Prospects of high-energy nuclear physics

- Status and prospects
 - LHC, FAIR, NICA
- ALICE
 - Great Russian & JINR Contribution
 - Great success! Detectors work very well, results are coming
 - Look forward at first HI data, discovery machine from day one
- FUTURE
 - Fertile field for science and for Italian-Russian Collaboration
 - ALICE various detectors (direct collaboration in the muons arm, Particle ID (TOF and HMPID), ITS, and collaboration on Physics analysis
 - Important to complete the program and the detector (PHOS)
 - A relevant program of Upgrades already developing = > room for important collaboration
 - NICA is an opportunity to be explored

Paolo Giubellino INFN Torino ITALY-RUSSIA Round Table December 19 2009

A bit of history: Accelerators of Heavy Ions

- Experimental programs with High Energy nuclear beams have been carried out for more than 20 years
- After the pioneering work at the Bevalac in the late seventies, 4 facilities at really high energy: AGS, SPS, RHIC and LHC
- Two communities joined:
 - particle physicists
 - nuclear physicists

•Latest news: Pb injection in the LHC performed succesfully!

Very difficult experiments...

central Au-Au event @ ~130 GeV/nucleon CM energy

a developing field!

SPIRES query for all publications with

QGP, SQGP, QUARK-GLUON PLASMA, QCD PLASMA, STRONGLY COUPLED PLASMA, STRONGLY-COUPLED PLASMA

in their title:

Nuclear Physics has changed a lot...

• Size, complexity and time span of projects have grown enormously, and they develop over decades, carried by large international collaborations

Even the "simplest" element requ

Steel cone from Finland

Concrete from France, Engineering & Supervision by CERN Design by Russia (Sarov/ISTC)

They want

Lead from England

I LATER

Graphite & Steel from India

Aluminum from Armenia

Italian polyethylene

en from China

0

To do what? ... explained very well by Prof. Di Giacomo just now!

Early Ideas

- Hagedorn 1965: mass spectrum of hadronic states $\rho(m) \propto m^{\alpha} \exp(m/B)$ => Critical temprature T_c=B
- QCD 1973: asymptotic freedom
 - D.J.Gross and F.Wilczek, H.D. Politzer

Quantum Chromo Dynamics (QCD) is the theory that describes the interactions between quarks and gluons [Nobel Prize 2004]

- 1975: asymptotic QCD and deconfined quarks and gluons
 - N. Cabibbo and G. Parisi, J. Collins and M. Perry

Fig. 1. Schematic phase diagram of hadronic matter. $\rho_{\rm B}$ is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

Interpretation of the Hagedorn temperature as a phase transition rather than a limitingT:

"We suggest ... a different phase of the vacuum in which quarks are not confined"

First schematic phase diagram (Cabibbo and Parisi, 1975)

Exploring the QCD phase diagram

T.D. Lee (1975) "it would be interesting to explore new phenomena by distributing a high amount of energy or high nuclear density over a relatively large volume "**How?** Colliding nuclei at very high energy

Complex picture, with many features

Study how collective phenomena and macroscopic properties of strongly interacting matter emerge from fundamental interactions

Lattice QCD

predicts a rapid transition, with correlated deconfinement and chiral restauration

In a nutshell

- Study Matter under Extreme Conditions of temperature (100,000 times that of the center of the Sun) and density
- 'state of matter' at high temperature & energy density: The QGP
 - ground state of QCD & primordial matter of the Universe
 - partons are **deconfined** (not bound into composite particles)
 - chiral symmetry is restored (partons are ~ massless)
 - 'the stuff at high T where ordinary hadrons are no longer the relevant d.o.f'
- Mission of Ultrarelativistic Heavy Ions
 - search for the QGP phase
 - measure its properties
 - **discover** new aspects of QCD in the strongly coupled regime
- Answer some of the most fundamental questions about our Universe and its development
 - A small "big bang" in the laboratory....

What do we measure? Language

- We all have in common basic nuclear properties $-A, Z \dots$
- But some are specific to heavy ion physics
 - V₂ Fourier coefficient of azimuthal anisotropies "flow"
 - $-\mathbf{R}_{AA}$ 1 if yield = perturbative value from initial parton-parton flux
 - T Temperature (MeV)
 - μ_B Baryon chemical potential (MeV) ~ *net* baryon density
 - η Viscosity (MeV³) *indirectly inferred from* R_{AA} *and* v_2
 - S Entropy density \sim "particle" density
 - Energy density (Bjorken 1983): $\varepsilon = \frac{dE_{T}}{A_{T}dz} = \frac{1}{\pi R^{2}\tau} \frac{dE_{T}}{dy}$

Collision Geometry

In these complicated events, we have (*a posteriori*) control over the event geometry:

HI experiments at the SPS

@2000: 25 countries, about 500 physicists involved

A few fundamental results

- Experimental results have been populating the phase diagram
- The fireball emits hadrons fron an equilibrium state
 - All data at the different energies are in agreement with a thermal model with 3 parameters: T, μ_B , V
 - A limiting temperature emerges as a function of c.m. energy, matching predictions from Lattice QCD for a phase limit
- The fireball expands collectively like an almost ideal fluid
 - hydrodynamic flow characterized by azimuthal anisotropy coeffient v2
 - The system has very low viscosity (close to the AdS/CFT limit)
 - Flow builds up at the partonic level
- At high T (RHIC energies) the matter produced is opaque to hard probes (high-pT particles suppressed, opposite-side jet absorbed)
- At RHIC multiplicities consistent with gluon saturation effects

What is going on?

- The field, which is largely data-driven, has seen a major development in the last few years, both in theory and experiment, and has ambitious plans for the coming decade:
 - A vigorous exploration of the QCD phase diagram
 - In the high- μ_B direction
 - In the high-T direction
 - At the liquid-gas boundary
 - Different methods and approaches, with a common aim: a qualitative step towards a description of high-density and temperature nuclear matter calculable from first principles

Exploring high baryon densities

- A field of great interest! Search for the critical point, study phase transition, EOS
- CERN:
 - NA61 (SHINE) experiment
- RHIC
 - Energy scan
- GSI:
 - A very lively program ongoing at SIS (FOPI, KaoS, HADES)
 - A rich future: FAIR (CBM)
 - 100*SPS beam intensity
- DUBNA
 - NICA HI collider with MPD Detector:
 - Good systematics (like RHIC)
 - High rate (10* SPS)

Second Generation Experiments

Critical point, critical phenomena

Critical Opalescence as observed in CO₂ liquid-gas transition

T. Andrews.
Phil. Trans.
Royal Soc.,
159:575,
1869

 $T > T_C$ $T \sim T_C$ $T < T_C$

Current : SPS - SHINE

A significant difference between freeze-out and transition temperature can lead to dilution of the signatures of the QCD critical point. One way address this is to vary system size/colliding ion size.

energy (A GeV)

350

300

250 MeV]

200

 $\sqrt{s_{NN}} = 17.2 \text{ GeV}$

C-C Si-Si Pb-Pb

100

1000

 $\sqrt{s_{NN}} = 17.2 \text{ GeV}$

100

1000

F. Becattini et al., PRC 73, 044905

C-C Si-Si

10

185

180

175

165 160 155

150

145

140

T [MeV] 170

Physics Program :

Studying QCD Critical Point and Onset of various observations with varying colliding ion size, collision centrality and having a proper p+p baseline

Uniform acceptance for different particle species and for different beam energies in the same experimental setup (advantage over fixed traget expt.) **PROBLEM: low luminosity at low energy**

Future: CBM @ FAIR

- CBM at SIS 300 will start in > 2017 10-45A GeV beam energy, high availability of beam (order of 10 weeks per year), interaction rates up to 10 MHz
- "CBM light" at SIS 100 in 2015 Au beam up to 11A GeV, p beam up to 30 GeV (multistrange hyperons, charm production in pA)
- Assume 10 weeks beam time, 25A Gev Au+Au (minbias), no trigger, 25 kHz interaction (and storage) rate:
 - "unlimited statistics" of bulk observables,
 e.g. ~10¹⁰⁻¹¹ kaons, 10¹⁰ ∧
 - low-mass di-electrons with high statistics, $10^6 \rho$, ω , ϕ -mesons (each)
 - multistrange hyperons with high statistics, $10^8 \Xi$, $10^6 \Omega$

CBM physics program:

- Equation-of-state at high ρ_B (3-10 ρ₀)
- Deconfinement phase transition
- QCD critical endpoint
- Chiral symmetry restoration

High luminosity, rare probes, higher μ_B reach

Phase diagram exploration

- Lattice and other QCD based models :
 - $-\mu_{\rm B} = 0$ Cross-over
 - $T_{\rm C} \sim 170-195 \; {\rm MeV}$
 - $\mu_{B} > 160 \text{ MeV} \text{QCD}$ critical point
- No signatures of QCD critical point established, possible hints at SPS

NICA strategy: Collider advantages with high rate => complementary program

NICA @ max baryonic densities

The High-Energy Frontier: LHC as an Ion Collider

• Running conditions for 'typical' Ion year:

Collision system	√s _{NN} (TeV)	L ₀ (cm ⁻² s ⁻¹)	<l>/L₀ (%)</l>	Run time (s/year)	σ _{inel} (b)
PbPb	5.5	10 ²⁷	70-50	10 ^{6 * *}	7.7

** ∫ L dt ~ 0.5 nb⁻¹/year

A x28 jump in energy as compared to RHIC

 $\mathcal{L} \sim 10^{27} \,\mathrm{cm}^{-2}\mathrm{s}^{-1}$

 $\mathcal{L} \sim \text{few 10}^{27} \text{ to 10}^{29} \text{ cm}^{-2} \text{s}^{-1}$

 $\mathcal{L} \sim 10^{29} \text{ cm}^{-2} \text{s}^{-1}$

- Running plan:
 - First short low-luminosity run (~ $1/20^{th}$ design, i.e. $2 \sim 5x10^{25}$ cm⁻²s⁻¹)
 - late 2010 (confirmed)
 - Following few years (1HI 'year' = 10⁶ effective s, ~like at SPS)
 - 2 3 years Pb-Pb : targeting integrated $\mathcal{L} \sim 1 \text{ nb}^{-1}$
 - **1 year p Pb 'like'** (\mathbf{p} , d or α)
 - 1 year light ions (eg Ar-Ar)
 - Later: different options depending on Physics results

LHC vs RHIC

- Unexplored low x regime.
- Energy density and QGP lifetime increase by a factor 2 ÷3

• But also new probes: Jets, Heavy Quarks

HI Experiments at the LHC

- One dedicated Heavy-Ion experiment: ALICE
 - Needs to cover essentially all relevant observables
 - Designed to be able to cope with the highest multiplicities
 - The design evolved with time (latest addition: EMCAL)
 - Now over 1000 Physicists from 100 Institutions in 30 Countries
- CMS and, to a lesser extent, ATLAS progressively expanded their interest in the Heavy-Ion runs
 - Very healthy competition!
 - Now about 150 Physicists involved
 - Major role or Russia (especially in CMS, O. Kodolova leads the HI Physics Group)

ALICE is different...

- What makes ALICE different from ATLAS, CMS and LHCb ?
 - Experiment designed for Heavy Ion collision
 - only dedicated experiment at LHC, must be comprehensive and be able to cover all relevant observables
 - VERY robust tracking
 - high-granularity detectors with many space points per track, very low material budget and moderate magnetic field
 - PID over a very large p_T range
 - Hadrons, leptons and photons
 - Very low p_T cutoff
 - Excellent vertexing
- Complementary to the other experiments

Experimental Constraints from the Heavy Ion running

- extreme particle density $(dN_{ch}/d\eta \sim 2000 8000)$
 - x 500 compared to pp @ LHC
- large dynamic range in p_T:
 - from very soft (0.1 GeV/c) to fairly hard (100 GeV/c)
- lepton ID, hadron ID, photon detection
- secondary vertices
- modest Luminosity and interaction rates
 - 10 kHZ (Pb-Pb) to 300 kHZ (pp) (< 1/1000 of pp@10³⁴)

Tracking challenge

Excellent tracking + vertexing + PID capabilities are the key factors

With part of the event removed, displaced vertices can be seen

 $\Xi^- \rightarrow \Lambda \pi^-$

ALICE Experimental Solutions

- dN_{ch}/dη: high granularity, 3D detectors (560 million pixels in the TPC alone, giving 180 space points/track, largest ever: 88m³), large distance to vertex (use a VERY large magnet)
 - emcal: high-density crystals of $PbWO_4$ at **4.6 m** (typical is 1-2 m !)
- **p**_t **coverage**: **thin** det, moderate field (low p_t), large lever arm + resolution (large p_t)
 - ALICE: < 10% X_0 in r < 2.5 m (typical is 50-100% X_0), B= 0.5T, BL² ~ like CMS !
- **PID**: use of essentially all known technologies
 - dE/dx, Cherenkov & transition rad., TOF, calorimeters, muon filter, topological
- **rate:** allows slow detectors (TPC, SDD), moderate radiation hardness

ALICE Design Performance

Who is ALICE ~ 1000 Members

from both NP and HEP communities Countries ~30 ~100 Institutes - 150 MCHF capital cost (+ 'free' magnet) History 1989-1996: Design 1992-2002: R&D 2000-2010: Construction 2002-2007: Installation 2008 -> : Commissioning 3 TP addenda along the way: 1996 : muon spectrometer 1999 : TRD 2006 : EMCAL

A decade of R&D...

In detector Hardware and VLSI Electronics => successfully **completed**

across the decade of the 1990's:

- Inner Tracking System (ITS)
 - Silicon Pixels (RD19)
 - Silicon Drift (INFN/SDI)
 - Silicon Strips (double sided)
 - low mass, high density interconnects
 - low mass support/cooling
- TRD
 - bi-dimensional (time-space) read-out, on-chip
 - trigger (TRAP chip)
- TPC
 - gas mixtures (RD32)
 - advanced digital electronics
 - low mass field cage
- EM calorimeter
 - new scint. crystals (RD18)
- PID
 - Multigap RPC's (LAA)
 - solid photocathode RICH (RD26)

In DAQ & Computing

- => in progress **now**
 - scalable architectures with consumer electornics commercial components (COTS)
- high perf. storage media
- GRID computing

Insertion of final TOF super module

Installation of final muon chamber

ALICE in 2008

Formal end of ALICE installation July 2008

2008: cosmics!

2008: First Interaction in ALICE

- LHC beam circulation tests on 11.09.2008.
- Collision of beam-halo particle with SPD: 7 reconstructed tracks from common vertex.

ALICE 2009: largely complete

The First event!

How well is the detector doing?

TPC, TRD, TOF, HMPID

On 6th December, 'stable beams' were declared & we could switch on all ALICE detectors for the first time.

Muon Spectrometer

The first LHC Physics Paper!

Springer

to (re)measure to get confidence in our detectors, tune the simulations, study background, Discoveries are still a long way to go..

Russian- JINR participation in ALICE

Russia: 9 Institutions

- **BINP** (Novosibirsk)
- > IHEP (Protvino)
- > INR (Troitzk)
- > ITEP (Moscow)
- > MEPhI (Moscow)
- > PNPI (Gatchina)
- **FRANC "VNIIEF" (Sarov)**
- > RRC "Kurchatov Institute" (Moscow)
- St.PSU group (St. Petersburg)
- JINR (Dubna)

Everywhere in the project

> PHOS (KI, Sarov, IHEP, JINR)
> DIMUON (PNPI) ✓
> T0 (MEPhI, INR, KI)
> TOF (ITEP) ✓
> ITS (St.PSU) ✓

- Common Projects ⇒ survey, infrastructure (A major one: the Muon Spectrometer Magnet Yoke at JINR)
- ➢ Data analysis and physics (RRC KI, JINR, ITEP, IHEP, INR, St.PSU, PNPI, MEPhI, Sarov) ✓
- ➢ GRID computing infrastructure(RRC KI, JINR, ITEP, IHEP, INR, St.PSU, PNPI) ✓

In direct collaboration with Italian groups

The muon magnet

Photon spectrometer PHOS Major Russian-led detector

PHOS (PHOton Spectrometer) is a high resolution electromagnetic calorimeter consisting of 17920 detection channels based on lead-tungstate crystals(PWO). => Very far from Interaction Point to handle High Multiplicities

Kurchatov Institute, Sarov, IHEP(Protvino), JINR Oslo, Bergen, Prague, Warsaw, Nantes, Muenster, Beijing, Wuhan, Hiroshima, CERN

5 independent *modules* each of 3584 *crystal detector units*

PHOS cradle

crystal detector unit: PWO crystal+ APD+ preamp.

Today:

- 3 modules

 installed and
 operational at
 nominal T of
 -20° from day 1
- Even with the small statistics of the first 900 GeV pp run...
 first peak!

What Physics in the First year?

- Ions in LHC in November 2010

 Tests with Pb all the way to LHC successful!
- From now on pp

□ ALICE detector performs very well in pp

- □ very low-momentum cutoff (<100 MeV/c) x_T -regime down to 4×10⁻⁶
- \Box p_t-reach up to 100 GeV/c
- excellent particle identification
- efficient minimum-bias trigger
- Excellent vertexing capabilities

□ first physics in ALICE will be pp

- provides important reference data for heavy-ion programme
- Minimum bias running

□ unique pp physics in ALICE e.g.

- Physics at high multiplicities, reachable thanks to the multiplicity trigger from the pixel detectors (7-10 times the mean multiplicity of minimum bias collisions)
 - Same set of measurements and themes of Heavy-lon collisions (strangeness production, jet-quenching, flow, ...)
- baryon transport
- measurement of charm and beauty cross sections down to very low transverse momentum (major input to pp QCD physics) both open charm mesons and quarkonia
 - Essential the acceptance in the lowtransverse momentum region

pp Physics with ALICE

start-up

❑ some collisions at 900 GeV → connect to existing systematics

pp first high energy run

- Ideal beam conditions for ALICE at low luminosity (50 ns scheme allows decoupling the luminosity in ALICE from the ones in ATLAS and CMS)
- In ALICE Luminosity around 2.10²⁹ cm⁻² s⁻¹ giving of the order of 10⁹
 - events depending on run

HI Physics with ALICE, summary

fully commissioned detector & trigger

□ alignment, calibration available from pp

first 10⁵ events: global event properties

- multiplicity, rapidity density
- elliptic flow

first 10⁶ events: source characteristics

- particle spectra, resonances
- differential flow analysis
- interferometry

first 10⁷ events: high-p_t, heavy flavours

- □ jet quenching, heavy-flavour energy loss
- charmonium production

yield bulk properties of created medium

- energy density, temperature, pressure
- heat capacity/entropy, viscosity, sound velocity, opacity
- □ susceptibilities, order of phase transition

early ion scheme

- □ 1/20 of nominal luminosity
- □ $\int Ldt = 5 \cdot 10^{25} \text{ cm}^{-2} \text{ s}^{-1} \text{ x} 10^{6} \text{ s}$ 0.05 nb⁻¹ for PbPb at 5.5 TeV N_{PbPb collisions} = 4 \cdot 10⁸ collisions 400 Hz minimum-bias rate 20 Hz central (5%)
- muon triggers:
 - ~ 100% efficiency, < 1kHz
- Centrality triggers:
 bandwidth limited $N_{PbPbminb} = 10^7 \text{ events (10Hz)}$ $N_{PbPbcentral} = 10^7 \text{ events (10Hz)}$

LHC, Physics of 'The First 3 Minutes': Multiplicity

First estimate of energy density Saturation, CGC ?

integrated multiplicity distributions from Au-Au/Pb-Pb collisions and scaled pp collisions

Chemical composition

Particle composition can be described in terms of a statistical model (grand canonical ensemble) with 2 free parameters (thermalization temperature and bariochemical potential). Consistent with a thermalization of the system with T ~ 170 MeV , μ_B ~ 30 MeV

Limiting temperature reached for large sqrt(s).

First data at LHC will check if the hypothesis survives at *20 the RHIC cm energy

$$\chi_r^2 = 0.8 \qquad \qquad \chi_r^2 = 1.1$$

Parametrization of all freezeout points

- If the fit parameters are plotted vs. Sqrt(s), a limiting T emerges at about 160 MeV
- First data at LHC will check if the hypothesis survives at *20 cm energy => "DAY 1 PHYSICS"

ALICE Pilot run Physics: ρ , ϕ , K^* , K^0_s , Λ , Ξ , Ω ...

Hard Scattering as a Probe

New for heavy ion physics → *Hard Parton Scattering*

~ impossible at SpS, interesting at RHIC, perfect at LHC

- Jets
 - \rightarrow high p_t leading particles
 - \rightarrow azimuthal correlations
 - \rightarrow jets in calorimeters

vacuum

nedium

- Scattered partons propagate through matter leading particle radiate energy (~ few GeV/fm) in colored medium
 - suppression of high p_t particles called "parton energy loss" or "jet quenching"
 - alter di-jets, azimuthal correlations, jet fragmentation function

LHC vs RHIC hard probes

section

Cross

From RHIC to LHC

 Cross section for heavy flavours and jets grows by:

$$\begin{array}{l} \sigma_{c\bar{c}} \rightarrow \ \sim \ 10 \\ \sigma_{b\bar{b}} \rightarrow \ \sim \ 100 \\ \sigma_{jet>100GeV} \rightarrow \ \sim \ \infty \end{array}$$

$$\sigma_{\mathsf{RHIC}}(\Upsilon \rightarrow \ell \ell) \sim \sigma_{\mathsf{LHC}} (\mathsf{Z} \rightarrow \ell \ell$$

N(qq) per central PbPb collision

	SPS	RHIC	LHC
charm	0.2	10	200
bottom	-	0.05	6

LHC: the realm of Jets Jet statistics in pilot Pb run Jets are produced copiously...

2	20	10	0 200	p _t (GeV)	
100)/event 1/event	10 ³ in first 10 ⁶	Pb-Pb event	s	
#Jets per central Event ALICE Acceptance			10 ⁶ central PbPb collisions		
s/event (E _T > E ^{min} , n < 0.5) 0.0 0.0 0.0	10 ⁶ central Pb-Pb events (pilot run)	$E_{\rm T}$ threshold 50 GeV	$N_{\rm jets}$ 5×10^4	
₩ ₩ 10 ⁻³			100 GeV	1.5×10^{3}	
10 ⁻⁴			150 GeV	300	
<u>F</u>	20 40 60 80 100 120 140	0 160 180 200 E ^{min} [GeV]	200 GeV	50	

First full run Physics: $D^0 \rightarrow K^-\pi^+$

A major ALICE asset: measure Y, B, J/ψ and D in the same experiment: natural normalization, Bkgd subtraction, in central region identify J/ψ from B decays

The Future

- After years of very successful collaboration between Italian and Russian & JINR Nuclear Physicists in ALICE, a very exciting future opens ahead of us:
 - ALICE Physics
 - ALICE will take data in its present form for **at least** 5-6 years (pp running + 1 year pilot PbPb, 2 years high Lum PbPb, 1 year pPb, 1-2 years of a lower-A nucleus). An extremely rich scientific program, which will see collaboration in analysis and computing. As early as possible PHOS should be completed.
 - ALICE upgrades
 - An extensive upgrade program is being studied, to extend the vertexing capabilities, Particle Identification at larger momenta, the overall rate capability and forward tracking and calorimetry (to access very low-x and therefore the physics of gluon saturation)
 - Experimentation at high baryon densities (MPD@NICA)
 - A new, challenging detector and a rich scientific program, opportunities of collaboration to be explored!

Elliptic flow

Elliptic flow coefficient $dn/d\phi \sim 1 + 2 v_2(p_T) \cos (2 \phi) + ...$

Where azimuth is measured w.r.t. the reaction plane

Flow: Correlation between coordinate and momentum space => azimuthal asymmetry of interaction region trasported to the final state **close particles move at similar velocity and direction**

flow builds up in an interacting medium with pressure gradient for given boundary conditions, flow profile depends on

Equation of State EoS and viscosity η of 'fluid'

Hydrodynamics of perfect liquid: $\eta = 0, \lambda = 0$ ('strongly interacting') Flow acts at early times

SCIENCE Vol: 298 2179 (2002) ⁷Li

Ultra-cold ⁷Li 10⁻¹² eV , 2 ms of expansion

Flow "knows" quarks...

The fluid is strongly interacting => small viscosity

- Although the errors are large (especially from assumptions on initial spatial distribution: Glauber vs. CGC) the data rule out values of η /s much larger than $1/4\pi$, the conjectured limit from AdS/CFT
- Also measured from fluctuations, heavy quark motion,...
- Most perfect liquid ever observed?

One result among many: Photons shine, Pions (and η) don't

• Pions are strongly absorbed in the Hot/dense medium, while direct photons are *not*