On external and internal structure of black holes in modified gravity

Alexei A. Starobinsky

Landau Institute for Theoretical Physics RAS, Moscow-Chernogolovka, Russia and Joint Institute of Nuclear Research, Dubna, Russia

Round Table Italia-Russia@Dubna "Black Holes in Mathematics and Physics" Dubna, 17.12.2011

Russian-Italian collaboration

Modified gravity

Ghostless modified gravity

Black hole structure in ghostless modified gravity

Black hole interior in a hypothetical UV-regular gravity

Conclusions

Ongoing collaboration with Italian colleagues

I. Investigation of early stages of inflation using non-perturbative approaches (e.g. stochastic inflation). Bologna University and INFN

F. Finelli, G. Marozzi, A.A. Starobinsky, G.P. Vacca,

G. Venturi, Stochastic growth of quantum fluctuations during inflation, arXiv:1102.0216.

II. Search for hidden features in CMB fluctuations.
Bologna University and INFN
F. Finelli, A. Gruppiso, F. Paci, A.A. Starobinsky, Searching for hidden mirror symmetries in CMB fluctuations from WMAP 7 year maps, arXiv:1111.5362.

Two different axes are found for which the CMB intensity pattern is anomalously symmetric (or anti-symmetric) with respect to reflection in planes orthogonal to them at the 99.86 (99.99)% confidence level. The directions of these axes are close to that of the CMB kinematic dipole and nearly orthogonal to the ecliptic plane, respectively.

III. Inflation with scalar fields non-minimally coupled to gravity, including the Higgs inflation.
 Bologna University and INFN – ongoing project with A.Yu. Kamenshchik et al.

Is the recently announced remaining range for the Higgs boson mass $m_H \sim (126 \pm \text{few})$ Gev compatible with the extreme hypothesis that the Higgs boson is the inflaton, too, and there is no new particles beyond the Standard Model? Still possible: while the lower bound from the one-loop result was $m_H \gtrsim 135$ Gev, the two-loop calculations of Bezrukov & Shaposhnikov and de Simone et al. (2009) lowered it to $m_H \gtrsim 126$ Gev. However, if m_H is below 130 Gev, then the prediction for the slope of the power spectrum of matter density perturbations n_s becomes very sensitive to m_H and m_t and may become too small (at present, $n_s > 0.948$ at the 2σ level from observations).

IV. Cosmology and compact objects with the generalized Chaplygin gas model of dark energy.
Bologna University, Universita dell'Insubria, Como and INFN, Milano – ongoing project with V. Gorini, A.Yu. Kamenshchik, U. Moschella et al.

Modified gravity

A local, metric, macroscopic theory of gravity, possibly with additional scalar fields not directly interacting with non-gravitational matter, used in the non-perturbative classical or semi-classical regime (i.e. all possible solutions are considered) and without ghosts.

An example: scalar-tensor gravity and its particular case: f(R) gravity.

Why modified gravity?

Why going beyond the pure Einstein gravity (GR) interacting with dust (baryons + CDM) and radiation? – Existence of dark energy (DE).

Two cases where DE shows itself:

- 1) inflation in the early Universe primordial DE,
- 2) present accelerated expansion of the Universe present DE.

The whole known part of the history of our Universe in one line, according to the standard cosmological scenario:

? $\longrightarrow DS \Longrightarrow FLRWRD \Longrightarrow FLRWMD \Longrightarrow \overline{DS} \longrightarrow$?

Remarkable qualitative similarity of DS and \overline{DS} makes possible (though not necessary) combined description of both DS stages (both types of DE) using one class of models.

Possible forms of DE

1. Physical DE

New non-gravitational field of matter. DE proper place – in the rhs of gravity equations.

2. Geometrical DE

Modified gravity. DE proper place – in the lhs of gravity equations. Still gravitational field equations can be conventionally written in the Einstein form:

$$\frac{1}{8\pi G} \left(R^{\nu}_{\mu} - \frac{1}{2} \, \delta^{\nu}_{\mu} R \right) = - \left(T^{\nu}_{\mu \, (\text{vis})} + T^{\nu}_{\mu \, (DM)} + T^{\nu}_{\mu \, (DE)} \right) \; ,$$

 $G = G_0 = const$ - the Newton gravitational constant measured in laboratory. In the absence of direct interaction between DM and DE: $T^{\nu}_{\mu(DE);\nu} = 0$.

Generically, DE can be both physical and geometrical, e.g. in the case of a non-minimally coupled scalar field or, more generically, in scalar-tensor gravity. So, there is no alternative "(either) dark energy or modified gravity". f(R) gravity – the simplest form of geometrical DE

$$S=\frac{1}{16\pi G}\int f(R)\sqrt{-g}\,d^4x+S_m$$

$$f(R)=R+F(R),\ \ R\equiv R^{\mu}_{\mu}$$
 .

The effective energy-momentum tensor of DE in f(R) gravity:

$$8\pi G T^{\nu}_{\mu (DE)} = F'(R) R^{\nu}_{\mu} - \frac{1}{2} F(R) \delta^{\nu}_{\mu} + \left(\nabla_{\mu} \nabla^{\nu} - \delta^{\nu}_{\mu} \nabla_{\gamma} \nabla^{\gamma} \right) F'(R) \,.$$

Non-perturbative generalization of GR since it contains an additional scalar degree of freedom (a scalar particle dubbed scalaron).

Examples of ghostless modified gravity

For almost all known models of modified gravity, in particular, for models with the action *S* functionally depending on $R_{\mu\nu}R^{\mu\nu}$, $C_{\mu\nu\rho\sigma}C^{\mu\nu\rho\sigma}$, $R_{,\mu}R^{,\mu}$ etc. (where $C_{\mu\nu\rho\sigma}$ is the Weyl tensor), ghosts appear if the theory is taken in full, in the non-perturbative regime.

Known exceptions (without tachyons in the Minkowski space-time, too):

1. Scalar-tensor gravity with

 $F(\phi) > 0, \ \omega_{BD} > -3/2, \ V''(\phi) \ge 0.$ 2. f(R) gravity with $f'(R) > 0, \ f''(R) > 0.$ 3. f(R, G) gravity with $f_{RR}f_{GG} - f_{RG}^2 = 0,$ where $G = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 4R\mu\nu R^{\mu\nu} + R^2$ is the Gauss-Bonnet invariant. However, it has other problems (a bad dispersion law). For $f_{RR}f_{GG} - f_{RG}^2 \neq 0$, a ghost was found very recently (A. De Felice and T. Tanaka, Progr. Theor. Phys. **124**, 503 (2010)).

Black hole solutions in ghostless modified gravity theories

No new static or stationary stable vacuum solutions apart from the Schwarzschild-Kerr-de Sitter one. In particular, no stable wormholes in ghostless scalar-tensor or f(R) gravity (K. Bronnikov and A.S., 2007). In f(R) gravity, a small scalar curvature perturbation $\delta R \equiv R - R_{dS}$ (where R_{dS} – the scalar curvature of a self-consistent de Sitter solution – is a root of the functional equation $R_{dS}f'(R_{dS}) = 2f(R_{dS})$), around these solutions satisfies the linear equation

$$\nabla_{\mu}\nabla^{\mu}\delta R + m_s^2\delta R = 0, \ m_s^2 = \frac{1}{3}\left(\frac{f'(R_{dS})}{f''(R_{dS})} - R_{dS}\right).$$

So, it decays like a massive scalar field around a black hole (BH) if $m_s^2 > 0$.

Inside BH

Generic spacelike singularity, or a null singularity instead of the Cauchy horizon (no complete agreement between researchers). For the Reissner-Nordstrom BH - a spacelike singularity certainly, if creation of electron-positron pairs is taken into account (I. Novikov and A.S., 1980). For the Kerr case - not clear which kind of singularity is realized. Anyway, no unambiguous continuation of a space-time metric through these singularities - loss of predictability, future evolution depends on an UV completion of gravity. Inside a static BH: the Kantowski-Sachs type metric

 $ds^{2} = d\tau^{2} - a^{2}(\tau)dx^{2} - b^{2}(\tau)\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$

where x is the former t and b is the former r outside the event horizon. Near the spacelike singularity $a(\tau) \propto |\tau|^{-1/3}, \ b(\tau) \propto |\tau|^{2/3}.$

BH interior in a hypothetical UV-regular gravity

Conjectures: in such theory of gravity 1) curvature is bounded somehow; 2) as a result, $a(\tau)$ stops diverging and $b(\tau)$ bounces simultaneously; 3) after that an inflationary stage with some number of e-folds N follows; 4) after the inflationary stage creation of matter and thermalization occurs and classical FRW-like expansion begins. This expansion finally changes to the Kasner vacuum anisotropic behaviour when $b(\tau)$ becomes of the order of τ . Near the singularity, a similar bounce occurs once more and so on up to the future time infinity.

 $a(\tau)$ grows monotonically – no Cauchy horizon. $b(\tau)$ oscillates but $b_{min}(\tau)$ and $b_{max}(\tau)$ in each cycle grow with the cycle number *n*. Under a weak assumption that $\sum_{m=1}^{n} \sum_{k=1}^{m} N_k$ grows faster than log *n* for $n \to \infty$, $\int d\tau/a(\tau)$ converges for $\tau \to \infty$ – the future event horizon forms.

Conclusions

- No satisfactory alternative to the Schwarzschild-Kerr-de Sitter BH in known local metric macroscopic modified gravity theories without ghosts.
- Generic curvature singularity inside these BH.
- For a hypothetical UV-regular modified gravity with no dynamical singularities, an eternally oscillating universe without Cauchy horizons can exist inside the event horizon of a BH under some weak assumptions. Its conformal diagram is similar to that of the Schwarzschild BH but with the spacelike singularity r = 0 replaced by a surface of an infinite proper time with a bounded curvature but an irregular behaviour.