the help of Eqgs. (11.28) and (11.31) as

I =—-47RD(ng — noo)é . (11.33)
a

Since the steady vapor diffusion flux I, = 47 R?j, (R) in view of Eq. (11.11) equals
Is = —47RD(no — no) » (11.34)
Eq. (11.33) transforms to

=10 (11.35)
a

We see that the effect of non-stationary diffusion droplet growth at an arbitrary degree of deviation
from the steady state growth leads to the renormalization of the steady vapor flux by the factor b/a. The
difference between fluxes I and I, expressed by the deviation of the quantity b/a from unity, is caused by
the hydrodynamic flow of the vapor-gas medium around a growing droplet. Note that the radial velocity
v.-(r, t) of this flow, determined by Eq. (11.14), represents the sum of two contributions corresponding to
two different processes:

vp(r,t) = o (r, t) + 02 (r,t) . (11.36)
The first of the contributions, namely

R2(t)
2

oM (r,t) = R(t) , (11.37)

describes the hydrodynamic flow of the environment which would arise around an impermeable for the
molecules sphere whose radius is equal to the droplet radius and increases with time like R(t). The second
contribution, determined by the expression

ny

Uv("2) (T7 t) == 7i r2

, (11.38)
takes account of the fact that in reality there is a flux of vapor molecules through the surface of the growing
droplet, and in order to provide fulfilment of the condition 7 = constant (the constancy of the pressure
in the vapor-gas mixture around the droplet), there must be an additional flow of the environment in the
opposite direction with respect to the direction of the first flow with velocity vy(,l). In other words, @ is
the velocity of the Stefan flow.

Neglecting the Stefan flow corresponds to 1)52) (r,t) = 0, what is formally achieved by setting v = 1 in
Egs. (11.19), (11.27) and (11.30) and, in addition, by replacement of 1 — “== by 1 in Eq. (11.30). A similar

result for non-stationary diffusion growth of bubbles was obtained earlier in [6].

11.5 Relations Between the Parameters b and « in the Problem of
Non-Stationary Diffusion

In the general case (for arbitrary values of the parameters a and y), only a numerical solution of Eq. (11.30)
can be found. However, recognizing that growth of droplets in a supersaturated vapor occurs almost always
at

a<|yal <1 (11.39)

(a numerical estimation of this inequality will be given below), we can also find an analytical solution of
this equation with a good degree of accuracy.
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We begin by considering a limiting case at n; — oo. Using the definitions Eqgs. (11.20) and (11.31), we
have in this case

Noo — Mo
a—0, ya — ————

(11.40)

n

According to Egs. (11.30) and (11.40), the parameter b in this limit is proportional to the parameter a, so that
b — 0. Then, in view of Eq. (11.28), R x vﬁl) — 0 while the quantity vg) remains finite. Let us emphasize
that the non-stationary nature of the diffusion process due to the motion of the surface of the growing drop
is in no way taken into account at R = 0. This situation corresponds exactly to the consideration of the
Stefan flow under conditions of stationary diffusion flux of vapor molecules onto the droplet, which was
performed in Ref. [1] and in the introduction. Indeed, in view of Eq. (11.40), Eq. (11.30) can be rewritten
as

=) [Ee () (=) ()

(we neglected small terms bz? / 2 and b/2 in the exponent). Integral on the right side of Eq. (11.41) can be
calculated accurately by replacing the variable of integration as 1/z — z, and we find for the quantity b/a
ata — 0:

b__ 7 1n<ﬁ~_"°°>. (11.42)

a Nog — N n—"ngo

Substituting Eq. (11.42) into Eq. (11.33) leads to an expression for the flux of vapor molecules in the form

I = —47RDfIn L

(11.43)

n—ng

As follows from equality I = 47 R?j (R), the flux density given by Eq. (11.9) leads exactly to Eq. (11.43).
If the strong inequality 7y < 7 holds, then Eq. (11.42) is reduced to

b:a<1+”°+f‘°°) , (11.44)
2n
and, correspondingly, Eq. (11.35) transforms as
b %
I[=1,> = —47RD (ng — ns) (1 T "°+"> . (11.45)
a 2n

Thus, the relative difference between parameters b and a provided by the allowance for the Stefan flow is a
small quantity of order ng /7.

Since R # 0 for a growing droplet (the value of concentration n; is large, but finite), the use of steady-
state diffusion approximation is not obviously self-consistent. To take into account the influence of the
motion of the droplet surface on the value of the diffusion flux, we turn again to Eq. (11.30). Note that, in
view of the small relative difference between b and a, we can write an equivalent to Eq. (11.39) inequality

b |yl < 1. (11.46)
In view of Eq. (11.46), Eq. (11.30) can be with a reasonable accuracy rewritten in the form

. (L=by)a . (11.47)

ﬁ”@/md AN
22 xp 2 z
1

N
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Integral in Eq. (11.47) is calculated with using the equality

oo

dz bz? b
/ZQexp{—} =15 b<1) (11.48)
1

the validity of which is easy to verify. The result is

Oodz bz? vb vb b

i dii QLA 0L Y 11.4
/22 (eXp{ 2 } z) 2 2 (11.49)
1

Substituting Eq. (11.49) into Eq. (11.47), after some manipulations with the use of the definitions Egs. (11.20)
and (11.31), we find for the parameter b the following expression:

boq |10t [T (0= o) ) (11.50)
2n 2ny

The correction expressed by the last term on the right-hand side of Eq. (11.50) is a result of non-stationarity
of the diffusion flux caused by the motion of the droplet surface. Both corrections on the right-hand side
of Eq. (11.50) are comparatively small, and the relative role of each of the two correction terms varies
depending on the specific conditions of condensation.

As an example, we will give quantitative estimates of parameters a and 7 as well as corrections in
Eq. (11.50) in two specific cases for the growth of water droplets in air. In both cases, we set ng = 2n
(vapor supersaturation is equal to unity). In the first case, at a temperature 20°C and normal atmospheric
pressure, we have a = 1.73 - 107, v = —1.33 - 103, |ya| = 2.3 - 10~2. Thus the inequality Eq. (11.39) is
well satisfied. The correction caused by the Stefan flow equals 3.42 - 10~2 in this case, while the correction
due to non-stationary diffusion equals 5.21-10~ and appears to be by an order of magnitude smaller. Thus,
neglecting the effect of non-stationary diffusion with simultaneous allowance for the influence of the Stefan
flow on the flux of vapor molecules is quite acceptable in this case.

In the second case, we consider the condensation of water vapor at a temperature 60°C and high pres-
sure, which is twenty times greater than the normal atmospheric pressure. In this case, a = 1.47 - 1074,
v = —75.6, |ya| = 1.1- 1072, so that inequality Eq. (11.39) still holds. The correction due to the Stefan
flow equals now 1.67 - 1072, while the correction caused by the non-stationary diffusion turns out to be
1.52 - 10~2. As is seen, both corrections have similar values in this case. Thus calculation of the flux of
vapor molecules with allowance for only one of them, while neglecting the other, becomes unjustified.

11.6 Vapor Diffusivity Dependent on Composition of the Vapor-Gas
Mixture

In our calculations in the previous sections, the diffusion coefficient of vapor molecules was assumed to be
constant and equal to the limiting value corresponding to zero vapor density in the vapor-gas mixture. At
small values of the ratio n/7, the dependence of the coefficient of mutual diffusion of vapor and passive
gas on the local composition of vapor-gas mixture can be approximated as

D(n(r)) =D [1 + 6717(;)} : (11.51)

where ¢ is a numerical coefficient of order of unity. Using Eq. (11.51) under conditions of stationary
diffusion, we obtain the following equation for the vapor concentration n(r):

or r2 n
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Integration of this equation gives

R2
= —j(R)— + const. (11.53)
nr

n—n

D(1+¢&)In(n —n) — De

n

Using the boundary conditions for n(r) leads to the following expression for the flux density j(R)

D [ n n— ']
J(R) = =% (m0 = nec) | (1 +2) noj’nm In <”~ & >—g] . (11.54)

It follows from Eq. (11.54) at ng, no < 7 that

j(R):f%(nofnoo) 1+(1+5)%;;:1°°] . (11.55)

As is seen from Eq. (11.55), taking into account the dependence of the diffusion coefficient on the local
composition of the gas-vapor mixture leads, in general, to a correction of the same order of magnitude in
the expression for the density of the vapor flux to the droplet as in the case with allowance for the Stefan
flow.

In order to take into account simultaneously also the effect of the moving surface of the growing droplet,
let us consider a non-stationary diffusion equation for n(r,t) with the diffusion coefficient determined
according to Eq. (11.51). This equation can be written as

on(r,t) n(r,t) eD (dn(r,t)\> on(r,t)
pramie D <1 + €ﬁ> An(r,t) + = (67‘) — v, (r,t) pra (11.56)

With using the self-similar variable p determined by Egs. (11.14) and (11.18) for v,.(r,t), Eq. (11.56)

transforms as
dj 2
dp

d’n 2 RR ¥ dn €
dﬂ2+ ;+D(1+52) <p_02> dp <5)1+s?
n n

=0. (11.57)

Boundary conditions for Eq. (11.57) are given by the previous Eqs. (11.21) and (11.22).
As it follows from the balance of the number of vapor molecules at condensation, we have in the case
of the diffusion coefficient depending on the composition of the mixture the following equation

. t)\ on(r,t :
mR(t) = — [—D (1 +5n(7~’, )) n(r,t) + e (vr(r, t) — R(t))} (11.58)
n or r=R(t)
This equation is reduced at passing to the self-similar variable p to the relation
: 14e
RR 5 d
e n__ ) (11.59)
D ng (1 - %"’) dp |,
n

Assuming that condition Eq. (11.46) is fulfilled and taking into account the smallness of the ratio n/7, the
Eq. (11.57) can be written in a somewhat simplified form as

d’n 2 y dn e (dn\>
R - L) == (). 11.
e [p +b( pQ)] dp 7 (dp> (oo

The resulting equation differs from Eq. (11.19) by the presence of a small term on the right-hand side,
which can be regarded as a perturbation. This allows us to substitute on the right-hand side of Eq. (11.60) the
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solution Eq. (11.27) of Eq. (11.19). As a result, we have in the adopted approximation the inhomogeneous
linear equation for n(p):

d*n 2 v\ ]| dn e (ng — o)’ 5  27b
ST 7 i | S L 2 —pp? - 2L 11.61
dp2+{p+ (p p2>} dp ot P T (aeh
Integration of Eq. (11.61) yields

i b iy

Xp —— — — 2
an _ 27 4 Elro—mne) | (11.62)
dp P n P

Constant C' is determined after integration of Eq. (11.62) with boundary conditions Egs. (11.21) and (11.22).
As a result, we obtain

2
- o~ Moo el ) (11.63)

7dze L 2n
22 *p 2 z
1

Substituting the expression for (dn/dp) into Eq. (11.59), we find the equation for parameter b in the form

Noo
_ 1+e— b _
b: no Neo ngo _ (& +€(n0 ~noo) ) (11.64)

n 1_ﬁ /dz bz2 b
Y expd 22 P
2 P 2 z

1

Note that Eq. (11.64) is written with exceeding the accuracy in the small parameters of the problem, given
by conditions b < |yb| < 1and n/f < 1. After some transformations with allowance for these conditions,
we find for b:

b=a |1+ (1+¢) no;ﬁn“ + ﬂn(;;nw)
l

(11.65)
The resulting general expression for b contains as limiting cases the results given by Egs. (11.50) and
(11.55). Thus, the Stefan flow as well as non-stationary diffusion and the dependence of the diffusion
coefficient on the composition of the vapor-gas mixture lead, generally speaking, to corrections of the same
order of magnitude in the expression for the vapor flux into the growing droplet.
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Small differences in the initial conditions produce very great ones in the final
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Abstract

Theoretical description of diffusion growth of a gas bubble after its nucleation in supersaturated liquid solution is
presented. We study the influence of Laplace pressure on the bubble growth. We consider two different solubility
laws: Henry’s law, which is fulfilled for the systems where no gas molecules dissociation takes place and Sievert’s law,
which is fulfilled for the systems where gas molecules completely dissociate in the solvent into two parts. We show that
the difference between Henry’s and Sievert’s laws for chemical equilibrium conditions causes the difference in bubble
growth dynamics. Assuming that diffusion flux of dissolved gas molecules to the bubble is steady we obtain differential
equations on bubble radius for both solubility laws. For the case of homogeneous nucleation of a bubble, which takes
place at a significant pressure drop bubble dynamics equations for Henry’s and Sievert’s laws are solved analytically.
For both solubility laws three characteristic stages of bubble growth are marked out. Intervals of bubble size change
and time intervals of these stages are found. We also obtain conditions of diffusion flux steadiness corresponding to
consecutive stages. The fulfillment of these conditions is discussed for the case of nucleation of water vapor bubbles
in magmatic melts. For Sievert’s law the analytical treatment of the problem of bubble dissolution in a pure solvent is
also presented.'

12.1 Introduction

This paper presents a theoretical description of diffusion growth of a gas bubble in liquid solution as a result
of a considerable pressure drop (in the order of 10 times). These conditions of bubble growth process
are observed in magmatic melts during volcanic eruptions [1, 2]. After such a significant pressure drop
the solution becomes strongly supersaturated; and homogeneous (fluctuational) nucleation of gas bubbles
becomes possible. It is the growth dynamics of such bubbles that is the subject of the present paper. It
has to be noted that the growth regularities of a solitary bubble are crucial for the description of the whole
kinetics of phase transition in supersaturated solution [3, 4, 5].

While describing gas bubble growth in supersaturated solution two rough approximations are tradition-
ally made [3, 6, 7, 4, 5]:

1. The flux of the dissolved gas towards the bubble is assumed to be steady.

! Corresponding author, e-mail: ggor@rci.rutgers.edu. Current address: Department of Chemical and Biochemical Engineering,
Rutgers, The State University of New Jersey, 98 Brett road, Piscataway, New Jersey 08854-8058, USA
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2. The consideration is limited to bubbles with the radius that is large enough to neglect the Laplace
pressure in comparison with the external pressure of the solution.

In the present paper, following our preceding works [8, 9], while exploiting the steady approximation, we
take into account the Laplace pressure in the bubble considering the bubble from the very moment of its
nucleation. Consideration of the time-dependent Laplace pressure in the bubble makes both gas density
in the bubble and the equilibrium concentration of the dissolved gas at the surface of the bubble time-
dependent as well.

Gas bubble growth in a solution taking into account the Laplace pressure was considered as early as
in 1950 in the classical paper by Epstein and Plesset [10], where the authors obtained the equation for the
bubble radius as a function of time. In order to relate the equilibrium concentration of the dissolved gas and
the solution pressure, [10] presupposed the fulfillment of Henry’s law: i. e. the proportional dependence
between these two values. Indeed, Henry’s law is fulfilled for the solution of CO4 in magmatic melt [7];
however, it is not valid for the solution of HoO vapor [3, 6]. In this case, which is crucial for practical
reasons, Sievert’s law is observed: the equilibrium concentration of the dissolved gas is proportional to
the square root of the solution pressure [11]. Sometimes both cases are referred to as “Henry’s law”, but
in the present paper, in order to avoid confusion, we will use the term ”Sievert’s law” for the case with a
square root, following e. g. [12]. Here we analyze the bubble growth dynamics in both cases: for Henry’s
and Sievert’s laws. For Sievert’s law we obtain the equation for the bubble radius as a function of time
analogous to [10], which has not been obtained previously.

Our analysis shows that, irrespective of the law applied to gas solubility, three characteristic stages
can be marked out in the growth dynamics. During the first stage the bubble radius is growing with an
increasing rate. On the second stage the growth rate decreases. The third stage, when the growth rate
continues to decrease, begins when the Laplace pressure inside the bubble becomes comparable with the
external pressure of the solution. We demonstrate that during the first two stages the time dependence of
the bubble radius is different for the cases when either Henry’s or Sievert’s laws are fulfilled, while during
the third stage this distinction is no longer observed.

For both Henry’s and Sievert’s laws we obtain intervals within which the bubble radius changes on
each stage, as well as time limits and conditions when the steady approximation is applicable. We show
that, as the radius of the bubble increases, the steady condition becomes stricter; and, consequently, as
a rule, the steady regime of a multistage bubble growth gradually gives way to the nonsteady one. We
obtain analytical expression for the time when Laplace pressure influences on bubble growth vanishes and
therefore substantiate the estimation of this time made in [13]. After this time passed the bubble growth
reaches a self-similar regime [14]. We also analyze whether the steady approximation is applicable to the
case of gas bubbles in magma described by Navon [6] and Chernov et al. [3] for large radius of a bubble
(neglecting Laplace pressure). Besides that, we present the analytical description of bubble dissolution in
the pure solvent for the Sievert’s solubility law, which was not presented before in literature.

12.2 Equilibrium Concentration of the Dissolved Gas

Let us consider a gas dissolved in a liquid. The solution was initially in an equilibrium state at temperature
T and pressure Fy. The concentration of the dissolved gas in the solution under such conditions will be
denoted as ng. Then we instantly relieve the external pressure to value II in such way that solution becomes
supersaturated. The temperature and volume of the solution remain the same, thus value n still serves for
the dissolved gas concentration.

It is more convenient to express the state of the solution in terms of dimensionless variables: supersatu-
ration ¢ and gas solubility s defined here via

(= M7 (12.1)
Noo
T

s = FBTne (12.2)

H )
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where n is the equilibrium concentration of dissolved gas at the external pressure II, kg is the Boltzmann
constant.

When some time passes after the pressure drop, a gas bubble nucleates and begins to grow regularly.
Following [3] we assume that the bubble is in mechanical equilibrium with the solution, and its dynamics
is governed only by diffusion process. This assumption will be discussed in Appendix A. The radius of
the bubble will be denoted as R. We consider the situation when the solvent is in its stable liquid state;
therefore, we assume that the bubble consists of gas only, but not of the solvent vapor. The gas in the bubble
is considered to be ideal.

When the bubble is studied after some time ¢ since its nucleation, its radius complies with the strong
inequality

R>> 2011, (12.3)

where o is the surface tension of the pure solvent (it is true while the solution is considered as diluted).
Eq. (12.3) allows us to neglect the influence of Laplace pressure on the bubble growth. Therefore, we can
write the following equations for the pressure in the bubble Pr and for the equilibrium solution concentra-
tion near the surface of the bubble ng:

Pr=1I, (12.4)
NR = Noo - (12.5)
The subscripts oo denotes that the equilibrium concentration n is related with the equilibrium near the flat

surface of phase separation (R — o0). From Eq. (12.4) it follows that the gas concentration in the bubble
ng is constant. Using the ideal gas law we have

!
T kgT

When Eqgs. (12.3), (12.4), and (12.5) are fulfilled and, therefore, Laplace pressure is negligible, the bubble
dynamics is evident for the case of steady-state diffusion and can be even described analytically for the
non-steady case [13, 14].

From the moment of bubble nucleation and till Eq. (12.3) becomes valid, Laplace pressure influences
bubble growth. Thus both quantities Pr and n p become radius-dependent (and, therefore, time-dependent).
For Pr now we have

20
Pr :H+§ . 12.7)
In order to write the equation for np we need to know the solubility law. For the simplest case of

Henry’s law the equilibrium concentration of dissolved gas is proportional to the corresponding pressure

ng (12.6)

nrg _ Pr

— == 12.8

Noo I (12.8)
However, Henry’s law is fulfilled only in such systems where there is no molecules dissociation during gas
dissolution. In another important case when the gas molecules completely dissociate in the solvent into two
parts the Henry’s law is replaced with so-called Sievert’s law (see e. g. [15]), and, therefore, Eq. (12.8) is
replaced with the following one:

nr - &
e \/ o (12.9)

Sievert’s law is fulfilled for water vapor dissolved in a silicate melt [11]. Such solutions are important both
for glass production [12] and for volcanic systems [3, 6].

The replacement of Eq. (12.8) with Eq. (12.9) means that the boundary condition for the gas diffusion
problem will be different for Henry’s and Sievert’s laws. The change of boundary condition, as we will see
further, leads to the change of bubble dynamics.
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12.3 Bubble Dynamics Equation

After the nucleation of the bubble, when its growth can be considered regular (i.e. the bubble cannot be
dissolved by fluctuations), its growth is governed by the diffusion flux of gas molecules into it. In this
paper we will study the case when the diffusion flux can be assumed as steady. The conditions when such
approximation is valid will be discussed further.

Taking into account the equality of gas concentration at the bubble surface to the equilibrium concen-
tration ny and the equality of gas concentration far from the bubble to the initial concentration ng, we can
write a simple expression for the steady diffusion flux density jp

nog —NR
R

Here D is the diffusion coefficient of gas molecules in the pure solvent (we assume that the solution is
diluted).

Now let us write the expression for the number of gas molecules IV in the bubble. Exploiting the ideal
gas law and using Eq. (12.7) we have

jip=D (12.10)

a7 20
= R+ = . 12.11
kT [ + R} (2.1
Differentiating Eq. (12.11), using Eq. (12.6), we obtain
dN dR R
— =4 RP— |1+ - 12.12
dt e g [ TR } ’ ¢ )
where
40
o= —— 12.13
R 3T ( )

is the characteristic size of the bubble.
Material balance between the dissolved gas and the gas in the growing bubble gives us the following
equality

dN
L —AnR%ip . 12.14
ar  HvIn (12.14)

Substituting expression for diffusion flux density Eq. (12.10) and the rate of change of the number of
molecules Eq. (12.12) into material balance equation Eq. (12.14) we have

dR R, ng —NR
— |1+ —=|=D———. 12.1
"o at [ TR ] R (12.15)
Or, exploiting Egs. (12.2) and (12.6), we equivalently have
RR [1 T R”] — ps0 'R (12.16)
R Moo

Using Egs. (12.1), (12.7) and, correspondingly, (12.8) and (12.9), the fraction in the r. h. s. of
Eq. (12.16) can be expressed as
Nog —NR 20
——=(—- = 12.17
¢ i ( )

Noo

for Henry’s law, and

ng — NR 20
—_— = 1—4/1+— 12.1
-~ ¢+ + om (12.18)
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for Sievert’s law. After exploiting in Egs. (12.17) or (12.18) the definition of R, (Eq. (12.13)), we have,
correspondingly,

—¢_2de (12.19)

Ukl NS P £ (12.20)
Moo 2

Egs. (12.19) and (12.20) allow us to rewrite the equation of bubble dynamics Eq. (12.16) in the final form,
namely

and

. R, 3 R,
RR|1+—| =D ——— 12.21
[ + R] s [C 5 R} ( )
for Henry’s solubility law; and
. Rs 3 R,
1+ —| =D 1—y/14 -— 12.22
RR { + 5 ] s|C+ +53 ( )

for Sievert’s solubility law.

While Eq. (12.21) was obtained as early as in 1950 in paper by Epstein and Plesset [10], Eq. (12.22) was
not obtained previously. In paper by Cable and Frade it was presented only a special case of Eq. (12.22),
when ( = —1:

RR {1 + %] = _—Dsy/1+ =22 (12.23)

(Eq. (34) in [12]). Such value of supersaturation corresponds to the dissolution of gas bubble in the pure
solvent. And even for this special case of Eq. (12.22) analytical solution was not obtained. We present the
analytical solution of Eq. (12.23) in Appendix B.

12.4 Critical Bubble and Initial Conditions for the Bubble Growth

The obtained equations for the bubble growth dynamics Eqs. (12.21) and (12.22) can be applied to the
cases of both homogeneous and heterogeneous nucleation. Below we will consider only the homogeneous
nucleation case.

Homogeneous nucleation of a gas bubble in a supersaturated solution means fluctuational mechanism
of its appearance and needs a significant pressure drop (in the order of 10? times). It is these conditions
of bubble nucleation that take place in magmatic melts during volcanic eruptions [3]. Since we decided
to describe only regular growth of a bubble, we need to exclude the very process of nucleation from our
examination and consider a bubble only when it is already supercritical.

Under the notion of critical bubble we understand, as usually [4, 16], such a bubble which radius R,
corresponds to the extremum of work of bubble formation. Critical bubble is in mechanical equilibrium
with solution at the initial pressure Py and in chemical equilibrium with solution with concentration ng

Pr,=F, (12.24)

ng, =no . (12.25)
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These two conditions together with the solubility law unambiguously define the value of R.. Condition
(12.24), using Eq. (12.7), evidently gives us

20
R.= ——, 12.26
Py—1I ( )

and condition (12.25) allows us to connect value Py with the supersaturation (.
Substituting Eqgs. (12.24) and (12.25) in Eq. (12.8) (Henry’s law) and Eq. (12.9) (Sievert’s law) we have
correspondingly

o Po
—_— = 12.27
Neo 11 ( )

and

o

Py
=/ =. 12.2
VT (12.28)

For Henry’s law we have evidently from Eq. (12.27) using Eq. (12.1)
Py=TI(¢+1). (12.29)

And, substituting Eq. (12.29) in Eq. (12.26), we have

20
R.= —, 12.30
e ( )
the well-known expression for the radius of a critical bubble (e. g. [4, 16]).
For Sievert’s law, when Eq. (12.27) is replaced by Eq. (12.28), we have
e \ 2
Py =11 (0) , (12.31)
Moo
or, using Eq. (12.1),
Py=TI(C+1)°. (12.32)
Finally, substituting Eq. (12.32) in Eq. (12.26) for the critical bubble radius, we have
20
Ri=—r—-—+——. 12.33
T ((YY (1239

Using Eq. (12.13) and Eq. (12.30) or Eq. (12.33) correspondingly we can write the relations between
R, and R, for both Henry’s and Sievert’s laws

2
Ry = (R, (12.34)

R, = % [(C+1)?~1] R, (12.35)

which will be exploited later.
Here it is important to make a remark regarding the quantity s, the gas solubility. Egs. (12.1) and (12.2)
give us
Nno k BT 1
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If Henry’s law is fulfilled, we have ¢ + 1 = P, /II and, therefore,

nokBT
= 12.37
s==p (1237)

s is a tabular value defined only by the initial state of the solution (before the pressure drop).
Since we consider Sievert’s law, we have (see Eq. (12.32)) (+1 = 4/ Py /1I; thus instead of Eq. (12.37),
we obtain

s = oksT (12.38)

VBRI

Here it is convenient to introduce constant K as the coefficient of proportionality in Sievert’s law: K =
no/v/Po. It allows us to rewrite Eq. (12.38) in the following form:

s= el (12.39)
VIT
Eq. (12.39) shows us that in the case of Sievert’s law the solubility value s depends on the final state of the
solution. In the current paper a solubility value for Sievert’s law is understood as gas solubility at the final
pressure I, i. e. after the pressure drop.
To deal with the dynamic equations (12.21) and (12.22) one needs to provide it with a reasonable initial
condition, i. e. to choose the value of constant R;, initial radius of the bubble, in the following equality

R(t)|t=0 = R; . (12.40)

In papers [10, 12] there was no special meaning assigned to the value of R;: the reason of appearance of the
bubble was totally excluded from discussion. Here we assume that the bubble nucleated fluctuationally, i. e.
crossed the barrier corresponding to radius IR.. It means that 1?; has to be not less than R, but evidently
we cannot use the radius of a critical bubble R,. as the initial value for the radius.

A bubble that nucleates fluctuationally in the solution is capable of regular growth if it passed and,
moreover, moved away from the near-critical region where fluctuations are still strong enough. Thus we
choose, following [8], R; = 2R, i. e.

R(t)|t=0 = 2R, . (12.41)

Such value guarantees the absence of fluctuations and, as we will see further, provides us with convenient
expressions.

The necessary condition for the fluctuational nucleation of a bubble is a high pressure drop (Py/II ~
10%) and, consequently, high supersaturation { ~ 103 for Henry’s law and ¢ ~ 30 + 40 for Sievert’s law.
Further we will use the following strong inequalities for the supersaturation:

¢>10 (12.42)
for Henry’s law, and
(>1 (12.43)

for Sievert’s law.

12.5 Three Stages of Bubble Growth

Before we find the explicit solution of Eqgs. (12.21) and (12.22), let us qualitatively describe the change
of the character of bubble growth process with the increase of its size. This will allow us to mark out the
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representative stages of growth and to determine corresponding characteristic bubble sizes. Duration of the
consecutive stages and the character of bubble radius time dependence on each stage will be considered
in the next section. It has to be noticed that the stages of our interest do not have anything in common
with the stages of evolution of the whole ensemble of bubbles during the decomposition of liquid solution
supersaturated with gas.

It will be more convenient to consider both cases of solubility laws separately.

12.5.1 Henry’s Law

Let us rewrite Eq. (12.21) in the equivalent form which will be more appropriate for its analysis:

. R.\ 1 1
It = Ds¢ (1 - R> iz <1+R/R) ! (12.44)

where we took into account Egs. (12.13) and (12.30).

Each of the three co-factors dependent on R emphasized in the right hand side of Eq. (12.44) describes
its physically different contribution to the dynamics of the supercritical bubble growth process. Co-factor
1 — R./R, increasing with R, corresponds to the fast (the scale of change of R is R.) increase of the
driving force of the process (the value ng — ng) with the growth of R. Co-factor 1/R, decreasing with
the growth of R, describes, as it is seen from Eq. (12.10), the contribution related to the decrease of the
gradient of solution concentration near the bubble surface, which decreases the bubble growth rate with the
growth of R. Finally, co-factor 1/(1 + R,/R), which increases with the growth of R, takes into account
the counteraction of Laplace pressure to the bubble growth, i. e. the fact that the bubble growth is facilitated
by the reduction of Laplace pressure with the growth of R, while other factors are equal (the scale of its
change is R, ). Notwithstanding the mentioned reduction of counteraction, the resulting contribution of the
last two factors always leads to the deceleration of growth with the increase of bubble size.

From Eqgs. (12.34) and (12.42) it can be seen that R, > R, holds. Using this inequality, Eq. (12.44)
and boundary condition (12.41), we have that the growth rate of the bubble radius in its dependence on this
radius has to reach the maximum value achieved at certain bubble radius R,,, from the interval 2R, < R <
R,. Thus it is natural to consider the growth in the following interval of sizes

2R, < R< R, (12.45)

as a first stage of bubble evolution, where the determining factor is the increase of the driving force of the
growth. At this stage bubble growth goes with the increasing in time rate, reaching its maximum at R,,,.

In order to obtain R,,, we will consider the rate of bubble growth as a function of its radius and differ-
entiate both parts of Eq. (12.44) with respect to R:

dR R.(R.+ R,) — (R— R.)’
— = Ds( (R + Ro) = ( 5 ) . (12.46)
dR R?2(R+ R,)
The quantity R, is defined by the extremal condition
dR
hainkd = 12.4
iR 0, (12.47)
which using Eq. (12.46) leads to the following result
R, = R. + (RE + R0R0)1/2 . (12.48)

Taking into account the strong inequality R, > R., we can simplify the obtained expression for R,,:

Ry ~ (R.R,)'? . (12.49)
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The second stage of the process will be when the bubble growth occurs within the interval of sizes
Ry, <R<R,. (12.50)

During all this stage, as R,, ~ (R.R,)'/? > R,, it is already valid that R > R., thus the driving
force ng — ngr remains practically constant. As a result, bubble growth decelerates, although, as it was
noted above, the counteraction of Laplace pressure to the growth gradually is attenuated. The Laplace
contribution 20/ R to the pressure inside the bubble decreases during the second stage by (R, /R.)'/?
times and at the completion of this stage becomes comparable with the external pressure II contribution
(from Eq. (12.13) we have strict equality 20 /R, = 3I1/2). It is this physical condition that defines the
completion of the second stage.
On the subsequent, third stage, which corresponds to the interval of sizes

R>R,, (12.51)

monotonic decelerated bubble growth continues. At the same time, the role of Laplace pressure continues
to decrease gradually, and the pressure Pg inside the bubble approaches to a constant value equal to the
external pressure II. As it will be shown further, this process is rather protracted, so the concluding phase
of the third stage, when the pressure inside the bubble practically does not change and the application of
self-similar solution [13, 14] is possible, comes only in the interval of sufficiently large sizes of the bubble,
when the condition R > R, is satisfied with a certain reserve.

12.5.2 Sievert’s Law

Let us investigate behavior of bubble growth rate R with the increase of bubble radius for Sieverts solubility
law. From Eq. (12.22) evidently stems

Ds

3R,
R:
R+ R,

1—/14+222
¢+ +55

(12.52)

Eq. (12.52) can be also written in the form similar to Eq. (12.44), to mark out three co-factors. The character
of bubble growth rate is presented graphically in Fig. 12.1.
Differentiating Eq. (12.52) by R we obtain

dR Ds 3 R,(R+ R,) < SR(,)
— = - 141427 (12.53)

It can be easily seen, that, as it is for Henry’s law, here bubble radius growth rate as a function of variable
R also has the only maximum. Denoting the corresponding radius as R,,, we can obtain its value from
Eq. (12.47). Using Eq. (12.53) we rewrite this equation as
4 3R 4 3R

RR, + R2+ -R* 1+ -2 ) — -R*\/1+ =—2((+1)=0. 12.54

+ R+ g <+2R> 2 + 5 CHD (12.54)

Assuming that the sought quantity R,, is considerably less than R,, we will use for R in Eq. (12.54)
the strong inequality 3R, /2R > 1. Below we will need this inequality to be even more stronger

Ry/3R>1. (12.55)

It will allow us to omit the second term in the brackets and the second addend in the square root in
Eq. (12.54). So this equation can be rewritten as:

gx/Rg(C +1)R%? —3RR, — R2=0. (12.56)



222 12 Gas Bubble Growth Dynamics in a Supersaturated Solution

1
Henry’s law
Sievert’s law — —
0.8}
- 0.6
3
S
04r
02F
0 . P | . P . P | . P | . T
0.001 0.01 0.1 1 10 100
R/R,

Figure 12.1: Growth rate of bubble radius dR/dt (measured in dimensionless units Ds¢/R,) as a function of R.
Solid curve corresponds to Henry’s law, Eq. (12.44). Dashed curve corresponds to Sievert’s law, Eq. (12.52). For both
solubility laws Py /TT = 10°.

Using Eq. (12.55) we can also omit the second addend in Eq. (12.56) in comparison with the third one.
After such a simplification Eq. (12.56) becomes solvable; and for R,,, we have:

V3 R,
R~ 5 et (12.57)

Substituting Eq. (12.57) in the second addend in Eq. (12.56) we can find a first-order correction to R,, in
Eq. (12.57). We have

. , 2/3
V3 R, 373 1
fim = S e (H 2 (<+1)2/3> ' (1239

Numerical solution of Eq. (12.54) for ( = 30 gives for inaccuracy of approximate solution Eq. (12.58) the
value less than 2%, and this value evidently decreases with the increase of .

As soon as we explained the behavior of the value R and found the value of R,, we can use the ideas
proposed for Henry’s law to determine the stages of bubble growth. On each stage the character of bubble
growth is different from any other. The three consecutive stages of growth are still defined by Egs. (12.45),
(12.50) and (12.51).

In the next two sections we will obtain the time dependence of bubble radius R for each stage and
duration of each stage. Also we will obtain conditions of steadiness of bubble growth for each stage.

12.6 Time Dependence of Bubble Radius

Let us now solve the differential equations (12.21) and (12.22) for the time dependence of the bubble radius
with the initial condition Eq. (12.40) of homogeneous nucleation of the bubble. As it was in the previous
section it is more convenient here to consider Henry’s and Sievert’s laws separately.
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12.6.1 Henry’s Law

At first we will rewrite Eq. (12.21) in the form which is appropriate for integration:

. . R/R.
Integrating Eq. (12.59), we obtain
R? R
5 + (Ry + R:)R+ (Ry + R.)R:1In R 1)=DsC(t+71), (12.60)

where 7 is the constant which has time dimensionality and which is defined by the initial value of radius at
time ¢ = 0. Using initial condition (12.40), from Eq. (12.60) we find

_ _ 2Re(R, +2R.)

. 12.61
DsC ( )
Excluding time 7 from Eq. (12.60) by means of Eq. (12.61), we obtain
R? — 4R? R
#C + (Ry + R:)(Ry — 2R.) + (Rys + R.)R.1In (R - 1) = Ds(t . (12.62)

Validity of the general relation Eq. (12.62), which strictly takes into account Laplace pressure influence
on the bubble growth process, is limited only by the condition of applicability of steady approximation
Eq. (12.10) for the diffusion flux. Equation (12.62) does not imply the smallness of quantity R./R, which
follows from Egs. (12.34) and (12.42). Eq. (12.62) complies with the results obtained in papers [10, 12] for
the particular case of steady growth of a bubble.

Now let us consider the third stage of bubble growth, when R > R,. First of all, let us note that
at the end of the first stage, when the bubble radius R approaches the value (R.R,)'/2, and with even
more assurance on the second and the third stages, one can neglect the logarithmic addend in Eq. (12.62).
Moreover, since during the third stage the main contribution in the 1. h. s. of Eq. (12.62) gradually tends to
the first addend, equal to R?/2; and the contribution of the second addend (influence of Laplace pressure)
decreases, neglect of logarithmic contribution becomes fairly justified. As a result, Eq. (12.62) conformably
to the third stage of bubble growth can be written in the form of

R2

-+ R, R =Dt (12.63)

12.6.2 Sievert’s Law

Unlike the case of Henry’s law (Eq. (12.21)) solution of Eq. (12.22) in general case is too cuambersome and,
as we will ensure in the current section, when inequality (12.43) is fulfilled, is even not necessary. Here we
present solutions of this equation for two particular cases:

R < R, (12.64)
— the first and the second stages and
R> R, (12.65)

— the second and the third stages. When strong inequality Eq. (12.43) is fulfilled, these two cases cover the
whole range R > 2R, of regular growth of the bubble radius, and that is the reason why general solution
of Eq. (12.22) is not necessary for the system under consideration.
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Let us begin with the case when inequality Eq. (12.64) is fulfilled. In this case we can omit 1 in
comparison with R, /R in the 1. h. s. of Eq. (12.22) and we can also omit 1 in comparison with the fraction
3R,/2R in ther. h. s. of this equation. Thus we have

3R,

C+1-y/o57

R=7%, 2 R

12.
R, (12.66)

Separating variables and exploiting Eq. (12.35) for R, under the square root, we can rewrite Eq. (12.66) in
the form which allows its integration:

dR  Ds((+1)
1-/R,/R  Rs

Integrating Eq. (12.67) with initial condition (12.40), we finally have

R_1)+2m(@_m)

dt . (12.67)

R—2Rc+Rcln<

R
+R.In V2+1VR- VR _ &(CJF 1)t e
T \V2-1vVR+ VR, R, '

This formula is different from Eq. (12.62), which means that, when inequality (12.64) is fulfilled, there is a
significant difference in the character of growth between Sievert’s law and Henry’s law.

Now let us proceed with the other case. At first, using Eq. (12.35) we can rewrite Eq. (12.22) equiva-
lently in the form of

R[R+ R,]

1 R,
L=Vt &

This form makes it obvious that, when strong inequality (12.65) together with inequality (12.43) are ful-
filled, the whole square root in the denominator of the 1. h. s. of Eq. (12.69) can be omitted in comparison
with 1. Therefore, we have

= Ds(C+1). (12.69)

R[R+ R, = Ds(C+1). (12.70)

This expression can be easily integrated. But the use of the initial condition Eq. (12.40) is not just as a result
of the fulfillment of strong inequality (12.65). There is arbitrariness in the choice of the initial condition
for integration of Eq. (12.70), but the most convenient is to choose a condition at such an “average” radius
which simultaneously satisfies Egs. (12.64) and (12.65), e. g.

R(t)l,_,, = Ra = V/ReR, . (12.71)

Due to R, < R,, we can use Eq. (12.68) to obtain the explicit value for time ¢, defined in Eq. (12.71).
Using inequality R, > R, Eq. (12.68) gives us

R.R,

tg Y ————— . 12.72
Ds(C+ 1) (12.72)
Now, integrating Eq. (12.70) with initial condition (12.71), we have
R? - R?
———2 4+ R,(R—Rs)=Ds(C+1)(t —ta), (12.73)

2
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Figure 12.2: Growth rate of bubble radius squared dR?/dt (measured in dimensionless units 2Ds() as a function of
R. Solid curve corresponds to Henry’s law, Eq. (12.44). Dashed curve corresponds to Sievert’s law, Eq. (12.52). For
both solubility laws Py /T = 10°.

or, rewriting R, using Eq. (12.71) and ¢, using Eq. (12.72), we have

2
% + R,R — R"f“ =Ds((+1)t. (12.74)

With the increase of R the contribution of the third addend in the 1. h. s. of Eq. (12.74) decreases and at
R > R, (on the third stage) we can already write
R2

& T RoR=Ds(¢+1)t. (12.75)

If we also used in Eq. (12.75) strong inequality (12.43), Eq. (12.75) will become identical to Eq. (12.63). It
means that, when inequality R > R, is fulfilled, any difference in the character of growth between Sievert’s
law and Henry’s law disappears.

When the bubble radius becomes as large as

R>R,, (12.76)

Eq. (12.63) transforms into the well-known Scriven’s [14] self-similar dependence for the steady-state case
R? = 2Ds(t (12.77)

when dR?/dt = const. This trend of Eq. (12.63) toward Eq. (12.77) was discussed in detail in [8]. This
trend is presented graphically in Fig. 12.2.

12.7 Duration of the Consecutive Stages

12.7.1 Henry’s Law

Eq. (12.62), giving the explicit dependence of bubble radius on time, allows us, in particular, to find char-
acteristic times corresponding to consecutive stages. According to Egs. (12.45) and (12.48), at the end
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of the first stage, the bubble radius reaches the value R,, = (RCRU)l/ 2. Substituting value R = R,, to
Eq. (12.62) and considering that (by virtue of inequalities R, < R,, < R,) the main contribution to the 1.
h. s. of Eq. (12.62) is made by the second addend, we obtain the expression for the first stage duration #;

2 1/2
t, = R <RC) . (12.78)

- Ds¢ \ R,

Using Eq. (12.34), expression (12.78) can be also presented in the form

3 1/2 Rg
t = (2) e (12.79)

As it follows from Eq. (12.79), with the increase of initial supersaturation of the solution, the first stage
duration decreases proportionally to 1/¢3/2.

The second stage of bubble growth starts at the time point ¢; and finishes at the time point ¢, defined by
the condition R\t:tQ = R,. Substituting value R = R, into Eq. (12.62) and considering that, by virtue of
inequality R. < R,, the main contribution to the 1. h. s. of Eq. (12.62) is made by the first and the second
addends, we obtain the expression for to

_3 R
- 2DsC’

2 (12.80)

As one can see from this expression, to dependence on initial solution supersaturation is defined by mul-
tiplier 1/¢. The duration of the second stage is much longer than the duration of the first stage, as from
Egs. (12.79) and (12.80) it follows that

to  (3C\?
ho ( 5 ) >1. (12.81)
Now let us consider the third stage of bubble growth, when R > R, and t > to. First of all, let us note
that at the end of the first stage, when the bubble radius R approaches the value (R.R,)"/?, and with even
more assurance on the second and the third stages, one can neglect the logarithmic addend in Eq. (12.62)
(it was taken into account earlier, when Eqgs. (12.78) and (12.80) were obtained).
Due to Eq. (12.51) the duration of the third stage of bubble growth is infinite. But it is reasonable to

estimate the time from the beginning of the third stage and to the moment when bubble radius reaches the
value Ry defined in [13],

Ry =20-20/11. (12.82)

It is assumed a priori in [13], that when radius reaches value Ry the influence of Laplace pressure on the
bubble growth is negligible.

As it was found in the previous section, on the third stage of bubble growth the time dependence of
bubble radius is given by the simple equation, Eq. (12.63). Let us introduce time ¢3 as a duration of bubble
growth in the size interval R, < R < Ry. Using Eqgs. (12.63) and (12.82) we evidently have

2

R
ta ~ 480—< . 12.83
3 Dsc ( )

The duration of the third stage is much longer than the duration of the second stage (and, moreover, the first
stage), as from Eqgs. (12.80) and (12.83) it follows that

s 390 (12.84)
2
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Eq. (12.84) and strong inequality (12.81) allow us to evaluate the whole duration of bubble growth in
the interval of sizes 2R, < R < Ry as t3. In [13] the estimation of this duration ¢y was given by the
following equation

Rj
to ~ . 12.85
0% 5DsC ( )
Using Eqgs. (12.13) and (12.82) we have ¢y ~ 450 l}?%sic; and therefore
ty3 —t
30~ 6%. (12.86)
t3

12.7.2 Sievert’s Law

Using Eqgs. (12.69) and (12.58) we can obtain expressions for duration of the first two stages ¢; and ¢, for the
Sievert’s law analogous to Eqs. (12.78) and (12.80). These expression are cumbersome, while qualitatively
the time-scale hierarchy for Sievert’s law is similar to the one for Henry’s law. Therefore we will not present
these expressions here.

As long as on the third stage the dynamic equation of bubble growth for Henry’s law Eq. (12.63) and
for Sievert’s law Eq. (12.75) are exactly the same (we need to account ¢ > 1 also), all the results presented
above for the third stage duration are valid for Sievert’s law also.

12.8 Steady Flux Conditions

The diffusion flux of molecules toward a growing bubble can be considered steady when the bubble growth
is slow enough in comparison with the “diffusion cloud” growth. To be more exact, the radius of the bubble
has to be much smaller than the radius of this cloud, the diffusion length. We can express it as

R < (Dtg)'/?, (12.87)

where tp is the characteristic time of the bubble radius change, tgp = R/ R the time in which the bubble
radius changes significantly. Evidently, Eq. (12.87) can be rewritten as

(m’z/D)l/2 <1. (12.88)

We can make this condition more explicit by means of Eq. (12.21) and Eq. (12.22) that give us correspond-
ingly:

R-R, 1/2
- 1 12.
<S<R+ Rg> < (12.89)

for Henry’s law, and

3 1/2
(C+1)—/1+3

14 &

=[P

<1 (12.90)

for Sievert’s law.

Now exploiting Eqs. (12.89) and (12.90) let us obtain the conditions for diffusion flux to be steady on
each stage defined above. We will write these conditions as inequalities for the value of solubility, not for
supersaturation. The value of supersaturation is already fixed by Egs. (12.42) and (12.43).



228 12 Gas Bubble Growth Dynamics in a Supersaturated Solution

1
Henry'slaws =001 — / ‘,'
Sievertslaws=1.0 — = / K
Henry’s law s =0.001 = = 7 R
0.8 | Sievertslaws=0.1---, g
H .
3 g )
O K
5 L
[oB ,
7] e
@ ,
Q 7
g .
Mo] s
<
o1
—
5]
1

Figure 12.3: Parameter characterizing the steadiness of bubble growth as a function of bubble radius R, 1. h. s. of
Eq. (12.88) at Py/II = 103. Curves are representing (from upper to lower) Sievert’s law at s = 1, Henry’s law at
s =1072, Sievert’s law at s = 10~ ! and Henry’s law at s = 10~5.

Obviously the larger the bubble is the more strict condition for steadiness is (see Fig. 12.3). The general
condition for bubble growth to be steady at any time is the condition at R > R,. From both Egs. (12.89)
and (12.90) we have

1/2
sY? « (2) ) (12.91)

This condition is sufficient for steadiness on the third stage for both Henry’s and Sievert’s laws.
For bubble growth to be steady during the whole second stage it is sufficient to be steady at R = R,.
This condition, using Eq. (12.42), transforms Eq. (12.89)

1/2
sY? « (?) ) (12.92)

Exactly the same result will be for Sievert’s law (see Eq. (12.43) and Eq. (12.90) at R = R,).

For bubble growth to be steady during the whole first stage it is sufficient to be steady at R = R,,,. It
is to be reminded that the quantity R,,, has different values for Henry’s and Sievert’s laws (see Eq. (12.49)
and Eq. (12.57)). For Henry’s law, using Eq. (12.35) this condition leads to

9\ /4
sY? « <3<> . (12.93)
And for Sievert’s law to
9\ 1/6
sY? <« (SC> . (12.94)

Obtaining Eq. (12.94) we used not only Eq. (12.43), but even more strict condition ¢2/3 >> 1. This condition
is still fulfilled when ¢ ~ 30 =+ 40.
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Finally, let us also write the condition of steadiness at the very beginning of the regular growth of the
bubble, exploiting Egs. (12.89) and (12.90) with R = 2R.. For Henry’s law we have

9 1/2
2« <3) , (12.95)

and for Sievert’s law
sH? <« ¢V (12.96)

While deriving Eq. (12.96), the numerical coefficient (3 (1 — 1/ \/5))1/2 inits 1. h. s. was replaced with 1
for shortness.

Let us mention the following interesting observation. Since for R > R,, the bubble dynamics is
exactly the same for both Henry’s and Sievert’s solubility laws, the condition of steady growth for R > R,
is also the same (see Eq. (12.91) above). For the case of homogeneous nucleation, when the pressure drop
Py /I ~ 103, the steady condition at R >> R, as a rule is violated in cases of both Henry’s and Sievert’s
laws. For Henry’s law, when s ~ 1072, it is violated due to high supersaturation values ( ~ 103. For
Sievert’s law, when corresponding supersaturation values are significantly less ( ~ 30 + 40, values of
gas solubility are significantly higher than for Henry’s law (see next section), and that is the reason of the
violation of the steady condition. While for Henry’s law solubility s is a tabular value (see Eq. (12.37)),
for Sievert’s law it can be adjusted via settlement of the final pressure II value. It is evident that condition
(12.91) can be satisfied at the given solubility value when one decreases the solution supersaturation ¢ (the
case of heterogeneous nucleation).

In order to satisfy the condition (12.91) of steady growth the value of gas solubility s has to be decreased.
From Eq. (12.32) for the supersaturation we have

(=7 -1 (12.97)

Than, using Eqgs. (12.39), (12.97), let us rewrite product s¢ in the following form

kT [ [P

Eq. (12.98) shows us that in order to weaken limitation (12.91) one needs to increase the final pressure II,
leaving the ratio P, /II constant.

12.9 Bubble Growth in Volcanic Systems

This section contains the analysis of the steady growth condition obtained in the previous section for bubble
nucleation in volcanic systems. Previously, e. g. in papers [3] and [6] the study of such systems exploited
steady approximation without the analysis of its applicability.

For our evaluations we will use parameters from [3] for the case of homogeneous nucleation of water
vapor bubbles in a magmatic melt. We have

Py =100 MPa II = 0.1 MPa

12.99
T=1150K w=3% p, = 2300kg/m>. ( )

Here w is gas mass fraction of the dissolved gas (water vapor), and p,,, is magma density.
Let us express the values of s and { using data given. From Eq. (12.97), in accordance with Eq. (12.99),
we have ( ~ 31. Then we need to calculate ng and substitute it into Eq. (12.38) to obtain the value of
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solubility. As long as we are given mass density of magma and mass fraction of gas, it is convenient to
write

N
no = pof : (12.100)

where pg is mass density of the dissolved gas, Ny = 6 - 10%® mol ™! is the Avogadro constant and p =
1.8 - 10~2 kg/mol is the molar mass of the dissolved gas (water). Finally, we need to express the mass
density of the dissolved gas. Evidently, we have

PO = WPm, , (12.101)
and, therefore,
NakpgT
5= WP . (12.102)
J7aV4 P()H

Using data given by Eq. (12.99) in Eq. (12.102), we have s ~ 12.

Now we can see that for volcanic systems, where the pressure drop is of the order of 103 and solubility
is more than 1, both conditions (12.91) and (12.92) are violated, and steady approximation is not valid for
radii of the order of R,. Even in the very beginning of bubble regular growth, when R = 2R_, the steady
condition (12.96) is fulfilled only at its breaking point: the values of (/2 exceed the value of s'/2, but these
values are of the same order of magnitude.

12.10 Conclusions

In the presented paper we obtained the equations for the bubble growth dynamics in the gas solution with
Henry’s and Sievert’s solubility laws. We solved these equations analytically for case of bubble growth in
strongly supersaturated solution. The equation for the Sievert’s law was solved also for the case of bubble
dissolution in the pure solvent.

We showed that, irrespective of the to gas solubility law, three characteristic stages could be marked out
in the growth dynamics. During the first stage the bubble radius is growing with an increasing rate. On the
second stage the growth rate decreases. The third stage, when the growth rate continues to decrease, begins
when the Laplace pressure inside the bubble becomes comparable with the external pressure of the solution.
We demonstrated that during the first two stages the time dependence of the bubble radius is different for
the cases of Henry’s and Sievert’s laws, while during the third stage this distinction is no longer observed.
For both Henry’s and Sievert’s laws we obtained intervals within which the bubble radius changes on each
stage, as well as durations of consecutive stages.

While obtaining the dynamic equations we assumed the diffusion flux to be steady. We obtained con-
ditions when this steady approximation is applicable. We showed that usually, as the radius of the bubble
increases, the steady regime of bubble growth gradually gives way to the nonsteady one. Application of the
obtained conditions for the volcanic system consisting of water vapor dissolved in the silicate melt showed
that the process in such system as a rule cannot be considered as steady.

12.11 Appendices
12.11.1 Appendix A: Effect of Solvent Viscosity on Bubble Growth

In the current paper we neglected the solvent viscosity. Its influence on bubble dynamics can be estimated
using Rayleigh-Plesset equation (see e.g. [17]). To take the solvent viscosity into account one needs to
replace Eq. (12.7) with the following equality:

20 R
Pr=114+— 449y

—= 12.103
i R ( )
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where 7 is the dynamic viscosity of the solvent. The inertial terms in Rayleigh-Plesset equation are negli-
gible for any reasonable bubble growth rate.

To neglect the viscous term in Eq. (12.103) (the third addend) in comparison with the surface tension
term (the second addend) the following strong inequality has to be fulfilled:

g

< .
Y

(12.104)
This inequality, evidently, is equivalent to inequality Pe > 1, where Pe is Peclet number.

The higher the bubble growth rate R is, the stronger the inequality (12.104) is. The strongest condition
takes place when R = R,,. Using Eqgs. (12.49) and (12.57) in Egs. (12.44) and (12.52) correspondingly,
for both Henry’s and Sievert’s laws we have

. . D
R<R ~ D3¢ (12.105)
R=R,, R,

Therefore, using Eq. (12.13), we can rewrite strong inequality (12.104) as

2

—_— 12.1
n< DscTl (12.106)

where multiplier 2/3 in the r. h. s. is omitted for shortness.

Let us estimate the value in the r. h. s. of inequality (12.106). Typical values of surface tension both
for water and for volcanic systems [6] are o ~ 10! Nm™!; both for Henry’s and Sievert’s laws s¢ ~ 10;
diffusion coefficient D ~ 10~ m2?s~! [3]; pressure IT ~ 10° Pa. Substituting these values, we have:

n < 10° Pas . (12.107)

It should be noted that “common” liquids at normal conditions always satisfy this condition: for water we
have  ~ 1073 Pa s and even for glycerol  ~ 1 Pa s [18]. For volcanic systems the values of viscosity
that satisfy strong inequality (12.107) are quite typical when SiO2 content is not too high (basalt, andesite
and dactite melts) [1]. However, for rhyolite melts (~ 70% SiO5) viscosity can reach the values of 107 Pa s
[6]; and, therefore, effect of solvent viscosity has to be taken into account.

We do not discuss here the oscillating settlement of the mechanical equilibrium between the bubble and
the solution: as it was shown in [19] this settlement occurs much faster than the settlement of chemical
equilibrium, unless the liquid viscosity is extremely low.

12.11.2 Appendix B: Dissolution of the Gas Bubble in a Pure Solvent: Sievert’s
Solubility Law

Eq. (12.23) allows us to obtain the radius-time relation for the bubble of arbitrary initial size R|,_, = R;
which is put in the pure solvent and also the time of its dissolution ¢4, R|t:td = 0. Separating variables,
we can rewrite Eq. (12.23) as

E_RAR = —Dsdt , (12.108)

[ 3R, 1 L=
1+=2_-__E | RAR = —Dsdt . (12.109)
2R 2 14 3Rs
2
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Using the variable x = /1 + %% for integrating in Eq. (12.109) instead of R we have

1.2

@ -1 (@ -1

SR?, [3 }da::Dsdt. (12.110)

Eq. (12.110) can be easily integrated and therefore we obtain

1 3 1 3
_ 2 _ _ 2 _
2R,/R +5RoR SR,,,/R + S RoR
. (12.111)
3 , (4R 41 3
P RmnlzE - 2.’ 1
32Ran<3Rg 3Rg‘/R + SRR+ >

= Dst .
R
Eq. (12.111) gives us an explicit relation between the bubble radius R and time ¢.
Let us find the time ¢, of total dissolution (R — 0) from arbitrary initial radius R;

1 3 1 3
R 2 e R 2 e .
SR\ B? + SRoRi — Ro| R+ SRR,

3R, 3R,V ' 2

L1
4= Ds
(12.112)

The latter expression can be simplified for the two particular cases and short analytical expressions for time
tq can be obtained. The first case is R; > R,:

R2
ta = 2Dls . (12.113)
And the second is R; < R,:
9\ 3/2 p3/2pl/2
tg=(=) ——2—.
d (3) Ds

(12.114)

Let us also obtain the expression for dissolution time from R; = R,

R2

tg =0.435—=. 12.115
a=0 35Ds ( )
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Abstract

The solution was obtained for the problem of heat transfer between a single droplet and vapor — gas mixture at different
Knudsen numbers of growing droplet. The influence of interphase heat transfer on dynamics of macro-parameters
and droplets distribution function was studied with the use of obtained results for process of condensation relaxation
after instantaneous creation of supersaturation state in vapor—gas mixture and for bulk condensation at flow of vapor
— gas mixture in nozzle. A comparison of results obtained for general formulation and for the case when simplifying
assumptions are used about the temperature of droplets was carried out for different regimes of droplets growth.

13.1 Introduction

Heat release during bulk condensation leads to increase of temperatures of both liquid and gaseous phases.
As a result the condensation process is slowed down for two reasons. On the one hand the droplet growth
rate decreases owing to increase of saturation pressure above a droplet at its heating. On the other hand
the nucleation rate decreases owing to reduction of supersaturation ratio at vapor heating. The relationship
between these factors slowing down the process of bulk condensation is determined by the temperature dif-
ference between droplets and vapor. At high temperature difference the first factor (decrease of growth rate)
is the determining one, at low difference the second factor (decrease of nucleation rate) is the determining.
In turn, the temperature difference between the phases is determined by the intensity of interphase heat ex-
change. Thus, in general, the description of the kinetics of bulk condensation should include a description
of three simultaneous processes: the formation of new droplets (nucleation), growth of droplets and the
interphase heat transfer.

Influence of heat transfer on nucleation was studied in many papers. For example, it was shown in [1]
that subcritical clusters have lower temperature than the gaseous phase and supercritical ones have higher
temperature. Also definite expression were obtained for the nucleation rate affected by temperature effects.
Analytical description of weak and strong thermal effects of condensation of pure vapor in the supercritical
droplet was proposed in [2]. Effect of temperature fluctuations on nucleation-growth processes was dis-
cussed in [3]. Condensation of binary vapor mixtures was studied in [4] with use of the approaches proposed
in [2]. However, only the limiting cases of the Knudsen number of the growing droplet (free-molecular and
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diffusion regimes) were considered due to the use of analytical methods. Also the composition and tem-
perature of the gaseous phase were assumed to be constant. The numerical simulation of interphase heat
transfer at bulk condensation used in this paper does not have these limitations. It was shown in [5] that
the latent heat and the resulting change in temperature may qualitatively change the scenario of first-order
phase transitions in comparison with the case that such effects are neglected. Authors of these studies fo-
cused on influence of heat transfer on nucleation, rather than on growth of droplets, our focus is study of
heat transfer influence on both of these processes.

Temperature of gaseous phase is minimal value of droplets temperature and saturation temperature at
vapor pressure is maximal one. These limiting values are often used in literature as assumptions allowing
one the calculation of droplets temperature. Possibility of use of these assumptions is associated with
supposition about ratio of two time intervals. First interval is time of equalization of phases temperatures,
second one is duration of bulk condensation process. It should be noted that validity of these assumptions
can be estimated by comparing the results obtained with their use and in the general formulation. Such
comparison is the main objective of this work.

Study of bulk condensation taking into account the heat transfer between phases requires formulas for
the calculation of droplet growth rate and interphase heat flux. However there are no such correlations which
can be used at arbitrary regime of droplets growth at presence of temperature difference between phases.
For example, the known Fuchs formula [6] does not have Knudsen number limits but it was obtained for the
same temperatures of droplets and vapor. So we considered the problem of heat transfer between a single
droplet and vapor — gas mixture. Results of solution of this problem were used for study of condensational
relaxation and bulk condensation during flow in nozzle. An overview on the notations employed in the
present analysis is given at the end of the chapter.

13.2 Heat Transfer between a Single Droplet and Vapor — Gas
Mixture

We used the method of “dividing sphere” for obtaining formulas for calculation of droplet growth rate
and interphase heat flux. The region near the droplet is divided into two parts (see Fig. 13.1), and their
boundary lies at a distance A from the droplet surface. The value of A is close to the mean free path. The
temperature of the vapor — gas mixture and the partial pressures of components at this boundary are marked
by the subscript “A”. In region I (kinetic) processes of condensation and heat transfer are determined
by the motion of molecules of vapor and gas without collisions. Diffusion and thermal conductivity are
determining factors in region II (continuous matter).

In the kinetic region values of heat and mass fluxes can be found by integrating the velocity distribution
functions of vapor and gas molecules. For gas (hereinafter the gas parameters are denoted by subscript “g”),
this function is written as a two-sided Maxwell distribution:

F2
NgA _ §
(27 R,Ta) eXp( 2R9TA> o & <0
F, = B} (13.1)

__MNga &
27 Ry Tyq) eXp( 2R9ng) » & >0

Here ngyn is gas particle number density on the boundary of regions I and II, nyq and T4 are the number

densities and temperature of gas molecules reflecting from the droplet surface, R is the gas constant, 5 is
molecular velocity, and &, is its projection on the r-axis. Temperature 7,4 depends on thermal accommo-
dation coefficient §,:

Tys=Ta — By (Ta — Ta) . (132)
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Figure 13.1: Scheme for calculation of droplet growth rate and interphase heat flux.

The value of n4q can be found using the assumption that the surface of the droplet is not penetrable for gas:

Ngd = TLgA\/TA/ng . (13.3)

Vapor distribution function (hereinafter vapor parameters are denoted by the subscript “v”) differs from
Eq. (13.1) because there are not only reflecting but evaporating molecules. These groups of molecules can
have different temperatures:

&2
Ny A _ 5
(@27 R,Tx) eXp( QRUTA> » & <0
F, = (13.4)

ang (Ty) & o e
(2R, Ty) eXp< oR,T; ) T @R P\ TamT ) 0 &0

Here « is the condensation coefficient, and n4(T}) is the number density of saturated vapor at temperature
of droplet. Number density n, 4 and temperature 7,4 of reflecting molecules are calculated in the same way
as for gas although accommodation coefficients can de different for different components:

Tva =Ta = Pv (Ta —Ta) , (13.5)

Nyd = (1 — @) nuavV/Ta/Tya - (13.6)

It is taken into account in Eq. (13.6) that only a part of vapor molecules moving to surface of droplet are
reflecting.
Total heat and mass fluxes are determined as moments of distribution functions [7]:

—+o0
Ji = 4mr2m, / & FodE (13.7)
— 00

+o0 +oo
Q; = drr? mT / (& — uy) (5— ﬁv)z F,dé + % / &EF,dE | . (13.8)

—00
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Here u, is vapor velocity projection on the axis r, other projections are equal to zero. This value is calcu-
lated as mass flux divided by density [7]:

+o00 +oo
= /g,.deg// F,dE . (13.9)

Substitution of the distribution functions Eqgs. (13.1) and (13.3) into Eqs. (13.4) and (13.5) using the ideal
gas equation of state for both components leads to the following expressions:

Ds (Td) N PvA )
V2R, Tyq V27R,Ta ’

R,TA Tyq — Ta Tva R, Ty
= 4 2 9279 "2 49 s (T, 1-— v —
Qr mrg ( Do\ o ™ (ap (Ta) + (1 — @) pua 7 Td> \V o
R,T, 5 [Tya
—2puA ﬁ - Z (aps (Td) + (1 - a) Ta 7 PvA +va> uv) (13.11)

JIR, /27r7'3

(13.10)

Jr = 4mria (

Uy = . (13.12)
va/TA + Qaps (Td)/Td + (1 - a) va/ Vv TATvd
In region of continuous matter mass and heat fluxes are calculated as follows [6]:
47 (’I“d + A) D T
Jip=—"—""7"7—"—"1|p — Dom | 13.13
1 R, Poap o —P ( )
Qrr =4 (rg + M)A (Ta — Tp) - (13.14)

Here D is diffusion coefficient, and X is thermal conductivity. We calculated them with use of theory of
ideal gas [8, 9].
It is obvious that mass and heat fluxes in regions I and II should be equal:
Jr=Jir, Qr=Qrr - (13.15)

If partial pressures of the mixture components and temperatures of droplets and vapor — gas mixture are
known, then this system of two equations has three unknown parameters: the temperature and partial pres-
sures at the boundary of regions Ta, pya and pga. The third equation is that gas mass flux in region II is
zero, so gas pressure can be found as follows:

PgA = DgmTA/Tm - (13.16)

Substituting Egs. (13.10) — (13.14) for mass and heat fluxes into Eq. (13.15) and finding pressure p,A from
the first equation of this system

TA Ps (T4) — Pom V TATd/T

s =bem, \/*+ (ra + A) DVIRR,T;
Ta R,Tyr2a

one can reduce Eq. (13.15) to a nonlinear equation for the temperature at the boundary of regions I and II:

(13.17)

R,T, T
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Here vapor velocity u, and pressure p,a are determined by Eqgs. (13.12) and (13.17) respectively.

Egs. (13.10) — (13.12), (13.18) are written for arbitrary values of condensation and accommodation
coefficients, further calculations were carried out for o = 3, = 3, = 1. We solved Eq. (13.18) numerically.
Obtained values of Ta, p,a and pga were substituted into Egs. (13.10) and (13.11), which were used for
calculation of droplet growth rate 7 and density of interphase heat flux g:

i _ Qr
4o’ e 4rr?

(13.19)

Here p; is the density of liquid.
Testing of the model of interphase heat transfer was carried out on two examples:

1. Temperature of droplet is equal to the one of the vapor — gas mixture: In this case use of our model
should lead to following results: temperature T'a is equal to 7;,,, and droplet growth rate is the same
as calculated with use of the Fuchs formula [6]:

-1
vm — VFs T Rva 2
= ]?7}9(01) 1+g1/ "d . (13.20)
o1V 2t R, T, D 21 rg+ A
This expression was obtained with use of method of “dividing sphere” (see Eq. (13.15)) without con-
sidering heat transfer.

2. Free molecular regime of droplet growth: In this case our model should give following results: growth
rate and heat flux are equal to the ones calculated with use of Egs. (13.7) and (13.8) taking into account
that parameters on boundary of regions I and II are equal to the ones far from droplet (Tao = T,,
PvA = Puvms PgA = pgm)-
In both cases the expected results were obtained. So the proposed model for calculating the growth of
droplets and heat transfer works correctly.

13.3 The Relaxation Problem

13.3.1 Formulation

As in our previous papers [10], we considered motionless mixture of vapor and non-condensing gas with
given initial supersaturation ratio s = py.m/ps(Tim). The kinetic equation for droplet size distribution
function [11] was used as mathematical description:
0 a(r 1

)

o o st U (20

Here f is the mass distribution function of droplet sizes, r is the droplet radius, 7 is the droplet growth rate,
1 is the nucleation rate, py is the density of the vapor-gas-droplets mixture, J is the delta function, and 7,
is the critical droplet radius.

Decrease of nucleation rate due to heating of droplets was studied in [2] and the following formula was
proposed:

I=1y/(1+k), (13.22)

where Ij is the nucleation rate without taking into account thermal effects and the parameter k with the
nomenclature adopted in this paper is written as follows:

(13.23)
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Here 8 = L/R,T,, is the dimensionless evaporation heat, m;, n; and C; are molecular mass, particle
number density and heat capacity of the component ¢. Solution of the relaxation problem was obtained both
with taking into account thermal effects (nucleation rate was calculated by Eq. (13.22)) and without it. We
used the formula of Frenkel and Zeldovich [12] for calculation of the nucleation rate I;. The method of
direct numerical solution [10] was used for solving Eq. (13.21).

Additional equations were the following: ideal gas equations of state for vapor and gas, and equations of
mass and heat balance. Variation of mass fraction of liquid was calculated with use of distribution function:

o0

(13.24)
cq = const

Here c,, ¢; and ¢, are mass fractions of vapor, liquid and gas, respectively.
Energy equations were used for calculation of temperatures of vapor — gas mixture and droplets. Heat
balance equation for a single droplet is written as follows:

mCydTy = Ldm — ¢Sdt (13.25)

where m and S are mass and surface of droplet, respectively, C; is specific heat of liquid, and L is evapora-
tion heat. Taking into account formulas for mass and surface and definition of droplet growth rate 7 = dr/dt
one can obtain following equation from Eq. (13.24):

éwplﬁq@ =dnr? (Lpyi — q) . (13.26)
3 dt

Temperature of droplet found from Eq. (13.26) depends on its radius. For simplifying the problem we
assumed that all droplets have the same temperature equal to the average one. Equation for average temper-
ature of droplets can be obtained from Eq. (13.26) by multiplying on distribution function and integrating
over all droplet radii:

oo o0

—pCy—— /r3fdr = /(Lpﬂ'"— q)r*fdr . (13.27)

Ter Ter

Eq. (13.27) shows that temperature of droplets increases due to heat release during condensation and de-
creases due to heat transfer to vapor — gas mixture. Equality of temperatures of phases T, = T}, was
used as initial condition for Eq. (13.27). Except the energy equation for droplets, mathematical description
includes energy equation for gaseous phase:

AT 7

U _ gy / arfdr . (13.28)

Cm
dt

Ter
We also obtained solution of relaxation problem for two limiting cases:

1. Temperature of droplets was equal to one of vapor — gas mixture (T; = T,,). In this case energy
equation is the same for both phases:

dTm dCl
omo 2t
O dt

Here Cy is specific heat of mixture of vapor, gas and droplets.

(13.29)

2. Temperature of droplets was equal to saturation one at partial pressure of vapor (I, = 7). In this
case we also used Eq. (13.27) because mass fraction of liquid is small and heat supply for changing of
droplets temperature can be neglected in comparison with heat release during condensation.
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13.3.2 Results for Free-Molecular Regime of Droplet Growth

We considered a mixture of cesium and argon as an example of free molecular regime. Initial parameters
were the following: the temperature of mixture was 560 K, the supersaturation ratio was 10, ratio of partial
pressures of vapor p, and gas p, was variable. Variation of p, /p, at constant temperature and supersat-
uration ratio means that only partial pressure of gas is variable, because p, = sps(T},) according to the
definition of the supersaturation ratio. In all figures with results of calculations, the following notation is
used: 1 and 2 — T} is calculated by our model without and with the Kuni modification, respectively, 3 —
Ty=Tmn,4-Ty=Ts.
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Figure 13.2: Time dependence of the temperature of vapor — gas mixture for cesium and argon at p, /py = 0.5 (left)
and p, /py = 0.05 (right).

Dependencies of the temperature of vapor-gas mixture for different values of p, / p, are shown in
Figs. 13.2. These dependencies are qualitatively identical for all approaches used for calculation of the
droplet temperature; other integral characteristics (supersaturation ratio, numerical density of droplets) also
behave similarly. At the beginning of the relaxation process, there is found an induction period during
which the formation of droplets and their growth do not lead to appreciable changes in the temperature
and supersaturation ratio, and the numerical density of droplets grows linearly because the nucleation rate
remains constant. The heat released during condensation is proportional to the growth rate of droplets
volume, which is proportional to the total droplets surface for the free molecular growth regime, which
is reasonably small at the beginning of the condensation process. When the indicated parameter achieves
a certain value, the temperature begins to increase and the supersaturation ratio decreases due to both
increase of the saturation pressure and decrease of the partial vapor pressure. Our estimates show that for
the considered time interval the coagulation process can be neglected.

With an increase in the droplet temperature, the growth rate decreases. It results in increasing the
relaxation time because more time is required for achieving the value of the total droplet surface for which
the heat release begins to affect the supersaturation ratio. The lower limit of possible values of the droplet
temperature is the temperature of the vapor—gas mixture, and the upper limit is the saturation temperature.
Hence, the calculations with use of these approximations give the minimal and maximal relaxation time,
respectively.

The intensity of the interphase heat exchange for model of one temperature is higher in comparison
with that in the case of equal temperature of droplets and saturation temperature corresponds to the one
temperature model. The interphase heat flux grows with increase of the gas pressure. Therefore, it can be
assumed that the results obtained taking into account a finite heat exchange rate should come nearer to the
data for the one temperature model with increasing the gas pressure and nearer to the data for the droplet
temperature, which is equal to the saturation temperature, with decreasing it. The comparison of results



242 13 Interphase Heat Transfer for Different Regimes of Droplet Growth

0.20 02087, %
I PRSI RPPR N

0.16 0.16} v

\
0.12 0.12+ "\

!
0.08 0.08 — 1 '

---2 !

0.04} 0.04| -4
0.00 , ) ) t’ .MS ) ) ) ) t’ l.’ls

! 0.00 .
0.01 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000

Figure 13.3: Time dependence of relative temperature difference between phases 67" = (Tq — Tr,) /T for mixture
of cesium and argon at p, /py = 0.5 (left) and p,, /pg = 0.05 (right).

presented in Figs. 13.2 confirms this assumption.

The parameter k in Eq. (13.22) shows how heating of droplets affects the nucleation rate. In accordance
with Eq. (13.23) it increases with increase of gas concentration, so the nucleation rate becomes closer to the
value obtained without heating the droplets. Consequently, influence of droplets heating on the nucleation
rate at low gas pressure is much stronger than at low one. Decrease in the nucleation rate leads to decrease
of intensity of heat release, so duration of the relaxation increases as compared with the calculation of
nucleation rate without the modification proposed in [2].
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Figure 13.4: Dependence of distribution function on droplet size for mixture of cesium and argon at p, /p; = 0.5 and
t = 40us (left) and p, /pgy = 0.05 and t = 40p (right).

Figs. 13.3 show time dependencies of relative temperature difference between droplets and vapor — gas
mixture 0T for developed model and temperature of droplets equal to saturation one. It is obvious that for
Ty = T, the value of 6T is zero. For our model of heat transfer, temperature of droplets reaches some
value between the limiting values 7,,, and 7. Total volume of droplets is very small at the beginning of
the relaxation process, so a small amount of heat is required for their significant heating. Value of 6T
remains constant during induction period, because temperatures of phases do not change. With the growth
of droplets, their surface area and total heat flux from the droplets to the gas mixture increase, so the
temperature difference between the phases reduces. Relaxation time for T;; = T is higher than for our
model because droplets growth rate decreases with increase of their temperature.
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The droplet size distribution function is shown in Figs. 13.4 for the ratio of partial pressures of vapor
and gas 0.5 and 0.05, respectively. During the induction period the distribution function is stepwise be-
cause the nucleation rate is constant, and the growth rate does not depend on droplet radius. Further, the
nucleation rate decreases due to decrease of the supersaturation, which causes a decrease in the distribution
function for a radius near to the critical one. For the model of one temperature the maximal value of the
distribution function is lower than for the temperature of droplets equal to the saturation one, because in
the free molecular regime this value is determined by the ratio of nucleation rate to growth rate during the
induction period and the growth rate decreases with increasing temperature of droplets. Taking into account
the heating effects on the nucleation rate leads to decrease of the distribution function, but the position of
the disturbance front remains constant because the growth rate of droplets for curves 1 and 2 in both plots
during the induction period is the same.

Distribution function in Fig. 13.4 (left) for the one-temperature model (curve 3) corresponds to the stage
where the supersaturation ratio is so low that the nucleation rate is zero. For other models the induction
period is still ongoing and the distribution function takes a form similar to the curve for one-temperature
model much later. Changing of the distribution function after the end of nucleation in all cases is the move-
ment of profile without deformation to increase the radius of the droplets. As for integral characteristics,
qualitative dependence of distribution function on droplet radius and time is the same for all considered
cases.

13.3.3 Results for the Transitional Regime of Droplet Growth

Previously we used a mixture of ethane and argon as an example of droplet growth at moderate and small
Knudsen numbers (see, for example, [10]). For this mixture kinetic effects play an important role only for
droplets of very small size. In continual regime interphase heat flux is calculated as follows:

q=XTq—Tn)/r. (13.30)

Ethane and argon have near values of thermal conductivity (\,/A, = 0.7), so interphase heat flux depends
on partial pressure of gas weakly. Due to this here we considered mixture of ethane and helium, which have
significantly different thermal conductivities (A, /Ay = 0.12).
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Figure 13.5: Time dependence of the temperature of vapor — gas mixture for ethane and helium at p, /p; = 1.0 (left)
and p, /pg = 0.1 (right).

Calculations were carried out for following initial parameters: the temperature of mixture was 160 K,
the supersaturation ratio was 10, ratio of partial pressures of vapors p, and gas p,; was variable as for
previous mixture. The Knudsen number with average droplet radius as characteristic size changes during
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Figure 13.6: Time dependence of relative temperature difference between phases 67" = (Tq — Ton,) /T for mixture
of ethane and helium at p, /py; = 1.0 (left) and p,, /py = 0.1 (right).
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Figure 13.7: Dependence of distribution function on droplet size for mixture of ethane and helium at p,, /py = 1.0 and
t = 4ps (left) and p, /pg = 0.1 and ¢t = 4us (right).

relaxation in the range from 10 to 0.01. The performed calculations showed that taking into account finite
rate of interphase heat transfer does not lead to qualitative changes in considered process as for considered
above free molecular regime.

Time dependencies of temperature of vapor — gas mixture are shown in Figs. 13.5 for p,/p; = 1.0
and p, /py, = 0.1, respectively. Figs. 13.6 illustrate the time dependence of relative temperature difference
between phases. These results are qualitatively the same as presented above in Figs. 13.2 — 13.3.

Figs. 13.7 show the droplet size distribution function at different moments of time for the ratio of partial
pressures of vapor and gas 1.0 and 0.1, respectively. For all the approaches for calculation of droplets
temperature the qualitative dependence of the distribution function on radius and time is the same. The
distribution function is not stepwise because the growth rate for moderate and small Knudsen numbers
decreases with increase of droplet radius.

In the considered case of small and moderate Knudsen numbers the intensity of interphase heat transfer
increase with rise of gas partial pressure the same as at large Knudsen numbers. It should be noted that
it is correct for continuous matter region only if gas thermal conductivity is higher than vapor one. For
low gas concentration (Fig. 13.7 (left)) distribution function obtained with taking into account interphase
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heat transfer is near to one for droplets temperature equal to saturation one. If gas concentration is high
(Fig. 13.7 (right)), distribution function is near to one for droplets temperature equal to vapor-gas mixture
one. Macroscopic parameters of condensational aerosol behave similarly. As in the case of free molecular
regime, taking into account the effect of droplets heating on the nucleation rate at low gas pressure leads to
more significant changes in macro-parameters and distribution functions, than at high one.

All curves in Figs. 13.7 correspond to the induction period. Exception is curve for one-temperature
model in Fig. 13.7 (left). This distribution function is presented for the final stage of relaxation, during
which there is no nucleation due to low supersaturation, so distribution function at radius near to critical
one is near to zero. For other considered cases the relaxation time is much more than for model of one
temperature, so distribution function becomes similar to curve 2 for one-temperature model, much later.

13.4 Bulk Condensation During Flow in a Nozzle

13.4.1 Formulation

We considered a one-dimensional stationary flow of vapor — gas mixture in supersonic part of nozzle.
Cross size of the nozzle was much larger than the free path, so methods of continuous matter were used
for the description of flow but not for interaction of gas and droplets. Due to the small size of the droplets,
velocities of liquid and gaseous phase were assumed to be identical. At the beginning of nozzle, temperature
of mixture and partial pressures of vapor and gas were given, vapor was saturated, and velocity was equal
to the one of sound. Viscosity of gaseous phase was zero, thermal conductivity was taken into account only
in calculation of interphase heat flux at transitional and continual regimes of droplets growth.
The kinetic equation for droplet size distribution function in one-dimensional stationary problem is
written as follows:
of | 0(f)

I
—_— = — _— ] . 1
Uor T Tar T g T Ter) s (13.31)

where u is velocity of flow. We developed a method of direct numerical solution [10] for zero-dimensional
non-stationary problems, but it was used for bulk condensation at flow in nozzle with replace of time step
by coordinate step divided by velocity.

Equations of gas dynamics were used as the mathematical description of flow:

% (puS) =0, (13.32)
du d
pu = ﬁ . (13.33)

Here p and p are density and pressure of mixture of vapor, gas and liquid, S is cross-section area of nozzle.
Equation of mass balance Eq. (13.24) was used for calculation of mass fractions with derivative by coordi-
nate instead of one by time. Energy equations are written in the form similar to Eqgs. (13.27) and (13.28)
but the kinetic energy should be taken into account:

d u?

Cpm% (Tm + 20pm> =Q, (13.34)
d u?

Gy (Td + 20pl) = (L= Cp (T4~ T)) T~ Q, (13.35)

where J and () are mass of condensing vapor and heat transferred from droplets to gaseous phase per mass

unit on length unit of nozzle:
o 471—,0[ )
J= — | fdr, (13.36)

Ter
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o0

Q= % /qufdr. (13.37)

Ter

13.4.2 Results and Discussion

Calculations were carried out for mixture of cesium and argon, regime of droplets growth was free molec-
ular. As for the relaxation problem, partial pressure of gas was variable for variation of interphase heat
flux.

Results for integral characteristics are presented as their dependencies on time which is defined as
coordinate divided by velocity. Dependence of temperature of vapor — gas mixture is presented in Fig. 13.8
for p, /py = 0.2. In the relaxation problem, condensation begins at ¢ = 0 because supersaturation at this
time is sufficient to start nucleation. For bulk condensation at flow in nozzle the first stage of process is the
expansion of vapor — gas mixture without condensation. Pressure of vapor decreases, but temperature and,
consequently, saturation pressure decrease also, so the supersaturation ratio increases and reaches some
value at which nucleation begins at x/u =~ 4 ms. During the second stage of the process condensation
does not affect the flow of vapor — gas mixture because mass fraction of liquid is very small. It is analog
of the induction period, but for flow in nozzle supersaturation is not constant due to expansion. The end
of this stage depends on intensity of heat release, i.e. on the used models for temperature of droplets and
nucleation rate. For example, for model of one temperature it ends at /u ~ 5 ms. The third stage is
decrease of supersaturation due to increase of temperature and saturation pressure. A similar dependence
for higher gas pressure (p,/p, = 0.05) is shown in Fig. 13.8 (right). Qualitatively it is the same as in
Fig. 13.8 (left) but results for our model are closer to the model of one temperature because interphase heat
flux increases with increase of gas pressure.
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Figure 13.8: Temperature of vapor — gas mixture for flow in nozzle at p, /p, = 0.2 (left) and p, /py = 0.05 (right).

The dependence of relative temperature difference between droplets and vapor — gas mixture is pre-
sented in Figs. 13.9 for different gas pressures. In contrast to the relaxation problem, the value of 0T is
variable during the induction period. Expansion leads to increase of 4T, but heat transfer leads to its de-
crease. The first factor is always of importance, the effect of the second one depends on the total surface
of droplets S, because for free molecular regime the density of interphase heat flux does not depend on
droplet size and Eq. (13.37) can be written as follows:

Q = qSa/u . (13.38)

Condensation leads to an increase of total heat flux (). At some time, effect of heat transfer becomes the
dominant factor and temperature difference begins to decrease. With increase of gas pressure temperature
of droplets becomes closer to temperature of vapor — gas mixture, and the value of §T decreases.
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Figure 13.9: Relative temperature difference between phases 61" = (Tq — Trm) /Trm for flow in nozzle at p, /pg = 0.2
(left) and p, /pg = 0.05 (right).

Taking into account the Kuni modification Eq. (13.22) leads to an increase of the second stage of the
process (condensation without affecting flow of mixture) due to the decrease of intensity of heat release. As
for relaxation problem, at low gas pressure effect of droplets heating is stronger as at high one in accordance
with Egs. (13.22) and (13.23).
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Figure 13.10: Dependence of distribution function on droplet size for flow in nozzle at p,,/p; = 0.2 and z/u = 6 ms
(left) and p., /pg = 0.05 and z/u = 6 ms (right).

Dependence of distribution function on droplet radius is shown in Figs. 13.10. At low gas pressure
(Fig. 13.10 (left)) all curves except curve 3 (model of one temperature) are for second stage. Though it is
analog of the induction period, the distribution function is not stepwise because supersaturation is variable
due to expansion. Function at critical radius is determined by the nucleation rate divided by growth rate,
so for Ty = T (curve 4) it is higher than for our model (curve 1) due to lower growth rate and for results
obtained with the Kuni modification (curve 2) it is lower due to lower nucleation rate. For model of one
temperature presented results correspond to the third stage (condensation affecting flow of mixture) after
end of nucleation, so distribution function at critical size is close to zero. At high gas pressure (Fig. 13.10
(right)) all curves are for the third stage except curve 4 for T; = T which is for the second one. The
nucleation rate with the Kuni modification is lower than the one without it if other conditions are the same.
Here supersaturation for curve 2 (with the Kuni modification) is higher than for curve 1 (without it), so the
distribution function at critical radius for curve 2 is higher than for curve 1. As for temperatures of phases
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(see Figs. 13.8 — 13.9) distribution function becomes close to one obtained for T,; = T, at increase of gas
pressure and to one obtained for T,; = T at its decrease, and effect of the Kuni modification increases with
increasing gas pressure.

13.5 Conclusions

For both considered problems taking into account the finite rate of the interphase heat transfer can result in
appreciable quantitative changes in the distribution function and integral characteristics in comparison with
similar values obtained using the ultimate values of droplet temperature with the qualitative coincidence of
the general picture of the process. The calculations showed that the accuracy of the one-temperature model
increases with the dilution of the vapor by non-condensing gas. On the contrary, the use of the assumption
about the equality of the droplet temperature and the saturation temperature is justified, first of all, for the
description of condensation process in pure vapor.

For small and moderate Knudsen numbers interphase heat flux is determined not only by gas concen-
tration, but also by thermal conductivity of mixture components. If gas has higher thermal conductivity, as
in the mixture of ethane and helium that is considered here, the increase in the partial pressure of gas leads
to increase in the intensity of interphase heat transfer, and the conclusion on the applicability of the limiting
cases of droplets temperature made for the free molecular regime remains valid. In the opposite case ther-
mal resistance decreases in kinetic region and increases in the region of continuous matter with increasing
gas concentration in the mixture. Change in the intensity of interphase heat transfer is determined by the
dominance of one of these factors.

Decrease of nucleation rate due to heat release on surface of droplets has stronger effect on the kinetics
of volume condensation at low partial pressure of non-condensing gas, i.e. at low intensity of interphase
heat transfer.

Nomenclature

Notations

mass fraction, dimensionless

heat capacity, J/(kg-K)

diffusion coefficient, m?/s

droplet size distribution function, 1/(kg-m)
velocity distribution function of molecules, s*/m
nucleation rate, 1/(m?-s)

evaporation heat, J/kg

number density, 1/m?

pressure, Pa

density of heat flux, W/m?

total heat flux, W

droplet radius, m

droplet growth rate, m/s

the universal gas constant, J/(kg-K)
supersaturation ratio, dimensionless

time, s

temperature, K

velocity, m/s

S|

6

S mﬁ-ﬁ@@%:h&ﬁ\@gﬁ



13.5 Conclusions 249

Greek symbols
« condensation coefficient, dimensionless
(8  thermal accommodation coefficient, dimensionless
A thermal conductivity, W/(m-K)
¢ molecular velocity, m/s
p  density, kg/m3

Subscripts and superscripts

cr critical radius

d  parameter of droplets

g  parameter of gas

[ parameter of liquid

s  parameter in state of saturation

v parameter of vapor

A parameter on “dividing sphere”

>, parameter of vapor-gas-droplets mixture
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Abstract

The size effects in phase transitions in aerosol systems with nanoscale particles and in nanoparticles themselves are
studied theoretically. The effects related to size dependence of the condensation coefficient in gas-phase homogeneous
nucleation and activation energies for diffusion of monomers in nanoparticles and the incorporation of monomers into
critical clusters in nucleation in nanoparticles are considered.

14.1 Introduction

It is known that many processes that take place in nanoscale systems are characterized by some specific
features [1-3]. In particular, the physicochemical processes occurring in aerosol systems with nanoscale
particles and in the aerosol particles themselves can depend on the particle size. The size effects in aerosol
systems with nanoscale particles are related to the dependence of the saturated vapor pressure and the con-
densation coefficient on the particle size and also to the size-dependent processes taking place in nanopar-
ticles. The vacancy concentration in nanoparticles can be higher than in a bulk substance due to the lower
cohesive energy in nanoparticles in comparison with bulk matter [4, 5]. A decrease in the cohesive energy
with a decrease in the nanoparticle size leads to reduction in the melting temperature of small particles in
comparison with bulk matter [S]. It is known that the vacancy concentration affects diffusion of atoms in
solid bodies. A change in the mobility of atoms (molecules) in nanoscale particles can affect the processes
proceeding in them. Below we consider the influence of the size effects on such processes as condensation
of vapor molecules on nanoscale aerosol particles (clusters), homogeneous nucleation in a gas phase and
inside nanoparticles.
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14.2 Condensation of Vapor Molecules on Small Aerosol Particles
(Clusters) and the Problem of Homogeneous Nucleation

The size effect in particle growth by vapor condensation is commonly related to the Kelvin effect, which
results in an increase of the density of the flux of molecules evaporated from the particle with a reduction
in its size, and to a dependence of the transfer of vapor molecules to the particle surface on the size of the
particle. The transfer of vapor molecules to the particle surface depends on the particle size through the
Knudsen number Kn that is equal to the ratio of the mean free path of gas molecules to the particle radius.
Further we consider for simplicity the free molecular regime when Kn>>1.

It is worth noting that the sticking (condensation) coefficient can also depend on the particle size [6,
7]. The particle growth rate is proportional to the trapping coefficient (3 that is defined as the ratio of the
density of the resulting flux of vapor molecules into the particle to the density of the flux of vapor molecules
incident on the particle surface. The density of the resulting flux of vapor molecules into the particle under
the assumption of the Maxwellian velocity distribution function for incident vapor molecules in view of [8]
can be written as (further we consider for simplicity the isothermal gas-particle system)

v 4o,V n
vl _ g™ 14.1
J 1 {acn QteTNe EXP ( dkBT)] B 1 (14.1)

where d is the particle diameter, kp is the Boltzmann constant, n is the number density of vapor, n, is
the number density of the saturated vapor for a planar surface, v is the mean velocity of vapor molecules,
T is the temperature, «. is the evaporation coefficient, «. is the sticking (condensation) coefficient which
is defined as the probability that an incident molecule does not reflect immediately from the surface, o),
is the surface tension for the particle, V,,, is the volume per molecule in the particle. Taking into account
Eq. (14.1), the trapping coefficient of vapor molecules for a small aerosol particle in the free molecular
regime is given by

8= g = [1 _ Qe exp (4Ume)] , (14.2)

nv a.S dkgT

where S is the supersaturation ratio.

We assume for simplicity that the condensation coefficient for a planar surface a., is equal to the
evaporation coefficient o.. When the dependence of the condensation coefficient for a small particle o.. on
the particle size is taken into account according to [6]

e = Qoo €XP (— Z‘Z’Z}”) , (14.3)

the value of 3 under the above-mentioned assumptions can be written as

B 60'me 1 100’p‘/tm,
B = Qoo €XP < dkpT ) [1 5 exp < dhpT ﬂ . (14.4)

The condition 8 = 0 corresponds to the critical diameter of the particle d*. Equation (14.4) gives the
following value for d*:
100,V
a4 — pVm 14.5
k BTln S ’ ( )
that is two and half times larger than the value of the critical diameter corresponding to the classical Kelvin
equation [8]

4Up Vrn

&= kgTIns

(14.6)
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It is known that in the general case the surface tension depends on the particle size [9, 10, 11, 12].
In particular, an excellent review of the state of affairs related to the thermodynamic analysis of the size
dependence of surface tension was given in [10, 11]. In the mentioned papers, a general equation for the
size dependence of surface tension was obtained on the basis of the thermodynamic approach and a detailed
analysis of this equation was carried out. It was shown that this general equation is consistent with results
of other researchers containing their expressions as special cases. It is worth noting as well that in some
cases simple approximate equations for describing the size dependence of surface tension can be employed.
For example in [12] the following equation for the size dependence of surface tension - as an approximation
to the general solution of the the underlying differential equation - is given

Op = Ooo €XP <64fd) , (14.7)

where o is the surface tension for a planar surface, ¢ is the so-called Tolman length.

It is seen from Eq. (14.4) that the value of § decreases with a decrease in the particle size. This is
due to both the Kelvin effect and the dependence of the condensation coefficient on the particle size. The
size dependence of the condensation coefficient leads to a lower trapping coefficient of vapor molecules in
comparison with the case, where the condensation coefficient is assumed to be independent of the particle
size. The size dependence of the surface tension leads to an increase in the trapping coefficient in relation
to the case of the size-independent surface tension.

The rate of gas-phase homogeneous nucleation J,, is commonly written as [13, 14]

Jn = kzwS*N* = kzac%ﬂ'd”n exp (— ?BGT> , (14.8)
where w = a.nv/4 is the frequency factor for impingement [13], k7 is the Zeldovich factor, N* is the
number density of the critical clusters, S* is the surface area of the critical cluster, AG* is the free energy
of critical cluster formation.

In classical nucleation theory the value of AG* is equal to mo,d*?/3, where d* is defined by the Kelvin
equation that is independent of the condensation coefficient. However, it follows from the above discussion
that the size dependence of the condensation coefficient affects the value d* and accordingly the values of
AG* and J,,. It is pertinent to note that, under the above-mentioned definition of «, the frequency factor
w in Eq. (14.8) describes the flux density of vapor molecules that stick to the surface of the critical cluster.
However, in the general case the frequency factor should be proportional to the probability of incorporation
of molecules into the cluster [15].

14.3 Ciritical Size of a Charged Aerosol Particle in the Presence of
an Adsorbable Foreign Gas

In the general case when the condensation coefficient of vapor molecules is not equal to the evaporation
coefficient the critical size of the charge particle in the presence of adsorbable foreign gas can be written as

[16]
Vin | 400 2¢° 1 1 4V,na Py, Qg
InS=— — — - — 1 —Inl— ) . 14.9
BT ks T [ & wdi\s, )T e "\mar ) M\a (14.9)
Here q is the elementary charge, ¢, and ¢; are accordingly dielectric constants of a gas and a liquid, oy is

the surface tension of the clean particle surface, n, is the number of adsorption sites per unit area, P, is the
pressure of an adsorbable foreign gas. The value of P, can be presented in the form

i Qa + Qa0>
ng (2mmekgT)2 exp | —————+—
( sT) P< T

B0 ’

P = (14.10)
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where @, is the adsorption energy in the absence of the electric field, Q¢ is the component of the adsorp-
tion energy related to the influence of the electric field created by the particle charge, 7 is the quantity
characterizing the oscillation period of the adsorbed molecule in the direction perpendicular to the sur-
face, m, is the mass of the molecule of the adsorbable gas, [ is the sticking coefficient of the foreign gas
molecules for the clean part of the surface.

It is seen from Eq. (14.9) that the effect of an adsorbable foreign gas in the case when a../a, < 1 can to
some extent compensate the effect related to a difference in the condensation and evaporation coefficients.
The inequality a./a. < 1 can be related to both size dependence of the condensation coefficient and a
change in a under the influence of external fields (e.g. resonance laser radiation).

14.4 Influence of Resonance Radiation on the Critical Size of the
Particle (Cluster)

Let us consider the influence of resonance radiation on the critical size of aerosol particles (clusters). For
simplicity here we neglect adsorption of a foreign gas and assume that the condensation coefficient is
independent of the particle size and the particle is neutral. The condensation coefficient . in the case of
the two-level model for transition of molecules from one state to another in the radiation field can be written
as

ae=a1 —y (a1 —as) . (14.11)

Here, o7 and o are the condensation coefficients of unexcited and excited molecules and + characterizes a
part of excited molecules

n/

= — 14.12
T ( )
where n’ and n are accordingly number concentrations of excited and unexcited vapor molecules which are
found from equations

dn'/ oy, N
dt  hv (n—n) - T, (1419
dn Io,  , n'

Here, I is the radiation flux density, ¢ is the time, o, is the cross-section for transition of vapor molecules
from one state to another, A is the Planck constant, 7, is the relaxation time for excited molecules, and v is
the radiation frequency. In the stationary case, we have the following equation for ~:

Io,T,

- h
N = T (14.15)
1+

hv

Taking into account above-mentioned considerations, the value of d* for neutral particles neglecting the
adsorption of foreign gas on the particle surface can be written as [17]
40V,
ayp —7 (al - a2)
ae

d* = (14.16)

kpTIn S

Equation (14.16) shows that the critical diameter of the aerosol particle depends on the condensation co-
efficients of unexcited and excited molecules and on the value of + (and, accordingly, on the value of the
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radiation flux density I). For a constant value of .S the critical diameter increases with I when «; > as and
decreases when a;; < avp. It follows from Eq. (14.16) that the critical diameter can be realized in fulfillment
of the following inequality:

Qe

S > .
041—’)’(041—042>

(14.17)

In the general case the combined influence of heat and resonance effects is realized. For example, with a
decrease in the condensation (sticking) coefficient under excitation of vapor molecules heat and resonance
effects have the same tendency — they decrease the resultant flux of vapor molecules into the particle.
However, when the condensation coefficient of excited molecules is larger than that of unexcited, the heat
and resonance effects act in opposite directions, which results in some mutual compensation of them.

14.5 Size Effects in Homogeneous Nucleation Inside Nanoscale
Particles

Let us consider the process of homogeneous nucleation in a two-component nanoparticle when the super-
saturation of one component in the nanoparticle is realized. The rate of nucleation J,, in the case under
consideration can be written as

A *
Jn = kzkanmN* = kzkan?, exp (—kBGT> , (14.18)

where k., is the effective rate constant for the attachment of monomers (molecules or atoms) to the critical
cluster allowing for both diffusion of monomers to the critical cluster and their incorporation into the cluster,
N, 1S the number concentration of monomers, N* is the number concentration of the critical clusters in the
nanoparticle, AG™ is the free energy of the critical cluster formation in the condensed phase [18].

Let us consider the size dependence of k,. The value of k, in the case under consideration by analogy
with [19] can be written as

2nd.D,,
2D,, ’
1
+ ksd,

kg = (14.19)

where d. is the diameter of the critical cluster, D,, is the diffusion coefficient of monomers in the particle
(for simplicity we neglect further diffusion of clusters), k; is the rate constant of the heterogeneous process
related to the incorporation of monomers that are located in the vicinity of the critical cluster into the latter.
The value of k, is given by

ks = kgo €xp (— /i%) , (14.20)

where (). is the activation energy of the incorporation of monomers into the critical cluster, the pre-
exponencial term kg in Eq. (14.20), which is assumed to be independent of the cluster size, can be es-
timated as va, where v and a are respectively the values characterizing the vibration frequency and the
jump length of monomers.

The diffusion coefficient of monomers in the particle D,, can be written as

Dy, = Do exp (— ki;) , (14.21)

where @), is the activation energy for diffusion of monomers in the nanoparticle, the value of D, is
assumed to be independent of the particle size and can be estimated as va?.
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The value of k, in view of the aforesaid can be written as

21d.va® exp (— @p )

ko = kel') (14.22)
1 + 2£ exp M
de. kgT
Taking into account [1, 12], the values of ). and ), are given by
Qe = Qo€ ( 1 ) (14.23)
c = Weoo €X - ; .
P 1+ ch
Qp=Q 1 (14.24)
= 00 €Xp | — , .
P poo €XP 1+ dyo

where deg = dc/d. and dpy = dp/d,. Here d,, is the nanoparticle diameter, d.. is the Tolman length for the
critical cluster, d,, is the Tolman length for the nanoparticle, ().oc and @, are the values of @), and @,
without considering the size effect.

It follows from the foregoing that the size dependence of the activation energies (). and @, can affect
the nucleation rate in nanoscale particles. Let us consider the case when the second term in the denominator
of Eq. (14.22) is much less than unity (the diffusion controlled regime of nucleation takes place). Under the
above-mentioned assumptions we can write for the value of k.o = kq/kq00, Where kg, is the value of &,
without considering the size effect in @, (@ = @po ), the following equation:

. 4
kaozexp{ggT {1—exp <_1+d 0)}} ) (14.25)
P

It is seen from Eq. (14.25) that k, increases with a decrease in dj,o and decreases with a reduction in the
parameter Qpo0/kpT.

14.6 Conclusions

It was shown that size effects in phase transitions in aerosol systems with nanoparticles and in nanoparticles
themselves can be related to a change in the condensation coefficient of vapor molecules, as well as in the
activation energies of processes occurring inside nanoparticles, with a reduction in the particle size. The
influence of above-mentioned factors on gas-phase nucleation and nucleation in nanoparticles is considered.
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Abstract

Cluster dynamics (CD) is used to study the evolution of the size distributions of vacancy clusters (VC), self-interstitial
atom (SIA) clusters (SIAC) and Cr precipitates in neutron irradiated Fe-9at%Cr and Fe-12.5at%Cr alloys at 7 =573 K
with irradiation doses up to 1.5 dpa and a flux of 140 ndpa/s. Transmission electron microscopy (TEM) and small
angle neutron scattering (SANS) data on the defect structure of this material irradiated at doses of 0.6 and 1.5 dpa
are used to calibrate the model. For both alloys a saturation behavior was found by CD for the free vacancy and free
SIA concentrations as well as for the number density of the SIAC above 0.006 dpa. The CD simulations also indicate
the presence of VC with radii less than 0.5 nm and a strong SIAC peak with a mean diameter of about 0.5 nm, both
invisible in SANS and TEM experiments. CD modeling of Cr precipitates has been performed by taking into account
the deviation of this system from the ideal cluster gas. A specific surface tension of about 0.17 J/m? between the «
matrix and the Cr-rich o/ precipitate and the rate at which Cr monomers are absorbed about 7.94 m~! were found as
best fit values for reproducing the long-term Cr evolution in the irradiated Fe-12.5%Cr alloys observed by SANS.

15.1 Introduction

Ferritic-martensitic chromium steels are candidates of structural materials for future generation of nuclear
reactors such as fusion or advanced high temperature reactors (Gen IV) or spallation sources, because of
their remarkable resistance to swelling and of their adequate mechanical properties. In operation, these
materials will be exposed to high neutron doses (up to about 100 dpa) and high temperatures. However, the
formation of irradiation-induced defects and the possible degradation of the mechanical properties under
these extreme conditions are not yet well understood. The investigation of neutron-irradiated binary Fe-Cr
alloys by TEM (transmission electron microscopy) [1] and SANS (small angle neutron scattering) data [2-4]
will significantly contribute to the understanding of the behavior of more complex alloys. For the purpose
of predicting irradiation hardening it is necessary to know in detail the size distributions of vacancy clusters
(VO), self-interstitial atom clusters (SIAC) and Cr precipitates formed under irradiation at any neutron dose.
The latter can be obtained by means of CD (cluster dynamics) simulations. Solubility limit of Cr in Fe-Cr
system is about 8.8at% at T = 573 K [2]. Hence, deviation of the Cr precipitates ensemble from the ideal
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cluster gas [5] has been taken into account in CD modeling of Fe-9at%Cr alloy and Fe-12.5at%Cr alloy.

15.2 Irradiation Conditions and Experimental Data

The irradiation conditions and experimental results described in [1-4] are summarized below for the purpose
of comparison with the CD simulations performed in this study. Both the industrial purity Fe-9at%Cr alloy
and Fe-12.5at%Cr alloy (average grain size 1 um, pre-existing dislocation density 5.5-10'3 m—2) were
neutron-irradiated in the Callisto rig (IPS2) in the Belgian reactor (BR2). An irradiation temperature 7" of
573 K and a neutron flux of about 9-10'7 n/m?s (E > 1 MeV) were maintained. This flux corresponds to a
dose rate of about 140 ndpa/s. The neutron exposure covered the range from 0.6 to 1.5 dpa.

TEM investigations of the Fe-12.5at%Cr alloy [1] reveal the presence of dislocation loops of size 6 nm
(in diameter) and a total loop density about 1.73-10%! m~2 for both irradiation conditions, 0.6 and 1.5 dpa.
No voids were observed by TEM under these irradiation conditions. Irradiation-induced features with a
diameter of about 2 nm and volume fraction of (4.3 £ 0.4) % for both irradiation conditions and A-ratios
(ratio of total and nuclear SANS intensity) of 2.07£0.05 and 2.05 £ 0.05 for a dose of 0.6 and 1.5 dpa,
respectively, have been found by SANS. These features were related to pure Cr precipitates in a-Fe as well
as to o/ particles dispersed in the o-Fe matrix. In [2] a decrease in the scattering cross-section of SANS
with decreasing scattering vector, O, was found, as is typical for the interference effects in concentrated
alloys. According to the approach discussed in Ref. [6] the interference factor S(Q) was determined in [7]
for this Q-range. Then the mono-disperse hard-sphere model [8], which takes into account the correlation
between all hard spheres (depletion zones), was applied to interpret the obtained interference factor. The
volume fraction of the hard spheres is found at 14.4% and 13.3% and average distance between them at 2.38
nm and 1.97 nm for the irradiation doses of 0.6 and 1.5 dpa, respectively. The size distribution of the o’
particles, reported in [2], was obtained by the indirect transformation method applied to the fitted measured
nuclear scattering cross sections. The range of the Q-values was restricted to values larger than 1 nm~! in
the fit, where the interference effect can be excluded.

According to TEM study [1] the population of dislocation loops decorated by Cr atoms with diameters
of about 7 nm and 13 nm and a total loop density about 1.9-10>! m~—3 and 1.7-10! m~—2 in the Fe-9at%Cr
alloy are formed due to irradiation with doses of 0.6 and 1.5 dpa, respectively. SANS experiments [3]
indicate for both irradiation conditions the two populations of irradiation-induced features with radius, R,
in the ranges, R < 2.4 nm and 2.4 nm < R < 7nm, respectively. The A-ratio of these features is higher
than those expected for nanovoids and /- particles, but smaller than those expected for well-developed
Cr-carbides. According to SANS the total volume fraction of irradiation-induced features slightly increases
with neutron fluency.

15.3 Cluster Dynamics Master Equation

Defect structure of neutron irradiated Fe-Cr alloys containing the free vacancies, SIA, vacancy clusters,
pure dislocation loops, dislocation loops decorated by Cr atoms and vacancy — Cr complexes as well as Cr
precipitates depends on the irradiation regime [9]. The rigorous CD model has to include description of
point defect subsystem and Cr precipitates subsystem with taking into account the link between two these
subsystems by means of migration of Cr to the vacancy clusters, transport of Cr atoms to the dislocation
loops, the formation and migration of Fe-Cr interstitial, diffusion of Cr atoms, free vacancies and SIA
towards to the dislocation net.

The CD model used in our study is close to the CD-P-VIC model from Ref. [10], where the CD simu-
lations are first performed for the free vacancies, SIA and point defect clusters and then for the precipitates
taking into account the actual time dependence of the free point defect concentrations obtained in the first
step. In addition to Ref. [10] we take into account the Cr-effect on the SIA diffusivity according to the DFT
calculations reported in Ref. [11].



15.3  Cluster Dynamics Master Equation 261

The assumptions used to study the evolution of the Cr precipitates need special attention. Two different
mechanisms are discussed in Ref. [9] for the irradiation induced or enhanced formation of o precipitates
in Fe-Cr alloys. The first mechanism suggested for the migration of Cr to the voids is the exchange of
chromium atoms with vacancies. This statement is in line with DFT calculations which predict a relatively
low barrier for chromium atom exchange with a vacancy in iron [12]. A second mechanism proposed relies
on the strong interaction between chromium atoms and SIA leading to a transport of Cr atoms to SIA loops.
According to TEM data [1] the first and second mechanism is observed in the irradiated Fe-12.5at%Cr alloy
and Fe-9at%Cr alloy, respectively.

Another problem is to take into account the overlapping diffusion field effect and frustration effects
in the considered materials that are typical for concentrated alloys [13-15]. Correction of the attachment
coefficient of Cr to Cr precipitates caused by relatively high chromium concentration will be accounted for
in our study according to the method discussed in Ref. [13]. The frustration effect [14, 15] will be taken
into account empirically by the use of the thermodynamic free energy expression from CALPHAD [16]
with the correction suggested by Bonny et al. [17].

15.3.1 Matrix Defect System

The public domain library solver LSODA [18] has been used to integrate directly the master equation [19]
for the study of the matrix defect subsystem containing free vacancies, spherical VC with sizes up to 1000
vacancies, free SIA and planar SIAC with sizes up to 4000 SIA. The attachment coefficients for the master
equation [19] are determined in the diffusion limited regime and following the approach reported in Ref.
[20] for spherical VC and planar SIAC, respectively. The emission coefficients in Ref. [19] are fixed using
the detailed balance principle for both, VC and SIAC. The values for the pre-existing dislocation density,
po, and the average grain size, d, are taken from the experiment [1]. Other material parameters are found by
fitting to the condition of best reproduction of the experimental data [1] by the results of the CD simulation.
The final collection of material parameters used in present study is presented in Table 15.1 in comparison
to the data used in Ref. [19]. The only substantial change of material parameters with respect to Ref. [19] is
the SIA diffusivity. The values of the pre-factor for SIA diffusion, D;q, amounts to 2.0-10~8 m?/s (4.8-10~8
m?/s), and migration energy of the SIA, E,,;, amounts to 0.25 eV (0.24 eV) for Fe-9at%Cr (Fe-12.5at%Cr)
are taken according to data [11] on SIA diffusivity dependence on the Cr content in Fe-Cr alloys.

15.3.2 Cr Precipitates System

The number density of the Cr-precipitates, C,,, is determined from the Master equation, Eq. (15.1)

dc, 1\ /3 _1\ /3
dt = 571 ((nn ) Cnfl - <1 + (nn > Wnp Cn +’LUn+1Cn+1 . (151)

Here, n is the size of the Cr-precipitate, 2 < n < Nyax, and C), is set equal to zero for n > N4z, as is
the case for all C,, at t = 0. 3, is the absorption rate of an n-atomic cluster as obtained to account for the
resulting overlapping diffusion field effects similar to the method discussed in Ref. [13]:

300 . Chor 1pa 1+ kreat
=4 3 pirr 1/3 < peat 15.2
ﬁ 0 At CTQFG” 1+k(T‘eZt—T)’ r=r ) (5 )
3Qcr —irr Cicr
B = A {| =SE DI (1 krett) > et (15.3)

47 or QFe

where Q. and ¢, are the atomic volume of bce iron and bee chromium, and C¢; is the concentration
of the remaining solute chromium atoms in the matrix, ré®t is the mean one half distance between Cr-
precipitates, it has been taken equal to about 1 nm according to analysis of interference factor S(Q) in [7], k
is the rate at which Cr monomers are absorbed.
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Table 15.1: Material parameters of matrix defect system.

Material parameters \ pure iron [19] \ present study
Vacancy formation energy E [eV] 1.60 1.60

Binding energy of a vacancy dimer Eps,, [eV] 0.608 0.608

Vacancy migration energy E,,, [eV] 0.88 0.88

Vacancy pre-exponential factor D,,, [m?/s] 2.1.10°% 2.1.1078

Interstitial formation energy Ey; [eV] 3.05 3.0

Binding energy of an interstitial dimer Epe; [eV] 0.8 0.8

Interstitial migration energy E,,; [eV] 0.30 0.25(Fe-9at%Cr)
Interstitial migration energy E,,; [eV] 0.30 0.24(Fe-12.5at%Cr)
Interstitial pre-exponential factor D;, [m?/s] 3.6:10~8 2.8-10~8(Fe-9at%Cr)
Interstitial pre-exponential factor D;, [m?/s] 3.6-1078 4.8-108(Fe-12.5at%Cr)
Recombination radius, 7,... [nm] 0.65 0.65

Capture efficiency for vacancies by dislocations Z,, | 1.0 1.0

Capture efficiency for interstitial by dislocations Z; | 1.2 1.2

Burgers vector of the loops assumed to be pris- | 0.2 0.2

matic b [nm]

Pre-existing dislocation density py [m—2] 7.0-10%3 5.5-10%3

Average grain size d [m] 2.5-1074 1.0-10-6

The chromium concentration is determined via

Nrnax
Cice = Cocx — »_, nCh (15.4)
n=2
with Cyc, being the initial concentration of the chromium atoms. Dléi is the irradiation enhanced diffusion
coefficient of chromium in iron according to

tn C1v (15.5)

irr __
DCr - DCr Ceq )
1v

where D& is the thermal diffusion coefficient of chromium in iron calculated according to the Arrhenius
law with the experimental parameters, Dy = 1.29 - 10~* m?/s and E,, = 2.39 eV for Fe-12%Cr alloy
[21]. C7{ and CYTF are the vacancy concentrations for the unirradiated and irradiated state of the material,
respectively, with C] being evaluated as in Ref. [19]. We focus on the vacancy exchange mechanism for
the chromium mobility in the Fe-Cr system, which is the dominant mechanism in the Fe-12.5%Cr alloy
investigated here.

The emission parameter, w,, is calculated with taking into account of the contribution of matrix frustra-
tion to the free energy of cluster distributions in binary alloys [14, 15]. This effect is typical for concentrated
alloys, when the Frenkel’s model of ideal cluster gas [5] is not valid and it is necessary to consider the inter-
action between the clusters according to [15] by means of so-called exclusion volume, V, ,,, i.e. the number
of forbidden atomic sites (or volume normalized by the atomic volume) to a k-mer by an n-mer. In our paper
it is suggested to take into account the frustration effect empirically by the use of the thermodynamic free
energy expression from CALPHAD [16] with the correction suggested by Bonny et al. [17].

The emission parameter, w,,, finally, is calculated by Eq. (15.6)

A 4 cl,m R2 _ R2
Wy, = exp <— a > exp < o (R n-1) , (15.6)

ksT kT
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where 7‘31’”1 is the specific surface tension of the interface between the Cr cluster (cl) and the matrix (m),
R,, is the radius of a Cr cluster of size n, kg the Boltzmann constant, and Ay is determined via

AN = (lu’glr(clcr) - N’%lr) : :L'CCIr + (NE(Clcr) - :u’%lc) ! x%}c . (15.7)

Here p¢}, (u%,) and p (pi%) are the chemical potentials of chromium and iron, respectively, in the precip-
itate cluster (matrix), and x‘ér(Fe) is the mole fraction of chromium (iron) in the Cr precipitate, which is set
equal to 0.95 £ 0.05 according to the assumption of the equality of precipitate and matrix composition at
the binodal miscibility curve. Note, that no simple lattice gas (or ideal solution) behavior is imposed here
to the dependence of the chemical potential in the matrix on the Cr concentration. Instead the chemical
potential of chromium (iron) in both subsystems, matrix and precipitate, is taken from Eq. (15.8)

0

HCr(Fe) = W(F)

((ncr + npe) J\i) : (15.8)

where no(nge) is the number of chromium (iron) atoms in the respective Fe-Cr subsystem, N 4 is the
Avogadro number, and G is the total molar Gibbs free energy as obtained from the expression used by
CALPHAD [16]

G = 20, G + 2GR + kg NAT (zor In 2oy + pe In ) + GPE + GPeC (15.9)
Cr Fe ex M

Here x¢; (x e ) is the chromium (iron) mole fraction — or equivalently, the concentration measured in atoms
per site — in the respective Fe-Cr subsystem. G%ﬁC(G};gC) is the molar free energy of pure bcc Cr(Fe) as
reported in [22], and GYfCis the magnetic contribution to the molar excess free energy proposed by [23].
A regular solution model is used in [16] for the non-magnetic molar excess free energy G2 in the Fe-Cr
system. This expression has been modified by Bonny [17] in order to account for the recently proposed
modification of the Fe-rich phase boundary [24] for temperatures well below 800 K.
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Figure 15.1: Dose dependence of the free vacancy (SIA) concentrations, C:7" (C47"), and the total number density of
SIAC, N;, for the irradiated Fe-12.5at%Cr alloy according to the TEM experiment [2] and the CD simulations.
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Figure 15.2: Dose dependence of the mean radius of the VC and the mean diameter of the SIAC, (Ry)mean and
(2R;)mean, for the irradiated Fe-12.5 at%Cer alloy according to the TEM experiment [2] and the CD simulations.

We found that the Redlich-Kister polynomial given in Ref. [17] could equally well be written in follow-
ing factorized form

T \° T
bee — 1— P —968-T+1L B () [ 1— —— 15.1
GPe = 6, (1 — zcy) - |20500 — 9.68 - T + L (2¢y) 100 0 o) | (15.10)

where
L (zcy) = 8615.407399 + 431.3047159 (2xcy — 1) — 31452.7845 (2z¢, — 1)2 + (15.11)

48134.04065 (2zc; — 1)° — 23569.11288 (2z¢, — 1)* — 5625.73983 (2z¢; — 1)°

and 6(x) is the Heaviside function being one for x > 0 and zero else. All coefficients in Egs. (15.10) and
(15.11) are given in ST units (i.e., in J/mol and K). Relating the ratio w,, between the absorption and emission
rates entering Eq. (15.1) to chemical potential differences and deriving these differences from empirical
thermodynamic free energy expressions is an empirical way to account for the so-called frustration effects
due to higher solute atom and/or cluster concentrations in the system as discussed in Refs. [14, 15]. Again
the library solver LSODA has been used to integrate the master equations in order to find the precipitate
cluster concentrations C', for all n up to Ny, = 9000.

15.3.3 Cluster Dynamics Modeling

The results from the CD modelling on the dose dependence of the free vacancy and SIA concentrations,
C{ff and C{'?, the mean radius of the VC and mean diameter of the SIAC, (R,)mean and (2R;)mean, the
total number density of SIAC, N;, the volume fraction of the Cr precipitates, C,, ¢, and the mean radius
of the Cr precipitates, (Rcy)means for Fe-12.5at%Cr alloy are shown in the Figures 15.1-15.4. It was
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found that the CD simulation according to the procedure used in Ref. [19] but with taking into account
the chromium effect on the SIA diffusivity reported in [11] allows one to reproduce the experimental TEM
data [1] for Fe-12.5at%Cr alloy on N; exactly (Fig. 15.1) and on (2R;)mean approximately (Fig. 15.2). A
saturation behavior under neutron irradiation is observed for both, C;, and N,, at doses higher than about
0.006 dpa (Fig. 15.1). The loop diameters (2R;),cqrn found in the simulations increase slowly with neutron
irradiation and reach 5.74 and 6.25 nm for the neutron doses of 0.6 and 1.5 dpa, respectively (Fig. 15.2),
instead of about 6 nm for both doses as observed experimentally [1]. A value of about 1.73-102! m~3 is
found in the CD simulation for the number density of the SIAC at the experimental neutron doses of 0.6 and
1.5 dpa. The same value was observed by TEM [1]. The strong peak in the SIAC distribution at diameters
of about 0.5 nm (see Fig. 15.3) is observed for all neutron exposures. The value of (R, ) cqn increases only
slowly up to an irradiation dose of about 6-10~% dpa. Then it increases faster but does never exceed 0.5 nm
(Fig. 15.2), which is the experimental resolution limit of both SANS and TEM techniques. Thus our finding
is in line with the fact, that no VC has been detected in the experimental studies [1, 2].

1.2 L] ] I ] | I L) L) l L) |
— 0.06 dpa
--- 0.6dpa

Number density of SIAC,
C/10"°m?®

0 3 6 9 12
Diameter of SIAC, (2R)/ nm

Figure 15.3: Size distributions of self interstitial atom cluster in Fe-12.5%Cr for different irradiation conditions as
obtained from the CD simulations.

The Cr precipitates evolution was found to be rather sensitive to the surface tension ™ of the interface
between the precipitate cluster and the o matrix as well as the rate k at which Cr monomers are absorbed.
A value for v°™ of about 0.17 J/m? and k about 7.94 m~! are necessary to approximately reproduce the
SANS data [2] on the dose dependence of the volume fraction C,, ¢, and the mean radius (Rcy)mean Of the
Cr-rich o' precipitates by the CD simulations (Fig. 15.4). The saturation of the simulated C,, ¢, values at
about 4.0 vol% is observed for the same neutron exposes as the saturation of the N; values.

CD modeling results on the dose dependence of the free vacancy and SIA concentration, C,, and C1;,
the mean radius of VC and mean diameter of SIAC, (Ry)mean and (2R;)mean, total number density of
SIAC, (N totar), volume fraction of Cr-precipitates, C,,_cr, and average radius of Cr-precipitates,R.,_cr»
for Fe-9at%Cr are presented in the Table 15.2.

It was found that CD modeling according to [19] with taking into account the chromium effect on
the SIA diffusivity [11] provides the reproduction of experimental TEM data [1] on N; and (2R;)mean
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Figure 15.4: Dose dependence of the volume fraction and mean radius of the Cr precipitates, C,,,cr and (Rcr)mean,for
the irradiated Fe-12.5%Cr alloy according to the TEM experiment [2] and the CD simulations.

Table 15.2: Cluster dynamics simulation results for irradiated Fe-9at%Cr model alloy.

Neutron Crv [at_l] (Rv)mean Cis [at_l] (2Ri)mean Ni total Cyor Cycr Rov_cr
exposure [nm] [nm] [1/m?3] [%ovol] | [%vol] [nm]
[dpal] R >0.5nm
6-10—7 16.48-10~13 | 0.184 471-10-1% 7] 0.50 2.22-1019 | 0.003 0 0.18
6-10=6 6.59-10-13 | 0.189 6.24-10- 111 0.59 1.35-10%9 | 0.02 0 0.18
6107 1.88-10~13 | 0.196 7.18-10~ 1% 0.88 5.72-1029 | 0.06 0 0.18
6-10—% 4.12-10-1% | 0.199 7.65-10- 1% 1.49 7.05-1020 | 0.16 0 0.18
6-10—3 1.41-10- 1% | 0.231 7.65-10- 14| 2.66 9.05-1029 | 0.2 0 0.22
6-10—2 4.46-10-15 ] 0.302 7.65-10~ 11 4.65 1.11-10%T | 0.2 0.003 0.40
0.6 446-10-15 | 0.330 7.65-10~ 1% 584 1.57-102T | 0.2 0.190 0.84
1.5 4.46-10~15 1 0.340 7.65-10~1% ] 6.35 1.61-102T | 0.2 0.196 1.14
3.0 4.46-10-15 | 0.350 7.65-10- 1% 6.72 1.62-102T | 0.2 0.198 1.44
6.0 4.46-10-15 ] 0.362 7.65-10~ 1% 7.06 1.62:10%T | 0.2 0.199 1.81
12 4.46-10-15 | 0.380 7.65-10- 1% 7.37 1.63-102T | 0.2 0.200 2.28

very roughly. The most significant divergence between CD and TEM data [1] is found for (2R;)meqn for
irradiation dose about 1.5 dpa: calculating data of (2R;)ycqn are about 5.84 nm and 6.35 nm from CD
against of experimental (2R;),cqrn are about 7nm and 13 nm from TEM.

15.4 Discussion

According to the comparison between kinetic Monte Carlo simulations with CD in [25] the deviation of
the cluster system from the ideal gas cluster model [5] must be taken into account in CD scheme, when the
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solute concentration exceeds values of the order of 1% atomic in AlZr alloys. In this case the contribution
of configurational entropy with respect to the total free energy of the gas of clusters is determined in [15]
via constant exclusion volume V (V here is an integer value measuring the number of lattice sites really
occupied by the cluster) or real exclusion volume V. ,, (Vy, ,, here is the number of forbidden atomic sites
to a k-mer by an n-mer) or individual exclusion volume V1 (V. 1here is the total volume of cluster, i.e.
excluding the solute free layer). Because of the complexity of calculations [25] subject of interest is to
estimate apriori the frustration effect in the binary alloys. In [26] it was revealed that the applicability of the
concept of the uniform supersaturation with ignoring of the exclusion volume in the cluster system depends
not on the absolute value of solute concentration but on the value of dimensionless parameter a defined as

. Co—Cy

15.12
o (15.12)

where Cy, C., and C; are the initial concentration, solubility limit and concentration of solute atoms in the
cluster (precipitate), respectively.

In [26] it is obtained analytically that the small value of parameter a (a < 1) corresponds to the thin
layer of the depletion zone surrounding the cluster, i.e. small value of exclusion volume. This parameter
is about 0.002 for Fe-9at%Cr alloy. Hence, one can expect no frustration effect for Fe-9at%Cr alloy and
to consider this alloy as dilute Fe-Cr alloy. This statement is confirmed by absence of the interference
effect in SANS study [3]. Parameter a is about 0.039 for Fe-12.5a%Cr alloy, for which the interference
effect is observed by SANS. Hence, this alloy has to be considered as the concentrated Fe-Cr alloy. On
the other hand, values of parameter a as well as of the upper limits of constant exclusion volume estimated
from SANS [7] are not so high for irradiated Fe-12.5a%Cr alloy. That’s why the taking into account of
the frustration effect empirically by the use of the thermodynamic free energy expression [17] is found
successful in CD modeling of Cr precipitates in this alloy. The complimentary accounting of the diffusion
field effects according to [13] provides the best fit to SANS data for value of the surface tension y<b™
about 0.17 J/m? (instead of 0.028 J/m? in [7], where these effects are ignored). Note that obtained result
is in a good agreement with data of 4™ obtained in [27] by the Cluster Expansion method: 0.218 J/m?,
0.155 J/m2, and 0.048 J/m? for the coherent interfaces [100], [111] and [110], respectively.

The unsuccessful application of the CD scheme of our study to the irradiated Fe-9at%Cr alloy, which
includes the dislocation loops decorated by Cr atoms, shows the necessity to consider the formation and
migration of Fe-Cr interstitials as additional link between the CD master equations for the self-defects and
the CD master equations for the Cr precipitates in this alloy.

15.5 Conclusions

Cluster dynamic (CD) simulations according to Ref. [19], including the effect of the chromium concentra-
tion on the SIA diffusivity [11], are able to reproduce the experimental TEM data [1] for Fe-12.5at%Cr on
the SIAC size distribution. A saturation behavior of the total number density of SIAC in neutron irradiated
Fe-12.5at%Cr model alloys for neutron exposure greater than 0.006 dpa is predicted. The CD simulations
also indicate the presence of VC with radii less than 0.5 nm and a strong SIAC peak with a mean diameter
of about 0.5 nm, both invisible in SANS and TEM experiments because of the resolution limits of these
techniques.

Ratio of exceeding of solute concentration to the concentration of solute atoms in cluster (precipitate)
as well as SANS study can be used to estimate apriori the effect of the exclusion volume in CD simulations
of Cr precipitates in Fe-Cr alloys. Taking into account of the frustration effect empirically by the use of the
thermodynamic free energy expression [17] is sufficient for CD modeling of Cr precipitates in the irradiated
Fe-12.5at%Cr alloy. By adjusting the surface tension between the « matrix and the « precipitates and the
rate at which Cr monomers are absorbed it was possible to reproduce the SANS data [2] for this alloy. The
resulting specific interface energy of 0.17 J/m? is in a good agreement with calculations according to the
Cluster Expansion method [27].



268

15 Cluster Dynamics Study of Defect Evolution

Taking into account the formation and migration of Fe-Cr interstitial as additional link between the CD

master equations for the self-defects and the CD master equations for the Cr precipitates may lead to an
improvement of CD results for irradiated Fe-9at%Cr alloy.
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I'ne rocmoacTByeT AyX HAyKH,
TaM TBOPUTCH BeJUKOe
U MaJILIMH CPeICTBAMU.

H. U. ITuporos

Where the spirit of science dominates,
great things may be achieved
by marginal means.

N. L. Pirogov

Abstract

A new method for theoretically describing the nucleation kinetics in solid solutions, which decreases the time of cal-
culations by a factor of several tens, has been developed. This result has been achieved using a combination of the
kinetic equation for distributions of clusters with respect to the number of particles and with respect to the radius. The
distributions with respect to the number of particles and with respect to the radius have been used for small and large
clusters, respectively. The concentration of molecules near the surface of clusters has been determined from the asymp-
totic solution of the diffusion equation. For subcritical clusters, the concentration of molecules near the cluster surface
has been taken to be equal to the average concentration in the solid solution. The results obtained from the calculation
of the time dependencies of the increase in the concentration and average radius of clusters agree well with experiment.

16.1 Introduction

In order to analyze nucleation kinetics in solid solutions, different analytical and numerical solutions of
kinetic equations are used [1-7]. From our point of view the numerical solutions of kinetic equations are
more suitable because they allow one to use a minimal number of additional mathematical assumptions and
to take into consideration all physical features of the model.

In our previous works [8-10], the kinetics of CuCl nucleation in a photo-chromic glass was experi-
mentally studied at all stages. We obtained the time dependencies of the amount of a new phase [8], the
average radius [9, 10] and concentration of clusters [10], as well as the cluster size distribution functions
[9]. When solving the kinetic equation for a distribution of clusters with respect to the number of molecules
in a cluster, one has to solve numerically a huge number of equations that increases as the third power
with an increase in the maximum radius of the clusters involved. A transition to the description in terms of
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continuous number of particles [1, 6, 7] can lead to additional errors for small clusters and requests unequal
step of net for decreasing the calculation time.

Therefore, we have used kinetic equations for the distribution of clusters with respect to the radii.
This equation can introduce significant errors for very small clusters. In order to avoid these errors, for
very small clusters we have used the equation for the distribution of clusters with respect to the number of
particles. Both solutions are joined together in the region of clusters containing approximately 100 particles.
For subcritical clusters, the Knudsen kinetic regime is used that is the monomer concentration near to the
surface is set to be equal to the average one in the solution. For supercritical clusters for determination
of concentration near the surface of a cluster the asymptotic solution of the diffusion equation is applied.
The proposed method decreases the time of calculations by a factor of several tens and makes it possible to
perform calculations on a personal computer.

The present work is devoted to comparing the results of the calculation with experimental data. This
comparison has demonstrated good agreement. The parameters of the medium, which are significant for
the nucleation kinetics, have been estimated.

16.2 Kinetic Equation for the Distribution of Clusters with Respect
to their Radii

The formation and growth of clusters are determined significantly by their thermodynamic properties. The
Gibbs energy (work) of formation of a cluster of n monomers [1, 2, 4-7] has the following form:

AG = —nAp+ aon?/? | o = 47 (3w /4m)?/3 (16.1)

where o is the surface tension coefficient for the cluster, w = 1/c¢y, is the volume per molecule in the
cluster (¢, is the concentration of molecules in a liquid cluster), and Ay is the difference in the chemical
potentials of the substance dissolved in an “infinite” cluster and in a solid solution. Since the concentration
of monomers in the glass is very low, the solid solution can be treated as an ideal solution. Then, we can
write

Ap=p—pe=kpgTIn(S), (16.2)

where S is the supersaturation for a flat surface.
The radii of the clusters are given by

o= 20 (16.3)
4mey,
Let us express the work of formation of a cluster through the cluster radius
AG = (4/3)nr3cp kT In(S) — 4o . (16.4)

For the critical radius, the work of cluster formation has a maximum, which leads to the decay of subcritical
clusters and to the growth of supercritical clusters:

_ 20 20w
" kpTerInS  kgTlnS '

Tc

(16.5)

The critical radius can be found from the condition ¢ = ¢, where ¢, is the concentration of the saturated
vapor over the cluster surface. This concentration can be found using the Kelvin formula [11]

2
Cs = Coo €XP ( il ) . (16.6)

T’kBT
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The kinetic equation for the distribution function of clusters with respect to the number of particles has
the form [4-7]

0fa

Ot = w:z—flfn—l + w;+1fn+1 - wifﬂ — Wy, fn (16.7)

where f,, is the number of clusters containing n particles, w; is the probability of absorption of one
molecule by the cluster per second, and w,, is the probability of emission of one molecule by the clus-
ter. We assume that all molecules incident on the cluster surface are absorbed. Then, we have

wh =drrie, Vi, w, = 4w eV, (16.8)

where c; is the concentration of molecules in the vicinity of the cluster surface; Vr is the effective velocity
of molecules, which is determined by the diffusion coefficient D = aV7; a is the mean jump length of ions,
and 7 = a/ V7 is the time of one jump.

Eq. (16.7) is used only for clusters containing no more than m particles. From this equation, we can find
all values of f,,, except for f; and f,,. The number of free monomers f; can be found from the condition
that the total number of molecules is constant, and f,, is determined from the solution of the equation
for the distribution with respect to the radii. This approach allows us to reduce the time of calculations
significantly. In particular, in order to solve the equation for the distribution with respect to the number
of particles, one has to solve about 6400 equations if the maximum radius of the considered clusters is 4
nm. In our method, the number of equations is only 300. The distributions are joined when the number of
molecules in the cluster is equal to m for the corresponding radius 7. For large radii of clusters, the gain
(decrease in the number of equations) is even more significant. The number of equations, which should be
solved to determine the distribution with respect to the number of particles, increases as the third power of
the maximum radius, whereas the number of equations required to determine the distribution with respect
to the radius increases as only the first power. Equations for radius distributions are given in [1, 2, 5, 6].

For our purposes, we need a kinetic equation for the cluster radius distribution function that most closely
corresponds to Eq. (16.7) and allows us to find the values of f(n) at individual sites with a good accuracy for
sufficiently small values of n. The coefficients of this equation should be expressed through the coefficients
of Eq. (16.7). Therefore, we perform a complete derivation of the kinetic equation for the distribution of
molecules with respect to the radii. Let us assume that b,, is the increment of the cluster radius after addition
of one molecule. Then, we can write

b, = 1/dnricy , (16.9)
wibl =c Vr/er w, by, =cVr/er . (16.10)
We determine the cluster radius distribution function
p(r) = 71"5(”) : (16.11)
n

where f(n) is the distribution function with respect to the number of particles in the cluster. We consider
f(n) in the interval [r — 0.5b,,_1, 7 + 0.5b,,]; therefore, here, we have b,, = 0.5 (b,—1 + by,).
The flux of clusters incoming at the lower boundary of this interval is given by

Jy = —w (1)bpp(r) +wt (r —by_1)bp_10(r —by_1) , (16.12)
the flux of clusters outgoing at the upper boundary of the interval is given by

J_ =wh(r)b,o(r) —w (r + bp)bpi1o(r +by) . (16.13)

Here, » = r,, is the radius of the cluster containing n molecules.
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Then, we have b(J¢/0t) = J, — J_, or

Jy—J. = —w ()byo(r) +wh(r —bp_1)bp_10(r —bp_1) — (16.14)
wh (r)bpo(r) +w™ (r 4+ by)bpr10(r + by) .

Expanding it into a series, we obtain

) , O ) , 0?

Jy=J- = —bp15- (w+590)+0.56n_1ﬁ (w*l_)ga)erna (w’5¢)+0.5bnw (w™byp) . (16.15)

Next, we write
bowt (r) = w(r) + 0.5u(r) , bp—1w,, (r) = w(r) — 0.5u(r) . (16.16)

Under the derivatives, we can leave only the principal terms in b; then,

- b - b
wrb=wTb" —w+bg— =w+ 0.5u w b=w"b" +w_bg— =w—0.5u. (16.17)
r r

Here, b™ = b, and b~ = b,,_;.
Substituting Eq. (16.17) into Eq. (16.15) and leaving only the principal terms in b, quadratic for we,
and first order for u¢, we obtain

dp L 0b 0 5 02 0 _, 0,0 0
ba =Jy—J_ 7b§§ (wp)+0b w(wgp) o (up) = barbar (wy) 5 (up) . (16.18)

From here, we obtain the kinetic equation for the distribution of clusters with respect to their radii

Jdp 0b O 0? 0 0, 0 0
— h—— - = = —bh— - — . 16.19
ot = arar (WP F g (we) = o lup) = Fobal (we) = 5o (up) (16-19)
The quantities w and wu are expressed through the physical characteristics of the system: w = (¢; +

cs)Vr/cp andu = (¢1 — ¢5)Vp/cp.

The growth and decrease in the number of clusters are random processes; therefore, Eq. (16.19) is a
Fokker-Planck equation [3]. This equation satisfies the law of conservation of the number of clusters: the
total number of clusters within each range of radii changes only at the expense of clusters incoming and
outgoing at the boundaries of the interval. The equation contains two contributions: the first contribution
describes the diffusion with respect to the radii of clusters, and the second contribution describes the regular
change in the cluster radius.

In order to determine cy, it is necessary to solve the diffusion equation for ¢ together with solving the
equation for growth of the cluster. The diffusion equation in spherical coordinates has the following form
(c depends only on r; here r is the radial coordinate) [12]:

Oc aVp 0O ( 280)
= re—1 .
or

%= 2 o (16.20)

The boundary conditions for ¢ are as follows: the diffusion flux at the cluster surface is equal to the flux
absorbed by the cluster

9
aVip (37?)3 =Vr(e—c) (16.21)

at infinity, the quantity c tends to the average concentration.
The stationary solution of the diffusion equation introduces an essential error into initial stage of growth
of supercritical clusters. Since we are interested in the initial nucleation stage, we use the asymptotic
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solution of the diffusion equation from the medium into a sphere of constant radius R, which can be obtained
from results in [12]. For the concentration near the cluster surface, it gives

(co—cs)R 1 R 1 1/ R 1Y
AT TR {1_\/7?<a+R\/i_2<a+R\/{e))}' (16.22)
Here, t is the time determined by the number of jumps and R is the current value of the cluster radius.
Ignoring the terms containing time, we obtain a steady-state solution that corresponds to the diffusion
approximation for the probabilities of emission and absorption of molecules.

A comparison of this solution with the exact numerical solution of the diffusion equation Eq. (16.20)
together with the equation for the growth of a single cluster shows that Eq. (16.22) is a good approximation
for times corresponding to more than 200 jumps. The steady state solution introduces a considerable error
even for 10000 jumps.

16.3 Results of Computations of the Nucleation Kinetics at 500°C

In the present work, we investigated a photo-chromic glass of the composition 9.3Nas0-62S105—22B503—
1.8Al303-2.1Sn0y, in which 0.6 mol% CuO and 1.7 mol% NaCl were added. The molar mass of the glass
is 65.6 g/mol, the density of the glass is 2.34 g/cm?, the refractive index is 1.5, the density of copper chloride
CuCl is 3.7 g/lcm?, and the molar mass of copper chloride is 99 g/mol. Since the glass can usually absorb
no more than 0.7 mol% Cl, the concentration of chlorine ions is approximately equal to the concentration
of copper ions. The volume concentration of Cu and Cl ions is equal to 0.13 nm~3 in the glass and 22.5
nm~? in the liquid cluster. The volume per molecule is w;, = 0.044 nm? in the liquid and wg = 7.75 nm®
in the glass.

Aluminoborosilicate glasses of the composition close to our glass have an inhomogeneous structure
[13]. They consist of a silica network with rather large inclusions of sodium borate glass. The glass network
contains approximately 95 mol% SiOs. The inclusions contain almost all sodium and approximately 90
mol% B. The sizes of the inclusions are approximately equal to 100 nm [13].

The precipitation of CuCl is due to the decomposition of the complexes [14, 15]

[BOs,, Cl] Na — [BO3/2] + NaCl
[BOj3/, Cl] Cu — [BO3/2] + CuCl .

Molar volumes in the glass are: SiOy — 27 cm®/mol, B2O3 — 30 cm?3/mol, and NayO — 20 cm?/mol [13].
The molar volume of the glass is 28 cm®/mol, including 8.5 cm3/mol of the sodium borate glass. Therefore,
the volume fraction of the sodium borate glass in this glass as a whole is equal to 0.3. If CuCl is assumed
to be uniformly distributed throughout the glass, the CuCl concentration will be too low, i.e., 0.13 nm~—3,
which is slightly larger than the equilibrium concentration of AgCl in the sodium borate glass [5]. Hence,
we assume that CuCl clusters are formed only in the sodium borate part of the glass and their local volume
concentration is approximately three times higher than the concentration averaged over the glass. We also
assume that the major part of the copper and chlorine ions is also contained in the sodium borate inclusions.
These assumptions are essential when we compare calculations with experiments.

We use using a combination of the equations for the distributions with respect to the number of particles
in a cluster and with respect to the cluster radii. In this case, we solve the equation for the distribution
with respect to the number of particles for clusters with radii smaller than 0.94 nm and the equation for
the distribution with respect to the radii for clusters with large radii. We use the standard mean field
approximation [5], in which the concentration of monomers is taken to be constant over the entire volume
and is determined from the condition of conservation of the total number of molecules. The local changes
in the concentration of monomers were taken into account only in the vicinity of the surface of the clusters,
because they determine the probability of capture of a molecule by a cluster.



274 16  Theoretical Modeling of Nucleation Kinetics in Solid Solutions

For supercritical clusters, we use the asymptotic solution to the equation of diffusion from the medium
into a sphere. For subcritical clusters, there occur both the decrease in the radius due to walk-off and
the increase in the radius due to diffusion in the size space. In this case, it is natural to assume that the
concentration near the surface of such clusters is equal to the average concentration of monomers; i.e., we
can use the Knudsen kinetic regime. This does not hold in the case of the completion of the second stage of
nucleation, when the critical radius rapidly increases and the formation of new clusters stops.

At a specified temperature, the kinetics in a reduced time (taken in jump periods) is determined by
two parameters, i.e., the supersaturation and the surface tension coefficient. The parameter of the calcula-
tion is the conventional initial supersaturation Sy, which is determined by the total concentration of CuCl
molecules in the glass. The actual supersaturation is determined by the fraction of monomers w;, which
is always smaller than unity, because a part of the molecules is bound inside the clusters in the equilib-
rium distribution. The initial value of w; is determined after the equilibrium distribution has been found.
At times in the range 100-300 jump steps, the equilibrium has already been reached, but the supercritical
cluster formation can still be ignored.

0,8‘ T T T T T 0,8 3,0 T T T T T 3,0
a 2
= 0,7 0.7 E g 29 125 g
5 s
5 g 2 =
s 5 2 2,01 2,0 2
= 0,6+ 06 & B 3
3) - 5 s
E - s
g 1 T 51,57 1,5 &
E 0,51 05 & :
1,0 1 -1,0
0,'4 T T T T T 0,4 T T T T T
0 1 2 3 4 , 5 0 1 2 3 4 , 5
number of jump ¢ 10 number of jump ¢ 10

Figure 16.1: Time dependencies of (a) (1) the fraction of monomers, (2) the critical radius and (b) (1) the average
radius of clusters, (2) the square of the average radius of clusters.

The rate of formation of supercritical clusters at a given temperature is determined by the critical radius.
With an increase in the amount of the new phase, the fraction of monomers decreases, which leads to a
decrease in the degree of supersaturation S = w5y and to an increase in the critical radius. As the radius
increases, the rate of formation of new nuclei decreases rapidly. While the critical radius is of the order
of 0.7-0.8 nm, the formation of nuclei stops. The second stage of nucleation begins, i.e., the stage of the
individual growth of nuclei.

Solving the kinetic equation, after the distribution with respect to the radii was found, we calculated the
concentration of the observed clusters and their average radius. The radius was averaged taking into account
the cluster volume, because, during measurements, the contribution from each cluster is proportional to the
number of molecules inside this cluster; i.e. it is proportional to the cluster volume. All clusters with radii
larger than the value 7,,;, were treated as the observed clusters. In the experiment, the cluster radius was
determined from the position of the maximum in the absorption of exciton and the concentration of clusters
was determined from interband absorption; in this case, we assumed that all clusters have the same radius.
Hence, apart from the actual concentration, we also calculated the conventional concentration, which is
equal to the total volume of the observed clusters divided by the volume of a cluster with the average
radius.
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Figure 16.2: Time dependencies of the concentration of the observed clusters. The solid line is the result of the
calculation.
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A comparison of the results of the calculation with the experiment shows that this model provides an
adequate explanation of the obtained results at least at a given temperature. The best agreement with the
experiment was achieved for Sp = 5.55, 0 = 0.09 N/m, and r,,;, = 0.9 nm. The values of these quantities
are close to those used in [5]: Sy = 5.0 and ¢ = 0.08 N/m. For each minute of real time, there are 85 jumps,
which correspond to a very small diffusion coefficient. This was also observed in [5], where the diffusion
coefficient was taken to be two orders of magnitude smaller than the measured value for the given glass in
order to obtain agreement between calculation and experiment. Most likely, this is associated with the fact
that the absorption and emission of Cu™ and C1~ ions by the cluster are multistage random processes.

Figure 16.1 shows dependencies of the monomer fraction w1, the critical radius r., the average radius R
of the cluster, and the square of the cluster radius on the reduced time. The time is number of jump periods.
It can be seen from these plots that, in the experiment, there is a tendency toward earlier retardation of the
increase in the cluster radius as compared to that obtained in the calculation. Figure 16.2 shows the time
dependence of the conventional concentration of the observed clusters. In the figure the local concentration
in sodium borate inclusions in the glass is presented. The actual concentration changes in a similar manner
but has slightly larger values. Figure 16.3 shows the radius distribution function of the number of clusters
f(r) and the radius distribution function of the cluster volume f, (7). The times correspond to 5000, 10000
... 50000 jump periods.

The distribution functions in our model are more symmetric than those reported in [5]; moreover, they
decay toward small radii more rapidly and agree better with the experimental data [9]. It can be seen from
these plots that the results of the calculations agree well with the experiment. However, it should be taken
into account that the measured values do not completely correspond to the calculated ones. In general, the
results obtained correspond to the classical theory of nucleation for the first stage and the transition to the
second stage.

16.4 Conclusions

In the present paper, we described our work carried out on the analysis of results of experimental inves-
tigations of the nucleation kinetics of CuCl in glass. To do it, the experimental data were compared with
calculations of the nucleation kinetics. The calculations used a new method by applying a combination of
the kinetic equations for the distribution function of clusters with respect to the number of particles and
with respect to the radius. The proposed method makes it possible to decrease the time of calculations by a
factor of several tens and to use a usual personal computer. For the probability of absorption of a molecule
by a cluster, we have used exact expressions, and the concentration of molecules near the surface of the
cluster has been found from the asymptotic solution of the diffusion equation. For subcritical clusters, we
have used the Knudsen regime; more specifically, the concentration of molecules near the cluster surface is
assumed to be equal to the average concentration of monomers. This has allowed us to obtain the distribu-
tion of clusters with respect to the radii, which is in better agreement with the experiment, and to accurately
describe both the increase in the number of clusters and the increase in their radius. The supersaturation in
glass and the surface tension coefficient of the clusters were determined. The calculations performed for
the temperature 7' = 500°C agree well with the experiment.
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Do what you can
with what you have
and in the place where you are

Theodore Roosevelt

Abstract

Critical radius r. is experimentally determined in nucleation processes in solid solutions involving preformed nucleation
centers. An ensemble of CuCl nano-melt nuclei of average radius R = 1.2 nm is formed in CuCl solution in glass at
To = 500°C. The radius 7. increases to r.; as the temperature jumps up to 77 = 550 — 650°C. The nuclei of radii
r < re1 are turned to subcritical ones and dissolve. A part of the nuclei ranged in r > r.; increases in size further. A
share of dissolved nuclei was determined from changes in their concentration. The concentration of the evolved CuCl
phase, the concentration /N of CuCl particles and average radius R were determined from intrinsic optical absorption
spectra of CuCl nano-crystals at room temperature in the range of wavelengths 300 nm - 450 nm. The radius 7.1 was
most accurately determined at the beginning of dissolving at 73 = 650°C. The nucleation time dependence of 7. at
T4 was determined from calculation of nucleation kinetics under double annealing with taking into account the initial
size distribution of CuCl particles and experimental r.; value at the initial annealing time at the temperature 7;. The
calculated and experimental dependencies for R and IV kinetics are compared and compliance of the results with each
other is demonstrated.

17.1 Introduction

The critical radius r.. of particles (clusters) depends on temperature 7" and supersaturation S = ¢/cqo

_ 20w
- ,Z{JBTIHS ’

Tec

(17.1)

where c is the concentration of dissolved molecules, c., is the concentration of molecules of new phase
saturated vapor above the flat surface, o is the surface tension coefficient of a new phase particle, w is the
particle volume per molecule. In the nucleation process, r. changes continuously as a result of changes in c.
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Due to exponential dependence of ¢, on temperature ¢o, = ¢ (T'), the radius r. depends on temperature
especially strongly. For the temperature changing from 7Ty to 77, the Clausius-Clapeyron equation gives

T, L /(1 1
Coo1 (T1) = coo1 (To) - f(l)exp ( ( - )) ; (17.2)

where ¢ and ¢ are the saturated vapor concentrations at 7 and 77, respectively, Ry is the universal gas
constant, L is the molar heat of evaporation. L is assumed to be constant for the temperature range under
consideration. It is not always possible to estimate the r.-value even at the beginning of the nucleation
process as a complete set of parameters in Eq. (17.1) is usually unknown.
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Figure 17.1: Absorption spectrum of CuCl NC (curve 1) — annealing at 500°C (3 hours), absorption spectrum of CuCl
NC after subsequent annealing at 600°C (40 minutes) (curve 2). Decomposition of curve 2: Z; 2 — exciton (curve 3)

and Z3 — exciton (curve 4); band-to-band absorption spectrum (curve 5) and absorption spectrum of residual Cu ions in
glass (curve 6). Curve O represents the initial spectrum of the glass sample.

Independent experimental estimation of the critical radius is important for the theory of nucleation in
solid solution and for its use in materials science. The critical radius determines the rate of supercritical
clusters formation of the new phase. Knowledge of the critical radius and its dependence on nucleation time
makes it possible to control the nucleation process, its important kinetic parameters such as the average
radius and the concentration of clusters. We have proposed earlier [1] the method for formation of new
phase subcritical nuclei and their decay observation with the optical absorption technique [2, 3].

Let us assume that the distribution of new phase clusters of the average radius R > 7.(7p) with in-
significant changes in supersaturation is formed in a solid solution sample for the time of the first annealing
at the temperature 7' = T. When increasing the temperature from Tj to T3, the supersaturation .S de-
creases very rapidly due to the considerable increase in c, in accordance with Eq. (17.2). According to
Eq. (17.1), the decrease in supersaturation S is accompanied by an increase in . up to 7.;1. In that case, a
part of clusters with radii » < r.; becomes subcritical and dissolves (decays) but another part of clusters of
radii in the range > 7. keeps on mainly increasing in the second annealing process at the temperature
Ty. The sharp change in cluster concentration upon jumping temperature 7" up to 77 and known radius
distribution of initial clusters allow estimating r.; at the temperature 7} at initial (zero) time. Referencing
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of the calculated 7. -function to its experimental values increases reliability of calculations of . (¢, 7") and
other nucleation parameters.

This work is aimed at experimental determination of the critical radius under temperature jump from
Ty to Ty and calculation of r.; (¢, T) relationships using the procedure developed in [4] for calculating
nucleation in solid solution.

17.2 Experiment

Copper halide solid solution in glass matrix transparent in the range of intrinsic absorption of CuCl crystals
was investigated. The glass of the main composition 9.3Na,0 - 625105 — 22B203 — 1.8AlsO3 — 2.1Sn04
with added 1.7 mol% NaCl and 0.6 mol% CuO were used in the experiments. When annealing the samples
at the temperature 500 °C and higher, diffusion processes lead to CuCl phase clustering in the nano-melt
form. On cooling the samples, crystallization takes place and results in occurrence of optical absorption of
CuCl nano-crystals (NC) in the glass transparency region. The concentration of CuCl phase, the average
radius, and the concentration of CuCl particles (clusters) were determined from absorption spectra at room
temperature [2, 3, 5]. The initial annealing temperature (7p) was equal to 500°C and the annealing time
comprised 3 hours. The second annealing was carried out at the temperatures 650°C, 600°C, and 550°C.
The second annealing time changed from 10 seconds to 60 minutes.
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Figure 17.2: Radius distribution of initial CuCl nuclei. The average radius R = 1.2 nm, half-width 2s = 0.3 nm.
1.1 —critical radius at the 650 °C (r¢1 = 1.3 nm).

As an example, the absorption spectrum of original glass sample (curve 0), the absorption spectrum
of initial CuCl nano-crystals formed for the time of the first annealing stage (curve 1), and that of CuCl
nano-crystals formed after the second annealing stage at 600 °C during 40 minutes (curve 2) are shown in
Fig. 17.1. This figure demonstrates also decomposition of the fundamental absorption spectrum of CuCl
nano-crystals into the bands of exciton and band-to-band absorption [3].

The energy (E.;) of Z; o—exciton and the absorption coefficient (K3,) for band-to-band transitions
were determined while decomposing the experimental absorption spectra of CuCl nano-crystals. Using the
energy (E.,) of Z; o—exciton, the average radius R of CuCl nano-crystals was estimated [6]. Then, kinetic
curves for increasing Ky, R and changing concentration N of CuCl nano-crystals were plotted [3, 5]. The
coefficient Ky, is proportional to the concentration of the evolved CuCl phase. The concentration N of
CuCl particles was calculated as a ratio of Kj, value to absorption of bulk crystal (10° cm_l) [6] followed
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by dividing the resulting value on the average volume of particles equal to 47 R3/3. Radius distribution
of nano-crystals was determined with the method of thermal-exciton analysis of kinetics of nano-crystals
melting [2, 5] and calculated using Eq. (6) given in [5]. The initial radius distribution f(r) for CuCl nano-
crystals obtained after the first annealing stage at 500 °C is shown in Fig. 17.2. The distribution shape is
similar to that of the Gauss distribution with maximum at r,,, = 1.2 nm and width 0.3r,,,.
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Figure 17.3: Kinetics of changes in the average radius R of CuCl particles (triangles) and their concentration N (circles)
at 550, 600 and 650 °C in the course in nucleation going on in the sample with preformed nuclei.

The time dependencies of the average radius R and the concentration N of CuCl particles for the
second annealing stage at the temperatures 550, 600 and 650 °C are shown in Fig. 17.3. When increasing
the temperature from 500 °C to 650 °C, a tenfold and more increase in the initial rate of R growth occurs.
The twofold increase in R is observed for two minutes. Then, in 10-20 minutes, the radius growth becomes
slower. However, not all initial clusters are growing.

From Fig. 17.3 it follows that 80% of initial clusters dissolve (decay) for 5 minutes upon annealing at
650°C. Taking into account their distribution, the critical radius r. is equal to 1.3 nm at the temperature
650°C because 80% of the total area is cut off under the curve f(r). The clusters dissolve exponentially,
in the beginning of the process 7; being equal to 0.26 min.; then the process runs slower, with 75 being
equal to 2.9 min. Rapid dissolution of initial nuclei at 650°C results in 10% decrease in the total amount
of CuCl phase for the first minute. Then, because of the growth of undissolved nuclei, the increase in the
CuCl phase is observed. The initial CuCl clusters dissolve also exponentially at the temperatures 600° and
550°, with 7 being equal to 7.4 and 39.4 minutes, respectively (Fig. 17.3). In this case, there are no any
drastic changes in the nucleation process; therefore it is difficult to determine 7.

17.3 Calculations

The authors have earlier developed the technique for the mathematical computations describing nucleation
in solid solutions and the nucleation dynamics has been calculated for CuCl solid solution in glass at the
temperature 500 °C [4]. In this investigation glass composition and solution parameters were the same. The
technique was applied to CuCl phase nucleation in glass when there were temperature jumps. The combined
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equation for particle number distribution function and particle radius distribution is used in the calculations.
In case that the particle radius is less than 0.94 nm the equation for particle number distribution is solved
and in case the radius is larger than the value fixed above the equation for radius distribution is used. The
two solutions are joined at the radius 0.94 nm.

The standard kinetic equation (Eq. (6) in [4]) is used for calculating the particle number distribution
function and Eq. (16) deduced in [4] is used to calculate radius distribution function. Here the conven-
tional average field model was used; in this model, concentration of monomers was believed to be constant
throughout the volume and determined under the condition the total number of molecules CuCl was kept
unchanged. Any local changes in monomer concentration were taken into consideration only in proximity
to particle surface because they specified the probability of molecule capture by the cluster.

To determine the concentration of monomers close to the nano-droplet surface, asymptotic solution of
the diffusion equation into sphere is used. The diffusive change in the concentration of monomers at the
particle surface occurs only if the systematic variation of radius is observed for particles of certain size
due to drift in the space of sizes. For ”subcritical” particles, there is both decrease in radii as a result of
the drift and increase in radii due to diffusion in the space of sizes. These processes are of approximately
equal probability, with diffusive increase being slightly dominated. In this case, it is natural to assume the
concentration at the surface of these particles to be equal to the average concentration of monomers, i.e. to
use the kinetic mode. This is irrelevant to the second annealing stage.
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Figure 17.4: Calculated (line) and experimental (circles) results demonstrating dissolution of initial CuCl particles of
radii 7 < 71 at 650 °C and increase in the average radius of the particles.

Firstly, the particle distributions obtained at 500°C for 3 hours as well as the share of monomers and val-
ues of supersaturation and critical radius for that moment of time were calculated [4]. Then, using Eq. (17.2)
and Eq. (17.1), new values of supersaturation and critical radius were calculated for the temperatures 650°C
and 550°C of the second annealing and the kinetic equation was further solved at new values of parameters.
Calculated r.; values obtained for the time 1 minute at 650 °C were matched to the experimental value of
this parameter. The molar heat of evaporation was chosen to be in compliance with the experimental results.
Because the surface tension coefficient decreases as a rule with increasing temperature its value was also
fitted. Calculated and experimental changes in the concentration /N when dissolving initial nuclei at 650 °C
are shown in Fig. 17.4. In the initial part of kinetic curve for dissolving CuCl nuclei of the radii r < 71,
the calculated and experimental results are in good agreement.

The calculated increase in the average radius of clusters is in satisfactory agreement with experimental
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Figure 17.5: Calculated distribution of CuCl particles. Curve 1 - distribution of initial CuCl nuclei. Curves 1-14 -
distribution in nucleation at 600 °C on time 0 - 46 min. r.; — .14 show critical radius of distribution, respectively.

data in the initial curve section however the experimental curve rises more steeply. Then, at large values
of time, the calculated values of radius increase more rapidly. This fact could be caused by calculation of
concentration close to the cluster surface and the transition from the kinetic mode to diffusive one.

Calculated changes in radius distribution for CuCl particles when initial nuclei of the radii r < r.; are
dissolved and nuclei of r > r.; increase are given in Fig. 17.5. The curve 1 describes distribution of initial
CuCl nuclei formed in nucleation process at 500 °C for 3 hours. The curves 2 — 14 demonstrate changes in
radius distribution of CuCl particles occurring for initial 46 minutes in nucleation at 600°C. By 7.1 — 7c14
critical radius, respectively, is shown.

From the calculations it follows (Fig. 17.6) that at the temperature jump from 500°C to 650°C the
critical radius at 650°C rises steeply first up to r. = 1.65 nm (r. = 0.65 nm at 500°C), and then decreases
drastically to 1.3 nm in compliance with its experimental behavior. The critical radius increases further as
supersaturation decreases in nucleation. It is initially observed also a drastic increase in the amount of free
monomers due to rapid evaporation of CuCl nuclei of » < r.;. When the temperature jumps from 500°C
to 550°C, the similar steep rise in the critical radius r. up to 0.80 nm takes place and upon decrease in its
value to 0.75 nm, a slow growth of the radius is further observed. The amount of monomers first increases
unevenly and then decreases slowly in the course of nucleation at 550°C.

Calculated r. values and kinetics of nucleation are in good agreement with the experimental results at
the following values of parameters: conditional initial supersaturation (Sy)Sy = 5.4 at 500 °C (the whole
of CuCl consists of monomers); surface tension coefficient (¢) o = 0.092 at 500 °C and o = 0.085 at 650
°C; molar heat (L) of evaporation molecules from melt CuCl in this glass L = 41 kJ/mol.

17.4 Conclusions

A method is proposed and implemented for determining the critical radius 7. at nucleation in solid solution
containing preformed new phase nuclei. The r.-value was obtained for solid solution of CuCl in glass
for the point of temperature jump at the second annealing. Calculated relationship between r. and the
second annealing time was obtained as a result of total calculation of the nucleation kinetics with taking
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Figure 17.6: Calculated changes in the critical radius (circles) and the concentration of monomers (triangles) in nucle-
ation at 650 °C and 550 °C in a sample involving preformed CuCl nuclei.

into account the known initial size distribution of CuCl particles and experimental r.-value in the beginning
of the second annealing.

The calculated and experimental time dependencies obtained for the average radius and the concentra-
tion of CuCl particles under condition of complicated nucleation, namely double annealing of solid solution,
were compared. The calculated and experimental results obtained are in good agreement. All the results
confirm efficiency of the technique used for calculation of nucleation kinetics [4].
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Ich mochte was drum geben, genau zu wissen,
fiir wen eigentlich die Taten getan worden sind,
von denen man offentlich sagt,
sie seien fiir das Vaterland getan worden.
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Abstract

Here we propose a generalized statistical multi-fragmentation model which includes the liquid phase pressure in the
most general form. This approach allows us to get rid of the absolute incompressibility in the description of the nuclear
liquid. Also the present model employs a very general form of the surface tension coefficient of nuclear fragments.
Such a model is solved analytically for finite volumes by applying the Laplace-Fourier transform method to an isobaric
ensemble. A complete analysis of the isobaric partition singularities of this model is also performed for finite volumes.
It is shown that the real part of any simple pole of the isobaric partition defines the free energy of the corresponding
state, whereas its imaginary part, depending on the sign, defines the inverse decay/formation time of this state. The
developed formalism allows us to exactly define the finite volume analogs of gaseous, liquid and mixed phases of the
class of similar models from the first principles of statistical mechanics and demonstrate the pitfalls of earlier works.
The finite width effects for large nuclear fragments and quark gluon bags are also discussed.

18.1 Introduction

The necessity to extend the theory of 1-st order liquid-gas phase transition (PT) is determined both by an
academic interest to this problem and by practical purpose to study phase transformations in systems that
do not have a thermodynamic limit. The latter are of particular interest for nuclear physics of intermediate
energies where the nuclear liquid-gas PT [1, 2, 3] is studied in the presence of the Coulomb interaction.
Also recently there is developing a great attention to PTs in finite systems because of the searches for a new
state of matter, the quark gluon plasma, and its (tri)critical endpoint in the relativistic collisions of heavy
ions [4, 5, 6].

This problem has a long history, but up to now it is not resolved. One of the first attempt of its resolving
was advanced by T. Hill [7] whose approach is based on the formulation of thermodynamics of small
systems. Hill’s ideas were developed further in [8], where the authors claimed to establish a one-to-one
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correspondence between the bimodal structure of the partition of measurable quantity B, known on average,
and the properties of the Lee & Yang zeros [9] of this partition in the complex g-plane. However, the analysis
of such a definition performed in [10] on the basis of exactly solvable model for finite volumes [11] shows
that the definition of phases suggested in [8] cannot be established experimentally under any circumstances.
Therefore, although many important aspects of the nuclear liquid-gas PT related to finite volumes of studied
nuclear systems are well understood [1, 3, 12] the systematic and rigorous extension of the PT theory to
finite systems is just at the very initial stage in spite of too optimistic beliefs as expressed in Ref. [13].

Therefore, here we would like to discuss a powerful mathematical method invented recently [11], the
Laplace-Fourier transform (LFT), that allows one not only to solve analytically several statistical models
for finite volumes or surfaces, but also to establish a common framework to study the deconfinement PT
and nuclear liquid-gas PT in finite systems. LFT was successfully applied to the simplified version of
the statistical multi-fragmentation model (SMM) [14, 15] in finite volumes [11], to the analysis of surface
partition and surface entropy of large but finite physical clusters for a variety of statistical ensembles [16]
and to the exact solution of the gas of quark gluon bags [17] for finite volumes [10]. Furthermore, using the
theorems proven in [10, 18] it is possible to straightforwardly apply the exact representation of the finite
volume grand canonical partition (GCP) of the gas of quark gluon bags model [10] to other exactly solvable
statistical models of the deconfinement PT which were solved recently in thermodynamic limit [19, 20, 21,
22, 23]. Finally, we would like to stress that our approach to study PTs in finite systems is not restricted
to the models without long-range Coulomb-like interaction. Our strategy is as follows: to firmly define the
phases in finite systems without the long-range interaction, and then to extend this approach to the systems
with the Coulomb-like interaction. This work is mainly devoted to the first of these tasks for which the finite
volume solution of the simplified version of the SMM (and similar models) is analyzed here. In addition,
here we generalize the simplified version of the SMM [14, 15] in order to repair such its defects as an
existence of limiting baryonic density and an absence of a (tri)critical endpoint for the values of the Fisher
exponent 7 > 2 [24, 25].

The work is organized as follows. Section 18.2 is devoted to the formulation of the generalized SMM.
Section 18.3 contains an introduction into the LFT technique. The analysis of the singularities of the
isobaric partition of the suggested model is given in Section 18.4. In Sections 18.5 and 18.6 we, respectively,
discuss the location of the isobaric partition singularities in complex plane for the case without PT and with
PT in thermodynamic limit. The finite volume analogs of phases along with the critique of Hill’s treatment
of 1-st order PT in finite systems are presented in Section 18.6. Finally, Section 18.7 contain our concluding
remarks.

18.2 Generalized SMM

The system states in the standard SMM are specified by the multiplicity sets {ny} (nx = 0,1,2,...) of
k-nucleon fragments. The partition function of a single fragment with k nucleons is [1]

Véi(T) =V (mTk/2m)*? 2z, ,

where k = 1,2,..., A (4 is the total number of nucleons in the system), V' and T are, respectively, the
volume and the temperature of the system, m is the nucleon mass. The first two factors on the right hand
side (r.h.s.) of the single fragment partition originate from the non-relativistic thermal motion and the last
factor, 2y, represents the intrinsic partition function of the k-nucleon fragment. Therefore, the function
¢r(T) is a phase space density of the k-nucleon fragment. For k£ = 1 (nucleon) we take z; = 4 (4 internal
spin-isospin states) and for fragments with k£ > 1 we use the expression motivated by the liquid drop model
(see details in Ref. [1]): 2 = exp(—fr/T), with the fragment free energy of the simplified SMM

fo=-W(T) k+0o(T)k¥®+ (r+3/2)Thnk, (18.1)

with W(T) = W, + T?/e,. Here W, = 16 MeV is the bulk binding energy per nucleon. 7% /e, is
the contribution of the excited states taken in the Fermi-gas approximation (¢, = 16 MeV). o(T) is the
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temperature dependent surface tension parameterized in the following relation

C

0= [

c

2 2\ 75/4
(7 I )] (18.2)
with 0, = 18 MeV and T, = 18 MeV (o0 = 0 at T > T,). The last contribution in Eq. (18.1) involves the
Fisher’s term with dimensionless parameter 7. The free energy Eq. (18.1) does not contain symmetry and
Coulomb contributions which are neglected. Hence it is called a simplified version of the SMM which was
suggested and studied numerically in Refs. [14, 15]. However, its investigation appears to be of principal
importance for studies of the liquid-gas phase transition in finite systems.

From an exact analytical solution of the simplified SMM [24] it follows that the baryonic density has
a maximum value maxp = 1/b = p, = 0.16 fm—3 in the limit u — oo (here p, is the normal nuclear
density). This, however, contradicts results of experiments on heavy ion collisions [26] in which the nuclei
can be compressed to much higher densities. In order to avoid such a behavior we generalize the SMM to
the GSMM which includes the pressure of the liquid phase p; (T, 1) in a general form. Then the free energy
of the fragments with & > 1 reads as

8 =puk—p(T,p) bk +o(T) k*3 + (r +3/2)TInk (18.3)

where the pressure of a liquid phase is (at least) a double differentiable function of its arguments that
contains the temperature dependent binding energy W (T'). Also it is assumed that the function p; (T, 1)
reproduces all the typical properties of a liquid phase. An extremely important property of the GSMM is
that the liquid phase equation of state p;(7T’, i) can be taken from some microscopic models including the
mean-field ones, but the resulting model will be a truly statistical one since the analytical properties of the
isobaric partition singularities remain unmodified in this case.

The GSMM nucleons are considered as in the SMM. Note that the pressure of a liquid phase should
approach the asymptotics p; ~ T2 for T — oo and p; ~ p? for ;1 — 00 to respect a causality condition
[27]. Therefore, the simplest parameterization of the liquid phase pressure which at low densities recovers
the usual SMM result and at high densities obeys such asymptotics can be written as follows

1 W(T
pz(T,u)zu( +Wg+ @) , (18.4)

where a positive constant a > 0 has to be fixed by the condition that at low densities it behaves as a|u| < 1.
However, in what follows we study the most general form of the liquid phase pressure.

In addition to the new parameterization of the free energy of the k-nucleon fragment Eq. (18.3) we
propose to consider a more general parameterization of the surface tension coefficient

¢

sign(T, — T) , (18.5)

with ( = const > 1 and 7, = 18 MeV. In contrast to the Fisher droplet model [28] and the SMM [1],
the GSMM surface tension Eq. (18.5) is negative above the critical temperature 7. It is necessary to stress
that there is nothing wrong or unphysical with negative values of surface tension coefficient Eq. (18.5),
since o k3 in Eq. (18.3) is the surface free energy of the fragment of mean volume b k and, hence, as any
free energy, it contains the energy part e, and the entropy part s,y multiplied by temperature 1" [28].
Therefore, at low temperatures the energy part dominates and the surface free energy is positive, whereas
at high temperatures the number of fragment configurations with large surface drastically increases and it
exceeds the Boltzmann suppression and, hence, the surface free energy becomes negative since sgy-f >
E“Tf By this reason negative values of the surface tension coefficient were recently employed in a variety
of exactly solvable statistical models for the deconfinement PT [19, 20, 21, 29]. For the first time this fact
was derived within the exactly solvable models for surface deformations of large physical clusters [16].
Very recently two of us derived a relation between the surface tension of large quark gluon bags and the
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string tension of two static color charges measured by the lattice QCD [30] from which it was possible to
conclude that at high temperatures the surface tension coefficient of quark gluon bags should be negative
[30, 31].

Furthermore, a thorough analysis of the temperature dependence of the surface tension coefficient in
ordinary liquids [33, 32] shows not only that the surface tension coefficient approaches zero, but, in contrast
to the widespread beliefs, for many liquids the full 7" derivative of ¢ does not vanish and remains finite at
Te: j—% < 0 [32]. Therefore, just the naive extension of these data to the temperatures above 7T, would
lead to negative values of surface tension coefficient at the supercritical temperatures. On the other hand,
if one, as usually, believes that o = 0 for T > T¢, then it is absolutely unclear what physical process can
lead to simultaneous existence of the discontinuity of g—% at T, and the smooth behavior of the pressure’s
first and second derivatives at the cross-over. Therefore, we conclude that negative values of the surface
tension coefficient at supercritical temperatures are also necessary for ordinary liquids although up to now
this question has not been investigated.

The existence of negative values of the surface tension coefficient in Eq. (18.5) leads to entirely new
result for the GSMM compared to that one of the SMM for 7 > 2. Thus, for 7 > 2 the SMM predicts
the existence of the 1-st order PT up to infinite values of 7' [18, 24, 25]. Clearly, such a result does not
correspond to the experimental findings and is usually understood as a pitfall of this model. However, the
negative values of ¢ in Eq. (18.5) lead to a different result in the GSMM. Using the technique developed
in [19, 29] it is easy to show that in this case there is a cross-over for 7' > T and, hence, for 7 > 2 the
GSMM has a critical point at T = T.

18.3 The Laplace-Fourier Transformation Technique

To evaluate the grand canonical partition (GCP) of the GSMM for finite volumes first we define the canon-
ical partition function (CPF) of nuclear fragments. The latter has the following form:

A e
ZEV,T) =Y {H WIC(T)]F(AZk kng) - (18.6)

|
N
{nk} “k=1 k

In Eq. (18.6) the nuclear fragments are treated as point-like objects. However, these fragments have non-
zero proper volumes and they should not overlap in the coordinate space. In the excluded volume (van der
Waals) approximation this is achieved by substituting the total volume V' in Eq. (18.6) by the free (available)
volume Vy =V — b3, kny, where b is eigen volume of nucleon. Therefore, the corrected CPF becomes:
Zs(V,T) = Z:{(V — bA,T).

The calculation of Z 4 (V, T) is difficult due to the constraint ) _, knj = A. This difficulty can be partly
avoided by evaluating the GCP function:

ZWV.T.p) = Y exp (%) Zu(V,T) O(V — bA) (18.7)
A=0

where 1 denotes a chemical potential. Nevertheless, the calculation of Z is still rather difficult. The sum-
mation over {ny} sets in Z4 cannot be performed analytically because of additional A-dependence in the
free volume V and the restriction V; > 0. This problem was resolved [24] by the Laplace transformation

method to the so-called isobaric ensemble [17].
K(V)
To study the PT in finite systems here we consider a more strict constraint »_ k n; = A, where the

k
size of the largest fragment K (V) = aV//b cannot exceed the total volume of the system (the parameter
a < 1 is introduced for convenience). The case K (V) = const considered in [34] is also included in
our treatment. A similar restriction should be also applied to the upper limit of the product in all partitions
ZWV,T), Za(V,T) and Z(V, T, 1) introduced above (how to deal with the real values of K (V), see [11]).
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Then the model with such a constraint, the CGSMM, cannot be solved by the Laplace transform method,
because the volume integrals cannot be evaluated due to a complicated functional V' -dependence. However,
the CGSMM can be solved analytically with the help of the following identity [11]

/Oodg / =9 G(g), (18.)

which is based on the Fourier representation of the Dirac J-function. The representation Eq. (18.8) allows
us to decouple the additional volume dependence and reduce it to the exponential one, which can be dealt
with by the usual Laplace transformation in the following sequence of steps

+oo +oo
) > i d : ! ’
Z\T,p) = / av eV Z(V,T,u):/ dv’/dg /ﬁem(‘/ —O-AV
0 0

{ni} | k=1

+o00 +00
0 d . ’ ’ ’ ;
/ TV / de / %e”’(v —OAV/ AV F(EAim) (18.9)
0

K(¢)
After changing the integration variable V' — V' =V —b > k ny, the constraint of ©-function has disap-

k
peared. Then all n; were summed independently leading to the exponential function. Now the integration
over V' in Eq. (18.9) can be straightforwardly done resulting in

ENT, +OZZ i e 18.10
2 /5/2mfm FEN_in)’ (1810

where the function (&, \) is defined as follows

3 K(¢) )
T\ 2 pu—% (p(T,1) = AT)bk—ok?/3
Z o (T) 7 = <";r> [z1 i +;2 T sl

This result generahzes the finite volume solution of the simplified SMM obtained in [11, 10].
As usual, in order to find the GCP by the inverse Laplace transformation, it is necessary to study the
structure of singularities of the isobaric partition Eq. (18.11).

18.4 Isobaric Partition Singularities

The isobaric partition Eq. (18.11) of the CGSMM is, of course, more complicated than its SMM analog
found in thermodynamic limit [24] because for finite volumes the structure of singularities in the CGSMM
is much richer than in the SMM, and they match in the limit V' — oo only. To see this let us first make the
inverse Laplace transform:

X+ico I “+o00 +oo X+ZOO )\ V_ing
/\V ]
Z(V,T = 2z ANT, =
(V. T p) / 2mi ( / / 2m A—in — F(E, X —in)
X—iOC X—1i00

/dg/ -0y M V1 - %]‘1 (18.12)

{An}
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where the contour A-integral is reduced to the sum over the residues of all singular points A = \,, 4 in with
n =1,2,..., since this contour in the complex A-plane obeys the inequality y > max(Re{\,}). Now both
remaining integrations in Eq. (18.12) can be performed, and the GCP becomes

—1
EViT, ) =Y e)‘”V{l — EA ) (18.13)

{An}

i.e. the double integral in Eq. (18.12) simply reduces to the substitution £ — V' in the sum over singularities.
In [11] this remarkable result was formulated as a theorem, which now is generalized to more complicated
forms of the liquid phase pressure.

The simple poles in Eq. (18.12) are defined by the equation

A = F(V, ). (18.14)

In contrast to the usual SMM [24] the singularities A, are (i) volume dependent functions, if K (V') is not
constant, and (ii) they can have a non-zero imaginary part, but in this case there exist pairs of complex
conjugate roots of Eq. (18.14) because the GCP is real.

Introducing the real R,, and imaginary I, parts of A\, = R,, + il,,, we can rewrite Eq. (18.14) as a
system of coupled transcendental equations

(V)
Ro= > k() e "7 cos(L,bk), (18.15)
k=1
K(V)
~ Re(vp) k
Li=— Y $u(T) e sin(I,bk), (18.16)
k=1

where we have introduced the set of the effective chemical potentials v, = v(\,,) with
V()‘) = pl(Ta /U’)b — AT )

and the reduced distributions

510 = (55 ) a1 sl = (T T)

and

3
- 2
or1(T) = <”;7TT> k=7 exp(—o(T) k*/3/T)
for convenience.

Consider the real root (Ry > 0, Iy = 0), first. Similarly to the SMM, for I,, = I, = 0 the real root R
of the GSMM exists for any 7" and p. Comparison of R from Eq. (18.15) with the expression for vapor
pressure of the analytical SMM solution [24] indicates that T' R is a constrained grand canonical pressure of
the mixture of ideal gases with the chemical potential vy. As usual, for finite volumes the total mechanical
pressure [7] differs from T'Ry. Equation (18.16) shows that for I,~o # 0 the inequality cos(I,bk) < 1
cannot simultaneously become an equality for all k-values. Then from Eq. (18.15) one obtains (n > 0)

K(V)
Ry< > di(T) e = R, <Ry, (18.17)
k=1

where the second inequality Eq. (18.17) immediately follows from the first one. In other words, the gas
singularity is always the rightmost one. This fact plays a decisive role in the thermodynamic limit V' — oo.



18.4  Isobaric Partition Singularities 293

1.0 T T T T

K(V) = 10
————— K(V) = 20

0.0 0.2 0.4 0.6 0.8 1.0

Figure 18.1: A graphical solution of Eq. (18.16) for 7" = 10 MeV and 7 = 1.825 for the typical SMM parameterization
of the surface tension coefficient by Eq. (18.1). Note, however, that qualitatively the same picture remains valid for any
parameterization of the surface tension coefficient. The Lh.s. (straight line) and r.h.s. of Eq. (18.16) (all dashed curves)
are shown as the function of dimensionless parameter I; b for the three values of the largest fragment size K (V). The
intersection point at (0; 0) corresponds to a real root of Eq. (18.14). Each tangent point with the straight line generates
two complex roots of Eq. (18.14).

The interpretation of the complex roots A, seems to be less straightforward and, hence, in this case
we follow the line of arguments suggested in Ref. [11]. According to Eq. (18.13), the GCP is a super-
position of the states of different free energies —\,,V'T'. Strictly speaking, —\,, VT has a meaning of the
change of free energy, but we will use the traditional term for it. For n > 0 the free energies are complex.
Therefore, —\,,~o7 is the density of free energy. The real part of the free energy density, —R,, T, defines
the significance of the state’s contribution to the partition: due to Eq. (18.17) the largest contribution always
comes from the gaseous state and has the lowest value of the real part of free energy density. As usual, the
states which do not correspond to the lowest value of the (real part of) free energy, i. e. —R,,~(7, are ther-
modynamically metastable. For infinite volume they should not contribute unless they are infinitesimally
close to —RyT, but for finite volumes their contribution to the GCP may be important.

As one can see from Eqgs. (18.15) and (18.16), the states of different free energies have different values
of the effective chemical potential v,,, which is not the case for infinite volume [24], where there exists a
single value for the effective chemical potential. Thus, for finite V' the states which contribute to the GCP
Eq. (18.13) are not in a true chemical equilibrium.

The meaning of the imaginary part of the free energy density becomes clear from Eqs. (18.15) and
(18.16): as it is seen from Eq. (18.15) the imaginary part I,,~( effectively changes the number of degrees
of freedom of each k-nucleon fragment (k < K (V')) contribution to the free energy density —R,,~o7.
It is clear, that the change of the effective number of degrees of freedom can occur virtually only and,
if A,>0 state is accompanied by some kind of equilibration process. Both of these statements become
clear, if we recall that the statistical operator in statistical mechanics and the quantum mechanical evolution
operator are related by the Wick rotation [35]. In other words, the inverse temperature can be considered
as an imaginary time. Therefore, depending on the sign, the quantity 1,,bT = 7, ! that appears in the
trigonometric functions of Egs. (18.15) and (18.16) in front of the imaginary time 1/7 can be regarded as
the inverse decay/formation time 7,, of the metastable state which corresponds to the pole A,,~¢ (for more
details see next sections and [11]).

Such an interpretation of 7,, naturally explains the thermodynamic metastability of all states except
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the gaseous one: the metastable states can exist in the system only virtually because of their finite de-
cay/formation time, whereas the gaseous state is stable because it has an infinite decay/formation time.

18.5 No Phase Transition Case

It is instructive to treat the effective chemical potential () as an independent variable instead of y. In
contrast to the infinite V', where the upper limit # < 0 defines the liquid phase singularity of the isobaric
partition and gives the pressure of a liquid phase p; (T, ) = T'Rp|y — o, for finite volumes and finite K (V)
the effective chemical potential can be complex (with either sign for its real part) and its value defines the
number and position of the imaginary roots {\,,~o} in the complex plane. Positive and negative values of
the effective chemical potential for finite systems were considered within the Fisher droplet model [36],
but, to the best of our knowledge, its complex values have been discussed for the first time in [11]. From
the definition of the effective chemical potential /() it is evident that its complex values for finite systems
exist only because of the excluded volume interaction, which is not taken into account in the Fisher droplet
model [28].

As it is seen from Fig. 18.1, the r.h.s. of Eq. (18.16) is the amplitude and frequency modulated sine-like
function of dimensionless parameter I,, b. Therefore, depending on 7" and Re(v) values, there may exist no
complex roots {\,~0}, a finite number of them, or an infinite number of them. In Fig. 18.1 we showed a
special case which corresponds to exactly three roots of Eq. (18.14) for each value of K (V): the real root
(Ip = 0) and two complex conjugate roots (£1/;). Since the r.h.s. of Eq. (18.16) is monotonously increasing
function of Re(v), it is possible to map the 7' — Re(v) plane into regions of a fixed number of roots of
Eq. (18.14). For fixed T-value each curve in Fig. 18.2 divides the 7' — Re(v) plane into three parts: for
Re(v)-values below the curve Re(r4 (T)) there is only one real root (gaseous phase), for points on the curve
Re(v) = Re(v1(T)) there exist three roots, and above the curve Re(v(T)) there are five or more roots
of Eq. (18.14). Although Fig. 18.2 corresponds to the usual SMM parameterization of the surface tension
coefficient, the picture is qualitatively the same for general parameterization of ¢ whereas its modifications
are discussed below.

For constant values of K (V) = K the number of terms in the r.h.s. of Eq. (18.16) does not depend
on the volume and, consequently, in thermodynamic limit V' — oo only the rightmost simple pole in the
complex A-plane survives out of a finite number of simple poles. According to the inequality Eq. (18.17),
the real root \q is the rightmost singularity of isobaric partition Eq. (18.10). However, there is a possibility
that the real parts of other roots A\~ become infinitesimally close to Ry, when there is an infinite number
of terms which contribute to the GCP Eq. (18.13).

Let us show now that even for an infinite number of simple poles in Eq. (18.13) only the real root
Ao survives in the limit V' — oo. For this purpose consider the limit Re(r,) > T. In this limit the
distance between the imaginary parts of the nearest roots remains finite even for infinite volume. Indeed,
for Re(ry) > T the leading contribution to the r.h.s. of Eq. (18.16) corresponds to the harmonic with
k = K, and, consequently, an exponentially large amplitude of this term can be only compensated by a
vanishing value of sin (I,, bK), i.e. I, bK = wn + §, with |§,| < 7 (hereafter we will analyze only
the branch I,, > 0), and, therefore, the corresponding decay/formation time 7,, ~ K [7mT]*1 is volume
independent.

Keeping the leading term on the r.h.s. of Eq. (18.16) and solving for ¢,,, one finds

Tn+ o,
I, ~ ——, 18.1
bE () (18.18)
_1\n+1 e(va
5, Me—il‘%”‘, (18.19)
Kb ¢ (T)
~ Re(vn) K
Ry, ~ (=1)"¢p(T) e, (18.20)

where in the last step we used Eq. (18.15) and condition |d,,| < 7. Since for V' — oo all negative values of
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Figure 18.2: Each curve separates the T — Re(vn) region of one real root of Eq. (18.14) (below the curve), three
complex roots (at the curve) and five and more roots (above the curve) for three values of K (V') and the same parameters
as in Fig. 18.1.

R,, cannot contribute to the GCP Eq. (18.13), it is sufficient to analyze even values of n which, according
to Eq. (18.20), generate R,, > 0.

Since the inequality Eq. (18.17) can not be broken, a single possibility, when \,,~¢ pole can contribute
to the partition Eq. (18.13), corresponds to the case R,, — Ro — 07 for some finite n. Assuming this, we
find Re(v(A,)) — Re(v(Ag)) for the same value of p.

Substituting these results into equation Eq. (18.15), one gets

K ~
R, ~ ox(T) e
k=1

Re(v(Ag)) k
T

mnk

— Ro. 18.21
os { e } < Ry ( )
The inequality Eq. (18.21) follows from the equation for Ry and the fact that, even for equal leading terms

in the sums above (with £ = K and even n), the difference between Ry and R,, is large due to the next to
leading term £ = K — 1, which is proportional to

Re(v(Xg)) (K—1)
T

e >1.

Thus, we arrive at a contradiction with our assumption Ry — R,, — 07, and, consequently, it cannot be true.
Therefore, for large volumes the real root Ay always gives the main contribution to the GCP Eq. (18.13), and
this is the only root that survives in the limit ' — oo. Thus, we showed that the model with the fixed size
of the largest fragment has no phase transition because there is a single singularity of the isobaric partition
Eq. (18.10), which exists in thermodynamic limit. However, for the finite systems we can also define the
analog of the metastable mixed phase which corresponds to a finite number of complex conjugate solutions
An>o. Clearly, in the thermodynamic limit the contribution of these metastable states into all physical
quantities disappears. The equation Re(r) = Re(v1(T)) defines the boundary between the finite volume
analogs of the gaseous and mixed phases in 7' — Re(v) and T' — p planes.

18.6 Finite Volume Analogs of Phases

If K (V') monotonically grows with the volume, the situation is different. In this case for a positive value of
Re(v) > T the leading exponent in the r.h.s. of Eq. (18.16) also corresponds to a largest fragment, i.e. to
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k = K(V). Therefore, we can apply the same arguments which were used above for the case K (V) = K =

const and derive similarly Egs. (18.18)—(18.20) for I,, and R,,. From the relation [,, ~ PRV it follows
that, when V increases, the number of simple poles in Eq. (18.12) also increases and the imaginary part of
the closest to the real A-axis poles becomes very small, i.e I,, — 0 for n < K(V'), and, consequently, the
associated decay/formation time 7, ~ K (V)[mnT]~! grows with the volume of the system. Due to the fact
that I,, — 0, the inequality Eq. (18.21) cannot be established for the poles with n <« K (V). Therefore, in
contrast to the previous case, for large K (V) the simple poles with n < K (V') will be infinitesimally close
to the real axis of the complex A-plane.

In this case from Eq. (18.20) one obtains

TR, =~ p(T,p)—

T ln‘ R, ’
K(WV)b | ¢k (T)
ol 1n|(2—”T)%Rn\+Tan(V)

p(T,p) — RGER T m KO (18.22)

Q

for Re(v) > T and K (V) > 1. Thus, from Eq. (18.22) one can clearly see that for an infinite volume
an infinite number of simple poles moves toward the real A-axis to the vicinity of liquid phase singularity
A1 = pi(T, ) /T of the isobaric partition [24] and generates an essential singularity of function F(V, p;/T)
in Eq. (18.11) irrespective to the sign of the liquid phase pressure p;(T, ). As we showed above, the states
with Re(v) > T become stable because they acquire infinitely large decay/formation time 7, in the limit
V' — oo. Therefore, these states should be identified as a liquid phase for finite volumes as well. Such a
conclusion can be easily understood, if we recall that the partial pressure T'R,, of Eq. (18.22) corresponds to
a single fragment of the largest possible size. Moreover, as one can see from the leading terms on the r.h.s.
of Eq. (18.22) the partial pressure T'R,, contains both the liquid phase and the surface contributions for a
spherical fragment of the mean radius [K (V)b]%. In fact, the above results remain valid under a weaker
condition Re(v)K(V) > T since such an inequality allows one to establish the approximation Eq. (18.20).

Now it is clear that each curve in Fig. 18.2 is the finite volume analog of the phase boundary T' — v
for a given value of K (V'): below the phase boundary there exists a gaseous phase, but at and above each
curve there are states which can be identified with a finite volume analog of the mixed phase, and, finally,
if Re(v)/T — oo there exists a liquid phase. Again as in the previous section the equation Re(v) =
Re(v1(T)) defines the boundary between the finite volume analogs of the gaseous and mixed phases in
T —Re(v) and T — p planes. Clearly, for finite V' the solution of this equation (7', V') depends on 7" and
V.

Although the calculations depicted in Fig. 18.2 were made for o(7") > 0 and for finite values of the
effective chemical potential Re(v) the shown results can be qualitatively explained using Eq. (18.22) in the
limit Re(v)K(V)/T — oo. Indeed, from Eq. (18.22) one finds

o In|(22)? R,|+7In K (V)

RTITE K() |

%
4
~

(18.23)

from which one obtains Re(,,) > 0 for finite K (V') values (compare to Fig. 18.2), if | ( %)% R, >1
and 0 > 0. If, however, the surface tension coefficient gets negative, i.e. o < 0 for T' > T, then for
sufficiently large values of K (V') one can find that Re(v,,) < 0, i.e. in this case the finite volume analog
of phase boundary can demonstrate another behavior than that one shown in Fig. 18.2. For T' = T, the
surface tension coefficient vanishes and from Eq. (18.23) we get

. (zw )3pl<TC,u>

mT, T,

~ TC

Relvn)] .~ B(7)

+rlnK(V)|, (18.24)

where in the last step of derivation we replaced R,, by the leading term from the r.h.s. of Eq. (18.22). This
result shows that (i) at 7' = T, the deviation of the partial pressure T'R,, from the liquid phase pressure
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decreases faster as function of K (V') than for other temperatures, but at the same time (ii) for large K (V)
this deviation still decreases slower than the imaginary part I,,. For a quantitative example let us choose u
in such a way that the first term on the r.h.s. of Eq. (18.24) disappears, i.e. for

T.t
Re(yn)’T:TCN K InK(V).
Then for 7 = 1.825 one finds Re(v, ‘T T
K(V) = 20,Re(v)|._;, = 3.72 MeV for K(V) = 30, and Re(v,,

From Fig. 18.2 one can see that, although our estimate of Re(v,

~ 7.56 MeV for K (V) = 10, Re(vy)|,_, ~ 4.92 MeV for

)| _g,~ 1.5 MeV for K (V) = 100.
|T 7, for K (V) = 10 is about 2.5 MeV
below its value found numerically, the corresponding estimates for K (V) = 20 and K (V) = 30 obtained
from Eq. (18.24) are in a very good agreement with the results of the numerical evaluation.

When there is no phase transition, i.e. K (V) = K = const, the structure of simple poles is similar,
but, first, the line which separates the gaseous states from the metastable states does not change with the
system volume, and, second, as shown above, the metastable states will never become stable. Therefore,
a systematic study of the volume dependence of free energy (or pressure for very large V') along with the
formation and decay times may be of a crucial importance for experimental studies of the nuclear liquid gas
phase transition.

The above results demonstrate that, in contrast to Hill’s expectations [7], the finite volume analog of the
mixed phase does not consist just of two pure phases. The mixed phase for finite volumes consists of a stable
gaseous phase and the set of metastable states which have different values of free energy. Moreover, the
difference between the free energies of these states is not the surface-like, as Hill assumed in his treatment
[7], but the volume-like as we have seen. Furthermore, according to Egs. (18.15) and (18.16), each of
these states consists of the same fragments, but with different weights. As was shown above for the case
Re(v) > T, some fragments that belong to the states, in which the largest fragment is dominant, may,
in principle, have negative weights (effective number of degrees of freedom) in the expression for R,~¢
Eq. (18.15). This can be understood easily because higher concentrations of large fragments can be achieved
at the expense of the smaller fragments and is reflected in the corresponding change of the real part of
the free energy —R,,~oVT. Therefore, the actual structure of the mixed phase at finite volumes is more
complicated than was expected in earlier works.

Here it is necessary to add a few remarks about the description of the deconfinement PT on the basis
of statistical models [19, 20, 21, 29] that were solved recently in thermodynamic limit. The finite volume
solution of the models [19, 20, 21, 29] can be straightforwardly found using the LFT developed in [10,
11]. Recently, however, the importance of finite width of heavy/large quark gluon plasma bags was realized
[21, 22, 23]. Both the theoretical estimates [22, 23] and the analysis of the asymptotic Regge trajectories
of non-strange mesons [37] indicate that the width of the quark gluon bag of the volume V' with the mass

M being heavier than My ~ 2.5 GeV is ' = v(T),/VLO (here V >V, = 1 fm®). Since even at T = 0

the value (7" = 0) ~ 400 MeV is large, we conclude that the short life-time t;;¢.(V) = 1/I'(V') of such
bags can, in principle, modify our conclusions about the metastable states \,~q. This is so because in the
SMM and the GSMM the fragments are implicitly assumed to be stable and, hence, their life-time is set to
be infinite while in reality there is the region of stability of nuclear fragments outside of which the nucleus
life-time is extremely short. A similar situation is found with large/heavy quark gluon bags although the
instability of nuclei is due to the Coulomb interaction whereas the short life-time of the bags should be
attributed to such a property of strongly interacting matter as the color confinement [21, 30, 31].

Now it is clear that, if the individual life-time of the largest bag ;7. (V) in the volume V is larger than
the collective decay/formation time of the state \,,~ which for quark gluon bags is 7,, = VomnT nT [10], then
the largest bag can be considered as a stable one during the course of collective decay/formatlon process,
i.e. tiife(V) > Tp. Otherwise the process of collective decay or formation of the state A, cannot ever be
completed because the largest bag ceases its existence much earlier. Note that under such conditions one
can hardly expect an existence of thermal equilibrium in the system of shortly living particles.
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Therefore, the inequality ¢;;7.(V) > 7, sets some constraints on the applicability range of the above
analysis to the short-living bags

Vv 3 T
— —n. 18.25
[vo] = om” (18.29)

This inequality can be used as an estimate for the volume of largest bags in a finite system, if n and 7" are
known. For instance, if v(T') = v(T = 0) = const, then one obtains

V<{ T }i
— —n| .
Vo = (T =0)

Alternatively, Eq. (18.25) can be used to estimate the range of temperatures for given n since V/Vy > 1.
Using the last inequality one can rewrite Eq. (18.25) as n > % Substituting into the last result the
following expression for (7'

AT) = \/2Vo aTT3(T? + TTy +T})
that was predicted in [22], where T ~ 160 MeV is the Hagedorn temperature and a = %7‘(‘2 for SU(3)
color group with two quark flavors, we find n > 1 for " > 500 MeV and n > 2 for T > 1120 MeV. These
estimates show that at LHC energies we can expect an existence of metastable states which are described
within the developed approach.

18.7 Conclusions

In this work we generalized the SMM to GSMM and included into it the nuclear liquid phase pressure of
the most general form. This allowed us to get rid of the absolute incompressibility of the nuclear liquid.
Also in this model we introduced very general form of the surface tension coefficient which enabled us to
repair another pitfall of the simplified SMM related to the absence of critical endpoint in this model for
7 > 2. The LFT method was applied to the constrained GSMM and this model was solved analytically for
finite volumes.

It is shown that for finite volumes the GCP function can be identically rewritten in terms of the simple
poles of the isobaric partition Eq. (18.10). The real pole A exists always and the quantity 7'\ is the CGC
pressure of the gaseous phase. The complex roots A, appear as pairs of complex conjugate solutions
of Eq. (18.14). As we discussed, their most straightforward interpretation is as follows: —TRe(Ans0)
has a meaning of the free energy density, whereas bTTm(A,~¢), depending on sign, gives the inverse
decay/formation time of such a state. The gaseous state is always stable because its decay/formation time
is infinite and because its free energy is minimal. The complex poles describe the metastable states for
Re(A,>0) > 0 and mechanically unstable states for Re(A,~0) < 0.

We studied the volume dependence of the simple poles and found a dramatic difference in their behavior
in case with PT and without it. For the former one the found representation allows one to define the finite
volume analogs of phases unambiguously and to establish the finite volume analog of the T' — p phase
diagram (see Fig. 18.2). At finite volumes the gaseous phase exists, if there is a single simple pole, the
mixed phase corresponds to three and more simple poles, whereas the liquid is represented by an infinite
amount of simple poles at highest possible particle density (or p# — 00).

As we showed, for given T and p the states of the mixed phase which have different Re(\,,) are not in
a true chemical equilibrium for finite volumes. This feature cannot be obtained within the Fisher droplet
model due to lack of the hard core repulsion between fragments. This fact also demonstrates clearly that,
in contrast to Hill’s expectations [7], the mixed phase is not just a composition of two states which are the
pure phases. As we showed, the mixed phase is a superposition of three and more collective states, and each
of them is characterized by its own value of \,,. Because of that the difference between the free energies of
these states is not the surface-like, as Hill argued [7], but the volume-like.
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A detailed analysis of the isobaric partition singularities in the T — Re(v) plane allowed us to define
the finite volume analogs of phases and study the behavior of these singularities in the limit V' — oo. Such
an analysis opens a possibility to rigorously study the nuclear liquid-gas PT and the deconfinement PT
directly from the finite volume partition. This may help to extract the phase diagram of strongly interacting
matter from the experiments on finite systems (nuclei) with more confidence. The conditions of the model
applicability to the description of the short-living quark gluon plasma bags are also discussed.
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When a man in the beginning of his life is ignorant of everything, he has no
scruples, finds no obstacles, no inhibitions. But after a while he starts to learn, and
becomes timid, cautious, and begins to feel something choking in his mind, which
prevents him from going ahead as he used to before he had any learning. Learning
is needed, but the point is not to become its slave. You must be its master, so that
you can use it when you want it.

Yagyu Munemori (1571-1646) (as interpreted by D. T. Suzuki)

Abstract

In low-density nuclear matter which is relevant to the crust region of neutron stars and collapsing stage of supernovae,
non-uniform structures called “nuclear pasta” are expected. So far, most works on nuclear pasta have used the Wigner-
Seitz cell approximation with ansatz about the geometrical structures like droplet, rod, slab and so on. We perform
fully three-dimensional calculation of non-uniform nuclear matter for some cases with fixed proton ratios and in beta-
equilibrium based on the relativistic mean-field model and the Thomas-Fermi approximation. In our calculation typical
pasta structures are observed. However, there appears some difference in the density region of each pasta structure.

19.1 Introduction

In 1934, W. Baade and F. Zwicky proposed the existence of neutron stars only one year after the discovery
of neutron. Estimating the binding energy of neutron stars, they predicted that neutron stars are made by
supernova explosions. Neutron star had been an imaginary object for 30 years, until pulsars were discovered
by J. Belle and A. Hewish in 1967. Neutron star has a radius of about 10 km and the mass about 1.4 times
of the sun, and consists of four parts [1]. The region around 0.3km from outside is called “outer crust”,
where Fe nuclei are expected to form a Coulomb lattice. Around 0.3 — 1km is called “inner crust” with
a density about 0.3-0.5p9. There are neutron-rich nuclei in lattice and dripped neutrons in a superfluid
state. Two central regions with higher density are called “outer core” and “inner core”, where speculated
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are proton super-conductivity, neutron super-fluidity [2], meson condensations [3], hyperon mixture [4], or
quark states [5, 6].

The transition of matter composition with the change of density inside neutron stars causes a question:
does it change continuously or suddenly? A sudden change of matter property is generally accompanied by
a first-order phase transition which causes an appearance of the mixed phase.

Ravenhall et al. [7] suggested the existence of non-uniform structures of nuclear matter, i.e., the struc-
tured mixed phase. They suggested five types of structures as droplet, rod, slab, tube, and bubble. Due to
its geometrical shapes which depend on the density, we call it “nuclear pasta” like spaghetti and lasagna
etc [7, 8]. Many workers have suggested the existence of pasta structures in low-density nuclear matter,
relevant to the crust region of neutron stars and the collapsing stage of supernovae. The existence of the
pasta structures at the crust of neutron stars may not influence on the bulk property and structure of neutron
stars. However, it should be important for the mechanism of glitch, the cooling process of neutron stars,
and the thermal and mechanical properties of supernova matter.

The pasta structures presented by Ravenhall have geometrical symmetries. So we can treat the system
with the Wigner-Seitz (WS) cell approximation. Because of the convenience, the WS cell approximation
has been very often used. But there may be some shortcomings. First, the existence of some kinds of
structures other than the typical pasta structures were suggested. For example, in compressive process of
matter, two droplets connect with each other and form dumbbell-like pieces [9]. Other examples are double
diamond [10, 11] and gyroid [11] shapes of matter suggested by using compressible liquid-drop model.
These shapes cannot exist as a ground state at zero temperature, so they might exist in supernova matter at
finite temperatures. Such structures are impossible to be described by the WS approximation. It is worth
trying to calculate without any approximation whether or not these structures exist as a ground state or an
excited state.

19.2 Method
19.2.1 Relativistic Mean Field Theory

There are several approaches for studying pasta structures in the literature, as liquid-drop model [7, 11],
Thomas-Fermi model [12, 13], Hartree-Fock [14], quantum molecular dynamics (QMD) [15, 9], relativistic
mean field model (RMF) [16, 17]. In the studies using liquid-drop model and RMF model, always used was
the Wigner-Seitz (WS) cell approximation, where only the typical pasta structures are considered. QMD
calculation does not assume any specific structure of baryons. But uniform electron distribution, though it
should be almost uniform, is assumed. The Thomas-Fermi calculation in Ref. [12] and HF calculation [14]
used the periodic boundary condition and did not assume any geometrical symmetry in structure. However,
the size of the periodic cell was not large enough for quantitative discussion.

In this paper, we use the Thomas-Fermi approximation for baryons with interaction by the RMF model.
This model is not only simple for numerical calculation but also quantitatively reliable for the properties of
finite nuclei and the saturation property of matter.

We start from the simple Lorentz-scalar Lagrangian with nucleons, electrons and o, w, p-mesons as
follows,

—. N 1+
L = 9|i*0, —my — gunY'wu — gonY'T-R, — € 37“14“ P
1 1 1 L1 1 L, 1
+ 5(8#0)2 — 5m§02 —U(o) — waw“ + imiwuw“ - ZRWRM + imiR#R"
1 Iy [rA it
ZFWFW + Ye[in' 0y — me + ey Aule (19.1)

where the effective mass is written as my = my — gon0, and the potential energy of sigma meson

1 1
Ulo) = gme(QUU)?’ - 10(900)4
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From the variational principle for this Lagrangian, we get equations of motion for nucleons, o, w, p-mesons
and the Coulomb potential as follows:

[W‘@u —my — gunV'wy — gon TRy — Pk J;T?’ "AL Y =0, (19.2)
9,0t — (z/;ggw —m2o — ‘fg) =0, (19.3)
-0 W' — (—ngizj'y”w + miw”) =0, (19.4)
OuR"™ +m>R" = gonTY Y (19.5)
VAo = € (Y1 (1 +73)/2¢ — Perothe) = €pen - (19.6)

By the mean-field approximation for meson fields and the static approximation for electric field, we
have

<O’> =0, (w") = 5#’OWQ s <Rf;> = 5#’05[1,3]‘1)0 s V= <A0> .

The bracket (...) represents the expectation value in the ground-state of nuclear matter, and we assume
the space and time-reversal symmetries for this state. w and p mesons cannot have finite value in space
components. Therefore we finally get the equations for mesons as follow

du -
~Vio+mio = ———+ gon(VV) (19.7)
—V2wo +m2wo = gun (pp + pn) (19.8)
*VQRO + m%RO = gpN(pp - pn) (19.9)

By the Thomas-Fermi approximation at zero temperature, momentum distributions of nucleons have step-
functional forms and plane-wave solutions for Dirac equation. Scalar density and density of nucleons

A
Ps = Z'&z(m)lbz(x) 5 P = sz z
i=1
are written using v; (i = 1,2,..., A) as
ke @3k M ko d3k 2k
= 2 T(k, =t 19.10
P /(; 27T o 13 E* ZU S 0 3 37T2 ) ( )
ke @3k M ke d% M*
s = 2 —_— u(k, s) 4/ , (19.11)
g /0 (2r)° B Z ( o (2m)?° Ef
and the electron density is given as p. = — [ d3x( {(Yevote) < 0. The energy density of nuclear matter is
obtained by the energy-momentum tensor and putting (u, v) = (0,0)
. " 1+
Towe = (¥ [—za-V + pmy + gunwo + gonRo + e . V] V)
1 2, 1 9
+§(VU) T gMe U (o)
1 1 1 1 1
fi(wo)2 - §miw§ - 5(VRO)2 — 5mf,RO - 5(VV)2

+H(! [—ice V + Bme — eV]1he) - (19.12)



304

30

19 Three-dimensional Calculation of Inhomogeneous Structure in Low-Density Nuclear Matter

20

E/N - m [MeV]

-20

Baryon Pressure [MeV/fm3]
E-Y

-2
0.00 0.04 0.08 0.10 0.12 0.16 0.00 0.04 008 0.12 0.16 0.20
Baryon Density [fm-3] Baryon Density [fm-3]
(@) (b)

Figure 19.1: (a) Binding energy and (b) pressure without the contribution of electrons. Red line corresponds to the case
of proton ratio Y;,, = 0.5 and green, blue, purple, sky blue and yellow correspond to 0.4, 0.3, 0.2, 0.1 and O, respectively.

Therefore, we get the total energy in the form

2 Z \/ K2+ mid

E:

n,peF

Jr/d‘{sx

—|—/d3x
+/d3x

} (Vo)
B
12

4 %mioz +U (0)}

1 1 1
(Vwo)? + =m2w? + 5 (VRo) + miR%}

2 2

—% (VV)2] +E, (19.13)

()
/d% [(Qi)l% /0 C ARk /B m? - eV(—pe)]

N [ S Sy IS (19.14)
T 472 = VPe He = Rp + . .
Table 19.1: Parameter set.
JoN JoN JpN b c my (MeV) | my, (MeV) | m, (MeV)
6.3935 | 8.7207 | 4.2696 | 0.008659 | 0.002421 400 783 769

We use the same parameter set of Ref. [16], which reproduces the saturation property of nuclear matter
(Fig. 19.1), and the binding energies and the proton mixing ratios of finite nuclei. We list the parameter set

in Table 19.1.

19.2.2 Numerical Calculation

To simulate infinite matter, we employ a periodic boundary condition to the calculation cell with a cubic
shape. Desirable cell size is large as possible. We divide the cell into grid points. The density distributions
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and the meson-field profiles are represented by their local values on the grid points. Given are the average
densities of protons, neutrons and electrons, but density distributions are randomly provided. The suitable
density distributions and fields are searched for.

The meson fields and the Coulomb potential are obtained by solving the equations of motion Eqs. (19.3)-
(19.6). To obtain the density distributions of nucleons and electrons we introduce local chemical potentials.
The equilibrium state is determined so that the chemical potentials are independent of the position. An
exception is the region with a particle density equals to zero, where the chemical potential of that particle
becomes higher.

pp = \/(37T2pp (1)* + (m% (1) + gunwo (r) + gonRo (r) = V (r) (19.15)
fn = \/(3772% (M) + (my (1) + gunwo (1) — gonRo (7) (19.16)
pe = (372, +V(r) . (19.17)

Starting from given density distributions, we repeat the following procedures to attain uniformity of chem-
ical potentials.

1. Calculate the chemical potentials on all of the grid points.

2. Compare chemical potentials on the neighbor six grid points.
3. If the chemical potential of the point under consideration

is larger than that of another, give some part of the density to
the other grid point.

19.2.3 Coulomb Energy

In the Coulomb and electron energies Eqgs. (19.14), we consider the energy only within the calculating cell
without interaction with the neighbors. Therefore we do not include the Coulomb energy of the higher
order, although we solve the Poisson equation completely. The dipole interaction, which gives the largest
contribution among the higher order interactions, comes up to 5% of the Coulomb energy. So we subtract
the dipole moment of the electric field by carrying out a translation of the coordinate so that the dipole
moment of charge density in the cell diminishes.

19.3 Results

We calculate three-dimensional structures of low-density nuclear matter at zero temperature and obtain
the energy or pressure as function of density, i.e. the equation of state (EOS). In this report, let us first
demonstrate the cases with the fixed proton mixing ratio, Y, = N,/Np, and then with beta-equilibrium.
Particularly, we set the proton mixing ratio equal to Y, =0.5, 0.3 and 0.1. This choice has been made
because these cases should be the ones of typical nuclear matter, relevant for the supernova core, and for
protoneutron stars.

In some of the previous works which have used the WS cell approximation, nuclear matter might be
enforced to have some typical pasta structures. In reality, however, there might appear some intermediate
shapes in the density regions where structure changes. With the WS cell approximation, the cell size which
gives the minimum energy density has been calculated [16]. To save the computational effort, we make use
of that size of the WS cell for the size of our cell with a periodic boundary condition.

First, we show the result for symmetric nuclear matter with a proton mixing ratio ¥}, = 0.5 in Fig. 19.2.
Panels (a), (b), (¢), (d), (e), and (f) correspond to droplet, rod, slab, tube, bubble and uniform state, respec-
tively. In our calculation, all of the typical pasta structures are seen.

The binding energy, the total pressure and the baryon partial pressure are presented in Fig. 19.3. The
line with colors, dashed line and dots correspond to the results with the WS cell approximation, the case of
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uniform

Figure 19.2: Proton density distribution for symmetric nuclear matter (Y, = 0.5). Red color corresponds to the highest

density 0.08 fm ™2, and blue corresponds to 0 fm™2.

uniform matter, and our results by the three-dimensional calculation, respectively. The density region with
numbers 1,2, ..., 6 separated with vertical dashed lines indicate that the structures in Fig. 19.2 (a), (b), .. .,
(f) appear. Note that the density range for each pasta structure is slightly different from the previous study

with the WS cell approximation.
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Figure 19.3: EOS of matter with Y, = 0.5. (a) Energy per nucleon obtained by the present calculation (colored circles)
compared with the results of Ref. [16]. (b) Total pressure and (c) baryon partial pressure. Black dotted lines in (a), (b)

and (c) show the cases of uniform matter.
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Next, we show the result for proton mixing ratio Y, = 0.3. in Fig. 19.5. The cell size is set to be the
same as in Ref. [16]. The difference between two results is that the bubble structure does not appear in
the present calculation. Comparing the cases of Y, = 0.5 and 0.3, the upper limit of the density where

S

droplet rod slab tube uniform

Figure 19.4: Same as Fig. 19.2 for Y, = 0.3. But the density range from blue to red is 0 to 0.075 fm 3.
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Figure 19.5: Same as Fig. 19.3 for Y, = 0.3.

non-uniform structures appear is different.

In the case of symmetric nuclear matter, the density region of non-uniform matter roughly corresponds
to the spinodal region, where (dP/dpg) < 0, while the non-uniform region is slightly wider than the
spinodal region for Y, = 0.3. This may be because the symmetric nuclear matter behaves congruently
(phase transition in a single chemical component), while the liquid-gas mixed phase in matter with Y,, = 0.3
is non-congruent and the values of Y, in two phases are generally different. Therefore the instability of
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droplet rod slab

Figure 19.6: Same as Fig. 19.2 for Y,, = 0.1. The density range from blue to red is 0 to 0.05 fm >,

uniform matter is determined not only by the compressibility of uniform matter but also by the chemical
composition of the mixed phase to be formed. In Fig. 19.7, we show the baryon density dependence of
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