Спонтанное деление: сверхтяжелые ядра

Ю.Ц. Оганесян

Лаборатория ядерных реакций им. Г.Н. Флерова Объединенный Институт Ядерных Исследований

> Симпозиум, посвященный 100-летию открытия атомного ядра 10-11 марта 2011 г. ОИЯИ, Дубна

Discovery of the Spontaneous Fission

Отчет Ленинградского Физико-технического Института 1940 год

Итак можно утверждать, что установленный эффект спонтанных импульсов обусловлен актами деления урана. Такой процесс представляет собой новый вид радиоактивности, принципиально отличный от известных ранее видов радиоактивности с испусканием α и β - частиц.

Расхождение между экспериментально наблюдаемым временем жизни урана и указанным Бором и Уиллером объясняется тем, что формула прохождения частицы через барьер очень чувствительна к выбранной высоте и ширине барьера, а выбор этих величин в достаточной мере произволен.

Gran Sacco Underground Laboratory

Dubna – Milano Collaboration

0.2 m²- track detector

(total ~ 30g / ²³⁸U≤ 2·10⁻⁶

21 event/665d

T_{SF}= (1.2 ± 0.4)·10²¹a

Search for Spontaneous Fission of ²³²Th

T_{sF}= ≥ 10²¹a

Yu. Oganessian. "SF and SHE". Symposium: 100-years of the Discovery of the Atomic Nucleus, March 10-11, 2011, DUBNA

Study of the spontaneous fission of 252Cf

655

5

New approaches

110

Independent yields obtained Mo – Ba fragment pairs (given are the numbers of pairs per 100 spontaneous fission events of ²⁵²Cf)

	Mo	102		103	104	105	106	107	108
Ва									
138					0,08(3)	0,02(2)	0,01(1)	0,02(2)	0,02(1)
140				0,05(3)	0,18(4)	0,07(5)	0,12(3)	0,12(4)	0,06(3)
141				0,07(2)	0,34(4)	0,11(4)	0,44(3)	0,11(3)	0,10(3)
142			8n	0,02(2)	0,36(4)	0,65(10)	0,92(4)	0,35(16)	0,14(5)
143		0.02(2	2)	0,13(9)	0,48(10)	1,05(25)	0,88(10)	0,14(8)	0,12(10)
144		0,04(3)	0.67(10)	1,14(4)	1,30(11)	0,65(4)	0,13(8)	0,06(5)
145	6n	0,09(6)		0.86(20)	0,74(15)	0,59(17)	0,16(8)	0,15(7)	
146		0,13(5)		0,46(8)	0,39(4)	0,13(7)	0,08(5)		
147	4n	4n 0,10(7)		0,40(30)	0,23(17)	0,23(15)			
148		0,06(4)		0,12(9)	0.04(3)				
	2n			<mark>0n</mark>					

Fission modes

Yu. Oganessian. "SF and SHE". Symposium: 100-years of the Discovery of the Atomic Nucleus, March 10-11, 2011, DUBNA

Spontaneous Fission

Yu. Oganessian. "SF and SHE". Symposium: 100-years of the Discovery of the Atomic Nucleus, March 10-11, 2011, DUBNA

Chart of nuclides

Microscopic corrections to the macroscopic nuclear deformation energy

W. D. Myers, W. J. Swiatecki, Ark Fys. **36** (1967) 343 M. Brack *et al.*, Rev. Mod. Phys. **44** (1972) 320 U. Mosel, W. Greiner, *Z. Phys.* **222** (1969) 261 I. Muntian *et al.*, Acta Phys. Pol. B **34** (2003) 2073

Predictions of the microscopic theory

R. Smolańczuk, Phys. Rev. C 56 (1997) 812

New lands

Yu. Oganessian. Nuclear mass limits and beyond. Oct.17, 2008, Aspenäs Manor, Sveden

Reactions of Synthesis

Yu. Oganessian. "SF and SHE". Symposium: 100-years of the Discovery of the Atomic Nucleus, March 10-11, 2011, DUBNA

A/Z Setup Laboratory **Publications GSI** Darmstadt Eur. Phys. A32, 251 (2007) ²⁸³112 SHIP COLD **PSI-FLNR (JINR)** NATURE 447, 72 (2007) ²⁸³112 LRNL (Berkeley) P.R. Lett. 103, 132502 (2009) ^{286, 287}114 BGS ^{288, 289}114 **TASCA** GSI – Mainz P.R. Lett. 104, 252701 (2010) SHIP **GSI** Darmstadt Eur. Phys. (to be published) ^{292, 293}116

Yu. Oganessian. "SF and SHE". Symposium: 100-years of the Discovery of the Atomic Nucleus, March 10-11, 2011, DUBNA

CONFIRMATIONS 2007-2010

Synthesis of SHE with ⁴⁸Ca-induced reactions

10 years

Yu. Oganessian. "SF and SHE". Symposium: 100-years of the Discovery of the Atomic Nucleus, March 10-11, 2011, DUBNA

Decay Properties of SHE:

expected & obtained

Alpha-decay

Yu. Oganessian. SHE in JINR, Seminar of FLNR (JINR), March 03, 2011, Dubna

Atomic number

Yu. Oganessian 2011

With Z >40% larger than that of Bi, the heaviest stable element, we see an impressive extension in nuclear survival.

Although SHN are at the limits of Coulomb stability, •shell stabilization lowers ground-state energy,

- •creates a fission barrier,
- •and thereby enables SHN to exist.

The fundamentals of the modern theory for mass limits of nuclear matter were given experimental verification.

Thank you.