Heavy charged particles as an effective tool for solving of fundamental and applied tasks in modern kiglogy Krásavin Joint Institute for Nuclear Research Laboratory of Radiation Biology

The dose distribution of radiation in matter

1 unit of the dose

1 unit of the dose

Fe ion

Radial dose distribution in track of heavy ion (¹²C, 2,57 MeV/u)

What fundamental biological problems can be solved at use of the accelerated heavy particles?

A. Radiation Genetics

The JINR accelerators

Accelerator	Particles	Energy	Lab
		(up to)	
Phasotron	Protons	660MeV	LNP
U-200	Heavy ions	10MeV/amu	LNR
U-400M	Heavy ions	50 MeV/amu	LNR
Sinchrophasotron	Protons,	10 GeV/amu	LHE
	Heavy ions		
Nuclotron	Protons,	5 GeV/amu 🎽	BPHE
	Heavy ions		

The RBE problem was solved at the Flerov Lab accelerators

DNA repair capacity of the living cells determines the type of RBE on LET dependence

Single DNA damages

Clustered DNA damages

Fragment of DNA

Clustered DNA damages

Clustered DNA damages in nucleosome

Yield of clustered damages on both DNA strands versus LET

"Comet assay" for detection of DNA lesions

The mechanism of DSB DNA repair in human cells

DSB (γ-H2AX) in human cells after X-ray (A) and heavy ion irradiation (B)

M.Vazquez., 2006

The frequency of tonB and colB mutation induction after γ-ray and heavy ion irradiation

Italy-JINR

Induction of mutagenic DNA repair by heavy ions

Induction of tonB⁻trp⁻ deletion mutations by heavy ions

- \circ γ -rays;
- - ⁴He (20 keV/µm);
- ▼ ⁴He (50 keV/µm);
- - ⁴He (78 keV/µm);
- ◆ ¹²C (200 keV/μm)

RBE on LET dependence

Formation of unstable chromosomal aberration after heavy ion irradiation of human cells

Formation of stable chromosomal aberration after heavy ion irradiation of human cells

RBE as a function of LET on induction of mutations, chromosomal aberrations and cell inactivation

Italy-JINR

B. Accelerated heavy ions is a tool for modeling of biological action of space radiation

The GCR flux

The integral flux of GCR particles of carbon and iron groups equals to 10⁵ part cm-2 per year

The relative flux of GCR particles

The energy spectrum of GCR and Nuclotron accelerator

Tracks of heavy ions in nuclear emulsion

Consequences of action of Galactic heavy ions

Induction of cancer;

- Formation of gene and structural mutations;
- Violation of visual functions:
- lesions of retina;
- cataract induction
- Violation of CNS functions

Italy-JINR

Gardner tumors

Nelson, 2006

Cataract

induction

Cataract ratio after irradiation by iron ions and X-rays

Accelerated heavy ions and CNS

Damages of large number cells in tissue by the single track of heavy ion

In Vitro Neurotoxic Effects of ⁵⁶Fe Ions on Retinal Explants

DOSE vs NEURITE GROWTH INDEX

⁵⁶Fe ions, 1 GeV/amu

Control

Cognitive tests

(Morris Water Maze: DAY 4, REVERSAL)

1 month after irradiation

The energy deposition of heavy ions in genetic structures and tissues is characterized by high specifity. This determine the peculiarities of different radiation induced effects:

- Induction of clustered DNA damages;
- Repression or inactivation of DNA repair capacity;
- High values of RBE on different criterion;
- Repression or absence of modification effect of different radiomodificators (oxygen effect, radioprotectors, radiosensitizers).

Thank you for the attention!