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Black Holes Categories

1. Shining Black Holes
2. Dark Black Holes
3. Gedanken Black Holes
4. etc.





Shining Black Holes
• Characterized by intense radiation emission with different

spectra and different plasma configurations associated with
them.

• An approach, that I prefer, is that of looking for coherent
processes and global, fields and plasma configurations.

• The computational physics approach that has been taken with
increasing frequency lately is that of generating and
investigating plasma turbulent states emerging from the
development of the Magneto Rotational Instability with
relatively short wavelengths.

For the first approach analytic methods have been adopted,
considering the intrinsic limitations that these involve.



Note that

• Issues to be dealt with are numerous.  Probably the most important
is that of considering non-Maxwellian distributions in momentum
space.  In particular, the effects of these cannot by represented by a
scalar pressure in the relevant total momentum conservation
equations.

• Other issues such as the need or not-need of a “seed” magnetic
field from which the considered configuration may grow will need
special attention.

• General Relativity effects are taken into account through effective
gravitational potentials that are valid at the considered distances
from the black hole.



Overview of Obtained Results
1. Axisymmetric “standard” disk configurations imbedded in a vertical

(“seed”) magnetic field have been shown to be subjected to a spectrum of

modes leading to axisymmetric or to non-axisymmetric spiral

configurations. For this the linearized approximation has been used and

structures with radial scale distances smaller than the height of the disk

have been found.

The driving factors of the relevant modes are the radial gradient of the

rotation frequency                 or the vertical gradient of the plasma

temperature, i.e.                             .
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An important feature of spiral modes is that they are radially localized

unlike axisymmetric modes that are purely oscillatory and not localized  radially.

These spiral modes are expected to be more robust, than axisymmetric modes

having equal growth rates initially.



2. Local axisymmetric stationary configurations are found as non linear solution of a set

of two characteristic equations (the “Master Equation” and the Vertical Equilibrium

Equation).  These can be

• A periodic sequence of plasma rings

• Solitary ring pairs

Pairs of current channels carrying oppositely directed currents are found in correspondence

of these rings.  A model for the emission of jets as sequences of “smoke-rings” is proposed.

3. Locally co-rotating tridimensional structures are found with out seed fields (adopting a

local “rigid-rotor” approximation).



Emerging from a “Standard” Disk Configuration
Imbedded in a (seed) Vertical Field

I.  Axisymmetric Mode Profile

i)  Vertical (“ballooning”)

ii)  Horizontal (oscillatory)



3-D Spiral Modes

i)  Vertical  profile: ballooning like that of axisymmetric modes

ii)  Radial Profile



The effort to identify the plasma configurations that can exist
around collapsed objects goes back a long way…
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In dealing with axisymmetric pulsar magnetospheres we have to take

 
B ! 1

R
!" # e$ + I " ,  z( )e$%& '(

In this case the magnetic force FM  is given by 
 

FM = 1
c
J !B = " 1

4#R2
$%&( )'& + I'I " 'I !'&( ){ }  

 

and has a toroidal component. 

Brief Comments on Pulsar Models

as poloidal currents producing slowing down                         have to be present.

That is,  I  is not a function of       only and is an odd function.  The relevant 

magnetic configuration equation was derived originally in 1971 (published 

in Ap. J., 1973).

!0 =!0 t( )"# $%
!
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Two-dimensional Plasma and
Field Configuration Around Black Holes

General Relativity corrections are neglected at first.  The plasma is rotating 

around a central object with a velocity 

V! = R" R,  z( )  
where  

 " R,  z( ) ! "k R( ) +#" R,  z( )  , 

"k $ GM% R3( )1
2  is the Keplerian frequency for the central object of mass M%  

and whose gravity is prevalent (that is, the plasma self gravity can be neglected) 

and  #" "k <1.  We assume, for simplicity that I = I &( ) .  Then 

FMp == ! 1
4"R2

#$%( ) + I dI
d%

&
'
(

)
*
+
,% ,

as in the case considered earlier of magnetically confined plasmas.
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In the case that we consider, the total momentum conservation equation, that 

includes both the toroidal rotation velocity and the effect of the gravitational field of 

the a central object, is 

!" #2ReR +$%G( ) = !$p + 1
c
J &B      ( I )  

where 

%G = GM'

R2 + z2
,    

 
$%G ! !
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2
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z
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ez
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2 . GM'

R
. #k

2R2 . 

 

Then we have 

B /$p = "R #2 !#k
2( )BR ! z"#k

2Bz 0 0  

 

and if we apply the $&  operator on Eq. (I) we obtain 
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and we call it the “Master Equation”.  
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In order to proceed further we consider a radial interval R ! R0 < R0  around a  

given radius R0 .  Then  

 
" ! "k R0( ) + R ! R0( ) d"k

dR R=R0

+#"  

 

and we comply with the isorotation condition " = " $( )  defining $ z $ 0k  by 

 

R ! R0( ) d"k

dR R=R0

= "0
k
$ z

$ 0k

 

and $ 1 B0  by  

 
2"R#" ! 2"k

0 d"k

dR R=R0

$ 1

B0
= !"D

2 $ 1

B0R0
, 

 
where  "D

2 % !Rd"2 dR2 = 3"k
2  is considered to be the “driving factor” for the 

onset of the magnetic configurations that are analyzed and $ 1 B0R
2
0( )2 <1. 



We note that the vertical momentum conservation equation is, considering the 

expression for FMz  given earlier, 

 

0 = ! "p
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! z#$k
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,
-.

.      (**) 

 

Clearly, we have two equations, (*) and (**), which give & R,  z( )  and p R,  z( )  
for reasonable choices of the density # R,  z( ), the poloidal current function I &( ) , 
and /$ & 1( ) . 
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THE MASTER EQUATION AND COMPOSITE DISK STRUCTURES 
 

The analysis of the disk structures, that can be formed in the vicinity of compact 

objects such as bla ck holes leads to conclude that these are composite structures.  

These are characterized by a “core” of highly ordered magnetic field configurations 

with relatively strong fields and a thermal “envelope” where the magnetic field does 

not play an important role.  In fact, there is an increasing body of experimental 

observations that supports the existence of composite structures around a broad 

variety of objects.   

We observe that for a “conventional” thin disk configuration 

 

z
R
!"
!z
!

!"
!R

  and  
 

!
!z
"

!
!R

. 

 



On the other hand, for the configurations we shall consider 

!
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! #$" . 

In this case  %
2 # !2 !R2 + !2 !z2  and the Master Equation reduces to 
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Bz%
2BR ( BR%

2Bz( ) # 0 , 

that is independent of the toroidal field component. 



where pF  indicates the anisotropic pressure of a fast particle population that may be 

present, pth = pe + pi   and pe  and  pi  are the electron and the ion thermal population 

pressure.  In the theoretical model for the three plasma regimes considered later we 

shall argue that a highly non-thermal distribution may prevent an axisymmetric 

configuration to develop allowing instead the formation of tridimensional spirals 

whose excitation can be associated with gradients of the plasma mean energy.  

In this connection we note that the derivation of the Master Equation is 

compatible with a pressure tensor of the form  

P = pth I + p
Fe!e!  



Ring Sequence Solutions
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Closed and open magnetic surfaces in the core of a composite disk structure.  
Here R! = R " R0( ) #R .  
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Solitary Rings (Thin Structure Ordering) 

 

!2

!z2
!

!2

!R2
R ! R0 < R0

B-field B-field

! !!!



In[22]:= Ρ2 = PlotB2
1

10
+ x^2 1 -

1

10
ExpB

-x^2

2
F, 8x, -5, 5<, AxesLabel ® 8x, Ρ*<, PlotRange ® AllF;

Ψ2 = ContourPlotBx ExpB
-Hx^2 + y^2L

2
F +

1

20
x,

8x, -3, 3<, 8y, -2, 2<, FrameLabel ® 8x, y , , Ρ*<, LabelStyle ® Large,

Contours ® 40, ContourShading ® None, AspectRatio ® 1.5F;

Show@
Ψ2,
Ρ2D

(1.374,1.400)
(-1.374,1.400)

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

2   coppi-2.nb

Printed by Mathematica for Students



25

Local Description

R! = R " R0( ) #R
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3-D Co-rotating Configurations 

 The tridimensional co-rotating configurations (TCR) that we have analyzed are 
localized around  R = R0  and represented by 
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z  (for the configurations analyzed until now). 

In particular, !  is an 
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A specific (important case) is 
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The relevant rotation velocity v!e!  is 
 

v! ="0R       (locally rigid rotor) 
where 

!0 =!k R0( ) = GM"
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Therefore, 
v! = vk R0( ) + R " R0( )#0 . 

 
The corresponding plasma density structures are of the form 
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with, for instance 
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and !  can represent a periodic Sequence of Rings, as a function of  R!  , 
e.g. 
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2 "# . 



3-D Spiral Configurations (Tightly Wound) 

 

Represented for instance by 
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Simplest plasma structures

The simplest configuration from which the modes that we shall
analyze can emerge is a thin currentless disk that is threaded by
a relatively weak vertical magnetic field Bz and where the only
component of the plasma flow velocity is toroidal. In particular,
we assume that the central plasma pressure p0 exceeds the mag-
netic pressure B2/8π The particle density profile for an up-down
symmetric disk is represented by n � n0

(
1 − z2/H2

0

)
near the

equatorial plane at the reference distance R = R0 from the axis
of symmetry. The thickness of the (density) disk, of the order
2H0, is considered to be small relative to R0. Different vertical
temperature profiles, corresponding different heating processes,
are represented near the equatorial plane by different values of
the parameter

ηT ≡ −d ln T
dz2

)
z=0

H2
0 , (1)

where 2T ≡ p/n = Te+Ti and p is the total plasma pressure. The
radial equilibrium equation, to lowest order in the ratio H2

0/R
2
0,

reduces to

Ω2 (R0) =
GM∗

R3
0

≡ Ω2
k (R0) , (2)

where Ω (R) is the rotation frequency, Ωk (R0) is the Keplerian
frequency, M∗ is the mass of the central object and vφ = ΩR
is the toroidal velocity. The relevant vertical equilibrium equa-
tion is

0 = −∂p
∂z
− zΩ2

kρ, (3)

where ρ is the mass density. Then Eq. (2) gives 4T0 (1 + ηT ) =
H2

0Ω
2
kmi for z2/H2

0 � 1, where mi = ρ/n. We shall con-
sider a variety of temperature profiles including the flat pro-
file corresponding to dT/dz2 = 0 over the height of the disk
n = n0 exp

(
−z2/H2

0

)
describes the entire density profile. The

scale distance for the pressure gradient is defined by H2
p ≡

H2
0/ (1 + ηT ) for z2 � H2

0 .
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temperature vertical profile is relatively flat, are examined. In
Sect. 8 the theory of tri-dimensional spiral modes that are local-
ized both in the vertical and the radial direction is given. These
modes co-rotate with the plasma at the radius around which they
are localized. The excitation of modes of this kind in the prox-
imity of a black hole is, in fact, suitable to explain the observed
high frequency quasi periodic oscillations (QPO’s) as proposed
by Coppi & Rebusco (2008a). In Sect. 9 a new class of spiral
quasi-modes that are convective in the radial direction and lo-
calized in the vertical direction are introduced. These modes are
weakly damped and oscillatory in time and can be associated
with the coupling to modes that are linearly unstable. An im-
portant property of the convective modes which are described is
that they can transfer their angular momentum and energy at rel-
atively fast rates in the radial direction. Thus, they may be con-
sidered as possible candidates to provide the plasma “viscosity”
(Pringle 1981) associated with the mass accretion rates inferred
from the luminosities of relevant objects. In Sects. 10 concluding
remarks concerning the results presented in the previous sections
are given.

2. Simplest plasma structures

The simplest configuration from which the modes that we shall
analyze can emerge is a thin currentless disk that is threaded by
a relatively weak vertical magnetic field Bz and where the only
component of the plasma flow velocity is toroidal. In particular,
we assume that the central plasma pressure p0 exceeds the mag-
netic pressure B2/8π The particle density profile for an up-down
symmetric disk is represented by n � n0

(
1 − z2/H2

0

)
near the

equatorial plane at the reference distance R = R0 from the axis
of symmetry. The thickness of the (density) disk, of the order
2H0, is considered to be small relative to R0. Different vertical
temperature profiles, corresponding different heating processes,
are represented near the equatorial plane by different values of
the parameter

ηT ≡ −d ln T
dz2

)
z=0

H2
0 , (1)

where 2T ≡ p/n = Te+Ti and p is the total plasma pressure. The
radial equilibrium equation, to lowest order in the ratio H2

0/R
2
0,

reduces to

Ω2 (R0) =
GM∗

R3
0

≡ Ω2
k (R0) , (2)

where Ω (R) is the rotation frequency, Ωk (R0) is the Keplerian
frequency, M∗ is the mass of the central object and vφ = ΩR
is the toroidal velocity. The relevant vertical equilibrium equa-
tion is

0 = −∂p
∂z
− zΩ2

kρ, (3)

where ρ is the mass density. Then Eq. (2) gives 4T0 (1 + ηT ) =
H2

0Ω
2
kmi for z2/H2

0 � 1, where mi = ρ/n. We shall con-
sider a variety of temperature profiles including the flat pro-
file corresponding to dT/dz2 = 0 over the height of the disk
n = n0 exp

(
−z2/H2

0

)
describes the entire density profile. The

scale distance for the pressure gradient is defined by H2
p ≡

H2
0/ (1 + ηT ) for z2 � H2

0 .

The electric field that is present in the equilibrium configu-
ration we have considered can be identified by referring to the
electron momentum conservation equation

−en

(
E +

1
c

ue × B
)
− ∇pe � 0

that gives

ER = −Ωk (R)
R
c

Bz (4)

and

Ez = − 1
ne
∂pe

∂z
(5)

where pe is the electron pressure, p = pe + pi and pe � pi.
Realistically, Ez ER .

current carrying
stationary plasma axisymmetric disk structures from that ana-
lyzed in this section. In particular, we may mention the configu-
rations involving a sequence of plasma rings identified by Coppi
& Rousseau (2006). We observe also that the modes analyzed in
the next sections may be considered as “seeds” for new station-
ary configurations.

3. Normal mode equations

We consider normal mode perturbations from the indicated ini-
tial state represented by

v̂φ = ˜̃vφ (R − R0, z) exp
(
γ0t − iω0t + imφφ

)
(6)

in an interval |R − R0| around R0, such that |R − R0| � R0, where
γ0 is the mode growth rate, ω0 the frequency, mφ the toroidal
mode number and v̂φ the perturbed toroidal velocity. The basic
linearized equations that describe the departure from the initial
state include

Ê +
1
c

(
û × B + u × B̂

)
= 0, (7)

− 1
c
∂B̂
∂t
= ∇ × Ê, (8)

and the total momentum conservation equation

Am ≡ ρ
(
∂

∂t
û + û · ∇u + u · ∇û

)

+ ∇
(
p̂ +

B̂ · B
4π

)
− 1

4π
B · ∇B̂ + zρ̂Ω2

kez = 0. (9)

Here, we have taken into account that the initial magnetic field
Bz is considered to be varying over scale distances of the order
of R0 and have used standard symbols.

Furthermore, it is reasonable to assume that the collisional
mean free path is short relative to the distance Δz over which the
mode is localized vertically and to the mode radial wavelengths.
Thus, the thermal conductivity can be neglected and the adia-
batic equation of state can be adopted, that is,

∂

∂t
p̂ + u · ∇p̂ + û · ∇p + Γp∇ · û = 0 (10)
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temperature vertical profile is relatively flat, are examined. In
Sect. 8 the theory of tri-dimensional spiral modes that are local-
ized both in the vertical and the radial direction is given. These
modes co-rotate with the plasma at the radius around which they
are localized. The excitation of modes of this kind in the prox-
imity of a black hole is, in fact, suitable to explain the observed
high frequency quasi periodic oscillations (QPO’s) as proposed
by Coppi & Rebusco (2008a). In Sect. 9 a new class of spiral
quasi-modes that are convective in the radial direction and lo-
calized in the vertical direction are introduced. These modes are
weakly damped and oscillatory in time and can be associated
with the coupling to modes that are linearly unstable. An im-
portant property of the convective modes which are described is
that they can transfer their angular momentum and energy at rel-
atively fast rates in the radial direction. Thus, they may be con-
sidered as possible candidates to provide the plasma “viscosity”
(Pringle 1981) associated with the mass accretion rates inferred
from the luminosities of relevant objects. In Sects. 10 concluding
remarks concerning the results presented in the previous sections
are given.

2. Simplest plasma structures

The simplest configuration from which the modes that we shall
analyze can emerge is a thin currentless disk that is threaded by
a relatively weak vertical magnetic field Bz and where the only
component of the plasma flow velocity is toroidal. In particular,
we assume that the central plasma pressure p0 exceeds the mag-
netic pressure B2/8π The particle density profile for an up-down
symmetric disk is represented by n � n0

(
1 − z2/H2

0

)
near the

equatorial plane at the reference distance R = R0 from the axis
of symmetry. The thickness of the (density) disk, of the order
2H0, is considered to be small relative to R0. Different vertical
temperature profiles, corresponding different heating processes,
are represented near the equatorial plane by different values of
the parameter

ηT ≡ −d ln T
dz2

)
z=0

H2
0 , (1)

where 2T ≡ p/n = Te+Ti and p is the total plasma pressure. The
radial equilibrium equation, to lowest order in the ratio H2

0/R
2
0,

reduces to

Ω2 (R0) =
GM∗

R3
0

≡ Ω2
k (R0) , (2)

where Ω (R) is the rotation frequency, Ωk (R0) is the Keplerian
frequency, M∗ is the mass of the central object and vφ = ΩR
is the toroidal velocity. The relevant vertical equilibrium equa-
tion is

0 = −∂p
∂z
− zΩ2

kρ, (3)

where ρ is the mass density. Then Eq. (2) gives 4T0 (1 + ηT ) =
H2

0Ω
2
kmi for z2/H2

0 � 1, where mi = ρ/n. We shall con-
sider a variety of temperature profiles including the flat pro-
file corresponding to dT/dz2 = 0 over the height of the disk
n = n0 exp

(
−z2/H2

0

)
describes the entire density profile. The

scale distance for the pressure gradient is defined by H2
p ≡

H2
0/ (1 + ηT ) for z2 � H2

0 .

The electric field that is present in the equilibrium configu-
ration we have considered can be identified by referring to the
electron momentum conservation equation

−en

(
E +

1
c

ue × B
)
− ∇pe � 0

that gives

ER = −Ωk (R)
R
c

Bz (4)

and

Ez = − 1
ne
∂pe

∂z
(5)

where pe is the electron pressure, p = pe + pi and pe � pi.
Realistically, |Ez| � |ER|.

Finally, we note that there can be different current carrying
stationary plasma axisymmetric disk structures from that ana-
lyzed in this section. In particular, we may mention the configu-
rations involving a sequence of plasma rings identified by Coppi
& Rousseau (2006). We observe also that the modes analyzed in
the next sections may be considered as “seeds” for new station-
ary configurations.

Normal mode equations

We consider normal mode perturbations from the indicated ini-
tial state represented by

v̂φ = ˜̃vφ (R − R0, z) exp
(
γ0t − iω0t + imφφ

)
(6)

in an interval |R − R0| around R0, such that |R − R0| � R0, where
γ0 is the mode growth rate, ω0 the frequency, mφ the toroidal
mode number and v̂φ the perturbed toroidal velocity. The basic
linearized equations that describe the departure from the initial
state include

Ê +
1
c

(
û × B + u × B̂

)
= 0, (7)

− 1
c
∂B̂
∂t
= ∇ × Ê, (8)

and the total momentum conservation equation

Am ≡ ρ
(
∂

∂t
û + û · ∇u + u · ∇û

)

+ ∇
(
p̂ +

B̂ · B
4π

)
− 1

4π
B · ∇B̂ + zρ̂Ω2

kez = 0. (9)

Here, we have taken into account that the initial magnetic field
Bz is considered to be varying over scale distances of the order
of R0 and have used standard symbols.

Furthermore, it is reasonable to assume that the collisional
mean free path is short relative to the distance Δz over which the
mode is localized vertically and to the mode radial wavelengths.
Thus, the thermal conductivity can be neglected and the adia-
batic equation of state can be adopted, that is,

∂

∂t
p̂ + u · ∇p̂ + û · ∇p + Γp∇ · û = 0 (10)
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where Γ = 5/3 is the adiabatic index. Then, given Eq. (6) we
obtain

[
γ0 − iω0 + imφΩk (R)

]
p̂ + v̂z

∂p
∂z
+ Γp∇ · û = 0 (11)

and we choose to consider modes that co-rotate with the plasma
at R = R0.

Therefore, we take

ω0 = mφΩk (R0) + δω0, (12)

where |δω0| � mφΩk (R0) is not linear in mφ, and Eq. (6) reduces
to

v̂φ � ˜̃vφ (R − R0, z) exp{γ0t − iδω0t + imφ[φ −Ωk (R0) t]}. (13)

We define

γt ≡ γ0 + iΩ′k (R − R0) − iδω0, ûp = γtξ̂p (14)

for ûp = γtξ̂p where the subscript p indicates the relevant
poloidal component.
are

p̂ � −ξ̂z dp
dz
− Γp∇ · ξ̂p, (15)

ρ̂ � −ξ̂z dρ
dz
− ρ∇ · ξ̂p, (16)

as

∇ · û � ∂
∂R

(
γtξ̂R

)
+ γt
∂

∂z
ξ̂z + imφ

1
R0

(
−Ω′kR0ξ̂R + γt ξ̂φ

)

� γt

(
∂ξ̂R

∂R
+
∂

∂z
ξ̂z + i

mφ
R0
ξ̂φ

)
,

and we consider
∣∣∣∣mφξ̂φ/R0

∣∣∣∣�
∣∣∣∣∂ξ̂R/∂R

∣∣∣∣.
The perturbed magnetic field components are derived from

the combination of Eqs. (7) and (8) that gives

B̂φ = Bz
∂

∂z
v̂φ +

dΩ
dR

B̂R,

B̂R � Bz
∂

∂z
ξ̂R,

B̂z � Bz

(
∂

∂z
ξ̂z − ∇ · ξ̂p

)
, (17)

Thus, for

v̂φ = −RΩ′ξ̂R + γtξ̂φ, (18)

we have

B̂φ = Bz
∂

∂z
ξ̂φ.

(
17′

)

4. Quasi-isobaric, weakly compressible modes

As we shall see, the considered limit β ≡ 8πp0/B2 > 1 leads to
find that Δ2

z < H2
0 and in this case the modes of interest can be

characterized as “quasi-isobaric” and “weakly compressible” in
the sense that∣∣∣∣∣ p̂p

∣∣∣∣∣ <
∣∣∣∣∣ ρ̂ρ
∣∣∣∣∣ and

∣∣∣∇ · ξ̂p

∣∣∣ <
∣∣∣∣∣∣
∂ξ̂z

∂z

∣∣∣∣∣∣ (19)

implying that

T̂
T
� − ρ̂
ρ

(20)

and

∂ξ̂R
∂R
� −∂ξ̂z
∂z
· (21)

To prove this point we take the z-component of Eq. (9)

ργ2
t ξ̂z + zρ̂Ω2

k = −
∂

∂z
p̂ (22)

and consider the gravitational term zρ̂Ω2
k as important in

Eq. (22), that is

|zρ̂|Ω2
k ∼

∣∣∣∣∣∂ p̂
∂z

∣∣∣∣∣ , (23)

where |∂ p̂/∂z| ∼ | p̂/Δz|. Then Δ2
z |ρ̂|Ω2

k ∼ | p̂| and since Ω2
k ∼

(p/ρ) /H2
0 the ordering (23) implies that

| p̂|
p
∼ |ρ̂|
ρ

Δ2
z

H2
0

· (24)

Here we limit our considerations to modes for which Δ2
z /H

2
0 <

1, as we shall show that Δ2
z/H

2
0 ∼ 1/β1/2 and we restrict our

analysis to β > 1 for the sake of simplicity. Then we have

∇ · ξ̂p � −
3
5
ξ̂z

1
p

dp
dz
= −3

5
ξ̂z

(
1
ρ

dρ
dz
+

1
T

dT
dz

)
(25)

� 6
5

z

H2
0

(1 + ηT ) ξ̂z.

implying that

∣∣∣∇ · ξ̂p

∣∣∣ ∼ ξ̂z Δz

H2
0

and that Eq. (21) is valid for Δ2
z < H2

0 . Moreover

ρ̂

ρ
� z

H2
0

ξ̂zC0, (26)

for

C0 ≡ 6
5

(
ηT − 2

3

)
, (27)

and p̂ is obtained as a function of ξ̂z from Eq. (21) that becomes

ρ

⎛⎜⎜⎜⎜⎝γ2
t −

2z2C0

H2
0

Ω2
k

⎞⎟⎟⎟⎟⎠ ξ̂z � − ∂
∂z

p̂. (28)



324 B. Coppi: Spectrum of plasma modes and relevant transport processes in astrophysical disks

We see that the sign of C0 is important in relating that of ρ̂ to ξ̂.
Finally, we can verify that, for mφ < R0/H0, the toroidal pressure
gradient can be neglected in the φ-component of Eq. (9). Then
this reduces to

γt

(
γt ξ̂φ + 2Ωkξ̂R

)
� v2A

∂2

∂z2
ξ̂φ. (29)

In fact, we limit our analysis to the case where
∣∣∣∣∣mφ dΩ

dR
(R − R0)

∣∣∣∣∣ <
(
γ2

0 + δω
2
0

)1/2
.

Finally, it is convenient to refer to the ∂
(
eφ · ∇ × Am

)/
∂z = 0

equation, derived from Eq. (9), that is

∂2

∂z2

[
ρ
(
γ2

t ξ̂R − 2Ωkv̂φ
)
− B2

z

4π
∂2

∂z2
ξ̂R

]

− ∂
∂z

{
∂

∂R

[
ργ2

t ξ̂z + zΩ2
k ρ̂ +

B2
z

4π
∂2

∂R∂z
ξ̂R

]}
= 0. (30)

By using Eqs. (18) and (26) this can be rewritten as

∂2

∂z2

[
ρ
(
γ2

t ξ̂R + 2ΩkΩ
′
k

)
ξ̂R − B2

z

4π

(
∂2

∂z2
+
∂2

∂R2

)
ξ̂R

]

− 2Ωkγk
∂2

∂z2
ξ̂φ − ∂2

∂z∂R

⎡⎢⎢⎢⎢⎣ρ
⎛⎜⎜⎜⎜⎝γ2

t −
z2

H2
0

C0

⎞⎟⎟⎟⎟⎠ ξ̂z
⎤⎥⎥⎥⎥⎦ . (31)

Thus we have a complete set of equation given by Eq. (30) com-
bined with

∂ξ̂z
∂z
� −∂ξ̂R
∂R

and

v2A
∂2

∂2
ξ̂φ − γ2

t ξ̂φ � 2γtΩkξ̂R

that relate ξ̂z and ξ̂φ to ξ̂R.

Axisymmetric modes

At first we consider, for simplicity, axisymmetric modes (Coppi
2008a) with mφ = 0, that are purely growing. Thus, γt = γ0 and
we look for normal modes of the form

v̂φ � ṽ0
φG0 (z) exp

[
γ0t + ikR (R − R0)

]
that are a special case of those represented by Eq. (6) and where
k2

RR2
0 
 1, kR ∼ k0 ≡ (−2Ω′RΩ)1/2 /vA ≡ 1/Lc, Ω′ = dΩ/dR,

Ω′k = −3Ωk/(2R0) and vA ≡ Bz/(4πρ)1/2 is the Alfvén velocity.
In addition G0 (z) is an even or odd function of z that is localized
over a distance Lc < Δz � Hp represented, for instance, by G0 =

exp
[
−z2

/(
2Δ2

z

)]
. The unstable modes that are found have

Ω2
D ≡ −2Ω′kRΩk = 3Ω2

k > k2
Rv

2
A

corresponding to the fact that the radial gradient of the rota-
tion frequency is a key driving factor for the relevant instability.
Clearly, k2

Rv
2
A is the representative bending factor of the magnetic

field lines.

Then Eq. (31) reduces simply to

∂2

∂z2

{[
ρ
(
γ2

0 − Ω2
0

)
+ k2

R

B2
z

4π

]
ξ̂R − B2

z

4π
∂2

∂z2
ξ̂R

}

− 2Ωkγ0ρ0
∂2

∂z2
ξ̂φ − ikRρ0

∂

∂z

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝γ2

0 +
z2

H2
0

C0Ω
2
k

⎞⎟⎟⎟⎟⎠ ξ̃z
⎤⎥⎥⎥⎥⎦ � 0. (34)

Here we consider γ2
0 ∼

(
Δ2

z /H
2
0

)
Ω2

k < Ω
2
k and therefore k2

Rv
2
A �

Ω2
0 (1 − εk) with εk < 1, that is k2

R � k2
0 (1 − εk). Then since ρ �

ρ0

(
1 − z2/H2

0

)
and Eq. (29) becomes simplify

γ2
0 ξ̃φ + 2Ωkγ0ξ̃R = v

2
A

d2

dz2
ξ̃φ,

(
29′

)

where ξ̃R = ξ̃R (z) and ξ̃φ = ξ̃φ (z) Eq. (34) can be reduced to

d2

dz2

⎧⎪⎪⎨⎪⎪⎩Ω2
D

⎛⎜⎜⎜⎜⎝1 − k2
R

k2
0

⎞⎟⎟⎟⎟⎠ ξ̃R − Ω2
D

z2

H2
0

ξ̃R + v
2
A

d2

dz2
ξ̃R − γ2

0ξ̃R

⎫⎪⎪⎬⎪⎪⎭ �

4
3

k2
0γ

2
0

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝1 + 3

4

k2
R

k2
0

⎞⎟⎟⎟⎟⎠ ξ̃R + γ0

2Ωk
ξ̃φ

⎤⎥⎥⎥⎥⎦ − ikRC0Ω
2
k

d
dz

⎡⎢⎢⎢⎢⎣ z2

H2
0

ξ̃z

⎤⎥⎥⎥⎥⎦ , (35)

where ξ̃R � (i/kR) dξ̃z/dz. Since we look for localized solution
soltuion in z it is convenient to take the Fournier transform of
Eqs. (29′) and (35) that gives

ξ̃φk � −2Ωkγ0
ξ̃Rk

γ2
0 + k2v2A

(36)

where k2 ∼ 1/Δ2
z and

ikRξ̃Rk + ikξ̃zk � 0. (37)

Then

ξ̃φk � 2Ωkγ0
kξ̃zk (k)

kR

(
γ2

0 + k2v2A

) · (38)

Moreover,⎧⎪⎪⎨⎪⎪⎩
(
γ0H0

vA

)2 ⎛⎜⎜⎜⎜⎝1 + 4
3

k2v2A
k2v2A + γ

2
0

⎞⎟⎟⎟⎟⎠ − k2

⎛⎜⎜⎜⎜⎝εk − k2

k2
0

⎞⎟⎟⎟⎟⎠H2
0

⎫⎪⎪⎬⎪⎪⎭ ξ̃zk

� k
d2

dk2

(
kξ̃zk

)
− C0

3
k2

0
d2

dk2
ξ̃zk, (39)

and the problem is reduced to solving a second order differential
equation.

We note that at marginal stability
(
γ2

0 = 0
)
ξ̃φk and Eq. (39)

reduces to

0 � (kH0)2

⎛⎜⎜⎜⎜⎝εk − k2

k2
0

⎞⎟⎟⎟⎟⎠ ξ̃zk + k
d2

dk2

(
kξ̃zk

)
− C0

v2
A

Ω2
k

d2

dk2
ξ̃zk. (40)

Thus we obtain the known ballooning solution

ξ̃zk = ξ̃
∂
zk exp

(
− k2

2σ

)
(41)

where

σ2 =
k2

0

H2
0

≡ 1

Δ4
0

(42)
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We see that the sign of C0 is important in relating that of ρ̂ to ξ̂.
Finally, we can verify that, for mφ < R0/H0, the toroidal pressure
gradient can be neglected in the φ-component of Eq. (9). Then
this reduces to

γt

(
γt ξ̂φ + 2Ωkξ̂R

)
� v2A

∂2

∂z2
ξ̂φ. (29)

In fact, we limit our analysis to the case where
∣∣∣∣∣mφ dΩ

dR
(R − R0)

∣∣∣∣∣ <
(
γ2

0 + δω
2
0

)1/2
.

Finally, it is convenient to refer to the ∂
(
eφ · ∇ × Am

)/
∂z = 0

equation, derived from Eq. (9), that is

∂2

∂z2

[
ρ
(
γ2

t ξ̂R − 2Ωkv̂φ
)
− B2

z

4π
∂2

∂z2
ξ̂R

]

− ∂
∂z

{
∂

∂R

[
ργ2

t ξ̂z + zΩ2
k ρ̂ +

B2
z

4π
∂2

∂R∂z
ξ̂R

]}
= 0. (30)

By using Eqs. (18) and (26) this can be rewritten as

∂2

∂z2

[
ρ
(
γ2

t ξ̂R + 2ΩkΩ
′
k

)
ξ̂R − B2

z

4π

(
∂2

∂z2
+
∂2

∂R2

)
ξ̂R

]

− 2Ωkγk
∂2

∂z2
ξ̂φ − ∂2

∂z∂R

⎡⎢⎢⎢⎢⎣ρ
⎛⎜⎜⎜⎜⎝γ2

t −
z2

H2
0

C0

⎞⎟⎟⎟⎟⎠ ξ̂z
⎤⎥⎥⎥⎥⎦ . (31)

Thus we have a complete set of equation given by Eq. (30) com-
bined with

∂ξ̂z
∂z
� −∂ξ̂R
∂R

and

v2A
∂2

∂2
ξ̂φ − γ2

t ξ̂φ � 2γtΩkξ̂R

that relate ξ̂z and ξ̂φ to ξ̂R.

5. Axisymmetric modes

At first we consider, for simplicity, axisymmetric modes (Coppi
2008a) with mφ = 0, that are purely growing. Thus, γt = γ0 and
we look for normal modes of the form

v̂φ � ṽ0
φG0 (z) exp

[
γ0t + ikR (R − R0)

]
(32)

that are a special case of those represented by Eq. (6) and where
k2

RR2
0 
 1, kR ∼ k0 ≡ (−2Ω′RΩ)1/2 /vA ≡ 1/Lc, Ω′ = dΩ/dR,

Ω′k = −3Ωk/(2R0) and vA ≡ Bz/(4πρ)1/2 is the Alfvén velocity.
In addition G0 (z) is an even or odd function of z that is localized
over a distance Lc < Δz � Hp represented, for instance, by G0 =

exp
[
−z2

/(
2Δ2

z

)]
. The unstable modes that are found have

Ω2
D ≡ −2Ω′kRΩk = 3Ω2

k > k2
Rv

2
A (33)

corresponding to the fact that the radial gradient of the rota-
tion frequency is a key driving factor for the relevant instability.
Clearly, k2

Rv
2
A is the representative bending factor of the magnetic

field lines.

Then Eq. (31) reduces simply to

∂2

∂z2

{[
ρ
(
γ2

0 − Ω2
0

)
+ k2

R

B2
z

4π

]
ξ̂R − B2

z

4π
∂2

∂z2
ξ̂R

}

− 2Ωkγ0ρ0
∂2

∂z2
ξ̂φ − ikRρ0

∂

∂z

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝γ2

0 +
z2

H2
0

C0Ω
2
k

⎞⎟⎟⎟⎟⎠ ξ̃z
⎤⎥⎥⎥⎥⎦ � 0. (34)

Here we consider γ2
0 ∼

(
Δ2

z /H
2
0

)
Ω2

k < Ω
2
k and therefore k2

Rv
2
A �

Ω2
0 (1 − εk) with εk < 1, that is k2

R � k2
0 (1 − εk). Then since ρ �

ρ0

(
1 − z2/H2

0

)

γ2
0 ξ̃φ + 2Ωkγ0ξ̃R = v

2
A

d2

dz2
ξ̃φ,

d2

dz2

⎧⎪⎪⎨⎪⎪⎩Ω2
D

⎛⎜⎜⎜⎜⎝1 − k2
R

k2
0

⎞⎟⎟⎟⎟⎠ ξ̃R − Ω2
D

z2

H2
0

ξ̃R + v
2
A

d2

dz2
ξ̃R − γ2

0ξ̃R

⎫⎪⎪⎬⎪⎪⎭ �

4
3

k2
0γ

2
0

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝1 + 3

4

k2
R

k2
0

⎞⎟⎟⎟⎟⎠ ξ̃R + γ0

2Ωk
ξ̃φ

⎤⎥⎥⎥⎥⎦ − ikRC0Ω
2
k

d
dz

⎡⎢⎢⎢⎢⎣ z2

H2
0

ξ̃z

⎤⎥⎥⎥⎥⎦ ,
where ξ̃R � (i/kR) dξ̃z/dz. Since we look for localized solution
soltuion in z it is convenient to take the Fournier transform of
Eqs. ( ) and ( ) that gives

ξ̃φk � −2Ωkγ0
ξ̃Rk

γ2
0 + k2v2A

(36)

where k2 ∼ 1/Δ2
z and

ikRξ̃Rk + ikξ̃zk � 0. (37)

Then

ξ̃φk � 2Ωkγ0
kξ̃zk (k)

kR

(
γ2

0 + k2v2A

) · (38)

Moreover,⎧⎪⎪⎨⎪⎪⎩
(
γ0H0

vA

)2 ⎛⎜⎜⎜⎜⎝1 + 4
3

k2v2A
k2v2A + γ

2
0

⎞⎟⎟⎟⎟⎠ − k2

⎛⎜⎜⎜⎜⎝εk − k2

k2
0

⎞⎟⎟⎟⎟⎠H2
0

⎫⎪⎪⎬⎪⎪⎭ ξ̃zk

� k
d2

dk2

(
kξ̃zk

)
− C0

3
k2

0
d2

dk2
ξ̃zk, (39)

and the problem is reduced to solving a second order differential
equation.

We note that at marginal stability
(
γ2

0 = 0
)
ξ̃φk and Eq. (39)

reduces to

0 � (kH0)2

⎛⎜⎜⎜⎜⎝εk − k2

k2
0

⎞⎟⎟⎟⎟⎠ ξ̃zk + k
d2

dk2

(
kξ̃zk

)
− C0

v2
A

Ω2
k

d2

dk2
ξ̃zk. (40)

Thus we obtain the known ballooning solution

ξ̃zk = ξ̃
∂
zk exp

(
− k2

2σ

)
(41)

where

σ2 =
k2

0

H2
0

≡ 1

Δ4
0

(42)
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324 B. Coppi: Spectrum of plasma modes and relevant transport processes in astrophysical disks

We see that the sign of C0 is important in relating that of ρ̂ to ξ̂.
Finally, we can verify that, for mφ < R0/H0, the toroidal pressure
gradient can be neglected in the φ-component of Eq. (9). Then
this reduces to

γt

(
γt ξ̂φ + 2Ωkξ̂R

)
� v2A

∂2

∂z2
ξ̂φ. (29)

In fact, we limit our analysis to the case where
∣∣∣∣∣mφ dΩ

dR
(R − R0)

∣∣∣∣∣ <
(
γ2

0 + δω
2
0

)1/2
.

Finally, it is convenient to refer to the ∂
(
eφ · ∇ × Am

)/
∂z = 0

equation, derived from Eq. (9), that is

∂2

∂z2

[
ρ
(
γ2

t ξ̂R − 2Ωkv̂φ
)
− B2

z

4π
∂2

∂z2
ξ̂R

]

− ∂
∂z

{
∂

∂R

[
ργ2

t ξ̂z + zΩ2
k ρ̂ +

B2
z

4π
∂2

∂R∂z
ξ̂R

]}
= 0. (30)

By using Eqs. (18) and (26) this can be rewritten as

∂2

∂z2

[
ρ
(
γ2

t ξ̂R + 2ΩkΩ
′
k

)
ξ̂R − B2

z

4π

(
∂2

∂z2
+
∂2

∂R2

)
ξ̂R

]

− 2Ωkγk
∂2

∂z2
ξ̂φ − ∂2

∂z∂R

⎡⎢⎢⎢⎢⎣ρ
⎛⎜⎜⎜⎜⎝γ2

t −
z2

H2
0

C0

⎞⎟⎟⎟⎟⎠ ξ̂z
⎤⎥⎥⎥⎥⎦ . (31)

Thus we have a complete set of equation given by Eq. (30) com-
bined with

∂ξ̂z
∂z
� −∂ξ̂R
∂R

and

v2A
∂2

∂2
ξ̂φ − γ2

t ξ̂φ � 2γtΩkξ̂R

that relate ξ̂z and ξ̂φ to ξ̂R.

5. Axisymmetric modes

At first we consider, for simplicity, axisymmetric modes (Coppi
2008a) with mφ = 0, that are purely growing. Thus, γt = γ0 and
we look for normal modes of the form

v̂φ � ṽ0
φG0 (z) exp

[
γ0t + ikR (R − R0)

]
(32)

that are a special case of those represented by Eq. (6) and where
k2

RR2
0 
 1, kR ∼ k0 ≡ (−2Ω′RΩ)1/2 /vA ≡ 1/Lc, Ω′ = dΩ/dR,

Ω′k = −3Ωk/(2R0) and vA ≡ Bz/(4πρ)1/2 is the Alfvén velocity.
In addition G0 (z) is an even or odd function of z that is localized
over a distance Lc < Δz � Hp represented, for instance, by G0 =

exp
[
−z2

/(
2Δ2

z

)]
. The unstable modes that are found have

Ω2
D ≡ −2Ω′kRΩk = 3Ω2

k > k2
Rv

2
A (33)

corresponding to the fact that the radial gradient of the rota-
tion frequency is a key driving factor for the relevant instability.
Clearly, k2

Rv
2
A is the representative bending factor of the magnetic

field lines.

Then Eq. (31) reduces simply to

∂2

∂z2

{[
ρ
(
γ2

0 − Ω2
0

)
+ k2

R

B2
z

4π

]
ξ̂R − B2

z

4π
∂2

∂z2
ξ̂R

}

− 2Ωkγ0ρ0
∂2

∂z2
ξ̂φ − ikRρ0

∂

∂z

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝γ2

0 +
z2

H2
0

C0Ω
2
k

⎞⎟⎟⎟⎟⎠ ξ̃z
⎤⎥⎥⎥⎥⎦ � 0. (34)

Here we consider γ2
0 ∼

(
Δ2

z /H
2
0

)
Ω2

k < Ω
2
k and therefore k2

Rv
2
A �

Ω2
0 (1 − εk) with εk < 1, that is k2

R � k2
0 (1 − εk). Then since ρ �

ρ0

(
1 − z2/H2

0

)
and Eq. (29) becomes simplify

γ2
0 ξ̃φ + 2Ωkγ0ξ̃R = v

2
A

d2

dz2
ξ̃φ,

(
29′

)

where ξ̃R = ξ̃R (z) and ξ̃φ = ξ̃φ (z) Eq. (34) can be reduced to

d2

dz2

⎧⎪⎪⎨⎪⎪⎩Ω2
D

⎛⎜⎜⎜⎜⎝1 − k2
R

k2
0

⎞⎟⎟⎟⎟⎠ ξ̃R − Ω2
D

z2

H2
0

ξ̃R + v
2
A

d2

dz2
ξ̃R − γ2

0ξ̃R

⎫⎪⎪⎬⎪⎪⎭ �

4
3

k2
0γ

2
0

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝1 + 3

4

k2
R

k2
0

⎞⎟⎟⎟⎟⎠ ξ̃R + γ0

2Ωk
ξ̃φ

⎤⎥⎥⎥⎥⎦ − ikRC0Ω
2
k

d
dz

⎡⎢⎢⎢⎢⎣ z2

H2
0

ξ̃z

⎤⎥⎥⎥⎥⎦ , (35)

where ξ̃R � (i/kR) dξ̃z/dz. Since we look for localized solution
soltuion in z it is convenient to take the Fournier transform of
Eqs. (29′) and (35) that gives

ξ̃φk � −2Ωkγ0
ξ̃Rk

γ2
0 + k2v2A

(36)

where k2 ∼ 1/Δ2
z and

ikRξ̃Rk + ikξ̃zk � 0. (37)

Then

ξ̃φk � 2Ωkγ0
kξ̃zk (k)

kR

(
γ2

0 + k2v2A

) · (38)

Moreover,⎧⎪⎪⎨⎪⎪⎩
(
γ0H0

vA

)2 ⎛⎜⎜⎜⎜⎝1 + 4
3

k2v2A
k2v2A + γ

2
0

⎞⎟⎟⎟⎟⎠ − k2

⎛⎜⎜⎜⎜⎝εk − k2

k2
0

⎞⎟⎟⎟⎟⎠H2
0

⎫⎪⎪⎬⎪⎪⎭ ξ̃zk

� k
d2

dk2

(
kξ̃zk

)
− C0

3
k2

0
d2

dk2
ξ̃zk,

and the problem is reduced to solving a second order differential
equation.

We note that at marginal stability
(
γ2

0 = 0
)
ξ̃φk and Eq. ( )

reduces to

0 � (kH0)2

⎛⎜⎜⎜⎜⎝εk − k2

k2
0

⎞⎟⎟⎟⎟⎠ ξ̃zk + k
d2

dk2

(
kξ̃zk

)
− C0

v2
A

Ω2
k

d2

dk2
ξ̃zk.

Thus we obtain the known ballooning solution

ξ̃zk = ξ̃
∂
zk exp

(
− k2

2σ

)

where

σ2 =
k2

0

H2
0

≡ 1

Δ4
0
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and

E0
k ≡ εkk0H0 = 3 (43)

for C0 = 0. Clearly unstable modes of this kind can be found for
C0 < 0, that is for

ηT >
2
3

and correspond to the “thermo rotational instability” presented
in Coppi (2008a).

Since flat temperature profiles corresponding to C0 < 0 are
an important class. to be considered, higher modes, for which
E0

k > 3, have to be analyzed. For these modes the influence of
the radial gradient of the rotation frequency is stronger. Then it is
convenient to use the variable k̄ ≡ kΔ0 and to rewrite Eq. (40) as

k̄2
(
E0

k − k̄2
)
ξ̃zk + k̄

d2

dk̄2

(
k̄ξ̃zk

)
+C0

0
d2

dk̄2
ξ̃z = 0 (44)

where

C0
0 ≡ C0

(
k0H0

3

)1/2

· (45)

It is also useful to derive a quadratic form obtained by multi-
plying Eq. (40) by ξ̃zk and integrating it from −∞ to +∞. This
gives

E0
k

〈(
k̄ξ̃zk

)2〉
=

〈(
k̄2ξ̃zk

)2
〉
+

〈[
d

dk̄

(
k̄ξ̃zk

)]2

−C0
0

(
d

dk̄
ξ̃zk

)2〉
. (46)

The next eigensolution is odd with

ξ̃zk = ξ̃
0
zkk̄ exp

(
− k̄2

2

)
·

In this case

C0
0 = −

2
3

and

E0
k =

13
3
·

Proceeding to the next eigenfunction we find

ξ̃zk = ξ̃
0
zk

(
1 +

1
2

k̄2

)
exp

(
− k̄2

2

)
(49)

and

C0
0 = −

14
5

(50)

with

E0
k =

21
5
·

For C0 < −14/5 a still higher eigensolution has to be considered.

6. Vertical fluxes of particles and thermal energy

The considered modes can produce particle density transport,
in the vertical direction, that is of contrary sign to that of the
temperature transport and modify the density and temperature
profiles in such a way as to lead ηT toward 2/3, corresponding
to a polytropic. Thus, if ηT > 2/3 a particle inflow toward the
equatorial plane is induced. When ηT < 2/3, including the case
where ηT = 0 or where the surface of the disk can be hotter than
the interior, the particle transport is away, from the equatorial
plane. These arguments are based on the quasilinear analysis that
gives the vertical particle flux produced by unstable modes as

Γpz = 〈〈n̂v̂z〉〉 � −4
5
γ0

〈〈∣∣∣ξ̂z∣∣∣2
〉〉
×
[
∂

∂z
n − 3

2
n
T
∂

∂z
T

]
, (51)

where 〈〈〉〉 indicates an average over a radial distance ΔR such
that 1/kR < ΔR < R0. The corresponding temperature flux is〈〈

T̂ v̂z
〉〉
� − 〈〈n̂v̂z〉〉T /n.

The outflows produced by these modes when ηT < 2/3 can
be considered as candidates to explain the origin of the particle
fluxes (winds) that have been observed to emanate from disk
structures such as those at the core of AGN’s (Elvis 2000).

The transport process described by Eq. (51) is similar to that
proposed for the theoretical explanation of the experimentally
observed particle inflow in magnetically confined toroidal plas-
mas that is associated (Coppi & Spight 1978) with the outflow
of electron thermal energy related to the ratio of the gradients of
the radial electron temperature and the particle density.

To illustrate this case we refer, for simplicity, to a cylindrical
or plane plasma confinement configuration where the magnetic
field is in the z direction. Electrostatic modes can be excited with
longitudinal phase velocities |ω/k‖| < vthe, vthe being the elec-
tron thermal velocity. Considering the limit where the electron
longitudinal thermal conductivity is relatively large but finite,
it is possible to show that the radial transport velocity for the
electrons is equal to and of opposite sign of that of the electron
thermal energy. In particular, when

ηe ≡ d ln Te

dr
/

d ln n
dr
>

2
3

that is a condition most commonly verified in well confined
plasma experiments, the thermal energy flux is outward and the
particle flux is inward. We note that the experimental evidence of
the particle inflow process in well confined plasmas mentioned
above has expanded over the years and by now it is well docu-
mented.

It has been suggested (by the referee) that the condition
−dTe/dz > −(2/3)(Te/ρ)dρ/dz be compared to the instability
condition of the classical Schwarzchild instability for stellar in-
teriors −dT/dz > g/Cp where g is the gravity acceleration and
Cp is the heat capacity at constant pressure. In fact in both cases
a transport of temperature associated with an opposing flow of
matter is involved.

7. Mode growth rates

We refer to Eq. (39) and note that the quadratic form associated
with it is⎛⎜⎜⎜⎜⎝γ0H0

v2A

⎞⎟⎟⎟⎟⎠
2 〈⎛⎜⎜⎜⎜⎝1 + 4

3

k2v2A
k2v2A + γ

2
0

⎞⎟⎟⎟⎟⎠ (ξ̃zk

)2〉
= E0

k

〈(
k̄ξ̃zk

)2
〉
−
〈(

k̄2ξ̃zk

)2
〉

+C0
0

〈(
dξ̃zk

dk̄

)2〉
−
〈[

d

dk̄

(
k̄ξ̃zk

)]2〉
. (52)
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and

E0
k ≡ εkk0H0 = 3 (43)

for C0 = 0. Clearly unstable modes of this kind can be found for
C0 < 0, that is for

ηT >
2
3

and correspond to the “thermo rotational instability” presented
in Coppi (2008a).

Since flat temperature profiles corresponding to C0 < 0 are
an important class. to be considered, higher modes, for which
E0

k > 3, have to be analyzed. For these modes the influence of
the radial gradient of the rotation frequency is stronger. Then it is
convenient to use the variable k̄ ≡ kΔ0 and to rewrite Eq. (40) as

k̄2
(
E0

k − k̄2
)
ξ̃zk + k̄

d2

dk̄2

(
k̄ξ̃zk

)
+C0

0
d2

dk̄2
ξ̃z = 0 (44)

where

C0
0 ≡ C0

(
k0H0

3

)1/2

· (45)

It is also useful to derive a quadratic form obtained by multi-
plying Eq. (40) by ξ̃zk and integrating it from −∞ to +∞. This
gives

E0
k

〈(
k̄ξ̃zk

)2〉
=

〈(
k̄2ξ̃zk

)2
〉
+

〈[
d

dk̄

(
k̄ξ̃zk

)]2

−C0
0

(
d

dk̄
ξ̃zk

)2〉
. (46)

The next eigensolution is odd with

ξ̃zk = ξ̃
0
zkk̄ exp

(
− k̄2

2

)
· (47)

In this case

C0
0 = −

2
3

(48)

and

E0
k =

13
3
·

Proceeding to the next eigenfunction we find

ξ̃zk = ξ̃
0
zk

(
1 +

1
2

k̄2

)
exp

(
− k̄2

2

)
(49)

and

C0
0 = −

14
5

(50)

with

E0
k =

21
5
·

For C0 < −14/5 a still higher eigensolution has to be considered.

Vertical fluxes of particles and thermal energy

The considered modes can produce particle density transport,
in the vertical direction, that is of contrary sign to that of the
temperature transport and modify the density and temperature
profiles in such a way as to lead ηT toward 2/3, corresponding
to a polytropic. Thus, if ηT > 2/3 a particle inflow toward the
equatorial plane is induced. When ηT < 2/3, including the case
where ηT = 0 or where the surface of the disk can be hotter than
the interior, the particle transport is away, from the equatorial
plane. These arguments are based on the quasilinear analysis that
gives the vertical particle flux produced by unstable modes as

Γpz = 〈〈n̂v̂z〉〉 � −4
5
γ0

〈〈∣∣∣ξ̂z∣∣∣2
〉〉
×
[
∂

∂z
n − 3

2
n
T
∂

∂z
T

]
, ( )

where 〈〈〉〉 indicates an average over a radial distance ΔR such
that 1/kR < ΔR < R0. The corresponding temperature flux is〈〈

T̂ v̂z
〉〉
� − 〈〈n̂v̂z〉〉T /n.

The outflows produced by these modes when ηT < 2/3 can
be considered as candidates to explain the origin of the particle
fluxes (winds) that have been observed to emanate from disk
structures such as those at the core of AGN’s

The transport process described by Eq. ( is similar to that
proposed for the theoretical explanation of the experimentally
observed particle inflow in magnetically confined toroidal plas-
mas that is associated (Coppi & Spight 1978) with the outflow
of electron thermal energy related to the ratio of the gradients of
the radial electron temperature and the particle density.

or plane plasma confinement configuration where the magnetic
field is in the z direction. Electrostatic modes can be excited with
longitudinal phase velocities |ω/k‖| < vthe, vthe being the elec-
tron thermal velocity. Considering the limit where the electron
longitudinal thermal conductivity is relatively large but finite,
it is possible to show that the radial transport velocity for the
electrons is equal to and of opposite sign of that of the electron
thermal energy. In particular, when

ηe ≡ d ln Te

dr
/

d ln n
dr
>

2
3

that is a condition most commonly verified in well confined
plasma experiments, the thermal energy flux is outward and the
particle flux is inward. We note that the experimental evidence of
the particle inflow process in well confined plasmas mentioned
above has expanded over the years and by now it is well docu-
mented.

It has been suggested (by the referee) that the condition
−dTe/dz > −(2/3)(Te/ρ)dρ/dz be compared to the instability
condition of the classical Schwarzchild instability for stellar in-
teriors −dT/dz > g/Cp where g is the gravity acceleration and
Cp is the heat capacity at constant pressure. In fact in both cases
a transport of temperature associated with an opposing flow of
matter is involved.

7. Mode growth rates

We refer to Eq. (39) and note that the quadratic form associated
with it is⎛⎜⎜⎜⎜⎝γ0H0

v2A

⎞⎟⎟⎟⎟⎠
2 〈⎛⎜⎜⎜⎜⎝1 + 4

3

k2v2A
k2v2A + γ

2
0

⎞⎟⎟⎟⎟⎠ (ξ̃zk

)2〉
= E0

k

〈(
k̄ξ̃zk

)2
〉
−
〈(

k̄2ξ̃zk

)2
〉

+C0
0

〈(
dξ̃zk

dk̄

)2〉
−
〈[

d

dk̄

(
k̄ξ̃zk

)]2〉
. (52)
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In the realistic limit where γ2
0 < k2v2A this form can be used

as a variational principle to evaluate (γH/vA)2. Considering this
limit the “ordering of maximum information” for which all the

remaining terms in Eq. (52) are retained is k4 ∼ k2
0

/
H

2

0
= 1

/
Δ4

0,

γ2
0 ∼ v2A

/
H2

0 , εk ∼ k2
/
k2

0 ∼ C0/3.

Γ2
0 ≡

7
3

(
γ0H0

vA

)
,

and obtain

{
Γ2

0 − k̄2
(
E0

k − k̄2
)}
ξ̃zk = k̄

d2

dk̄2

(
ξ̃zkk̄

)
− C0

0
d2

dk̄2
ξ̃zk. (53)

The lowest (even) eigensolution, Eq. (41), of this gives

Γ2
0 = C0

0, E0
k = 3 +C0

0. (54)

γ2
0 =

⎛⎜⎜⎜⎜⎝
√

36
35

⎞⎟⎟⎟⎟⎠ vAH0
Ωk

(
ηT − 2

3

)
, εk = ε0 +

2
5

(
ηT − 2

3

)

where ε0 ≡ 1/ (k0H0) < 1.
In the case where C0 ∼ 1 and εk > ε

2/3
0 we find

Δz � Δ0

(
3εk
|C0|

)1/4

and

γ0 �
√

3
7

(
vA
H0
Ωk

)1/2

(εk |C0|)1/4

showing that the dependence of Δz and γ0 on εk is weak, in this
case.

The next (odd) eigenfunction, corresponds to the
ballooning mode investigated already by Coppi & Keyes (2003).
In this case the dispersion relation is Γ2

0 = 2 + 3C0
0 while E0

k =

5 + C0
0. Clearly the mode can be unstable even if C0

0 < 0 that is
for ηT < 2/3 and

γ2
0 �

6
7
vA
H0

⎡⎢⎢⎢⎢⎣
√

33
5

(
ηT − 2

3

)
Ωk +

vA
H0

⎤⎥⎥⎥⎥⎦ ·
We observe that, relative to the case investigated by Coppi &
Keyes (2003) the relevant growth rate is increased by the term
k0H0 (ηT 2/3) 3/5.

ξ̃zk = ξ̃z0

(
1 + αkk̄2

)
exp

(
− k̄2

2

)
, (58)

where

αk =
1
2

⎛⎜⎜⎜⎜⎝1 − Γ
2
0

C0
0

⎞⎟⎟⎟⎟⎠ , E0
k = 7 +C0

0 , (59)

Γ4
0 − 6

(
1 + C0

0

)
Γ2

0 +C0
0

(
14 + 5C0

0

)
= 0, (60)

which allows the instability to exist up to C0
0 = −14/5. We note

that when C0
0 → 0, αk → −3

/
C0

0 as Γ2
0 → 6. When C0

0 < −14/5
a higher eigensolution has to be considered.

8. Oscillatory modes

A class of modes that are oscillatory and weakly damped can be
found when ηT is well below 2/3, that is when C0 is negative
and finite. Clearly, these modes can be significant only if their
amplitudes can be sustained by a non-linear coupling to modes
that are self excited. Unlike the unstable modes discussed in the
previous sections those considered here have k2

R > k2
0 and in

particular k2
R � k2

0

(
1 + εk

)
where 0 < εk < 1. This means that

the restoring effect of magnetic field line bending prevails over
that of the radial gradient of the rotation frequency. Then instead
of Eq. (39) we consider⎧⎪⎪⎨⎪⎪⎩−

⎛⎜⎜⎜⎜⎝ωoH0

v2A

⎞⎟⎟⎟⎟⎠
2 ⎛⎜⎜⎜⎜⎝7

3
+

4
3

ω2
0

k2v2A − ω2
0

⎞⎟⎟⎟⎟⎠ + k2H2
0

⎛⎜⎜⎜⎜⎝εk +
k2

k2
0

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ ξ̃zk

� k
d2

dk2

(
kξ̃zk

)
+
|C0|
3

k2
0

d2

dk2
ξ̃zk. (61)

Because of the singularity appearing in Eq. (61), ω0 will ac-
quire a relatively small imaginary part, that is ω0 = δω0 + iγI .
Therefore, it is convenient to refer to the quadratic form that can
be obtained from Eq. (61), observing that ξ̃zk is complex in this
case, in order to ascertain the sign of γI . This is
⎛⎜⎜⎜⎜⎝ω0H0

v2A

⎞⎟⎟⎟⎟⎠
2 〈

7
3
+

4
3

ω2
0

k2v2A − ω2
0

⎞⎟⎟⎟⎟⎠ ∣∣∣ξ̃zk

∣∣∣2
〉
�

H2
0

〈
k2

(
εk +

k2

k02

) ∣∣∣ξ̃zk

∣∣∣2
〉

+

〈∣∣∣∣∣ d
dk

(
kξ̃zk

∣∣∣∣∣
2〉
+ k2

0
|C0|
3

〈∣∣∣∣∣ d
dk
ξ̃zk

∣∣∣∣∣
2〉
. (62)

It is also convenient to introduce dimensionless variables defin-
ing
(
ω0H0

vA

)2

≡ 1
7

k2
0Δ

2
z |C0|ω̄2, Ēk ≡ εk (k0Δz)2 (63)

Δ6
z =

3
|C0|

H2
0

k4
0

=
3
|C0|
Δ4

0

k2
0

, Δ2 ≡ 7
|C0|

(
Δ0

Δz

)4

· (64)

Thus 1/k0 < Δz < Δ0, A2 > 1 and Eq. (61) becomes⎧⎪⎪⎨⎪⎪⎩−ω̄2

⎛⎜⎜⎜⎜⎝1 + 4
7

ω̄2

¯̄k
2
A2 − ω̄2

⎞⎟⎟⎟⎟⎠ + ¯̄k
2
(
¯̄k

2
+ Ēk

)⎫⎪⎪⎬⎪⎪⎭ξ̃zk � d2

d¯̄k
2
ξ̃zk.

(
61′

)

We note that, for Ek > 1, Eq. (61′) gives

ω2
0 �
√

3
7
|C0|Δ

2
z

Δ2
0

vA
H0
Ωkω̄

2, ω̄4 � Ēk.
(
62′

)

The fact that |Im ω̄| < |Re ω̄| is related to A2 being larger than
unity. In particular, γI < 0. The case where ηT > 2/3 and εk > 0
remains to be analyzed.

9. Tridimensional, tightly wound spirals

Referring to Eq. (13), we consider modes that are represented by

v̂φ = ṽφ (R − R0, z)

exp
{
γ0t + i

[
kR (R − R0) + mφ (φ −Ωot) − δω0t

]}
(65)
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326 B. Coppi: Spectrum of plasma modes and relevant transport processes in astrophysical disks

In the realistic limit where γ2
0 < k2v2A this form can be used

as a variational principle to evaluate (γH/vA)2. Considering this
limit the “ordering of maximum information” for which all the

remaining terms in Eq. (52) are retained is k4 ∼ k2
0

/
H

2

0
= 1

/
Δ4

0,

γ2
0 ∼ v2A

/
H2

0 , εk ∼ k2
/
k2

0 ∼ C0/3.

Γ2
0 ≡

7
3

(
γ0H0

vA

)
,

and obtain

{
Γ2

0 − k̄2
(
E0

k − k̄2
)}
ξ̃zk = k̄

d2

dk̄2

(
ξ̃zkk̄

)
− C0

0
d2

dk̄2
ξ̃zk. (53)

The lowest (even) eigensolution, Eq. (41), of this gives

Γ2
0 = C0

0, E0
k = 3 +C0

0. (54)

It is clear that the instability requires relatively peaked temper-
ature profiles, that is ηT > 2/3 corresponding to the thermo-
rotational instability. In particular,

γ2
0 =

⎛⎜⎜⎜⎜⎝
√

36
35

⎞⎟⎟⎟⎟⎠ vAH0
Ωk

(
ηT − 2

3

)
, εk = ε0 +

2
5

(
ηT − 2

3

) (
54′

)

where ε0 ≡ 1/ (k0H0) < 1.
In the case where C0 ∼ 1 and εk > ε

2/3
0 we find

Δz � Δ0

(
3εk
|C0|

)1/4

(55)

and

γ0 �
√

3
7

(
vA
H0
Ωk

)1/2

(εk |C0|)1/4 (56)

showing that the dependence of Δz and γ0 on εk is weak, in this
case.

The next (odd) eigenfunction, Eq. (47), corresponds to the
ballooning mode investigated already by Coppi & Keyes (2003).
In this case the dispersion relation is Γ2

0 = 2 + 3C0
0 while E0

k =

5 + C0
0. Clearly the mode can be unstable even if C0

0 < 0 that is
for ηT < 2/3 and

γ2
0 �

6
7
vA
H0

⎡⎢⎢⎢⎢⎣
√

33
5

(
ηT − 2

3

)
Ωk +

vA
H0

⎤⎥⎥⎥⎥⎦ · (57)

We observe that, relative to the case investigated by Coppi &
Keyes (2003) the relevant growth rate is increased by the term
k0H0 (ηT − 2/3) 3/5.

The next (even) “harmonic” has the form

ξ̃zk = ξ̃z0

(
1 + αkk̄2

)
exp

(
− k̄2

2

)
, (58)

where

αk =
1
2

⎛⎜⎜⎜⎜⎝1 − Γ
2
0

C0
0

⎞⎟⎟⎟⎟⎠ , E0
k = 7 +C0

0 , (59)

Γ4
0 − 6

(
1 + C0

0

)
Γ2

0 +C0
0

(
14 + 5C0

0

)
= 0, (60)

which allows the instability to exist up to C0
0 = −14/5. We note

that when C0
0 → 0, αk → −3

/
C0

0 as Γ2
0 → 6. When C0

0 < −14/5
a higher eigensolution has to be considered.

8. Oscillatory modes

A class of modes that are oscillatory and weakly damped can be
found when ηT is well below 2/3, that is when C0 is negative
and finite. Clearly, these modes can be significant only if their
amplitudes can be sustained by a non-linear coupling to modes
that are self excited. Unlike the unstable modes discussed in the
previous sections those considered here have k2

R > k2
0 and in

particular k2
R � k2

0

(
1 + εk

)
where 0 < εk < 1. This means that

the restoring effect of magnetic field line bending prevails over
that of the radial gradient of the rotation frequency. Then instead
of Eq. (39) we consider⎧⎪⎪⎨⎪⎪⎩−

⎛⎜⎜⎜⎜⎝ωoH0

v2A

⎞⎟⎟⎟⎟⎠
2 ⎛⎜⎜⎜⎜⎝7

3
+

4
3

ω2
0

k2v2A − ω2
0

⎞⎟⎟⎟⎟⎠ + k2H2
0

⎛⎜⎜⎜⎜⎝εk +
k2

k2
0

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ ξ̃zk

� k
d2

dk2

(
kξ̃zk

)
+
|C0|
3

k2
0

d2

dk2
ξ̃zk. (61)

Because of the singularity appearing in Eq. (61), ω0 will ac-
quire a relatively small imaginary part, that is ω0 = δω0 + iγI .
Therefore, it is convenient to refer to the quadratic form that can
be obtained from Eq. (61), observing that ξ̃zk is complex in this
case, in order to ascertain the sign of γI . This is
⎛⎜⎜⎜⎜⎝ω0H0

v2A

⎞⎟⎟⎟⎟⎠
2 〈

7
3
+

4
3

ω2
0

k2v2A − ω2
0

⎞⎟⎟⎟⎟⎠ ∣∣∣ξ̃zk

∣∣∣2
〉
�

H2
0

〈
k2

(
εk +

k2

k02

) ∣∣∣ξ̃zk

∣∣∣2
〉

+

〈∣∣∣∣∣ d
dk

(
kξ̃zk

∣∣∣∣∣
2〉
+ k2

0
|C0|
3

〈∣∣∣∣∣ d
dk
ξ̃zk

∣∣∣∣∣
2〉
. (62)

It is also convenient to introduce dimensionless variables defin-
ing
(
ω0H0

vA

)2

≡ 1
7

k2
0Δ

2
z |C0|ω̄2, Ēk ≡ εk (k0Δz)2 (63)

Δ6
z =

3
|C0|

H2
0

k4
0

=
3
|C0|
Δ4

0

k2
0

, Δ2 ≡ 7
|C0|

(
Δ0

Δz

)4

· (64)

Thus 1/k0 < Δz < Δ0, A2 > 1 and Eq. (61) becomes⎧⎪⎪⎨⎪⎪⎩−ω̄2

⎛⎜⎜⎜⎜⎝1 + 4
7

ω̄2

¯̄k
2
A2 − ω̄2

⎞⎟⎟⎟⎟⎠ + ¯̄k
2
(
¯̄k

2
+ Ēk

)⎫⎪⎪⎬⎪⎪⎭ξ̃zk � d2

d¯̄k
2
ξ̃zk.

(
61′

)

We note that, for Ek > 1, Eq. (61′) gives

ω2
0 �
√

3
7
|C0|Δ

2
z

Δ2
0

vA
H0
Ωkω̄

2, ω̄4 � Ēk.
(
62′

)

The fact that |Im ω̄| < |Re ω̄| is related to A2 being larger than
unity. In particular, γI < 0. The case where ηT > 2/3 and εk > 0
remains to be analyzed.

Tridimensional, tightly wound spirals

Referring to Eq. (13), we consider modes that are represented by

v̂φ = ṽφ (R − R0, z)

exp
{
γ0t + i

[
kR (R − R0) + mφ (φ −Ωot) − δω0t

]}
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B. Coppi: Spectrum of plasma modes and relevant transport processes in astrophysical disks 327

where Ω0 ≡ Ωk (R0), |kR| � k0, ṽφ (R − R0, z) varies over a radial
scale distance that is considerably larger than Lc ≡ 1/k0 and we
take mφ to be relatively low. These modes are of the spiral type
and we discuss at first the case where δω0 = 0 and γ0 is given ap-
proximately by the dispersion relations for axisymmetric modes
analyzed for

γ2
0 > m2

φ

(
dΩ
dR

)2

Δ2
R ∼ m2

φΩ
2

⎛⎜⎜⎜⎜⎝Δ
2
R

R2

⎞⎟⎟⎟⎟⎠ ,
where ΔR is the radial width over which the mode is localized. In
fact, this is a rather easy condition to satisfy as γ0 � vA/H0, and
v2A/H

2
0 > m2

φΩ
2
k (ΔR/R)2 for β > m2

φ (ΔR/R)2 where β ∼ c2
s/v

2
A, cs

is the sound velocity and H0Ωk ∼ cs.
We observe that the low-mφ spiral modes considered here

are directly connected to the axisymmetric modes discussed
. Referring to the radial displacement ξ̂R we note

that its expression, consistent with that of v̂φ given by Eq. ( ),
can be expanded as follows

ξ̂R � exp
[
ikR (R − R0) − imφ (Ωkt − φ) + γ0t

]

×
[
F0 (R − R0) ξ̃R0 (z) + ξ̃R1 (z,R − R0) + ξ̃1R (z,R − R0)

]

≡ ξ̂R0 + ξ̂R1 + ξ̂
1
R,

where kR = k0 + δkR, −1 < δkR/k0 < 0 and

dF0

dR
∼ F0

ΔR
,

∣∣∣∣∣∣
ξ̂R1

ξ̂R0

∣∣∣∣∣∣ ∼
1

ΔR |δkR| < 1,

∣∣∣∣∣∣
ξ̂1R

ξ̂R0

∣∣∣∣∣∣ ∼
1
ΔRk0

< 1.

The expansion (67) implies that we take

1
ΔRk0

>
1

(ΔRδkR)2
,

i.e. |δkR/k0| > 1/ |ΔRk0|1/2, and we consider the case where ξ̃R1
and ξ̃1R both are separable function of z and R − R0.

Then we refer to Eq. (31) and observe that when condi-
tion (66) is satisfied it reduces to⎡⎢⎢⎢⎢⎣ ∂2

∂z2

(
2Ωk

dΩk

dR

) ⎛⎜⎜⎜⎜⎝1 − z2

H2
0

⎞⎟⎟⎟⎟⎠ ξ̂R − v2A
(
∂2

∂R2
+
∂2

∂z2

)
ξ̂R

⎤⎥⎥⎥⎥⎦

−Ω2
k
∂2

∂R∂z

(
z
ρ̂

ρ0

)
+ 2γ0

d (Δγ)
dR

∂

∂R
ξ̂R

�
[
γ2

0 + i2γ0 (Δγ)
] [4

3
k2

0 ξ̂R −
(
∂2

∂R2
+
∂2

∂z2

)
ξ̂R

]
, (69)

where γt ≡ γ0 + imφ (dΩk/dR) (R − R0) ≡ γ0 + i (Δγ), ρ̂/ρ0 �
C0zξ̃z

/
H2

0 , and ∂ξ̂z
/
∂z � −∂ξ̂R

/
∂R. We notice that all the terms

proportional to (R − R0) are grouped on the r.h.s. of Eq. (69) and
that, for k2

R 
 ∂2
/
∂z2, this reduces to

7
3
γ2

0k2
0 ξ̂R + i2 (Δγ) γ0

7
3

k2
0ξ̂R0

− i2k0
dF0

dR

γ2
0

F0
ξ̂R0 − 2γ2

0kR |δkR| ξ̂R0 − γ2
0
∂2

∂z2
ξ̂R0. (70)

We observe also that the slow dependence of ξ̂R on (R − R0) can
be expressed through F0 (R − R0) if

1
F0

dF0

dR
=
Δγ

γ0

7
3

k0 (71)

that gives

F0 � exp

[
−7

6
mφkR

Ω′k
γ0

(R − R0)2

]
. (72)

It is important to point out that, in order that F0 be a localized
function of (R − R0) the sign of kR and mφ have to be related by
the requirement that

mφkRΩ
′ < 0, (73)

and, since Ω′ < 0, mφkR > 0, this corresponds to trailing spirals.
Then we define

ΔR ≡
∣∣∣∣∣∣
6
7
γ0

Ω′mφkR

∣∣∣∣∣∣
1/2

∼
(
γ0

Ωk

R0

k0mφ

)1/2

(74)

and condition (66) becomes, approximately,
mφ

k0R0
<
γ0

Ωk
< 1 (75)

with ΔRk0 ∼ (γ0k0R0)1/2/
(
Ωkmφ

)1/2 
 1. The condition

|δkR/k0| > 1/|ΔRk0|1/2 can be easily satisfied as well for γ0 ∼
vA/H0, ΔR ∼ (1/k0)

[
R0

/(
mφH0

)]1/2
. In particular, taking into

account that the vertical profiles of the modes represented by
Eq. (67) are given by the theory of the corresponding axisym-
metric

(
mφ = 0

)
modes, the spiral modes we consider become

the form

ξ̂z � ξ̃0z exp

⎡⎢⎢⎢⎢⎣− (R − R)2

Δ2
R

− z2

2Δ2
z

⎤⎥⎥⎥⎥⎦
×G0

0 (z) sin
{
kR (R − R0) − mφ

[
Ω (R0) t − φ]} exp (γ0t) (76)

where G0
0 (z) exp

[
−z2

/(
2Δ2

z

)]
represents the eigensolutions of

Eq. (31).
We note that the “vertical ballooning” structure of the con-

sidered modes which depends on the density and temperature
profiles of the equilibrium configuration, involves an analyti-
cal description that may be considered intermediate between a
global and a shearing-box type of analysis (Umurhan 2008). It is
evident from the derivation of the growth rates given in Sect. 7
that the radial gradient of the rotation frequency is the key factor
for the excitation of the considered modes. In addition, a mod-
erately peaked temperature profile corresponding to ηT > 2/3
enhances the instability found when ηT = 2/3 and add new un-
stable modes all of which require the radial gradient of the rota-
tion frequency.

Finally, we may argue that, given the radial localization ac-
quired by spiral modes, these should achieve higher amplitudes
than axisymmetric modes which can be standing over consider-
ably larger scale distances. Clearly, modes with higher values of
mφ have narrower radial profiles. Unlike axisymmetric modes,
spiral modes have angular momentum (Bertin 2000). We note
also that the radial localization distance ΔR for spiral modes is
related to the vertical pressure gradient and to the rotation fre-
quency through the growth rate γ0. This constitutes an intrinsic
difference from the spiral modes found for galactic disks whose
features are not considered to depend on the characteristics of
their vertical profiles.

A first report of the theory of these spiral modes and of those
analyzed in the next section was given by Coppi (2008b). The
excitation of modes of this kind in the proximity of a black hole
has been proposed as an explanation of high frequency quasi-
periodic-oscillations (QPO’s) by Coppi & Rebusco (2008a).
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where Ω0 ≡ Ωk (R0), |kR| � k0, ṽφ (R − R0, z) varies over a radial
scale distance that is considerably larger than Lc ≡ 1/k0 and we
take mφ to be relatively low. These modes are of the spiral type
and we discuss at first the case where δω0 = 0 and γ0 is given ap-
proximately by the dispersion relations for axisymmetric modes
analyzed in Sect. 4, for

γ2
0 > m2

φ

(
dΩ
dR

)2

Δ2
R ∼ m2

φΩ
2

⎛⎜⎜⎜⎜⎝Δ
2
R

R2

⎞⎟⎟⎟⎟⎠ , (66)

where ΔR is the radial width over which the mode is localized. In
fact, this is a rather easy condition to satisfy as γ0 � vA/H0, and
v2A/H

2
0 > m2

φΩ
2
k (ΔR/R)2 for β > m2

φ (ΔR/R)2 where β ∼ c2
s/v

2
A, cs

is the sound velocity and H0Ωk ∼ cs.
We observe that the low-mφ spiral modes considered here

are directly connected to the axisymmetric modes discussed in
Sects. 5 and 7. Referring to the radial displacement ξ̂R we note
that its expression, consistent with that of v̂φ given by Eq. (65),
can be expanded as follows

ξ̂R � exp
[
ikR (R − R0) − imφ (Ωkt − φ) + γ0t

]

×
[
F0 (R − R0) ξ̃R0 (z) + ξ̃R1 (z,R − R0) + ξ̃1R (z,R − R0)

]

≡ ξ̂R0 + ξ̂R1 + ξ̂
1
R, (67)

where kR = k0 + δkR, −1 < δkR/k0 < 0 and

dF0

dR
∼ F0

ΔR
,

∣∣∣∣∣∣
ξ̂R1

ξ̂R0

∣∣∣∣∣∣ ∼
1

ΔR |δkR| < 1,

∣∣∣∣∣∣
ξ̂1R

ξ̂R0

∣∣∣∣∣∣ ∼
1
ΔRk0

< 1. (68)

The expansion (67) implies that we take

1
ΔRk0

>
1

(ΔRδkR)2
,

i.e. |δkR/k0| > 1/ |ΔRk0|1/2, and we consider the case where ξ̃R1
and ξ̃1R both are separable function of z and R − R0.

Then we refer to Eq. (31) and observe that when condi-
tion (66) is satisfied it reduces to⎡⎢⎢⎢⎢⎣ ∂2

∂z2

(
2Ωk

dΩk

dR

) ⎛⎜⎜⎜⎜⎝1 − z2

H2
0

⎞⎟⎟⎟⎟⎠ ξ̂R − v2A
(
∂2

∂R2
+
∂2

∂z2

)
ξ̂R

⎤⎥⎥⎥⎥⎦

−Ω2
k
∂2

∂R∂z

(
z
ρ̂

ρ0

)
+ 2γ0

d (Δγ)
dR

∂

∂R
ξ̂R

�
[
γ2

0 + i2γ0 (Δγ)
] [4

3
k2

0 ξ̂R −
(
∂2

∂R2
+
∂2

∂z2

)
ξ̂R

]
, (69)

where γt ≡ γ0 + imφ (dΩk/dR) (R − R0) ≡ γ0 + i (Δγ), ρ̂/ρ0 �
C0zξ̃z

/
H2

0 , and ∂ξ̂z
/
∂z � −∂ξ̂R

/
∂R. We notice that all the terms

proportional to (R − R0) are grouped on the r.h.s. of Eq. (69) and
that, for k2

R 
 ∂2
/
∂z2, this reduces to

7
3
γ2

0k2
0 ξ̂R + i2 (Δγ) γ0

7
3

k2
0ξ̂R0

− i2k0
dF0

dR

γ2
0

F0
ξ̂R0 − 2γ2

0kR |δkR| ξ̂R0 − γ2
0
∂2

∂z2
ξ̂R0. (70)

We observe also that the slow dependence of ξ̂R on (R − R0) can
be expressed through F0 (R − R0) if

1
F0

dF0

dR
=
Δγ

γ0

7
3

k0 (71)

that gives

F0 � exp

[
−7

6
mφkR

Ω′k
γ0

(R − R0)2

]
.

It is important to point out that, in order that F0 be a localized
function of (R − R0) the sign of kR and mφ have to be related by
the requirement that

mφkRΩ
′ < 0,

and, since Ω′ < 0, mφkR > 0, this corresponds to trailing spirals.
Then we define

ΔR ≡
∣∣∣∣∣∣
6
7
γ0

Ω′mφkR

∣∣∣∣∣∣
1/2

∼
(
γ0

Ωk

R0

k0mφ

)1/2

and condition (66) becomes, approximately,
mφ

k0R0
<
γ0

Ωk
< 1

with ΔRk0 ∼ (γ0k0R0)1/2/
(
Ωkmφ

)1/2 
 1. The condition

|δkR/k0| > 1/|ΔRk0|1/2 can be easily satisfied as well for γ0 ∼
vA/H0, ΔR ∼ (1/k0)

[
R0

/(
mφH0

)]1/2
. In particular, taking into

account that the vertical profiles of the modes represented by
Eq. ( ) are given by the theory of the corresponding axisym-
metric

(
mφ = 0

)
modes, the spiral modes we consider become

the form

ξ̂z � ξ̃0z exp

⎡⎢⎢⎢⎢⎣− (R − R)2

Δ2
R

− z2

2Δ2
z

⎤⎥⎥⎥⎥⎦
×G0

0 (z) sin
{
kR (R − R0) − mφ

[
Ω (R0) t − φ]} exp (γ0t)

where G0
0 (z) exp

[
−z2

/(
2Δ2

z

)]
represents the eigensolutions of

Eq. (31).
We note that the “vertical ballooning” structure of the con-

sidered modes which depends on the density and temperature
profiles of the equilibrium configuration, involves an analyti-
cal description that may be considered intermediate between a
global and a shearing-box type of analysis (Umurhan 2008). It is
evident from the derivation of the growth rates given in Sect. 7
that the radial gradient of the rotation frequency is the key factor
for the excitation of the considered modes. In addition, a mod-
erately peaked temperature profile corresponding to ηT > 2/3
enhances the instability found when ηT = 2/3 and add new un-
stable modes all of which require the radial gradient of the rota-
tion frequency.

Finally, we may argue that, given the radial localization ac-
quired by spiral modes, these should achieve higher amplitudes
than axisymmetric modes which can be standing over consider-
ably larger scale distances. Clearly, modes with higher values of
mφ have narrower radial profiles. Unlike axisymmetric modes,
spiral modes have angular momentum (Bertin 2000). We note
also that the radial localization distance ΔR for spiral modes is
related to the vertical pressure gradient and to the rotation fre-
quency through the growth rate γ0. This constitutes an intrinsic
difference from the spiral modes found for galactic disks whose
features are not considered to depend on the characteristics of
their vertical profiles.

A first report of the theory of these spiral modes and of those
analyzed in the next section was given by Coppi (2008b). The
excitation of modes of this kind in the proximity of a black hole
has been proposed as an explanation of high frequency quasi-
periodic-oscillations (QPO’s) by Coppi & Rebusco (2008a).
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328 B. Coppi: Spectrum of plasma modes and relevant transport processes in astrophysical disks

Convective spirals

Another kind of spirals is of special interest in view of the role
they can have in the outward transport of angular momentum as
needed for mass accretion by the central object. These spiral are
oscillatory, in the frame where they corotate with the plasma at
a given radius R = R0, and are of the convective type, radially,
over scale distances that can be considerably larger than the “mi-
croscopic” scale distances such as Δ0 that have been introduced.
In fact, they may characterize the “equilibrium” state of a large
class of accretion disks providing a means for angular momen-
tum flow away from the central object.

The complete form of this mode can be represented as

ξ̂z � ξ̃0z exp

[
− z2

2Δ2
z

]

× exp
{
i
[
mφ (φ − Ωkt) + kR (R − R0)

]
−i
[
(δω0) t − σR

2
(R − R0)2

]}

over scale distances such that

|δω0| >
∣∣∣∣∣(R − R0)

dΩk

dR

∣∣∣∣∣
corresponding to

|R − R0| < R0
1
β1/6
,

where β = 8πp0

/
B2, k2

R � k2
0 and δω0 can be derived from

Eq. (61) after replacing ω0 by δω0.
Clearly, this mode is oscillatory (in R) over shorter scale dis-

tances than that required by condition ( ) as

σR � 7
3

mφkR

δω0

dΩ
dR
·

Convective modes localized over shorter scale distances can be
constructed out of this class of modes providing a means to trans-
port energy and angular momentum associated with the mode
away from R0, provided mφΩ′kR < 0 . Clearly, this indicates a
trailing spiral configuration as in the case of localized modes.

=
σ0, that can be obtained by a superposition of the modes repre-
sented by Eq. (78) is exemplified by the integral

� ≡ Δ2
p

∫ +∞

−∞
dσR

× exp
[
− (σR − σ0)2 Δ4

p + i
σR

2
(R − R0)2 − iδω0 (σR) t

]
(82)

where σ0Δ
2
p > 1. Then, for

δω0 (σR) � δω0 (σ0) + (σR − σ0)
∂δω0

∂σR

+
1
2

(σR − σ0)2 ∂
2δω0

∂σ2
R

(83)

we have

� � √π exp
{
i
[
σ0

2
(R − R0)2 − δω0 (σ0) t

]
(84)

− 1

4Δ4∗

[
1
2

(R − R0)2 − ∂δω0

∂σR
t

]2
⎫⎪⎪⎬⎪⎪⎭ (85)

where

Δ4
∗ ≡ Δ4

p +
i
2
∂2δω0

∂σ2
R

t. (86)

Therefore, we may define an effective transport coefficient rep-
resenting the “convectivity” of the considered modes that is de-
fined as

Deff =
∂

∂σR
(δω0) = −3

7
(δω0)2

mφkRΩ′
∼ v

2
A

mφ

R0

ΩkH0
∼ vAR0

mφ

(
vA

cs

)
(87)

considering that

δω0 � 7
3

mφkRΩ
′

σR
·

It is evident that Deff can have relatively large values and ex-
ceed the Shakura-Sunyaev coefficient (1973) for the outward
transport of angular momentum, Dss ∼ αsscsH0, when v2A >

αssc2
s

(
H2

0

/
R2

0

)
mφ.

Then a reasonable scenario to be envisioned is one where the
eigensolutions of Eq. (39) can be unstable and the correspond-
ing (normal mode) spirals are radially localized around R − R0.
The amplification of convective modes can be tied to the cou-
pling to linearly unstable modes providing a natural saturation
process for the latter kind of mode. Moreover, we may argue
that the minimum radius R = R0 from which a significant rate
of outward angular momentum transport can be produced by the
excited spirals could represent the radius around which the ac-
creting plasma accumulates. Finally, we note that when ηT ≥ 2/3
the vertical structure of oscillatory modes has to be properly an-
alyzed.

11. Conclusions

The investigation of the spectrum of plasma modes that can be
excited in disk configurations in the prevalent gravity of a central
object has led to new findings that include:

a. The identification of tridimensional spiral modes for which
the vertical structure (unlike the case of galactic spirals)
plays a key role in their properties.

b The vertical transport of both particles and thermal energy, in
opposing vertical directions, produced both by axisymmetric
and non-axisymmetric (e.g. spiral) modes which can lead to
an outflow of plasma from the disk structure.

c. The coexistence of both standing and convective spiral
modes, providing a means to transport angular momentum
radially with significant rates. These may be consistent with
those needed to justify the rates of mass accretion inferred
from the observed luminosities of significant astrophysical
objects.

We point out that the geometry of the disk structures from which
plasma modes can be excited has a determining influence on
the physical nature of these modes. Therefore theories adapted
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Then a reasonable scenario to be envisioned is one where the
eigensolutions of Eq. (39) can be unstable and the correspond-
ing (normal mode) spirals are radially localized around R − R0.
The amplification of convective modes can be tied to the cou-
pling to linearly unstable modes providing a natural saturation
process for the latter kind of mode. Moreover, we may argue
that the minimum radius R = R0 from which a significant rate
of outward angular momentum transport can be produced by the
excited spirals could represent the radius around which the ac-
creting plasma accumulates. Finally, we note that when ηT ≥ 2/3
the vertical structure of oscillatory modes has to be properly an-
alyzed.

11. Conclusions

The investigation of the spectrum of plasma modes that can be
excited in disk configurations in the prevalent gravity of a central
object has led to new findings that include:

a. The identification of tridimensional spiral modes for which
the vertical structure (unlike the case of galactic spirals)
plays a key role in their properties.

b The vertical transport of both particles and thermal energy, in
opposing vertical directions, produced both by axisymmetric
and non-axisymmetric (e.g. spiral) modes which can lead to
an outflow of plasma from the disk structure.

c. The coexistence of both standing and convective spiral
modes, providing a means to transport angular momentum
radially with significant rates. These may be consistent with
those needed to justify the rates of mass accretion inferred
from the observed luminosities of significant astrophysical
objects.

We point out that the geometry of the disk structures from which
plasma modes can be excited has a determining influence on
the physical nature of these modes. Therefore theories adapted
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Plasma flow patterns according to the Bursty Accretion scenario. 
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P lasma Regime s And Regions 

  Now,  taking into account the characteristics of the observed radiation emission from black hole candidates, we 

may envision a sequence of three plasma regions developing in the vicinity of a rotating and “active” black hole.  These 

regions differ by the kinds of plasma and magnetic field geometry that are present in them.  In particular, we consider 

i)  a “Buffer Region” 

ii) a  “Three-regime Region” 

iii)  a “Structured Low Temperature Region” 

The Buffer Region is assumed to be bounded by the Ergosphere and to extend to a d istance close to the radius of 

the marginally stable (e.g.  RMS ! 9RG ) retrograde orbit.  This region is assumed to be strongly turbulent.  Thus coherent 

structures originating from external regions should remain excluded from it.  The source of energy for this region is 

considered to be the rotational energy of the black hole [27]. 

In the region surrounding to the Buffer Region three plasma regimes can emerge (see Fig. 4).  Each regime is 

characterized both by different particle distributions in velocity space and by different coherent plasma structures.  In 

particular, we may identify 
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Sketch in the equatorial plane of the plasma regions surrounding a rotating black hole.  Here RMS = 9RG  and RL  is the 
distance at which the maximum amplitude of the spiral modes is localized. 
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a)  an “Extreme” (highly non thermal) Regime in which spiral structures are excited. 

b)  an “Intermediate Non-thermal” Regime in which plasma ring structures are    

present and rings are ejected vertically at the inner edge of the region. 

c)  a “Dissipative Thermal” regime where the ring structure is gradually dissipated  

within the Region before reaching the Buffer Region. 

In fact, it is well established experimentally, on the basis of the characteristics of the 

radiation emitted from Binary Black Holes [2] that these can be attributed to 3 

states: 

i) a “Steep Power Law” (SPL) State,   

ii) a “Hard” State,  

 iii) a Thermal State.   

Transitions between states have been observed for the same object. 
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Referring to the “Extreme Regime” the assumption made in the derivation of the 

Master Equation that the electron distribution is represented by a scalar pressure pe  can 

no longer be made.  In particular, if the pressure tensor has an anisotropy of the type the 

Master Equation is no longer valid and we may argue that a two dimensional 

configuration of a disk structure may not be established.  Then dual spiral structures with 

the same basic characteristics as those described in A&A 504 (2009) are envisioned to 

become dominant.  These consist of two spiral channels, one with a relatively high 

plasma density and one with a low density.  The existence of the low density region 

characterized by relatively low runaway critical fields is consistent with the onset of 

spiral structures represented by the following density profiles 
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Here RL  is the radial distance around which the mode is localized, !R  and !0
L  are the  

radial and vertical localization distances, respectively, " RL( )  is the frequency of the 

plasma rotation around the black hole, and m# RL  and kR  are the toroidal and radial 

mode numbers, respectively.  Moreover, sgn kRm# d" dR( ) < 0  corresponding to trailing 

spirals. 

   We note that the expressions for kR , !R ,  and !L
0  found from the linearized theory 

are  kR ! k0 = "D vA ,  vA
2 = B0

2 4$%0( ),  where B0  is the vertical “seed” magnetic field 

from which the considered perturbation can emerge, %0  is the plasma density on the 

equatorial plane,  !L
0 ! H 0 k0( )12  , 
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! 0  is the linear growth rate of the unstable mode,  ! 0 <" , H0 # cs "k RL( ) and 

cs  is the local velocity of sound. We observe that accretion should be allowed to 

proceed at relatively fast rates along the considered spiral structures. 

Then we may estimate the spiral co-rotational radius to be at the distance 

 RL ! $MSRMS + %0
R  where  RMS ! 9RG , and $MS  is an appropriate uncertainty 

parameter.  In addition, we may estimate %0
R  as  %

0
R ! &R RLH0( )12   where &R <1 is 

a second uncertainty parameter.   
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When the particle distributions in momentum space have a non-thermal component 

such as that represented by which allows the formation of a composite axisymmetric 

disk structure in the Three-regime Region, the excitation of spiral modes can be 

prevented.  Then the associated HFQPOs disappear.  In addition we may argue that 

as a res ult of the interaction between the composite disk structure and the strong 

turbulence at the edge of the Buffer Region the last couple of plasma rings, carrying 

oppositely directed toroidal plasma currents that repel each other, could be ejected 

vertically.  Following the arguments given in Section VI the plasma rings can be 

expected to “arrive” intermittently with a period related to the onset of the modes 

that transfer particles from one separatrix to the next.  In particular, we may envision 

that jets results from the ejection of toroids (“smoke-rings”) carrying currents in the 

same (toroidal) directions launched in opposite vertical directions. We also note that 

experimental observations indicate that jets emerge from evolving disk structures.   
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Ring ejection scenario. 
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In this connection we point out that a recent paper [28] suggests that the power 

associated with jets [29] is independent of the estimated angular momentum of the 

black holes with which they are connected. On the other hand it is reaso nable to 

assume that the properties of the Buffer Region and of the plasmas contained in it 

depend on the black hole rotation.  We point out also that the formation and ejection 

of jets with a purely toroidal magnetic field was proposed and analyzed in Ref. [30]. 

c) In the Dissipative Thermal regime the plasma can reach a relatively high 

temperature and maintain a thermal distribution as the coherent ring structure is 

dissipated before reaching the Buffer Region. 

Finally, in the outermost region the plasma is considered to be relatively cold 

and in a well thermalized state.  In this region a composite disk structure such as that 

described in Section III is assumed to be well established allowing the (accreting) 

plasma to flow along successive magnetic separatrices as proposed in Section VI.    
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Low mass X-ray Binaries

Artist impression
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X-ray Observations:
Active Spectral States

(Remillard&Mc Clintock 2006)

•Thermal state (High/Soft)
   high thermal disc fraction
•Hard state (Low/Hard)
   power law (non-thermal
emission) - Sometimes jets -
•Steep power law (Very High)
  highly non-thermal.
Sometimes HFQPOs
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High Frequency Quasi Periodic
Oscillations (HFQPOs)

• Highly Coherent Peaks
      in the X-ray power spectra
• 0.1-1200 Hz
      HF-> few hundred Hz
• Show up alone OR in pairs OR more
• In Black Holes:
     stable 3:2
• HFQPOs show up in the
      highly non-thermal (steep power

law) state
• jets and HFQPOs exclude each

other    
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•High frequency  QPOs lie in the range of ORBITAL
FREQUENCIES of free particle orbits just few
Schwarzschild radii outside the central source

•The frequencies scale with 1/M
    (e.g, Mc Clintock&Remillard 2004 )

Important Features
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Normal Modes in Plasma
Accretion Structures (Coppi 2008)

Tridimensional tightly wound spirals excited from a disc
embedded in a “seed” vertical magnetic field.

Excitation mechanism: differential rotation and
vertical gradients of plasma density and temperature.

They corotate at R0
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3D plasma spirals (trailing)

ΔR  and Δz are the radial and vertical localizations

Δz
2
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Where are they localized?
(B.Coppi, P.Rebusco and M.Bursa 2011,

in preparation)

= αMSRG

 

RG = GM*

c 2

We make 2 Assumptions
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Hence…
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3:2?

              Ωlower =2 ΩK  and Ωupper =3 ΩK Right Ratio!

Higher toroidal number mφ modes decay into mφ =2
and mφ =3  modes, consistently with the observed

twin peak QPOs spectra with the 3:2 ratio.
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Ray-tracing (courtesy of Michal Bursa)

m=2

m=3
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•We propose that the excitation of tri-dimensional spiral
modes be considered as the explanation for the emergence of
QPO’s

•The frequencies of the modes are tied to those of the local
rotation frequencies of plasmas around black holes

•A specific physical process for the excitation of the relevant
plasma collective modes is given, factor not covered by other
proposed theories.

• It is essential to advance the presented theory by dealing,
with non-thermal  particle distributions in phase space.

Remarks:
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GENERAL RELATIVITY CORRECTIONS 
The phenomena we consider to guide the presented theory, such as High 

Frequency Quasi Periodic Oscillations (HFQPOs) are estimated to be related to 
processes taking place at dis tances R  >!10RG , where RG ! GM" c2 .    Therefore, we 
can extend the theory given in earlier sectio ns by adopting effective gravitational 
potentials that include General Relativity effects and can be justified for these 
distances. In particular, when considering a no n-rotating black hole we use the 
Paczynsky-Wiita gravitational potential 

 
#G " $

GM"

R $ 2RG
. 

It is eas y to verify that this gives the correct radius (also known as ISCO) for the 
marginally stable orbit (RMS = 6RG ), that the rotation frequency is 

 
%G "

1
R $ 2RG

GM"

R
&
'(

)
*+
1
2
, 

and 

%D
2 = $ Rd%G

2

dR
= 3R $ 2RG
R $ 2RG

%G
2 .  
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As pointed out earlier !D
2  has a prominent role in Eqs. (*) and (***) and is one of 

the driving factors of the spectrum of modes that can lead to the formation of the 
considered configurations.  As we can see, !G  is increased by a factor 3 2  and !D

2  
by a factor 3 for R = 6RG  relative to the Newtonian values. 
 W e observe that, numerically,  RG ! 14.8 M" 10M"( )#$ %&  km and  RMS ! 89  

 M 10M"( )#$ %&  km.  Considering a d isk structure whose height is 2H, a t a given 

radius  R# RG , and a mass accretion rate  $M  about  10'9 M" yr , a rudimentary 
estimate of the plasma density may be made by an average mass conservation 

equation like 
 
! 2 $M HR#

$(
%
&)
* 5kms'1 VR#$ %& *1017 cm'3 where  

$M = $M 10'9 M" yr( ) ,  
H = H 103  km( ) , R = R 104  km( ) . The corresponding Keplerian velocity is 

V+ = c RG R( )1
2  

 
! 1.2 *104 M R( )1

2  km s'1 where  M = M" 10M"( ) . 
 We note that the radius RMS  depends in a significant way on the value of the 
angular momentum J = Jez  that a black hole can have.  This is characterized by 
the dimensionless parameter 

a" =
J

M"cRG
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with 0 < a! < 1,  a! " 1  being the so-called “extreme Kerr” limit.  When a! " 1, 

RMS = RG  (for a direct orbit), RMS = 9RG  (for a retrograde orbit) while RMS = 6RG  for 

a! = 0 , as indicated earlier. Another important radius associated with the Kerr metric to 

consider is that of the Ergosphere on the equatorial plane RE
0 = 2RG # RS .   As is well 

known, the Kerr metric is 

ds2 = $ 1$ 2RGr
ra

2

%
&'

(
)*
cdt( )2 $ 2FK( ) ad+( ) cdt( ) 

= r2 + a2 + a2Fk( )sin2, d+( )2 + ra
2

-a
2 dr

2 + ra
2 d+( )2 , 

where Boyer-Lindquist coordinates are used, ra
2 # r2 + a2 cos, , a # a!RG = J M!c( ) , 

-a
2 = r2 1$ 2RG r( ) + a2  and FK = 2rRG ra

2( )sin2, . 

In this case we may consider the effective potential for parti cles orbits in the plane 

z = 0 , whose radial velocity is given by    
!R2 2c2( ) +Veff R,  EN ,  L( )= EN c2 = E , where 
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Veff = ! RG

R
+ L

2 c2 ! 2a2E
2R2

! RG
R3

L
c
! a E +1"

#$
%
&'
2

    (***)  

and L  is the particle specific angular momentum.  For circular orbits  Veff = E   and 

dVeff dR = 0 , give  E  and  L  as functions of R .  Then the radius RMS  is obtained from 

d 2Veff dR2 = 0 . In particular, we may adopt Eq. (***) to add General Relativity 

corrections to the relevant theory developed in the Newtonian limit. 
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