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’70: Striking analogy:

Thermodynamics Black Hole Mechanics
Zeroth Law The temperature T is The surface gravity k is
uniform over a body in is constant over the horizon.

thermal equilibrium.

First Law TdS =dE + PdV — QdJ kdA = 8 (dM — QdJ)
Second law AS >0 AA >0

1976 Black holes emit Hawking radiation

Black holes have an entropy proportional to the area of the

horizon - e = Gh/c?’

BEKENSTEIN-HAWKING 5 l2 4
P

The microscopic degrees of freedom that give rise to the
entropy are not visible in the classical theory.
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“The dark side of String Theory” (G. Horowitz, Trieste 1992)

“The Hydrogen Atom
of Quantum Gravity”,
(J. Maldacena 1996)

CHANDRA X-RAY

“BH’s are the Harmonic Oscillator of the 21st Century”
(A. Strominger, 2009)



“Gedanken Black Holes” (B. Coppi, Dubna 2011)

Punchline:

1)Super-Gedanken Black Holes behave very similarly to
Gedanken Black Holes

2)Both arise as solutions of first order flow equations

3)Their masses and entropies can be determined on the basis
of symmetries alone



String theory, as a quantum theory of gravity, provides a microscopic
quantum description of the thermodynamic properties of some
extremal charged black holes

The description uses properties of some string theory solitons called
D-branes

(extended membranes of various spacetime dimensions
when wrapped around the compact extra dimensions

they look like charged particles)



SBH =3 IOgQ(Mv Qv P>

goal: explain this formula, identify the microstates
Are they the fundamental degrees of freedom of quantum gravity?

In very simple situations String Theory has correctly given the
microscopic description of the BH entropy

STROMINGER AND VAFA 1996

Sgr A* :ry. ~7-10° Km Sgg ~ 101011



*Schwarzschild M mass

¢Black Holes in Gravity °*Xerr J angular momentum
‘R.N. Q= (p,9 e-m charges
1
6_1£ = Z NVF'UJV

¢String/M-theory —— Einstein-Maxwell Supergravity +Scalar fields

d, N : {gw, qﬁ} G/H

d spacetime dimensions, N supersymmetries

many scalars: sigma model on G/H
G: group of Type E7, H m.c.s.

@Solutions in classical limit: p-branes, domain walls,...

p=0 : black holes



Symmetric Spaces G/H in Sugra

scScalars live on G/H, charges are in fundamental representation of G

G global symmetry, H local symmetry: “classical” e-m duality,
exchanges eqs of motion and Bianchi identities caiLLaroazumino

in full quantum theory charges are quantized and the duality is broken to

discrete subgroup  G(Z)=U-duality

Frm g 6)
N=8: d=4 §U(g) d=5  USp(8)

N=2: Special geometry or very special, defined by cubic F(X)

XXXk
X0

1

can be lifted to 5d




CREMMER, VAN PROEYEN
1985

DE WIT,VANDERSEYPEN,

VAN PROEYEN 1993

Special Geometries



oReissner-Nordstrom

PN )2 oM  Q?
dse = (1 | dte -l |
2 ( r r? e r r?

4 — s (M2 —Q2)1/2

)_1dr2 + +r2d0?

1 T=0 but nonzero S,

(Extremal: ¢ = 25T = §(T+ —7r_)—0 ) stable, 1 horizon

@BPS (Bogomolny-Prasad-Sommerfeld) states:
preserve a certain fractionof N 8 =S §.Q|BPS state >= 0

BPSbound M > |@| stable ground states

[VBH,S pI'OpCI'tiCS diCtated by geometry: BEKENSTEIN-HAWKING
Thermodynamics: T, S

Seed = [M+\/M2— (IDQqLQQ)}2

Dynamics: Attractor Mechanism FERRARA-KALLOSH 1995

SBH == kB 114H —T‘-VBH(¢H7P7 )



Two strategies for BH:

A) Bottom Up:

start from string/M-theory or lower d compactification:
work with an effective supergravity theory

take specific geometry of spacetime, ansatz for various fields
solve equations of motion (by harmonic functions):

various degrees of susy preserved

interplay between 4d and 5d

extremal/non extremal BH, rings, nuts, bolts,
multicentre, rotating....



Two strategies for BH:

B) Top Down:
use symmetry of the theory (geometry, group theory) and
extract general features of physically distinct classes of solutions

B1) U-duality charge orbits have been broadly classified rerrara

B2) Nilpotent orbits ( talk by P. Fre’ ):SG equations of motion
become equivalent to lightlike geodesics motion on the pseudo-
riemannian manifold of the 3d sigma model G3/Hj3 obtained by
time reduction.
rre’ sorin Triciante Telate nilpotent orbits to Tits Satake Universality
classes and Lax pair representations: integrability



Messages

FERRARA-KALLOSH 1995

1) Extremal BH solutions of extended SG have “attractor behaviour™
and they are associated to 1st order flow equations

BPS (susy)
non BPS (non susy)  Ac, Gparagata 007

ii) U-Duality plays a fundamental role in determining

BH effective potential Vpm (attractors, entropies)

Fake superpotential W (flow equations, mass)

Q orbits on G/H or nilpotent orbits (distinct classes of BH’s)

iii) Singular BH’s (S=o0, NO attractors) have a W and are interesting,
Multi-centre BH’s : use ““horizontal symmetry” SL(p,R)



Menu

The Extremal Black Hole Attractor Flows and Veu 2
Susy/Non-Susy Ver = W* + ¢ D;WD,;W

The role of electriccmagnetic U-duality: (N=2, N=8§)

@ W *fake” superpotential

1§

@  Orbits of charge vector Q
Singular black holes, Multi-centre black holes

Summary and Outlook



THE ATTRACTOR
MECHANISM
AND VgH




THE ATTRACTOR MECHANISM R S S

STROMINGER 1996

¢ Susy BH’s with e-m charges (q,p) arise as solitonic solutions of a 1d
quantum mechanical problem: radial evolution qu (r)

. {cé%(r) > ha(ri) = &' (p,9)
F(r) = 0

scalars at the horizon do not depend on

lim ¢ (r) = g —

s O - . ;7 3 7
{gbéc} = moduli space  —— ——.J

—“NO SCALAR HAIR”, no memory of boundary values
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THE ATTRACTOR MECHANISM

@  Attractor fixed points are extrema of an effective potential

Veu(p, q; ") = —%QTMQ Q= (p",qr) Sp(2n,R)

8¢ VBH = M (N) 2N X 2n matrix
at the horizon: s
SBH = 7 = nVay(ou(p,q);p,q) Bekenstein-Hawking

gSUSY < EXTREMALITY T ormn

1996

¢Extremal: c=2ST=0 minimal mass for a given charge config.

BPS bound:  Af > |Q‘



non-extremal extremal

Figure 2: Schematic representation of
non-extremal and extremal black hole

throats wusing proper-distance coordi-
nates.



THE ATTRACTOR MECHANISM

@ Consider static, spherically symmetric, asymptotically flat BH’s in
d=4

¢ Symmetries imply that g, and ¢Z depend only on r: ¢Z = ¢Z (T)

2 2
ds? — _e2U() 42 1 ¢—2U(r) (04 dr | c dﬂg2>

sinh*(er)  sinh?(er)

¢ Start from 4d N=2 supergravity with vector fields

R e o
Lag = 5 §i70,0" 0, ¢ + Tas () Fé\u FEH 4 Ras(o) F,ﬁ\V TApy

e-m charges: / FA = 47TPA / G = 4mgp
S2 S2



THE ATTRACTOR MECHANISM

¢ Integratingover R, X S 2 you get
{ L= U @) +950"67 + Vb (9,0,p) — &
H = (U'(r)* + gi7¢"¢"” — €’ Viu(4,¢,p) — ¢
Need H=0 to have that 1d eqs of motion are consistent with the 4d ones

¢ For N=2 supergravity the effective potential reads

Veu(9,q,p) = |Z]° + 4¢"76;| Z|0;5| 2

5 T (XAQA e JTAPA) N=2 central charge JFj = Or\F(X)
Q=(p"aqn); V=(X"Fa): Sp(2n,+2)

Sections of Kahler-Hodge manifold (Special Geometry)



THE ATTRACTOR

MECHANISM

FERRARA-GIBBONS-
KALLOSH 1996

¢ For extremal solutions ¢ = 2ST=0), the action takes Bogomolny form:

S

[ ar

(5! -

2 eU‘ZDQ e ‘¢Zl 5

d

- 2eV 9701 2| -

= 2% (eU\ZD




THE ATTRACTOR MECHANISM

FERRARA-GIBBONS-
KALLOSH 1996

¢ For extremal solutions ¢ = 2ST=0), the action takes Bogomolny form:

S

[ ar

(U -

d

= eU\ZDQ — ‘gbi’ + ZeUgij_(‘?J—\ZHQ -

Flow equations

= 2% (eU\ZD




THE ATTRACTOR

MECHANISM

FERRARA-GIBBONS-
KALLOSH 1996

¢ For extremal solutions ¢ = 2ST=0), the action takes Bogomolny form:

S

[ ar

(U -

c eU‘ZDQ e ‘¢Zl =

Flow e

. 2 d
- 2eY ¢Y0:| Z||” F2— (e¥|2
€ g .7‘ || d’/‘ (e ‘ D
quations ADM mass




THE ATTRACTOR

MECHANISM

FERRARA-GIBBONS-
KALLOSH 1996

¢ For extremal solutions ¢ = 2ST=0), the action takes Bogomolny form:

S:/dr

¢ The tflow stops at

where

(U -

- 2eV 9701 2| -

c eU‘ZDQ e ‘¢Zl =

ds® =

Flow e

T2

it~

:2i

dr

Ce)

quations ADM mass

&J‘Z| — 00—V —0

215

215

/"?2

(der -+ TQQ%Q)




THE ATTRACTOR

MECHANISM

FERRARA-GIBBONS-
KALLOSH 1996

¢ For extremal solutions ¢ = 2ST=0), the action takes Bogomolny form:

S

— [ ar

¢ The tflow stops at

where

(U -

- 2eV 9701 2| -

c eU‘ZDQ e ‘¢Zl =

ds® =

Flow e

T2

:Qi (e”]Z])

dr

quations ADM mass

3Z‘Z| — 00—V —0

215

2
\ZEdt |

/"?2

AdSQ X SQ

(dfr2 -+ T29%2)




THE ATTRACTOR

MECHANISM

FERRARA-GIBBONS-
KALLOSH 1996

¢ For extremal solutions ¢ = 2ST=0), the action takes Bogomolny form:

Sie /dr (U" £ eU\ZD2 + [¢¥ £ ZeUgij_(‘?j—\ZHQ o= 2% (e”]Z])
Flow equations =~ ADM mass
¢ The flow stopsat  9;|Z| =0= 0;Vgg =0 AdS, x §2
s 2 = e ‘Zﬁ 2 20)2
where ds® = ‘Z&dt | = (d?“ Sis U Sz)
A
%
SBH = Z e W‘Z|>l< (¢*(p7 q)apv Q)




FIRST ORDER FLOW EQUATIONS

U// o 62UVBH
gbi” gL F;k¢j/¢k/ = €2ng'jajVBH

2eqgs of motion: {
geftective BH potential: Vg = Ve 4gi75iW(93—W
Q Superpotential: W(¢7 ﬁ) Fo |Z|

2ADM mass: GUW‘OO ~ Mapm

oV,
angZH:O:>DiZ:O Z#0

@BPS attractor:

stability: check Hessian



FIRST ORDER FLOW EQUATIONS

e TR T w3 B i i Al e T s AR

2eqgs of motion: ZA = e W
: ¢il == ::26Ugijaj—W

gsuperpotential for BPS flows: W (¢, ¢) = |Z|
ceffective BH potential: Vg = W* + 49ijaiW35W

U
2ADM mass: e” Wle ~ Mapum

0VBu
¢BPS attractor: dn's = 0= Diz=0 Z#0

stability: check Hessian, possible saddle points




FERRARA, KALLOSH
2006

Set up for N- Extended Supergravities

* N- extended susy algebra: {QaA7 QBB} =€a ZAB (p7 q; ¢)

Ve = —3Q"MWN)Q = 32457 + Z1Z" | 8Ver =0
Zag = —Zpa central charges A,B in SUN)
I: fundam of matter
A
matter charges group when present
(N == ZAB == EABZ, Z] = DZZ)
o= (pA, g ) N(¢) kinetic matrix for vector fields
ESETAN A A
ZAB i AB(]A = hABAp (f ABahABA) Sp(Qn,R)

*BPS bound: Muapum (9, Q) = |z1(¢, Q)| = ... = |2 n/21(9, Q)]

BPS states: M=highest eigenvalue of central charge



FAKE
SUPERPOTENTIAL
FOR NON Susy BH




S g FREEDMAN, NUNEZ,
Fake Supergravities  scrnaseL skenoeris,
TOWNSEND, 2003
CELI, AC, DALL’AGATA, VAN
PROEYEN, ZAGERMANN 2004

¢Gravitational theories in d-dim that are susy only through linear order

in fermion fiel

ds. Contain some “fake BPS equations” for the warp

factor and scal

ar fields that are of first order and solve ordinary

Einstein and scalar field equations

¢The scalar potential can formally be written in terms of a
superpotential (matrix) in the “stability form”

@Applications

adding vectors, also BH’s, superstars,...

¢ Caution when you have many (hyper)-scalar S

TOWNSEND,

: curved domain walls in SUGRA, cosmological solutions;

N

skenoeris — pseudosupersymmetries, cosmological solutions



AC, G. DALL’AGATA
NON-BPS EXTREMAL BLACK HOLES

@ Defining areal W(¢,9) , extremal black holes are described by

U’ —eVW
¢/i = —QeUg’j@jW

itk VBH(¢7 qvp) o W2 s 4gzja’LWa7W

¢ BPS BH's are a special case with W = |Z]
¢ But other possible solutions are the non-BPS BH’s !

e 9,W(o, QE) — (0 gives non-BPS critical points!

“take” superpotential



AC, G. DALL’AGATA
NON-BPS EXTREMAL BLACK HOLES

@ Defining areal W(¢,9) , extremal black holes are described by

b — This 1s a PDE with b.c.
ot = —2eUgi 0-W the critical pomt. of the
superpotential

itk VBH(¢7 qvp) o W2 s 4gzjaZW6jW

¢ BPS BH's are a special case with W = |Z]
¢ But other possible solutions are the non-BPS BH’s !

e 9,W(o, QE) — (0 gives non-BPS critical points!

“take” superpotential



General Answer: AC&G. DALL’AGATA 2007

¢ look for a real “fake” superpotential W (o, &) o
a) Wi — T2 i 4927 @W[)jW same effective potential

i
¢Z/ = ::26Ug7’jaj—W

b) drives first order flows {

o O;W(p,p) =0 gives non-BPS critical points

¢ Construct it using duality invariance: W =W ( {Zn })



SUSY algebra: {QaAa QBB} Sr eozBZAB (p7 q, QS)

ZABSU—(S2

A,B-1,...8

eigenvalues:

Cartan quartic invariant (Cremmer-Julia):

[
z

\

{2 = p;e¥1%) §=1,2,3,4 sparameters | M > zp

2

The example: N=8

;
N

o

E
G S(;((Q)

70 scalars, 56 charges

U-duality: E7(7) (Z)

Oacal
S ) normal frame

I, =Tr(Z2)* - X(Tr ZZ)? + A(Pf Z + Pf Z) = Tupcaq®q®q°q"

A— 77

Invariants:

1,
Pt —

=)

{TrA, TrA?, Tr A%, TrA* Re Pf Z}



How TO FIND W

@Question: What is a complete set of duality invariants for N=2?

@AHSWCI': SP(ZIHZ,R) invariants are CERCHIAI MARRANI

FERRARA ZUMINO

2009
=
is = g9 2,7 O =T T
| e e e o
ki 6 [ZNS(Z) e ZNS(Zi)] ; gy = 6 [ZNS(Z) R ZNS(Z)] ;

g ijkczjl%?j?k ZIZE

cubic norms:

N7 7.2

Nl e 2 77

Ansatz: V[/'(¢7 ¢) — W(il, 19,13, 24, 25) F?RCR’ADR:J\—(?SAAJ?AN
2009




W and Hamilton-Jacobi """ ot 2008 *"

Interpret U(r), ¢*(r) as coordinates of an Hamiltonian system
where the radial variable plays the role of time. Then first order
description is equivalent to solving HJ problem for Hamilton’s
characteristic function

W(U, ¢) = 2¢” W(¢)

Hamilton-Jacobi equation
W2 4 249 oW ow

T ae

boundary conditions

PR — o0 k=00 i —0l==0"

O

implications on duality invariance and stability (a la Liapunov)

¢W= Hamilton’s principal function for non -BPS flows



AC, DALL’AGATA,
FERRARA, YERANYAN
2009

How TO FIND W

Find W for generic charge configuration by

BELLUCCI,

1. Take W for STU model in S=T=U limit S ANV ANTE OB R
2.Compute it in simple charge configuration and then boost it to generic
charges by a duality transtormation

1/3
F R A3 . et T
W2 — 1 ; 2 | g (423 /_[4_(7/1_'_7/2)[4_'_ (Zl__2> ) -

3

) 3\ 1/3
e (4i3 Vi e R e et <i1 = 2—2) )

3

—> non polynomial expression, but at non-BPS attractor point:

3

19 :321 = Z\/ —[4,i3 —() jSBH :W2 == \/—‘[4‘



FULL NON-BPS BH SOLUTION:

Given W you can solve flow eqs by (universal) harmonic
functions: ¢ =x — iy

- 1/4
& ae ( \/ﬁ) H
_4U 3 > 240
€ — A el (—I,)1/4
Hy — 55
b/ — 14 \/5%
Gp ;
i ) Ho = ho — V2qor
_2U
S el {th“r\@?lr

AC, DALL’AGATA,
FERRARA, YERANYAN
2009



Results for 73 572 STU agree with time reduction approach

Bossard,Michel, Pioline arXiv:0908.1742
“non standard diagonalization problem”, sextic polynomial in
W? whose coefficients are SU(8) invariants



CHARGE ORBITS



Attractors & Duality

e KaLLosH-KoL (1996): Area of horizon for N=8 extremal BH

is proportional to /£, ,where I, = T,,,4Q"Q°Q°Q%of E;
for 1/8 preserved susy. A=o (I, = 0) for 1/8, 1/4, 1/2 susy

SEN; CVETIC, HULL 1996

ANDRIANOPOLI,D’AURIA,
FERRARA 1997,1998

* FERRARA-MALDACENA (1998): different susy features are

distinguished by U-invariant conditions on charges Q=(p,q)

Lu,POPE, STELLE 1998

* FERRARA-GUNAYDIN (1998): for fixed values of [, in d=4
and of j, in d=5, charge vectors Q for supergravities on
symmetric spaces describe orbits whose nature is related to
the susy properties of fixed points BELLUCCI,FERRARA,GUNAYDIN,

MARRANI 2006




¢Orbits of the fundamental representation of the U-duality groups in
extended supergravities based on symmetric spaces classify in an
invariant way the extremal BPS and non BPS regular and singular
Black Hole solutions

¢Each orbit correspond to an allowed entropy FERRARA GUNAYDIN
1998

¢ Classification of BPS states preserving different numbers of susy is
in close parallel to the classification of the little groups and orbits of
timelike, lightlike and spacelike vectors in Minkowski space:
Lightlike: [, =0
Spacelike: I, > 0

Timelike: I, <0



BH potentials for difterent values of the quartic invariant I4

(pictures by G. Dall’Agata)

BPS non-BPS

|
W I, >0 I4<O

\ flat directiou
minimum

\ 1420

¢ = Poo

small BH’s



Charge Orbits for N=8 KALLOSH-KOL 1996,

FERRARA MALDACENA 1996
FERRARA KALLOSH 2006,
CERCHIAI,FERRARA,
MARRANI, ZUMINO 2009

/8BPS: Spa=ny/Ii=mp" I1>0
Large Orbits (721 = pe'ts za = 23 = 24 = O}

It #0
non BPS: Spg=7nvV—-Is=4mp° I, <0

{21 e O et D L R Pem/él};

1/8 BPS: 8la £ g {p1 = p2 = p3 = pa,p}
q
Small Orbits 1/4 BPS: % 31 822({9‘;,, Laa 7l 1P1 = p2,p3 = pa,P}

5=

{pr=p2=p3=ps=p,p=2kn}



SINGULAR
BLACK HOLES



Singular Black Holes

# S=0, I, = 0 vanishing classical entropy

2 NO Attractor behaviour: O,W|g # 0 : W has a runaway
solution W=0 at boundary of moduli space

# In principle can still compute W (I, — 0) by a suitable limit of
large BH’s

ANDRIANOPOLI, FERRARA, D’AURIA, TRIGIANTE
2010

% Can compute W as a function of the invariants W ({i,, })

# In N=2 “small” BH’s can be BPS or non-BPS, differently from

|\|=8 AC, FERRARA, MARRANI 2010

2 Small BH’s may play a role in strings/finiteness of N=8 SG

BIANCHI, KALLOSH,
FERRARA 2010



(

e o) 5 BPS Z'1 >)\17)\27)\3 WBPS:\/E
Large : . \IlOIl BPS A1 > 11, Ao, A3 WronBPS = VA1
Orbits:
I, <0 non BPS A1 # Ao 7& A3 W s e =
o iohtlike 1
. BPS 1 > VA; Wgps = Vi1
Jeip =) — G < : ;
KHOHBPS W= )\1; Won BPS = VA1
Small
OI‘bitS: .Crltlcal (BPS ,L'2 & 7;1 > 232 WBPS i \/a
la =0 Qe =il =) < Z'1=>\1;>\2=>\3:%
LnonBPS 1 < %2 Wi e — \/%
* Doubly critical

ﬁidle:O, R BPS ilz)\lz)\gz)\g; WBPS:\/E



AND...
ONE MORE THING




BH Technology Transfer: from one to many centres by U-duality

U-duality can take a long way in classifying physically distinct (extremal)
1-centre black holes, their orbits and attractors.

What can we infer for multi-centre?



Need to give up spherical symmetry

Stationary solutions

Many charge vectors QM = (pé\, qu) a.=71  c:;p ~=lr—1 =i
mutual non locality: W= (0Q1,93) = %Qéw Q{,V Eom

Horizontal Symmetry S L (p, R)

More Invariants for groups of type E7 (and E6 in 5d) o pisy I

example of Bossard+Ruef



LESS‘SA(&D “+ a\/eﬂ::?

= xRS
EXTESMAL SOLUTIONS 0F STU v N=2 d=¢ (w FLaT 20l BASE)

|
&a Qi < Qa,Qv Y
RP S / BPS BfS <CQ°\( Q,? =0
Iq,?o T,>o0
D &
( WUL> | < L QL? £ 0o
ALMO ST
BPS \ BFS gk <, QLY €0
( Gstolaten + Koy by
mom BFS
D6 D)o / <O LD =0
[NTSRACTINGG ) D
COMPOSTTE ‘ poa BES mou. BPS <Qa d
a, Ab?
mou BPS Tu<o Ty <o ¢ #90

3 NlLporsat o8 (2 5518 oF SUUATIOMS )



many centres SKG identities:

< Qa, Qp >= —2Im(Z,Zy, — ¢¥ D;Z,D>Zy)
O MOy~ 2RelZ Jh ~gP D, 4. D7)

(

9 < Qaa Qb >= LgZp + gijDiZaDij

1
~5QIMQs —



SUMMARY




“Gedanken Black Holes” (B. Coppi, Dubna 2011)

Punchline:

1)Super-Gedanken Black Holes behave very similarly to
Gedanken Black Holes

2)Both arise as solutions of first order flow equations

3)Their masses and entropies can be determined on the basis
of symmetries alone



Results

1) Extremal BH solutions of extended SG have attractor
behaviour even without supersymmetry

ii) They are associated to 1st order flow equations
[easier to find full solutions by harmonic functions} driven by
W which gives entropy at horizon and ADM mass at infinity

iii) U-Duality constrains W and allows for a classification of
orbits of charge vector Q in terms of invariants,
characterizing different physical features

iv) Singular BH’s (S=0) have a W and are interesting
N=8: 1/8,1/4,1/2 ; N=2: 1/2,0, W known

v) Multicentre solutions and non extremality are to be explored



~15 Years of Attractor Mechanism :
what have we learned?
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~15 Years of Attractor Mechanism :
what have we learned?

. attractors exist for various d and N

. various degrees of susy preserved: BPS and non BPS branches

. solutions arrange into duality orbits of Q (nilpotent orbits: Fre’+Sorin)
. first order formalism (W function of duality invariants), useful to

construct solutions by harmonic functions, entropy at horizon, ADM
mass at infinity



~15 Years of Attractor Mechanism :
what have we learned?

¢ attractors exist for various d and N

. various degrees of susy preserved: BPS and non BPS branches

. solutions arrange into duality orbits of Q (nilpotent orbits: Fre’+Sorin)
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« 4d/5d connection can give many clues
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w Integrability: next seminar by P. Fre’



...and where next?

Thank you!!!



