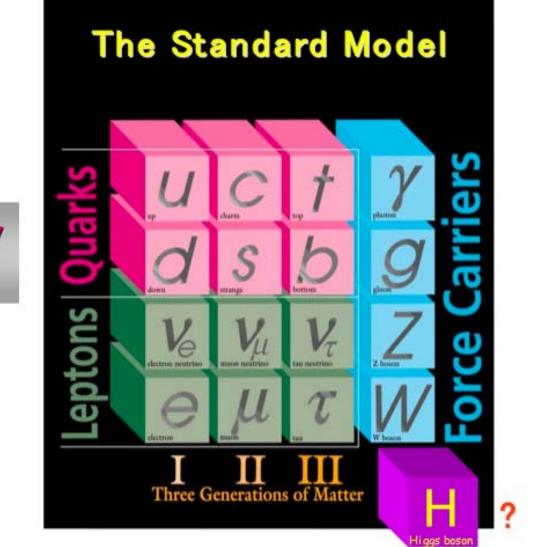

ROUND TABLE ITALY-RUSSIA, DUBNA, DECEMBER 19, 2009



Antonio Masiero Univ. of Padova and INFN, Padova

THE G-W-S STANDARD MODEL

HIGH PRIORITY FOR INFN: EXPER. AND **THEOR EFFORTS** TO GO BEYOND THE PARTICLE PHYSICS STANDARD MODEL

Origin of Mass

The Energy Frontion

Matter/Anti-matter Asymmetry

Dark Matter

Origin of Universe

Unification of Forces

New Physics Beyond the Standard Model

Neutrino Physics

The Cosmic Hor

tie

Te Intensity Frontier

 Adding up all the above contribution we get the following SM predictions for a_µ and comparisons with the measured value:

$ \begin{array}{c} a_{\mu}^{\rm SM} \times 10^{11} \\ [1] 116591793(60) \\ [2] 116591793(60) \end{array} $	$\Delta a_{\mu} \times 10^{11}$ 287 (87)	3.3	
$ \begin{bmatrix} 2 \end{bmatrix} 116591778(61) \\ \begin{bmatrix} 3 \end{bmatrix} 116591807(72) $	$302 (88) \\ 273 (96)$	3.4 2.8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	252 (89) 89 (95)	2.8	
((()		
with $a_{\mu}^{HHO}(IbI) = 110 (40) \times 10^{-11}$. $\Delta a_{\mu} = a_{\mu}^{EXP} - a_{\mu}^{SM}$. [1] Eidelman at ICHEP06 & Davier at TAU06 (update of ref. [5]).			

[4] J.F. de Troconiz and F.J. Yndurain, PRD71 (2005) 073008.
 [5] Davier, Eidelman, Hoecker and Zhang, EPJC31 (2003) 503 (r data).

The th error is now the same (or even smaller) as the exp. one!
 If BaBar's <u>prelim</u>. results are used <u>instead</u>, Δa_µ drops to ~1.7σ.

Courtesy of M. Passera

21

WG on Rad. Corrections and MC Generators for Low Energies

(coll. with Novosibirsk and Dubna)

Coll. Agreement INFN - Moscow State Univ. for theor, research in this field

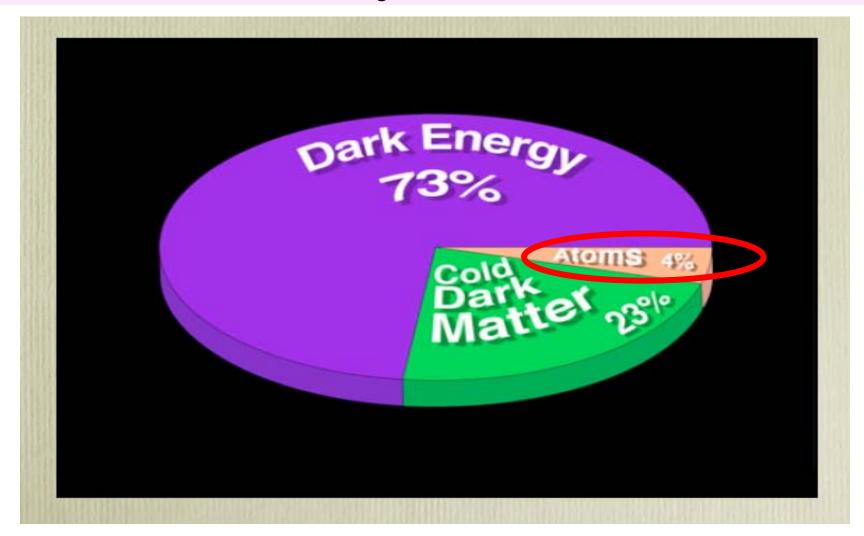
Present "Observational" Evidence for New Physics

- NEUTRINO MASSES \checkmark
- DARK MATTER $\checkmark \checkmark \checkmark \checkmark$
- MATTER-ANTIMATTER ASYMMETRY

EVIDENCE FOR DM

Various astrophysical sources have confirmed the existence of Dark Matter (DM)

- Binding of Galaxies in Clusters (F. Zwicky, 1933)
- Rotation curves of Galaxies (V.C. Rubin and W.K. Ford, 1970)
- Bindings of hot gases in clusters
- Gravitational Lensing observations
- Large Scale Stucture simulations
- 🥺 High z Supernovae
- Observations of colliding clusters of Galaxies


The most direct and accurate evidence comes from WMAP by measuring arisotropies of the CMB power spectrum

 $\sim 73\%$ DarkEnergy, $\sim 23\%$ DarkMatter, 4% Baryons

<u>DM → NEW PHYSICS BEYOND THE</u> (PARTICLE PHYSICS) SM - if Newton is right at scales>size of the Solar System

- $\Omega_{DM} = 0.233 \pm 0.013 *$
- Ω_{baryons} = 0.0462 ± 0.0015 **
- *from CMB (5 yrs. of WMAP) + Type I Supernovae + Baryon Acoustic Oscillations (BAO)
- **CMB + TypeI SN + BAO in agreement with Nucleosynthesis (BBN)

In terms of energy content, the astonishing progress of human knowledge of the Universe has reached only 4% of its content!!

STABLE ELW. SCALE WIMPs (Weakly Interactive Massive Particle)

1) ENLARGEMENT OF THE SM	SUSY (χ ^μ , θ)	EXTRA DIM . (χ ^{μ,} j ⁱ⁾	LITTLE HIGGS. SM part + new part
	Anticomm. Coord.	New bosonic Coord.	to cancel Λ^2 at 1-Loop
2) SELECTION RULE	R-PARITY LSP	KK-PARITY LKP	T-PARITY LTP
→DISCRETE SYMM.	Neutralino spin 1/2	spin1	spin0
→STABLE NEW PART.			
3) FIND REGION (S)	m↓ _{LSP}	, ₩ _{LKP}	, ₩
PARAM. SPACE WHERE THE "L" NEW	~100 - 200	~600 - 800	~400 - 800
PART. IS NEUTRAL + $\Omega_L h^2 OK$		GeV	GeV

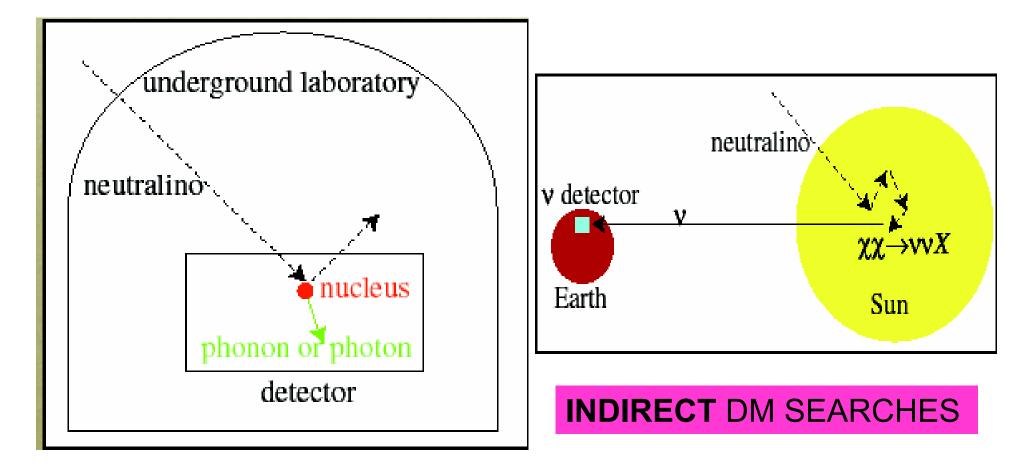
* But abandoning gaugino-masss unif. Possible to have m_{LSP} down to 7 GeV Bottino, Donato, Fornengo, Scopel

HUMAN PRODUCTION OF WIMPs

WIMPS HYPOTHESIS

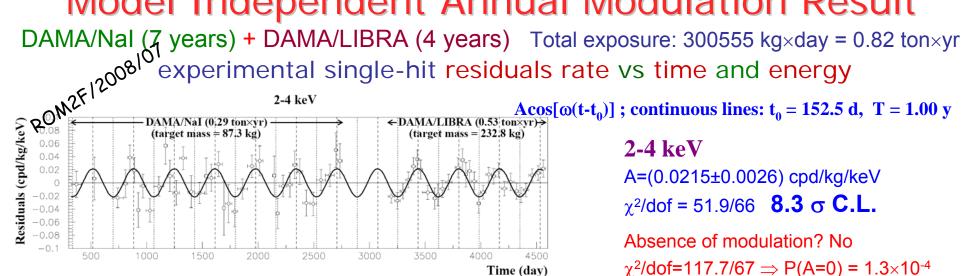
DM made of particles with mass 10Gev - 1Tev

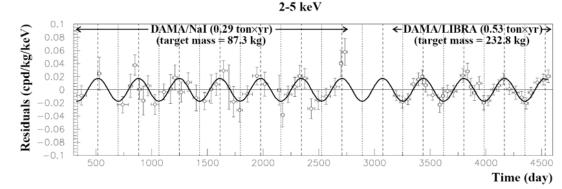
ELW scale

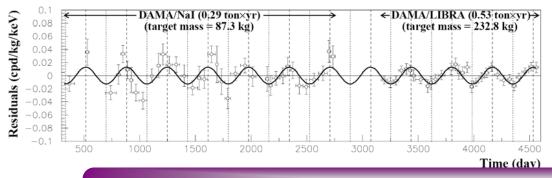

LHC, ILC may PRODUCE WIMPS

WIMPS escape the detector → MISSING ENERGY SIGNATURE

With WEAK INTERACT.


POSSIBILITY TO CREATE OURSELVES IN OUR ACCELERATORS THOSE DM PARTICLES WHICH ARE PART OF THE RELICS OF THE PRIMORDIAL PLASMA AND CONSTITUTE 1/4 OF THE WHOLE ENERGY IN THE UNIVERSE


HUNTING FOR DARK MATTER


DIRECT DM SEARCHES

Model Independent Annual Modulation Result

 χ^{2} /dof=117.7/67 \Rightarrow P(A=0) = 1.3×10^{-4}

2-5 keV

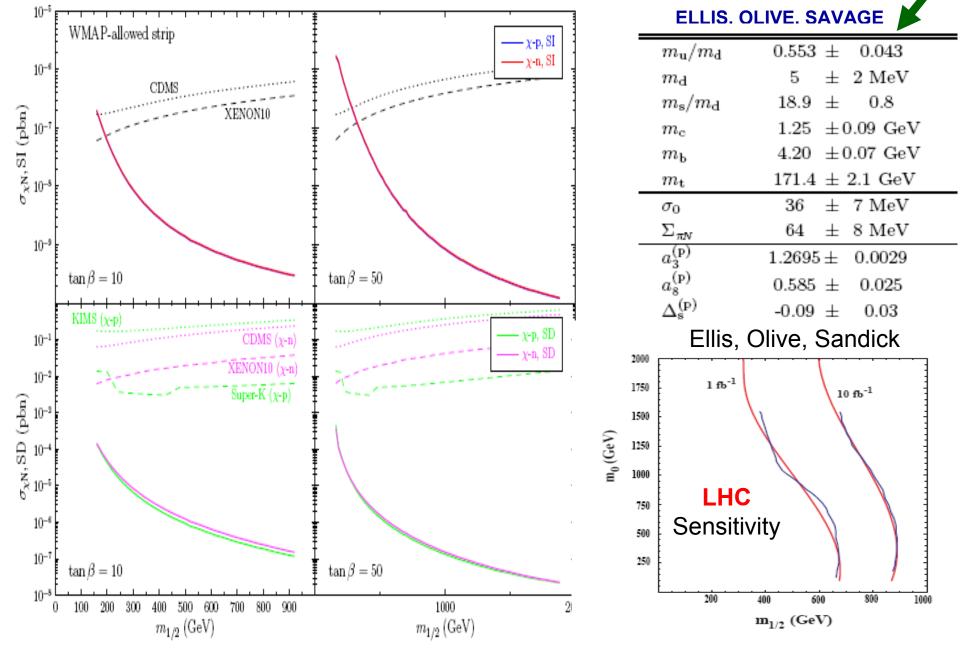
A=(0.0176±0.0020) cpd/kg/keV χ^2 /dof = 39.6/66 **8.8** σ **C.L.**

Absence of modulation? No χ^{2} /dof=116.1/67 \Rightarrow P(A=0) = 1.9×10^{-4}

2-6 keV

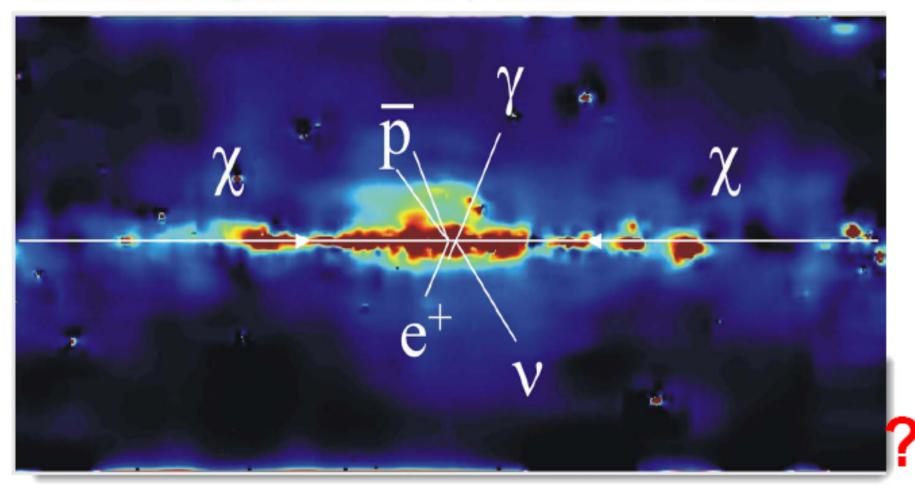
A=(0.0129±0.0016) cpd/kg/keV χ^2 /dof = 54.3/66 **8.2** σ **C.L.** Absence of modulation? No χ^{2} /dof=116.4/67 \Rightarrow P(A=0) = 1.8×10^{-4}

The data favor the presence of a modulated behavior with proper features at 8.2σ C.L.


The first glimpse of dark matter?

By Victoria Gill Science reporter, BBC News Story from BBC NEWS:

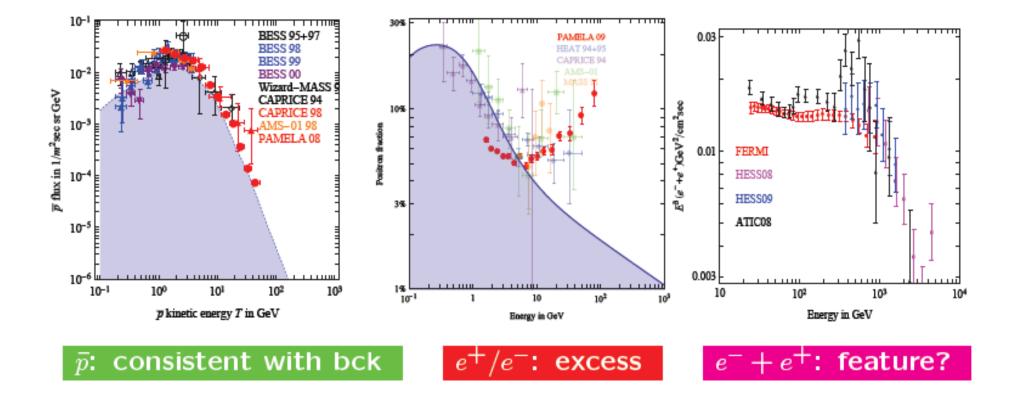
http://news.bbc.co.uk/go/pr/fr/-/2/hi/science/nature/8420089.stm


2009/12/18 11:52:13 GMT arXiv astro-ph 0912.3592v1 CDMS EXP.

We report results from a blind analysis of the nal data taken with the Cryogenic Dark Matter Search experiment (CDMS II) at the Soudan Underground Laboratory, Minnesota, USA. A total raw exposure of 612 kg-days was analyzed for this work. We observed two events in the signal region; based on our background estimate, the probability of observing two or more background events is 23%. Neutralino-nucleon scattering cross sections along the WMAP-allowed coannihilation strip for tanbeta=10 and coannihilation/funnel strip for tanbeta=50 using the hadronic parameters

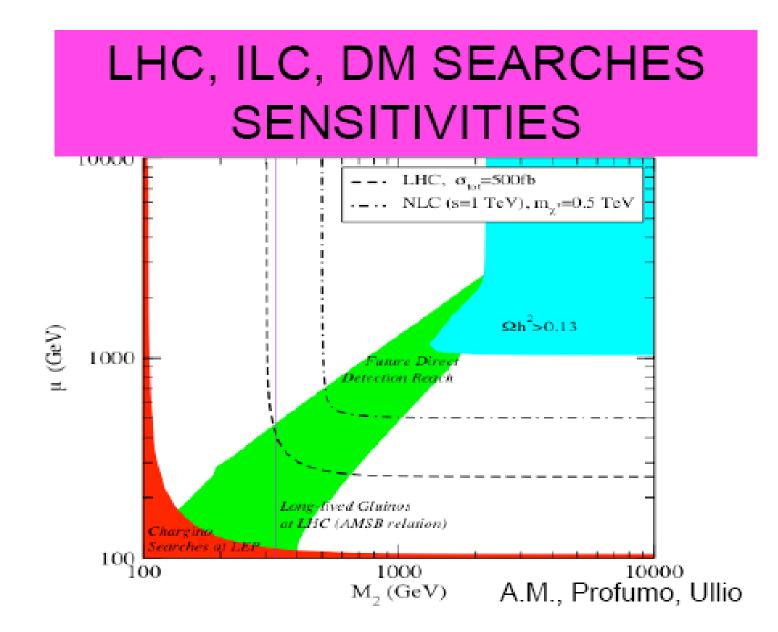
DM INDIRECT DETECTION

WIMP-WIMP annihilation in the galactic halos may be detected through production of γ , neutrinos, anti-matter.

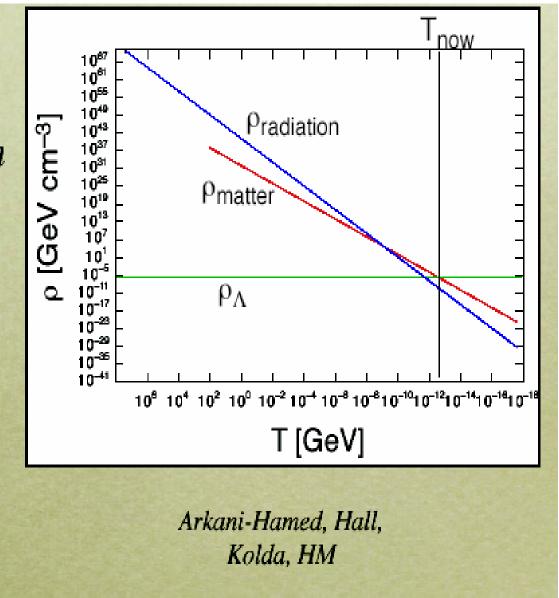

INDIRECT SEARCHES OF DM

- WIMPs collected inside celestial bodies (Earth, Sun): their annihilations produce energetic neutrinos
- WIMPs in the DM halo: WIMP annihilations can take place (in particular, their rate can be enhanced with there exists a CLUMPY distribution of DM as computer simulations of the DM distribution in the galaxies seem to suggest. From the WIMP annihilation:
- -- energetic neutrinos (under-ice, under-water exps Amanda, Antares, Nemo, Nestor, ...)

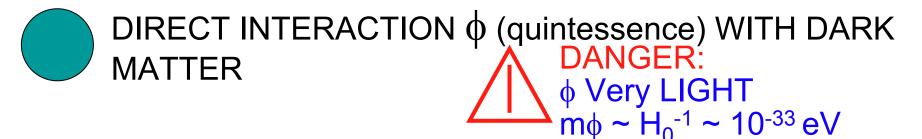
--photons in tens of GeV range (gamma astronomy on ground Magic, Hess, ... or in space Agile, Glast...)


--antimatter: look for an excess of antimatter w.r.t. what is expected in cosmic rays (space exps. Pamela, AMS, ...)

PAMELA, FERMI/ATIC, HESS



PAMELA excess: October 2008, stimulated enormous theoretical activity; note: statistical errors only! Fermi: feature observed by ATIC not confirmed



THE "WHY NOW" PROBLEM

- Why do we see matter and cosmological constant almost equal in amount?
- "Why Now" problem
 Actually a triple coincidence problem including the radiation
 If there is a deep reason for ρ_Λ~((TeV)²/M_{Pl})⁴, coincidence natural

Threat of violation of the equivalence principle constancy of the fundamental "constants",...

INFLUENCE OF φ ON THE NATURE AND THE ABUNDANCE OF CDM

Modifications of the standard picture of WIMPs FREEZE - OUT /

CDM CANDIDATES 🖌

CATENA, FORNENGO, A.M., PIETRONI, SCHELKE

THE S. Katsanevas ASPERA MAGNIFICATION S. Katsanevas ASPERA

AUGER CTA North Common with

Astrophysics

ASTRONET

 ton
 1 ton
 Megaton

 DM
 NM
 scale

 DM
 NNN

 Common with
 NNN

 Particle Physics
 CERN SG

STANDARD MODEL of PARTICLE PHYSICS

G-W-S MODEL

MACRO **MODELLO STANDARD** of COSMOLOGY

HOT BIG BANG HAPPY MARRIAGE **EX: NUCLEOSYNTHESIS** FRICTION POINTS **BUT ALSO**

DARK MATTER AND DARK ENERGY

LHC -> AN EXCEPTIONAL WINDOW TO **EXPLORE THE UNIVERSE AND ITS ORIGIN**