Nuclei at the neutron and proton drip lines

Marek Pfützner University of Warsaw Gurgen Ter-Akopian JINR

JINR in 100 years of the discovery of the atomic nucleus, Dubna, 10-11.03.2011

100 years ago...

E. Rutherford (1871-1937)

Theory of structure fatim Software atan currents of + charge ne at centre + - change as dections distributed thinghout sphine for Free at P malution = Ne 2 1 - 43 . 1 7 = Net { 2 - - - - = + + Sufface charged prestiles e man me is small lat it dulance from centre = a Deflety Tree 1ª durch Franking at P = Web { 1 - - 1 } and acut it doub frokin = de = No 2/1- h) a . Where a arguind in having things along I dente 1 = dd dt = Me da. ds . = Ne²/(1 - 1) + 1 Ade my / (1 - 1) + 1 Ade $= 2 \frac{M^2}{m_V} \begin{pmatrix} a_1 b_1^2 a_2^2 \\ a_2 b_1^2 \\ a_3 b_1^2 \end{pmatrix} \begin{pmatrix} a_1 b_1 \\ a_3 b_1^2 \\ a_1 b_1^2 \\ a_1$

Rutherford's first rough note on the nuclear theory of atomic structure; written, probably, in the winter of 1910-11

2011 – Year of Chemistry

The Nobel Prize in Chemistry 1911 was awarded to Marie Curie "in recognition of her services to the advancement of chemistry by the discovery of the elements radium and polonium, by the isolation of radium and the study of the nature and compounds of this remarkable element".

http://nobelprize.org/nobel_prizes/chemistry/laureates/1911/

12 avril manee + or + caur = 14, 74.8,05 Red = 0,109,25 id + Rad = 14, 8 5 7,3 Red = 0,109,25 Crewed side = 10, 314,65 Agd = 0,10649 Cr + Agd = -10, 429,12 Agd = 0,10649 2. 91882 2. 41993 0.49889 <u>Ra</u> = 3.154 Ra = 213. 3 light richert aver is at ofer , have crouel + argent = 10.394 10.3140 2'00 - lat = 0. 10564 Differens avers light droud secondenty a trit a un fer to Ag un addient an creus of ?

Paris, 11 rue Pierre-et-Marie-Curie

The world of nuclides, 2010

Nuclear valley

Masses of isobars (A = const.) lie on parabolas.
 → β-decay Q values increase toward drip-lines!

β-delayed particle emission

> When the decay energy is large, many exotic decay channels open

B. Blank, M. Borge, Progress in Part. Nucl. Phys. 60 (2008) 403

β-delayed protons

> The first observation of β -delayed protons was achieved by Karnaukhov in Dubna

 The first β-delayed proton precursor, ²⁵Si, was identified by R. Barton, et al., Can. J. Phys. 41 (1963) 2007
 This work is considered as the first application of Si detector in nuclear physics

β-delayed two protons

The β-delayed two-proton emission was predicted by Goldansky in 1980 V.I. Goldansky, Sov. Phys. JETP Lett. 32 (1980) 554

The first observation, for ²²AI, at Livermore Berkeley Lab. in 1983

M.D. Cable et al., Phys. Rev. Lett. 50 (1983) 404

βp spectroscopy

Projectile fragmentation at GANIL: ⁵⁸Ni @ 75 MeV/u + Ni → LISE spectrometer

- Today about 160 precursors known, from ⁸B to ¹⁸³Hg
- βp spectroscopy provides wealth of information about nuclei far from stability, like β-decay strength distribution, level energies, widths, spins, level densities, etc.

Direct particle emission

When proton separation energy becomes negative, a proton is no more bound and can be emitted.

Proton emission always competes with β⁺ decay!

S. Hofmann et al., Z. Phys. A305 (1981) 111

p radioactivity – a recent highlight

Proton emission from deformed ¹⁴¹Ho

M. Karny et al., Phys. Lett. B664, 52, 2008

Figures courtesy of K. Rykaczewski (Oak Ridge)

2p radioactivity

By radioactivity we consider processes with the half-lives longer than 10⁻¹⁴ s.

Simultaneous 2p emission may occur also in faster processes (democratic decays, resonances)

Early considerations

Baz, Goldansky, Goldberg, Zeldovich, "Light and medium nuclei at the limits of stability, Moscov 1972

Decay of ⁴⁵Fe

- In the first experiments only the decay energy and time were measured!
- A lot of information is still hidden in the correlations between protons !

from L. Grigorenko

Optical Time Projection Chamber

> New idea to detect charged particles: an ionization chamber with optical readout

M. Ćwiok et al., IEEE TNS, 52 (2005) 2895 K. Miernik et al., NIM A581 (2007) 194

ACCULINNA @ FLNR, Dubna

Testing with decays of implanted ions

Acculinna separator, FLNR, JINR, Dubna, 2006 ²⁰Ne (50 MeV/u) + Be →...

K. Miernik et al., NIM A581 (2007) 194

Emission of 2p from ⁴⁵Fe

A1900 separator at NSCL/MSU ⁵⁸Ni at 161 MeV/u + ^{nat}Ni \rightarrow ⁴⁵Fe

Full p-p corellation pattern could be established

$\vartheta_1 = (104 \pm 2)^\circ,$	ϑ_1	$= (70 \pm 3)^{\circ}$
$\Delta \phi = (142 \pm 3)^{\circ}$	→	θ_{pp} = (143 ± 5)°

2p events from ⁴⁵Fe

p-p correlations in ⁴⁵Fe

Three-body model

L.V. Grigorenko et al., Phys. Lett. B 677 (2009) 30

... in ¹⁹Mg,...

I. Mukha et al., Phys. Rev. C 77 (2008) 061303(R) I. Mukha et al., Phys. Rev. Lett. 99 (2007) 182501

...and in ⁶Be

K. Mercurio et al., Phys. Rev. C **78** (2008) 031602(R)

L. Grigorenko et al., Phys. Lett. B **677** (2009) 30

Search for 2p decay of ²⁶S @ FLNR

> ³²S @ 50 MeV/u + Be → ACCULINNA

A.S. Fomichev et al., to be published

Decays of ⁴⁵Fe and ⁴³Cr

M. Pomorski et al., Phys. Rev. 83 (2011) 014306

K. Miernik et al., Eur. Phys. J. A 42 (2009) 431

β 2p from excited state – ¹⁷Ne

COULEX of 59 AMeV ¹⁷Ne on Au target (NSCL/MSU)

Sequential 2p emission from the 5/2⁻ state was observed

No evidence for the 2p branch from the 3/2⁻ state obtained M.J. Chromik et al., PRC 66 (2002) 024313

Evidence for the di-proton?

1n stripping from 36 AMeV ¹⁸Ne (GANIL) \rightarrow ¹⁷Ne* \rightarrow ¹⁵O + 2p

Towards neutron drip-line

N. Michel et al., J. Phys. G 36 (2009) 013101

J. Dobaczewski et al., Prog. Part. Nucl. Phys. 59 (2007) 432

Neutron halos

- > Neutron halos strange nuclear systems:
 - large spatial extension (more than 50% outside classical region)
 - clasterization (core \times valence neutrons)

⁶He wave function

G.M. Ter-Akopian et al,, Phys. Lett. B 426 (1998) 251

Study of ⁵H

 Slow protons registered in the backward direction (E_{5H} < 5 MeV).

Past tritons registered in the

forward telescope.

Threefold *t-p-n* and fourfold *t-p-n-n* coincidences provide

the complete kinematics.

Study of ⁵H

Correlation analysis yields following conlusions:

a) Continuum above 2.5 MeV is a mixture of energy degenerate broad 3/2⁺ and 5/2⁺ states.

b) Continuum below 2.5 MeV results from interference of $3/2^+$ – $5/2^+$ doublet and $1/2^+$ g.s.

c) Ground-state properties of ⁵H .: E_R = 1.8 MeV, Γ = 1.3 MeV.

M. Golovkov *et al.*, PRL 93 (2004) 262501 M. Golovkov *et al.*, PRC 72 (2005) 064612

Study of ⁹He

Complete kinematical study of the ²H(⁸He,p)⁹He reaction at ACCULINNA

- ⁹He spectrum shows two broad overlapping peaks at 2.0 and 4.2 MeV.
- Provide the second state of the second sta
- **3** These states are assigned as $s_{1/2}$, $p_{1/2}$, $d_{5/2}$
- The data are well described in a simple single-particle potential model. The ⁸He with the closed p_{3/2} subshell is a "good" core for ⁹He.

... and ¹⁰He

Reaction ${}^{3}H({}^{8}He, {}^{10}He)p$ (E_{8He} = 27.4 MeV/amu , θ_{cm} = 2° – 12°)

M.S. Golovkov et al., Physics Letters B 672 (2009) 22

L. Grigorenko and M. Zhukov, PRC 77, 034611 (2008)

The population cross section of the 3 MeV peak in ¹⁰He σ_{10} = 140(30) mb/sr is consistent with the estimated resonance cross section for the population of the ¹⁰He 0⁺ state with the [p_{1/2}]² structure.

Decay of ⁸He

⁸He – the most neutron-rich, particle-stable nucleus, attracts lot of interest (NNDC/NSR Data Base shows 225 papers!)

β-delayed t emission measured ⁸He → ⁸Li^{*} → t + α + n $b_t = (8.0 \pm 0.5) \times 10^{-3}$ → B_{GT} ≥ 5.2, log ft = 2.9 !

ISOLDE (1992) M. Borge et al., NP A 560 (1993) 664

⁸He decay study @ JINR, Dubna

We see the tritium channel

$$^{8}\text{He} \rightarrow ~^{8}\text{Li}^{*} \rightarrow ~\alpha ~+~ n + ~t$$

but also the recoil of 7Li !

$$^{8}\text{He} \rightarrow ~^{8}\text{Li}^{*} \rightarrow ~^{7}\text{Li} + n$$

S. Mianowski et al., Acta. Phys.Pol. B41 (2010) 449

A new decay branch

preliminary!

New project: ACCULINNA-2

Research plans at ACCULINNA-2

Further dreams: DRIBS-3

RIB products from ACCULINNA-2 can be stopped and thermalized in a gas catcher, to form a high-quality, low-energy RI beam to be injected into U400R for the reacceleration.

Exotic nuclei accesible at the DRIB-3

Summary

- There is a continuous progress in reaching nuclei far from β stability.
 In the last three decades the number of known nuclides increased
 from about 2200 in 1981 to about 3000 in 2006 → 32 new nuclei/year!
- Proton drip-line reached up to Z = 91 except for even $Z \in (32,64)$ and Z > 82Neutron drip-line reached up to N = 27 except for N=10, 14 and even N>21
- New phenomena at the limits of stability: β-delayed (multi)particle emission,
 p and 2*p* radioactivity, neutron halo, shell migration,...
- New technique employing digital photograpy provides complementary data to classical methods based on Si detectors (angular correlations, branching ratios)
- Separator ACCULINNA @ FLNR offers first-class conditions for studies of light nuclei at the limits of stability. Its particular feature is a cryogenic tritium target.
- Proposed upgrade ACCULINNA-2 will largely increase the experimental possibilities and represent the key facility worldwide for light and medium mass RIB.

Mazurian Lakes Conference on Physics

Legacy of Maria Skłodowska-Curie – 100 years after discovery of atomic nucleus, September 11 – 18, 2011, Piaski, POLAND

Exploris

Exp

Exploris

> www.mazurian.fuw.edu.pl

Thank you for attention!

Search for β 3p in ²⁷S @ FLNR

> $^{32}S @ 50 \text{ MeV/u} + \text{Be} \rightarrow \text{ACCULINNA} \rightarrow ^{27}S$ (December 2010)

The scattering of the α rays...

The first public announcement of the atomic nucleus:

Fig1. Marsden-Geiger experiment.

The Scattering of the α and β Rays and the Structure of the Atom by Professor E. Rutherford, F.R.S. Proc. of the Manchester Literary and Philosophical Society, IV, 55, pp.18-20. presented on March 7, 1911

$$P(heta \) \ \mu \ \ rac{1}{\sin^4 heta \ /2}$$

[669]

LXXIX. The Scattering of α and β Particles by Matter and the Structure of the Atom. By Professor E. RUTHERFORD, F.R.S., University of Manchester *.

§ 1. \prod is well known that the α and β particles suffer deflexions from their rectilinear paths by encounters with atoms of matter. This scattering is far more marked for the β than for the α particle on account of the much smaller momentum and energy of the former particle.

Philosophical Magazine, May 1911, ser.6, xxi, pp.669-88

Drip lines

Three lifetime regimes

β-delayed *d* emission from ¹¹Li

K. Riisager et al., NPA 616 (1997) 169c

 $B.R. = 1.30(13) \times 10^{-4}$ "large" value only possible if core has a small contribution \Rightarrow decay essentially in the halo

Jeroen Büscher at ENAM'08

R. Raabe et al., PRL 101 (2008) 212501