European Research Council
Adv. Grant no. 226455

Black Hole Flow Equations and Duality

Anna Ceresole (INFN, Torino)

ROUND TABLE 4 ITALY-RUSSIA@DUBNA
Black Holes in Mathematics and Physics
Dubna, December I7th, $201 I$

European Research Council

Black Hole Flow Equations and Duality

P. Fre': hep-th/98ı216o AC with P. Fre', R. D'Auria, M. Trigiante hep-th/9807136 AC, G.Dall'Agata, $\mathcal{J H E P}$ o3 (2007) ino, hep-th/o702088

S. Ferrara
recent review by G. Dall'Agata: arXiv.org/ıio6.26ıI
'70: Striking analogy:

Thermodynamics
Zeroth Law

First Law
Second law

The temperature T is uniform over a body in thermal equilibrium.

Black Hole Mechanics
The surface gravity κ is
is constant over the horizon.
$\kappa d A=8 \pi(d M-\Omega d J)$
$\Delta A \geq 0$

1976 Black holes emit Hawking radiation
Black holes have an entropy proportional to the area of the horizon

BEKENSTEIN-HAWKING

$$
S=\frac{k_{B}}{l_{P}^{2}} \frac{A}{4} \quad l_{P}^{2}=G \hbar / c^{3}
$$

The microscopic degrees of freedom that give rise to the entropy are not visible in the classical theory.
(c) Original Artist

Reproduction rights obtainable from

E\&GOEPM: 14010 US

Vol. 3: Superstrings

"The dark side of String Theory" (G. Horowitz, Trieste 1992)
"The Hydrogen Atom of Quantum Gravity", (J. Maldacena 1996)

"BH's are the Harmonic Oscillator of the 21st Century" (A. Strominger, 2009)
"Gedanken Black Holes" (B. Coppi, Dubna 20ır)

Punchline:

I)Super-Gedanken Black Holes behave very similarly to Gedanken Black Holes
2) Both arise as solutions of first order flow equations
3)Their masses and entropies can be determined on the basis of symmetries alone

String theory, as a quantum theory of gravity, provides a microscopic quantum description of the thermodynamic properties of some extremal charged black holes

The description uses properties of some string theory solitons called

D-branes

(extended membranes of various spacetime dimensions when wrapped around the compact extra dimensions they look like charged particles)

$$
S_{B H}=\log \Omega(M, Q, P)
$$

goal: explain this formula, identify the microstates
Are they the fundamental degrees of freedom of quantum gravity?
In very simple situations String Theory has correctly given the microscopic description of the BH entropy

```
STROMINGER AND VAFA 1996
```

$$
\text { Sgr } A^{\star}: r_{+} \sim 7 \cdot 10^{9} K m \quad S_{B H} \sim 10^{100}!!!
$$

-Schwarzschild
QBlack Holes in Gravity

$$
e^{-1} \mathcal{L}=R-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

QString/M-theory \Longrightarrow Einstein-Maxwell Supergravity + Scalar fields

$$
d, N:\left\{g_{\mu \nu}, A_{\mu}^{\Lambda}, \phi^{i}\right\} \quad G / H
$$

d spacetime dimensions, N supersymmetries
many scalars: sigma model on G/H
G: group of Type E7, H m.c.s.
QSolutions in classical limit: p-branes, domain walls,... $\mathrm{p}=\mathrm{o}$: black holes

Symmetric Spaces G/H in Sugra

颣Scalars live on G/H, charges are in fundamental representation of G
G global symmetry, H local symmetry: "classical" e-m duality, exchanges eqs of motion and Bianchi identities gaillardazumino
in full quantum theory charges are quantized and the duality is broken to discrete subgroup $G(Z)=U$-duality

Hull\&townsend
$\mathrm{N}=8: \quad \mathrm{d}=4 \quad \frac{E_{7(7)}}{S U(8)} \quad \mathrm{d}=5 \quad \frac{E_{6(6)}}{U S p(8)}$
$\mathrm{N}=2$: Special geometry or very special, defined by cubic $\mathrm{F}(\mathrm{X})$

$$
F(X)=\frac{1}{3!} d_{i j k} \frac{X^{i} X^{j} X^{k}}{X^{0}}
$$

can be lifted to 5 d

cubic geometries

G/H
symmetric
spaces

Special Geometries

QReissner-Nordstrom

$$
\begin{aligned}
d s^{2} & =-\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right) d t^{2}+\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right)^{-1} d r^{2}++r^{2} d \Omega^{2} \\
r_{ \pm} & =M \pm\left(M^{2}-Q^{2}\right)^{1 / 2}
\end{aligned}
$$

(Extremal: $\quad c=2 S T=\frac{1}{2}\left(r_{+}-r_{-}\right) \rightarrow 0$)

> T=o but nonzero S, stable, I horizon

QBPS (Bogomolny-Prasad-Sommerfeld) states: preserve a certain fraction of $\mathrm{N} \quad S^{2}=S \quad S \cdot \mathcal{Q} \mid B P S$ state $>=0$

BPS bound $\quad M \geq|Q| \quad$ stable ground states
QBH's properties dictated by geometry: bekenstein-hawking
Thermodynamics: T, S

$$
S_{B H}=\pi r_{+}^{2}=\pi\left[M+\sqrt{M^{2}-\left(P^{2}+Q^{2}\right)}\right]^{2}
$$

Dynamics: Attractor Mechanism ferrara-kallosh 1995

$$
S_{B H}=\frac{k_{B}}{l_{P}^{2}} \frac{1}{4} A_{H}=\pi V_{B H}\left(\phi_{H}^{i} ; p, q\right)
$$

Two strategies for BH:

A) Bottom Up:
start from string/M-theory or lower d compactification: work with an effective supergravity theory
take specific geometry of spacetime, ansatz for various fields
solve equations of motion (by harmonic functions):
various degrees of susy preserved
interplay between 4 d and 5 d
extremal/non extremal BH, rings, nuts, bolts,
multicentre, rotating....

Two strategies for BH:

B) Top Down:
use symmetry of the theory (geometry, group theory) and extract general features of physically distinct classes of solutions

BI) U-duality charge orbits have been broadly classified ferrara

B2) Nilpotent orbits (talk by P. Fre'):SG equations of motion become equivalent to lightlike geodesics motion on the pseudoriemannian manifold of the 3 d sigma model G_{3} / H_{3} obtained by time reduction.
fre' sorin trigiante relate nilpotent orbits to Tits Satake Universality classes and Lax pair representations: integrability

Messages

i) Extremal BH solutions of extended SG have "attractor behaviour" and they are associated to ist order flow equations

$$
\left\{\begin{array}{l}
\text { BPS (susy) } \\
\text { non BPS (non susy) AC, G.Dall'Agata 2007 }
\end{array}\right.
$$

ii) U-Duality plays a fundamental role in determining
\boxtimes BH effective potential $\mathbf{V}_{\mathbf{B H}}$ (attractors, entropies)
\boxtimes Fake superpotential \mathbf{W} (flow equations, mass)
$\boxtimes \mathrm{Q}$ orbits on \mathbf{G} / \mathbf{H} or nilpotent orbits (distinct classes of BH's)
iii) Singular BH's ($\mathrm{S}=\mathrm{o}, \mathrm{NO}$ attractors) have a \mathbf{W} and are interesting, Multi-centre BH's : use "horizontal symmetry" SL(p,R)

Мепи

Q The Extremal Black Hole Attractor Flows and $\mathbf{V}_{\text {bh }}$ Susy/Non-Susy $\quad V_{B H}=W^{2}+g^{i j} D_{i} W D_{j} W$

Q The role of electric-magnetic U-duality: $(\mathrm{N}=2, \mathrm{~N}=8)$
Q W "fake" superpotential
Q Orbits of charge vector \mathbf{Q}
Q Singular black holes, Multi-centre black holes
Q Summary and Outlook

THE ATTRACTOR MECHANISM AND V_{BH}

Q Susy BH's with e-m charges (q, p) arise as solitonic solutions of a id quantum mechanical problem: radial evolution $\phi^{i}(r)$
$r \rightarrow r_{H}\left\{\begin{array}{l}\phi^{i}(r) \rightarrow \phi_{H}^{i}\left(r_{H}\right)=\phi^{i}(p, q) \\ \dot{\phi}^{i}(r) \rightarrow 0\end{array}\right.$
scalars at the horizon do not depend on
$\lim _{r \rightarrow \infty} \phi^{i}(r)=\phi_{\infty}^{i}$

$$
\left\{\phi_{\infty}^{i}\right\}=\text { moduli space }
$$

""NO SCALAR HAIR", no memory of boundary values

Q Attractor fixed points are extrema of an effective potential

$$
\begin{array}{ll}
V_{B H}\left(p, q ; \phi^{i}\right)=-\frac{1}{2} Q^{T} \mathcal{M} Q & Q=\left(p^{\Lambda}, q_{\Lambda}\right) \quad S p(2 n, \mathbb{R}) \\
\partial_{\phi} V_{B H}=0 & \mathcal{M}(\mathcal{N}) \quad \text { 2n x 2n matrix }
\end{array}
$$

at the horizon:

$$
S_{B H}=\frac{A}{4}=\pi V_{B H}^{*}\left(\phi_{H}(p, q) ; p, q\right) \quad \text { Bekenstein-Hawking }
$$

Q SUSY \Longleftrightarrow EXTREMALITY $\begin{gathered}\text { T. о尺tin } \\ \text { i996 }\end{gathered}$

QExtremal: $\mathrm{c}=2 \mathrm{ST}=0$ minimal mass for a given charge config.

- BPS bound: $\quad M \geq|Q|$

Figure 2: Schematic representation of non-extremal and extremal black hole throats using proper-distance coordinates.

Q Consider static, spherically symmetric, asymptotically flat BH's in $\mathrm{d}=4$

Q Symmetries imply that $g_{\mu \nu}$ and ϕ^{i} depend only on r: $\quad \phi^{i}=\phi^{i}(r)$
$d s^{2}=-\mathrm{e}^{2 U(r)} d t^{2}+\mathrm{e}^{-2 U(r)}\left(c^{4} \frac{d r^{2}}{\sinh ^{4}(c r)}+\frac{c^{2}}{\sinh ^{2}(c r)} d \Omega_{S^{2}}^{2}\right)$
Q Start from $4 \mathrm{~d} \mathrm{~N}=2$ supergravity with vector fields

$$
\begin{gathered}
\mathcal{L}_{4 d}=-\frac{R}{2}+g_{i \bar{\jmath}} \partial_{\mu} \phi^{i} \partial_{\nu} \bar{\phi}^{\bar{\jmath}}+\mathcal{I}_{\Lambda \Sigma}(\phi) F_{\mu \nu}^{\Lambda} F^{\Sigma \mu \nu}+\mathcal{R}_{\Lambda \Sigma}(\phi) F_{\mu \nu}^{\Lambda} \widetilde{F}^{\Lambda \mu \nu} \\
\text { e-m charges: } \quad \int_{S^{2}} F^{\Lambda}=4 \pi p^{\Lambda} \quad \int_{S^{2}} G_{\Lambda}=4 \pi q_{\Lambda}
\end{gathered}
$$

Q Integrating over $\mathbb{R}_{t} \times S^{2}$ you get

$$
\left\{\begin{array}{l}
\mathcal{L}=\left(U^{\prime}(r)\right)^{2}+g_{i \bar{\jmath}} \phi^{\prime i} \bar{\phi}^{\prime \bar{\jmath}}+\mathrm{e}^{2 U} V_{B H}(\phi, q, p)-c^{2} \\
H=\left(U^{\prime}(r)\right)^{2}+g_{i \bar{\jmath}} \phi^{\prime i} \bar{\phi}^{\prime \bar{\jmath}}-\mathrm{e}^{2 U} V_{B H}(\phi, q, p)-c^{2}
\end{array}\right.
$$

Need $\mathrm{H}=\mathrm{o}$ to have that Id eqs of motion are consistent with the 4 d ones
Q For $\mathrm{N}=2$ supergravity the effective potential reads

$$
V_{B H}(\phi, q, p)=|\mathcal{Z}|^{2}+4 g^{i \bar{\jmath}} \partial_{i}|\mathcal{Z}| \partial_{\bar{\jmath}}|\mathcal{Z}|
$$

$$
\mathcal{Z}=e^{K / 2}\left(X^{\Lambda} q_{\Lambda}-\mathcal{F}_{\Lambda} p^{\Lambda}\right) \quad \mathrm{N}=2 \text { central charge } \quad \mathcal{F}_{\Lambda}=\partial_{\Lambda} F(X)
$$

$$
Q=\left(p^{\Lambda}, q_{\Lambda}\right) ; \quad \mathcal{V}=\left(X^{\Lambda}, \mathcal{F}_{\Lambda}\right): \quad S p\left(2 n_{v}+2\right)
$$

Q For extremal solutions $\mathrm{c}=2 \mathrm{ST}=0$), the action takes Bogomolny form:
$S=\int d r\left[\left(U^{\prime} \pm \mathrm{e}^{U}|\mathcal{Z}|\right)^{2}+\left|\phi^{i \prime} \pm 2 \mathrm{e}^{U} g^{i \bar{\jmath}} \partial_{\bar{\jmath}}\right| \mathcal{Z}| |^{2} \mp 2 \frac{d}{d r}\left(\mathrm{e}^{U}|\mathcal{Z}|\right)\right]$

Q For extremal solutions $\mathrm{c}=2 \mathrm{ST}=0$), the action takes Bogomolny form:
$S=\int d r\left[\left(U^{\prime} \pm \mathrm{e}^{U}|\mathcal{Z}|\right)^{2}+\left|\phi^{i \prime} \pm 2 \mathrm{e}^{U} g^{i \bar{\jmath}} \partial_{\bar{\jmath}}\right| \mathcal{Z}| |^{2} \mp 2 \frac{d}{d r}\left(\mathrm{e}^{U}|\mathcal{Z}|\right)\right]$

Flow equations

Q For extremal solutions $\mathrm{c}=2 \mathrm{ST}=0$), the action takes Bogomolny form:
$S=\int d r\left[\left(U^{\prime} \pm \mathrm{e}^{U}|\mathcal{Z}|\right)^{2}+\left|\phi^{i \prime} \pm 2 \mathrm{e}^{U} g^{i \bar{\jmath}} \partial_{\bar{\jmath}}\right| \mathcal{Z}| |^{2} \mp 2 \frac{d}{d r}\left(\mathrm{e}^{U}|\mathcal{Z}|\right)\right]$
Flow equations ADM mass

Q For extremal solutions $\mathrm{c}=2 \mathrm{ST}=0$), the action takes Bogomolny form:
$S=\int d r\left[\left(U^{\prime} \pm \mathrm{e}^{U}|\mathcal{Z}|\right)^{2}+\left|\phi^{i \prime} \pm 2 \mathrm{e}^{U} g^{i \bar{\jmath}} \partial_{\bar{\jmath}}\right| \mathcal{Z}| |^{2} \mp 2 \frac{d}{d r}\left(\mathrm{e}^{U}|\mathcal{Z}|\right)\right]$

Flow equations

ADM mass

Q The flow stops at $\quad \partial_{i}|\mathcal{Z}|=0 \Rightarrow \partial_{i} V_{B H}=0$
where $d s^{2}=-\frac{r^{2}}{|\mathcal{Z}|_{*}^{2}} d t^{2}+\frac{|\mathcal{Z}|_{*}^{2}}{r^{2}}\left(d r^{2}+r^{2} \Omega_{S^{2}}^{2}\right)$

Q For extremal solutions $\mathrm{c}=2 \mathrm{ST}=0$), the action takes Bogomolny form:
$S=\int d r\left[\left(U^{\prime} \pm \mathrm{e}^{U}|\mathcal{Z}|\right)^{2}+\left|\phi^{i \prime} \pm 2 \mathrm{e}^{U} g^{i \bar{\jmath}} \partial_{\bar{\jmath}}\right| \mathcal{Z}| |^{2} \mp 2 \frac{d}{d r}\left(\mathrm{e}^{U}|\mathcal{Z}|\right)\right]$

Flow equations

ADM mass

Q The flow stops at $\quad \partial_{i}|\mathcal{Z}|=0 \Rightarrow \partial_{i} V_{B H}=0$
where $d s^{2}=-\frac{r^{2}}{|\mathcal{Z}|_{*}^{2}} d t^{2}+\frac{|\mathcal{Z}|_{*}^{2}}{r^{2}}\left(d r^{2}+r^{2} \Omega_{S^{2}}^{2}\right)$

Q For extremal solutions $\mathrm{c}=2 \mathrm{ST}=0$), the action takes Bogomolny form:
$S=\int d r\left[\left(U^{\prime} \pm \mathrm{e}^{U}|\mathcal{Z}|\right)^{2}+\left|\phi^{i \prime} \pm 2 \mathrm{e}^{U} g^{i \bar{\jmath}} \partial_{\bar{\jmath}}\right| \mathcal{Z}| |^{2} \mp 2 \frac{d}{d r}\left(\mathrm{e}^{U}|\mathcal{Z}|\right)\right]$

Flow equations ADM mass

Q The flow stops at $\quad \partial_{i}|\mathcal{Z}|=0 \Rightarrow \partial_{i} V_{B H}=0$
$A d S_{2} \times S^{2}$
where $d s^{2}=-\frac{r^{2}}{|\mathcal{Z}|_{*}^{2}} d t^{2}+\frac{|\mathcal{Z}|_{*}^{2}}{r^{2}}\left(d r^{2}+r^{2} \Omega_{S^{2}}^{2}\right)$

$$
S_{B H}=\frac{A}{4}=\pi|\mathcal{Z}|_{*}^{2}\left(\phi_{*}(p, q), p, q\right)
$$

Qeqs of motion: $\left\{\begin{array}{l}U^{\prime \prime}=e^{2 U} V_{B H} \\ \phi^{i \prime \prime}+\Gamma_{j k}^{i} \phi^{j \prime} \phi^{k \prime}=e^{2 U} g^{i}{ }^{i} \partial_{\bar{\jmath}} V_{B H}\end{array}\right.$

Qeffective BH potential: $\quad V_{B H}=W^{2}+4 g^{i \bar{\jmath}} \partial_{i} W \partial_{\bar{\jmath}} W$

Q superpotential: $\quad W(\phi, \bar{\phi})=|Z|$

QADM mass:

$$
\left.e^{U} W\right|_{\infty} \sim M_{A D M}
$$

@BPS attractor:

$$
\frac{\partial V_{B H}}{\partial \phi^{i}}=0 \Longrightarrow D_{i} Z=0 \quad Z \neq 0
$$

stability: check Hessian

Qeqs of motion: $\left\{\begin{array}{l}U^{\prime}= \pm e^{U} W \\ \phi^{i \prime}= \pm 2 e^{U} g^{i \bar{\jmath}} \partial_{\bar{\jmath}} W\end{array}\right.$

Qsuperpotential for BPS flows: $\quad W(\phi, \bar{\phi})=|Z|$

Qeffective BH potential: $\quad V_{B H}=W^{2}+4 g^{i \bar{\jmath}} \partial_{i} W \partial_{\bar{\jmath}} W$

QADM mass:

$$
\left.e^{U} W\right|_{\infty} \sim M_{A D M}
$$

@BPS attractor:

$$
\frac{\partial V_{B H}}{\partial \phi^{i}}=0 \Longrightarrow D_{i} Z=0 \quad Z \neq 0
$$

stability: check Hessian, possible saddle points

Set up for \mathbf{N} - Extended Supergravities

- N - extended susy algebra: $\left\{\mathcal{Q}_{\alpha A}, \mathcal{Q}_{\beta B}\right\}=\epsilon_{\alpha \beta} Z_{A B}(p, q ; \phi)$

$$
V_{B H}=-\frac{1}{2} Q^{T} \mathcal{M}(\mathcal{N}) Q=\frac{1}{2} Z_{A B} \bar{Z}^{A B}+Z_{I} Z^{I} \quad \partial_{\phi} V_{B H}=0
$$

$$
\begin{cases}Z_{A B}=-Z_{B A} & \text { central charges } \\ Z_{I} & \text { matter charges }\end{cases}
$$

A, B in $\mathrm{SU}(\mathrm{N})$
I: fundam of matter group when present

$$
\left(N=2: Z_{A B}=\epsilon_{A B} Z, \quad Z_{I}=D_{i} Z\right)
$$

$$
\begin{cases}Q=\left(p^{\Lambda}, q_{\Lambda}\right) & \mathcal{N}(\phi) \\ Z_{A B}=f_{A B}^{\Lambda} q_{\Lambda}-h_{A B \Lambda} p^{\Lambda} & \left(f_{A B}^{\Lambda}, h_{A B \Lambda}\right) \quad S p(2 n, \mathbb{R})\end{cases}
$$

- BPS bound: $\quad M_{A D M}(\phi, Q) \geq\left|z_{1}(\phi, Q)\right| \geq \ldots \geq\left|z_{[N / 2]}(\phi, Q)\right|$ BPS states: $\mathrm{M}=$ highest eigenvalue of central charge

FAKE
 SUPERPOTENTIAL FOR NON SUSY BH

Fake Supergravities

QGravitational theories in d-dim that are susy only through linear order in fermion fields. Contain some "fake BPS equations" for the warp factor and scalar fields that are of first order and solve ordinary Einstein and scalar field equations

QThe scalar potential can formally be written in terms of a superpotential (matrix) in the "stability form"

QApplications: curved domain walls in SUGRA, cosmological solutions; adding vectors, also BH's, superstars,...

Q Caution when you have many (hyper)-scalars

Q Defining a real $W(\phi, \bar{\phi})$, extremal black holes are described by

$$
\left\{\begin{array}{l}
U^{\prime}=-\mathrm{e}^{U} W \\
\phi^{\prime i}=-2 \mathrm{e}^{U} g^{i \bar{\jmath}} \partial_{\bar{\jmath}} W
\end{array}\right.
$$

iff $\quad V_{B H}(\phi, q, p)=W^{2}+4 g^{i} \partial_{i} W \partial_{\bar{\jmath}} W$
Q BPS BH's are a special case with $\mathrm{W}=|\mathrm{Z}|$
Q But other possible solutions are the non-BPS BH's!

- $\partial_{i} W(\phi, \bar{\phi})=0$ gives non-BPS critical points!
$W(\phi, \bar{\phi})$ "fake" superpotential

Q Defining a real $W(\phi, \bar{\phi})$, extremal black holes are described by

$$
\left\{\begin{array}{l|c}
U^{\prime}=-\mathrm{e}^{U} W & \text { This is a PDE with b.c. } \\
\phi^{\prime i}=-2 \mathrm{e}^{U} g^{i \bar{\jmath}} \partial_{\bar{\jmath}} W & \text { the critical point of the } \\
\text { superpotential }
\end{array}\right.
$$

iff $\quad V_{B H}(\phi, q, p)=W^{2}+4 g^{i \bar{\jmath}} \partial_{i} W \partial_{\bar{\jmath}} W$
Q BPS BH's are a special case with $\mathrm{W}=|Z|$

Q But other possible solutions are the non-BPS BH's!

- $\partial_{i} W(\phi, \bar{\phi})=0$ gives non-BPS critical points!
$W(\phi, \bar{\phi})$ "fake" superpotential

General Answer:

Q look for a real "fake" superpotential $W(\phi, \bar{\phi}) \neq|Z|$
a) $\quad V_{B H}=W^{2}+4 g^{i \bar{\jmath}} \partial_{i} W \partial_{\bar{\jmath}} W$ same effective potential
b) drives first order flows $\left\{\begin{array}{l}U^{\prime}= \pm e^{U} W \\ \phi^{i \prime}= \pm 2 e^{U} g^{i \bar{\jmath}} \partial_{\bar{\jmath}} W\end{array}\right.$
c) $\partial_{i} W(\phi, \bar{\phi})=0$ gives non-BPS critical points

Q Construct it using duality invariance: $W=W\left(\left\{i_{n}\right\}\right)$

The example: $\mathrm{N}=\mathbf{8}$
 $G / H=\frac{E_{7(7)}}{S U(8)}$

Susy algebra: $\left\{\mathcal{Q}_{\alpha A}, \mathcal{Q}_{\beta B}\right\}=\epsilon_{\alpha \beta} Z_{A B}(p, q ; \phi)$
70 scalars, 56 charges
U-duality: $\quad E_{7(7)}(\mathbf{Z})$
$\underset{A, \mathrm{~B}=\mathrm{I}, \ldots 8}{Z_{A B} \xrightarrow{\operatorname{SU(}(8)}}\left(\begin{array}{cccc}z_{1} & & & \\ & z_{2} & & \\ & & z_{3} & \\ & & & z_{4}\end{array}\right) \otimes\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \quad$ normal frame
eigenvalues: $\quad\left\{z_{i}=\rho_{i} e^{i \varphi / 4}\right\} \quad i=1,2,3,4 \quad 5$ parameters $\quad M \geq z_{h}$

Cartan quartic invariant (Cremmer-Julia):
$I_{4}=\operatorname{Tr}(Z \bar{Z})^{2}-\frac{1}{4}(\operatorname{Tr} Z \bar{Z})^{2}+4(\operatorname{PfZ}+\operatorname{Pf} \bar{Z})=T_{a b c d} q^{a} q^{b} q^{c} q^{d}$

$$
\frac{\partial I_{4}}{\partial \phi^{i}}=0
$$

$A=Z \bar{Z} \quad$ invariants: $\quad\left\{\operatorname{Tr} A, \operatorname{Tr} A^{2}, \operatorname{Tr} A^{3}, \operatorname{Tr} A^{4}, \operatorname{Re} \operatorname{Pf} Z\right\}$

QQuestion: What is a complete set of duality invariants for $\mathrm{N}=2$?
Q Answer: $S p(2 n+2, R)$ invariants are
Cerchiai Marrani FERRARA ZUMINO 2009
$i_{1}=Z \bar{Z}$
$i_{2}=g^{i \bar{\jmath}} Z_{i} \bar{Z}_{\bar{\jmath}}$

$$
\left(Z_{i}=D_{i} Z, \bar{Z}_{\bar{\imath}}=\bar{D}_{\bar{\imath}} \bar{Z}\right),
$$

$i_{3}=\frac{1}{6}\left[Z N_{3}(\bar{Z})+\overline{Z N}_{3}\left(Z_{i}\right)\right]$,

$$
i_{4}=\frac{i}{6}\left[Z N_{3}(\bar{Z})-\overline{Z N}_{3}(Z)\right]
$$

$i_{5}=g^{i \bar{\imath}} C_{i j k} C_{\bar{\jmath} \bar{k}} \bar{Z}^{j} \bar{Z}^{k} Z^{\bar{j}} Z^{\bar{k}}$,
cubic norms:

$$
N_{3}(\bar{Z})=C_{i j k} \bar{Z}^{i} \bar{Z}^{j} \bar{Z}^{k}, \quad \bar{N}_{3}(Z)=C_{\bar{\jmath} \overline{\bar{k}}} Z^{\bar{\imath}} Z^{\bar{j}} Z^{\bar{k}}
$$

Ansatz:

$$
W(\phi, \bar{\phi})=W\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right)
$$

- Interpret $U(r), \phi^{a}(r)$ as coordinates of an Hamiltonian system where the radial variable plays the role of time. Then first order description is equivalent to solving HJ problem for Hamilton's characteristic function

$$
\mathcal{W}(U, \phi)=2 e^{U} W(\phi)
$$

- Hamilton-Jacobi equation

$$
W^{2}+2 g^{a b} \frac{\partial W}{\partial \phi^{a}} \frac{\partial W}{\partial \phi^{b}}=V
$$

- boundary conditions

$$
U(r=\infty)=0, \phi^{a}(r=\infty)=\phi_{\infty}^{a}
$$

- implications on duality invariance and stability (a la Liapunov)

QW = Hamilton's principal function for non -BPS flows

Find W for generic charge configuration by
I. Take W for STU model in $\mathrm{S}=\mathrm{T}=\mathrm{U}$ limit

BELLUCCI,
FERRARA, MARRANI,YER
ANYAN 2008
2. Compute it in simple charge configuration and then boost it to generic charges by a duality transformation

$$
\begin{aligned}
W^{2}= & \frac{i_{1}+i_{2}}{4}+\frac{3}{8}\left[\left(4 i_{3} \sqrt{-I_{4}}-\left(i_{1}+i_{2}\right) I_{4}+\left(i_{1}-\frac{i_{2}}{3}\right)^{3}\right)^{1 / 3}+\right. \\
& \left.+\left(-4 i_{3} \sqrt{-I_{4}}-\left(i_{1}+i_{2}\right) I_{4}+\left(i_{1}-\frac{i_{2}}{3}\right)^{3}\right)^{1 / 3}\right]
\end{aligned}
$$

\Longrightarrow non polynomial expression, but at non-BPS attractor point:

$$
i_{2}=3 i_{1}=\frac{3}{4} \sqrt{-I_{4}}, i_{3}=0 \Longrightarrow S_{B H}=W^{2}=\sqrt{-\left|I_{4}\right|}
$$

Given W you can solve flow eqs by (universal) harmonic functions: $\quad t=x-i y$

$$
\begin{aligned}
\mathrm{e}^{-4 U} & =\left(\mathcal{H}_{1}\right)^{3} \mathcal{H}_{0}-b^{2},
\end{aligned}\left\{\begin{array}{ll}
\mathcal{H}_{0}=\frac{\left(-I_{4}\right)^{1 / 4}}{\sqrt{2} q_{0}} H_{0} \\
x & =\frac{b \sqrt{-I_{4}}}{2\left(p^{1}\right)^{2}\left(\mathcal{H}_{1}\right)^{2}},
\end{array}\left\{\begin{array}{l}
\mathcal{H}_{1}=-\frac{\left(-I_{4}\right)^{1 / 4}}{\sqrt{2} q_{0}} H^{1}
\end{array}\right\} \begin{array}{l}
H_{0}=h_{0}-\sqrt{2} q_{0} r \\
H^{1}=h^{1}+\sqrt{2} p^{1} r
\end{array}\right.
$$

Results for $\quad T^{3}, S T^{2}, S T U$ agree with time reduction approach

Bossard,Michel, Pioline arXiv:0908.I742
"non standard diagonalization problem", sextic polynomial in W^{2} whose coefficients are $\mathrm{SU}(8)$ invariants

CHARGE ORBITS

Attractors \& Duality

- Kallosh-Kol (1996): Area of horizon for $\mathrm{N}=8$ extremal BH is proportional to $\sqrt{ \pm I_{4}}$, where $I_{4}=T_{a b c d} Q^{a} Q^{b} Q^{c} Q^{d}$ of E_{7} for $\mathrm{I} / 8$ preserved susy. $\mathrm{A}=\mathrm{O}\left(I_{4}=0\right)$ for $\mathrm{I} / 8, \mathrm{I} / 4, \mathrm{I} / 2$ susy
- Ferrara-Maldacena (i998): different susy features are distinguished by U-invariant conditions on charges $Q=(p, q)$

Lu, POPE, STELLE 1998

- FERRARA-GUNAYDIN (1998): for fixed values of I_{4} in $\mathrm{d}=4$ and of I_{3} in $d=5$, charge vectors Q for supergravities on symmetric spaces describe orbits whose nature is related to the susy properties of fixed points

QOrbits of the fundamental representation of the U-duality groups in extended supergravities based on symmetric spaces classify in an invariant way the extremal BPS and non BPS regular and singular Black Hole solutions

QEach orbit correspond to an allowed entropy
Q Classification of BPS states preserving different numbers of susy is in close parallel to the classification of the little groups and orbits of timelike, lightlike and spacelike vectors in Minkowski space:

Lightlike: $\quad I_{4}=0$
Spacelike: $\quad I_{4}>0$
Timelike: $\quad I_{4}<0$

BH potentials for different values of the quartic invariant I_{4} (pictures by G. Dall'Agata)

small BH's

Charge Orbits for $\mathbf{N}=8$

Large Orbits
$I_{4} \neq 0$

I/8 BPS: $\quad S_{B H}=\pi \sqrt{I_{4}}=\pi \rho^{2} \quad I_{4}>0$

$$
\left\{z_{1}=\rho e^{i \varphi}, z_{2}=z_{3}=z_{4}=0\right\}
$$

non BPS: $\quad S_{B H}=\pi \sqrt{-I_{4}}=4 \pi \rho^{2} \quad I_{4}<0$

$$
\left\{z_{1}=z_{2}=z_{3}=z_{4}=\rho e^{i \pi / 4}\right\}
$$

I $\mathrm{I} / 8 \mathrm{BPS}: \frac{\partial I_{4}}{\partial q^{a}} \neq 0$

$$
\left\{\rho_{1} \geq \rho_{2} \geq \rho_{3} \geq \rho_{4}, \varphi\right\}
$$

Small Orbits

$$
I_{4}=0
$$

$\mathrm{I} / 4$ BPS: $\frac{\partial I_{4}}{\partial q^{a}}=0,\left.\quad \frac{\partial^{2} I_{4}}{\partial q^{a} \partial q^{b}}\right|_{A d j} \neq 0 \quad\left\{\rho_{1}=\rho_{2}, \rho_{3}=\rho_{4}, \varphi\right\}$

I/2 BPS: $\left.\frac{\partial^{2} I_{4}}{\partial q^{a} \partial q^{b}}\right|_{A d j} \neq 0 \quad\left\{\rho_{1}=\rho_{2}=\rho_{3}=\rho_{4}=\rho, \varphi=2 k \pi\right\}$

SINGULAR BLACK HOLES

Singular Black Holes

. $\mathrm{S}=\mathrm{o}, I_{4}=0 \quad$ vanishing classical entropy

* NO Attractor behaviour: $\left.\partial_{\varphi} W\right|_{H} \neq 0$; W has a runaway solution $\mathrm{W}=\mathrm{o}$ at boundary of moduli space
* In principle can still compute $W\left(I_{4} \rightarrow 0\right)$ by a suitable limit of large BH's

```
ANDRIANOPOLI, FERRARA,D'AURIA, TRIGIANTE
```

* Can compute W as a function of the invariants $W\left(\left\{i_{n}\right\}\right)$
- In N=2 "small" BH's can be BPS or non-BPS, differently from $\mathrm{N}=8$ Ac, Ferrara, Marrani 2010
* Small BH's may play a role in strings/finiteness of $\mathrm{N}=8 \mathrm{SG}$

Orbits:

$$
I_{4}<0 \quad \text { non BPS } \quad \lambda_{1} \neq \lambda_{2} \neq \lambda_{3} \quad W_{\text {non } B P S}=\ldots
$$

$$
\begin{aligned}
& - \text { Lightlike } \\
& I_{4}=0 \quad r=3: \quad\left\{\begin{array}{ll}
\operatorname{BPS} \quad i_{1}>\sqrt{\lambda_{1}} ; & W_{\mathrm{BPS}}=\sqrt{i_{1}} \\
\text { nonBPS } i_{1}<\sqrt{\lambda_{1}} ; & W_{\mathrm{non} \mathrm{BPS}}=\sqrt{\lambda_{1}}
\end{array} . . . ~\right.
\end{aligned}
$$

Small

Orbits:
$I_{4}=0$

- Critical
$\partial I_{4}=0, r=2$:

$$
\left\{\begin{array}{ccl}
\text { BPS } \quad i_{2}>i_{1}>\frac{i_{2}}{3} & W_{\mathrm{BPS}}=\sqrt{i_{1}} \\
& i_{1}=\lambda_{1} ; \lambda_{2}=\lambda_{3}=\frac{i_{2}-i_{1}}{2} \\
\text { nonBPS } & i_{1}<\frac{i_{2}}{3} & W_{\text {non BPS }}=\sqrt{\frac{i_{2}-i_{1}}{2}}
\end{array}\right.
$$

- Doubly critical
$\partial_{A d j}^{2} I_{4}=0, \quad r=1: \quad$ BPS $\quad i_{1}=\lambda_{1}=\lambda_{2}=\lambda_{3} ; \quad W_{\mathrm{BPS}}=\sqrt{i_{1}}$

AND...

ONE MORE THING

BH Technology Transfer: from one to many centres by U-duality
U-duality can take a long way in classifying physically distinct (extremal) I-centre black holes, their orbits and attractors.

What can we infer for multi-centre?

- Need to give up spherical symmetry
- Stationary solutions
- Many charge vectors $\mathcal{Q}_{a}^{M} \equiv\left(p_{a}^{\Lambda}, q_{a \Lambda}\right) \quad a=1, \ldots, p, \quad, \quad M=1, \ldots, \mathbf{f}$
- mutual non locality: $\quad \mathcal{W} \equiv\left\langle\mathcal{Q}_{1}, \mathcal{Q}_{2}\right\rangle=\frac{1}{2} \mathcal{Q}_{a}^{M} \mathcal{Q}_{b}^{N} \mathbb{C}_{M N} \epsilon^{a b}$
- Horizontal Symmetry $S L_{h}(p, \mathbb{R})$
- More Invariants for groups of type E_{7} (and E6 in 5 d) $I_{a b c d} \quad \mathbf{I}_{6}$
- example of Bossard+Ruef
BOSSARD + RVEF:

EXTREMAL SOLUTIONS OF STU in $N=2 d=4$ (W flat 3 d bASE)

3 NILPOTSNT ORBITS (3 SETS OF EQUATIONS)

many centres SKG identities:

$$
\begin{gathered}
<Q_{a}, Q_{b}>=-2 \operatorname{Im}\left(Z_{a} \bar{Z}_{b}-g^{i \bar{\jmath}} D_{i} Z_{a} \bar{D}_{\bar{\jmath}} \bar{Z}_{b}\right) \\
Q_{a}^{T} \mathcal{M} Q_{b}=-2 \operatorname{Re}\left(Z_{a} Z_{b}+g^{i \bar{\jmath}} D_{i} Z_{a} \bar{D}_{\bar{\jmath}} \bar{Z}_{b}\right) \\
-\frac{1}{2} Q_{a}^{T} \mathcal{M} Q_{b}-\frac{i}{2}<Q_{a}, Q_{b}>=Z_{a} Z_{b}+g^{i \bar{\jmath}} D_{i} Z_{a} \bar{D}_{\bar{\jmath}} \bar{Z}_{b}
\end{gathered}
$$

SUMMARY

"Gedanken Black Holes" (B. Coppi, Dubna 20ır)

Punchline:

I)Super-Gedanken Black Holes behave very similarly to Gedanken Black Holes
2) Both arise as solutions of first order flow equations
3)Their masses and entropies can be determined on the basis of symmetries alone

Results

i) Extremal BH solutions of extended SG have attractor behaviour even without supersymmetry
ii) They are associated to ist order flow equations [easier to find full solutions by harmonic functions〕 driven by W which gives entropy at horizon and ADM mass at infinity
iii) U-Duality constrains \mathbf{W} and allows for a classification of orbits of charge vector Q in terms of invariants, characterizing different physical features
iv) Singular BH's $(S=0)$ have a \mathbf{W} and are interesting

$$
\mathrm{N}=8: \mathrm{I} / 8, \mathrm{I} / 4, \mathrm{I} / 2 \quad ; \mathrm{N}=2: \mathrm{I} / 2, \mathrm{O}, \mathrm{~W} \text { known }
$$

v) Multicentre solutions and non extremality are to be explored
~ 15 Years of Attractor Mechanism :
what have we learned?

~15 Years of Attractor Mechanism : what have we learned?

\% attractors exist for various d and N

~15 Years of Attractor Mechanism : what have we learned?

is attractors exist for various d and N
Tu various degrees of susy preserved: BPS and non BPS branches

~15 Years of Attractor Mechanism : what have we learned?

T attractors exist for various d and N
Tu various degrees of susy preserved: BPS and non BPS branches
s solutions arrange into duality orbits of Q (nilpotent orbits: Fre' + Sorin)

~ 15 Years of Attractor Mechanism : what have we learned?

\% attractors exist for various d and N
Tu various degrees of susy preserved: BPS and non BPS branches
s solutions arrange into duality orbits of Q (nilpotent orbits: Fre'+Sorin)
is first order formalism (W function of duality invariants), useful to construct solutions by harmonic functions, entropy at horizon, ADM mass at infinity

~ 15 Years of Attractor Mechanism : what have we learned?

\% attractors exist for various d and N
~ various degrees of susy preserved: BPS and non BPS branches
s solutions arrange into duality orbits of Q (nilpotent orbits: Fre'+Sorin)
n first order formalism (W function of duality invariants), useful to construct solutions by harmonic functions, entropy at horizon, ADM mass at infinity
is attractor flows rather than points: full solutions, not only horizon

~ 15 Years of Attractor Mechanism : what have we learned?

\% attractors exist for various d and N
~ various degrees of susy preserved: BPS and non BPS branches
s solutions arrange into duality orbits of Q (nilpotent orbits: Fre'+Sorin)
i first order formalism (W function of duality invariants), useful to construct solutions by harmonic functions, entropy at horizon, ADM mass at infinity
is attractor flows rather than points: full solutions, not only horizon
~ flat directions (moduli space): attractor points are not isolated because not all the scalars flow! Stability can be discussed (possible saddle points)

~ 15 Years of Attractor Mechanism : what have we learned?

\% attractors exist for various d and N
~ various degrees of susy preserved: BPS and non BPS branches
s solutions arrange into duality orbits of Q (nilpotent orbits: Fre'+Sorin)
i first order formalism (W function of duality invariants), useful to construct solutions by harmonic functions, entropy at horizon, ADM mass at infinity

T attractor flows rather than points: full solutions, not only horizon
~ flat directions (moduli space): attractor points are not isolated because not all the scalars flow! Stability can be discussed (possible saddle points)
is singular black holes: $\mathrm{S}=\mathrm{o}, \mathrm{NO}$ attractors, but W

~ 15 Years of Attractor Mechanism : what have we learned?

\% attractors exist for various d and N
~ various degrees of susy preserved: BPS and non BPS branches
s solutions arrange into duality orbits of Q (nilpotent orbits: Fre'+Sorin)
i first order formalism (W function of duality invariants), useful to construct solutions by harmonic functions, entropy at horizon, ADM mass at infinity

T attractor flows rather than points: full solutions, not only horizon
T flat directions (moduli space): attractor points are not isolated because not all the scalars flow! Stability can be discussed (possible saddle points)
is singular black holes: $\mathrm{S}=\mathrm{o}, \mathrm{NO}$ attractors, but W
i $4 \mathrm{~d} / 5 \mathrm{~d}$ connection can give many clues
...and where next?

...and where next?

is Multi- centre solutions

...and where next?

i Multi- centre solutions
\leadsto BH’s from gauged supergravities

...and where next?

Multi- centre solutions
\longleftarrow BH’s from gauged supergravities
Action of discrete dualities (different from U)

...and where next?

¿ Multi- centre solutions
\rightsquigarrow BH’s from gauged supergravities
Action of discrete dualities (different from U)
\leadsto Quantum corrections (higher derivatives, discrete invariants)

...and where next?

¿ Multi- centre solutions
\approx BH's from gauged supergravities
Action of discrete dualities (different from U)
\leadsto Quantum corrections (higher derivatives, discrete invariants)
~ Microstate counting and computation of S

...and where next?

¿ Multi- centre solutions
\rightsquigarrow BH’s from gauged supergravities
Action of discrete dualities (different from U)
\leadsto Quantum corrections (higher derivatives, discrete invariants)
2 Microstate counting and computation of S
« Non extremal limit (no attractors)

...and where next?

¿ Multi- centre solutions
\rightsquigarrow BH’s from gauged supergravities
Action of discrete dualities (different from U)
\leadsto Quantum corrections (higher derivatives, discrete invariants)
~ Microstate counting and computation of S
i Non extremal limit (no attractors)
~Relation with Quantum Information Theory

... and where next?

¿ Multi- centre solutions
\rightsquigarrow BH’s from gauged supergravities
Action of discrete dualities (different from U)
~ Quantum corrections (higher derivatives, discrete invariants)
~ Microstate counting and computation of S
© Non extremal limit (no attractors)
~Relation with Quantum Information Theory
Integrability: next seminar by P. Fre’

...and where next?

Thank you!!!

