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1 Confining separable Dyson-Schwinger equation model

Mesons can be described as qq̄ bound states using the Bethe-Salpeter equation. In the ladder truncation,
this equation reads

−λ(P 2)Γ(p, P ) =
4

3

∫
d4q

(2π)4
Deff

μν(p − q)γμS(q+)Γ(q, P )S(q−)γν ,

where P is the total momentum, q± = q ± P/2,

Deff
μν(k) an “effective gluon propagator”.

The meson mass is identified from λ(P 2 = −M2) = 1.

In conjunction with the rainbow truncation for the quark DSE

S(p)−1 = Z2 iγ · p + Z2 m0 +
4

3

∫
d4q

(2π)4
g2Deff

μν(p − q)γμS(q)γν .

this equation forms the basis for the DSE approach to meson physics.

We consider here a simple separable interaction that has a finite range, accommodates quark confine-
ment, and facilitates a decoupling of fermion Matsubara modes.

We base our approach on a confining separable model at T = 0 and defined by Deff
μν(p − q) → δμν D(p2, q2, p · q)

with

D(p2, q2, p · q) = D0 f0(p
2)f0(q

2) + D1 f1(p
2)(p · q)f1(q

2) .

Here a Feynman-like gauge is chosen for phenomenological simplicity. This is a rank-2 interaction with
two strength parameters D0, D1, and corresponding form factors fi(p

2).



The choice for these quantities is constrained by consideration of the resulting solution of the DSE for
the quark propagator in the rainbow approximation. For the amplitudes defined by S(p) = [i/pA(p2) +
B(p2) + m0]

−1 this produces

B(p2) =
16

3

∫
d4q

(2π)4
D(p2, q2, p · q) B(q2) + m0

q2A2(q2) + [B(q2) + m0]
2 ,

[
A(p2) − 1

]
p2 =

8

3

∫
d4q

(2π)4
D(p2, q2, p · q) (p · q)A(q2)

q2A2(q2) + [B(q2) + m0]
2 .

The solution for B(p2) is determined only by the D0 term, and the solution for A(p2) − 1 is determined
only by the D1 term.

B(p2) = b f0(p
2) , A(p2) = 1 + a f1(p

2) ,

In the present separable model the strength b = B(0), which is generated by solution of DSE and
BSE, controls both confinement and dynamical chiral symmetry breaking. The propagator is confining if
m2(p2) �= −p2 for real p2 where the quark mass function is m(p2) = (B(p2) + m0)/A(p2).

We use the exponential form factors (Model 1).

We also try to consider additional modification for form-factor f1(p
2). We represent it in the form

(Model 2)

f1(p
2) =

N1

1 + exp
(

p2−p2
0

Λ2
1

) ,

where N1 is the normalization constant in order to have f1(0) = 1 and equals

N1 = 1 + exp

(
− p2

0

Λ2
1

)
.



Experiment model 1 model 2
- 〈q̄q〉0 (0.236 GeV)3 0.209 0.217
m0 5 - 10 MeV 6.5 6.3
m(p2 = 0) ∼0.350 GeV 0.451 0.415
Mπ 0.1385 GeV 0.140 0.140
fπ 0.093 GeV 0.92 0.92
Mσ 400-1200 MeV 722 667
Γσ→ππ 600-1000 MeV 418 345
Parameters
a 0.622 0.554
Λ0 , GeV 0.725 0.780
b , GeV 0.725 0.639
Λ1 , GeV 1.7 1.69
p0 , GeV 0.886

Figure 1: Momentum dependence of quark mass function M(p) for the model 1 (doted lines) and the
model 2 (solid lines) in comparison with lattice data. The value of current mass is taken 55 MeV.



The extension of the separable model studies to the finite temperature case, T �= 0 , is systemati-
cally accomplished by transcription of the Euclidean quark 4 - momentum via q → qn = (ωn, �q), where
ωn = (2n + 1)πT are the discrete Matsubara frequencies. The effective q̄q interaction will automatically
decrease with increasing T without the introduction of an explicit T -dependence which would require new
parameters. We investigate the resulting behavior of the π and σ meson modes and decays in the presence
of deconfinement and chiral restoration.

The result of the DSE solution for the dressed quark propagator now becomes

S−1(pn, T ) = i�γ · �p A(p2
n, T ) + iγ4ωn C(p2

n, T ) + B(p2
n, T ) + m0 ,

where p2
n = ω2

n + �p 2 and there are now three amplitudes due to the loss of O(4) symmetry. The solutions
have the form B = b(T )f0(p

2
n), A = 1 + a(T )f1(p

2
n), and C = 1 + c(T )f1(p

2
n) and the DSE becomes a set

of three non-linear equations for b(T ), a(T ) and c(T ). The explicit form is

a(T ) =
8D1

9
T

∑
n

∫
d3p

(2π)3
f1(p

2
n) �p 2 [1 + a(T )f1(p

2
n)] d−1(p2

n, T ) ,

c(T ) =
8D1

3
T

∑
n

∫
d3p

(2π)3
f1(p

2
n) ω2

n [1 + c(T )f1(p
2
n)] d−1(p2

n, T ) ,

b(T ) =
16D0

3
T

∑
n

∫
d3p

(2π)3
f0(p

2
n) [m0 + b(T )f0(p

2
n)] d−1(p2

n, T ) ,

where d(p2
n, T ) is given by

d(p2
n, T ) = �p 2 A2(p2

n, T ) + ω2
n C2(p2

n, T ) + [m0 + B(p2
n, T )]2 .

Note that, at finite temperature, the strength b(T ) for the quark mass function will decrease with T so
that this model can be expected to have a deconfinement transition at or before the chiral restoration
transition associated with b(T ) → 0.



Figure 2: T -dependence of coefficients b0, b.

Figure 3: T -dependence of coefficients a, c.



Figure 4: T -dependence of the π covariants .

Figure 5: T -dependence of the π, σ masses.



2 U(3)⊗ U(3) model with the ’t Hooft interaction

We use the three–flavor Nambu-Jona-Lasinio model, including the determinantal ’t Hooft interaction that
breaks the UA(1) symmetry, that has the following Lagrangian:

L = q̄ ( i γμ ∂μ − m̂) q +
1

2
gS

8∑
a=0

[ ( q̄ λa q )2 + ( q̄ i γ5 λa q )2 ]

+ gD {det [q̄ (1 + γ5) q] + det [q̄ (1 − γ5) q]}.

Case I: the anomaly coefficient gD is constant for all range of temperatures or densities.

Case II: the anomaly coefficient gD is a dropping function of temperature or density. The temperature
dependence of gD is extracted by making use of the lattice results for the topological susceptibility.

Case III: the anomaly coefficient has the form of a decreasing exponential (gD(T ) = gD(0)exp[−(T/T0)
2]).

This phenomenological pattern of restoration of the axial symmetry was proposed by Kunihiro in the frame-
work of the present model. Here we consider a dependence of the anomalous coupling constant on density
also inspired on the finite temperature scenario.

We also consider a simplistic scenario without UA(1) anomaly (gD = 0)
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