Yu. L. Kalinovsky
 Laboratory of Information Technologies

The alternative estimation of pion annihilation $\pi \pi \longrightarrow 2 \gamma$ in vicinity of the chiral symmetry restoration

Collaborators:
M. K. Volkov, D. Blaschke, A. Radzhabov (BLTPH, JINR)
I. Molodtsova (LIT, JINR)
P. Costa, M. Ruivo, S. Sousa (Coimbra University, Portugal)
\checkmark Confining separable DSE model
$\checkmark \mathrm{U}(3) \otimes \mathrm{U}(3)$ model with the 't Hooft interaction
\checkmark Conclusions

1 Confining separable Dyson-Schwinger equation model

Mesons can be described as $q \bar{q}$ bound states using the Bethe-Salpeter equation. In the ladder truncation, this equation reads

$$
-\lambda\left(P^{2}\right) \Gamma(p, P)=\frac{4}{3} \int \frac{d^{4} q}{(2 \pi)^{4}} D_{\mu \nu}^{\mathrm{eff}}(p-q) \gamma_{\mu} S\left(q_{+}\right) \Gamma(q, P) S\left(q_{-}\right) \gamma_{\nu}
$$

where P is the total momentum, $q_{ \pm}=q \pm P / 2$,
$D_{\mu \nu}^{\mathrm{eff}}(k)$ an "effective gluon propagator".
The meson mass is identified from $\lambda\left(P^{2}=-M^{2}\right)=1$.
In conjunction with the rainbow truncation for the quark DSE

$$
S(p)^{-1}=Z_{2} i \gamma \cdot p+Z_{2} m_{0}+\frac{4}{3} \int \frac{d^{4} q}{(2 \pi)^{4}} g^{2} D_{\mu \nu}^{\mathrm{eff}}(p-q) \gamma_{\mu} S(q) \gamma_{\nu}
$$

this equation forms the basis for the DSE approach to meson physics.
We consider here a simple separable interaction that has a finite range, accommodates quark confinement, and facilitates a decoupling of fermion Matsubara modes.

We base our approach on a confining separable model at $T=0$ and defined by $D_{\mu \nu}^{\mathrm{eff}}(p-q) \rightarrow \delta_{\mu \nu} D\left(p^{2}, q^{2}, p \cdot q\right)$ with

$$
D\left(p^{2}, q^{2}, p \cdot q\right)=D_{0} f_{0}\left(p^{2}\right) f_{0}\left(q^{2}\right)+D_{1} f_{1}\left(p^{2}\right)(p \cdot q) f_{1}\left(q^{2}\right)
$$

Here a Feynman-like gauge is chosen for phenomenological simplicity. This is a rank-2 interaction with two strength parameters D_{0}, D_{1}, and corresponding form factors $f_{i}\left(p^{2}\right)$.

The choice for these quantities is constrained by consideration of the resulting solution of the DSE for the quark propagator in the rainbow approximation. For the amplitudes defined by $S(p)=\left[i p A\left(p^{2}\right)+\right.$ $\left.B\left(p^{2}\right)+m_{0}\right]^{-1}$ this produces

$$
\begin{aligned}
B\left(p^{2}\right) & =\frac{16}{3} \int \frac{d^{4} q}{(2 \pi)^{4}} D\left(p^{2}, q^{2}, p \cdot q\right) \frac{B\left(q^{2}\right)+m_{0}}{q^{2} A^{2}\left(q^{2}\right)+\left[B\left(q^{2}\right)+m_{0}\right]^{2}} \\
{\left[A\left(p^{2}\right)-1\right] p^{2} } & =\frac{8}{3} \int \frac{d^{4} q}{(2 \pi)^{4}} D\left(p^{2}, q^{2}, p \cdot q\right) \frac{(p \cdot q) A\left(q^{2}\right)}{q^{2} A^{2}\left(q^{2}\right)+\left[B\left(q^{2}\right)+m_{0}\right]^{2}}
\end{aligned}
$$

The solution for $B\left(p^{2}\right)$ is determined only by the D_{0} term, and the solution for $A\left(p^{2}\right)-1$ is determined only by the D_{1} term.

$$
B\left(p^{2}\right)=b f_{0}\left(p^{2}\right), \quad A\left(p^{2}\right)=1+a f_{1}\left(p^{2}\right)
$$

In the present separable model the strength $b=B(0)$, which is generated by solution of DSE and BSE, controls both confinement and dynamical chiral symmetry breaking. The propagator is confining if $m^{2}\left(p^{2}\right) \neq-p^{2}$ for real p^{2} where the quark mass function is $m\left(p^{2}\right)=\left(B\left(p^{2}\right)+m_{0}\right) / A\left(p^{2}\right)$.

We use the exponential form factors (Model 1).
We also try to consider additional modification for form-factor $f_{1}\left(p^{2}\right)$. We represent it in the form (Model 2)

$$
f_{1}\left(p^{2}\right)=\frac{N_{1}}{1+\exp \left(\frac{p^{2}-p_{0}^{2}}{\Lambda_{1}^{2}}\right)},
$$

where N_{1} is the normalization constant in order to have $f_{1}(0)=1$ and equals

$$
N_{1}=1+\exp \left(-\frac{p_{0}^{2}}{\Lambda_{1}^{2}}\right)
$$

	Experiment	model 1	model 2	
$-\langle\bar{q} q\rangle^{0}$	$(0.236 \mathrm{GeV})^{3}$	0.209	0.217	
m_{0}	$5-10 \mathrm{MeV}$	6.5	6.3	
$m\left(p^{2}=0\right)$	$\sim 0.350 \mathrm{GeV}$	0.451	0.415	
M_{π}	0.1385 GeV	0.140	0.140	
f_{π}	0.093 GeV	0.92	0.92	
M_{σ}	$400-1200 \mathrm{MeV}$	722	667	
$\Gamma_{\sigma \rightarrow \pi \pi}$	$600-1000 \mathrm{MeV}$	418	345	
Parameters				
a	0.622	0.554		
$\Lambda_{0}, \mathrm{GeV}$		0.725	0.780	
b, GeV		0.725	0.639	
$\Lambda_{1}, \mathrm{GeV}$		1.7	1.69	
p_{0}, GeV			0.886	

Figure 1: Momentum dependence of quark mass function $M(p)$ for the model 1 (doted lines) and the model 2 (solid lines) in comparison with lattice data. The value of current mass is taken 55 MeV .

The extension of the separable model studies to the finite temperature case, $T \neq 0$, is systematically accomplished by transcription of the Euclidean quark 4 - momentum via $q \rightarrow q_{n}=\left(\omega_{n}, \vec{q}\right)$, where $\omega_{n}=(2 n+1) \pi T$ are the discrete Matsubara frequencies. The effective $\bar{q} q$ interaction will automatically decrease with increasing T without the introduction of an explicit T-dependence which would require new parameters. We investigate the resulting behavior of the π and σ meson modes and decays in the presence of deconfinement and chiral restoration.

The result of the DSE solution for the dressed quark propagator now becomes

$$
S^{-1}\left(p_{n}, T\right)=i \vec{\gamma} \cdot \vec{p} A\left(p_{n}^{2}, T\right)+i \gamma_{4} \omega_{n} C\left(p_{n}^{2}, T\right)+B\left(p_{n}^{2}, T\right)+m_{0}
$$

where $p_{n}^{2}=\omega_{n}^{2}+\vec{p}^{2}$ and there are now three amplitudes due to the loss of $O(4)$ symmetry. The solutions have the form $B=b(T) f_{0}\left(p_{n}^{2}\right), A=1+a(T) f_{1}\left(p_{n}^{2}\right)$, and $C=1+c(T) f_{1}\left(p_{n}^{2}\right)$ and the DSE becomes a set of three non-linear equations for $b(T), a(T)$ and $c(T)$. The explicit form is

$$
\begin{aligned}
a(T) & =\frac{8 D_{1}}{9} T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}} f_{1}\left(p_{n}^{2}\right) \vec{p}^{2}\left[1+a(T) f_{1}\left(p_{n}^{2}\right)\right] d^{-1}\left(p_{n}^{2}, T\right) \\
c(T) & =\frac{8 D_{1}}{3} T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}} f_{1}\left(p_{n}^{2}\right) \omega_{n}^{2}\left[1+c(T) f_{1}\left(p_{n}^{2}\right)\right] d^{-1}\left(p_{n}^{2}, T\right) \\
b(T) & =\frac{16 D_{0}}{3} T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}} f_{0}\left(p_{n}^{2}\right)\left[m_{0}+b(T) f_{0}\left(p_{n}^{2}\right)\right] d^{-1}\left(p_{n}^{2}, T\right)
\end{aligned}
$$

where $d\left(p_{n}^{2}, T\right)$ is given by

$$
d\left(p_{n}^{2}, T\right)=\vec{p}^{2} A^{2}\left(p_{n}^{2}, T\right)+\omega_{n}^{2} C^{2}\left(p_{n}^{2}, T\right)+\left[m_{0}+B\left(p_{n}^{2}, T\right)\right]^{2} .
$$

Note that, at finite temperature, the strength $b(T)$ for the quark mass function will decrease with T so that this model can be expected to have a deconfinement transition at or before the chiral restoration transition associated with $b(T) \rightarrow 0$.

Figure 2: T-dependence of coefficients b_{0}, b.

Figure 3: T-dependence of coefficients a, c.

Figure 4: T-dependence of the π covariants

Figure 5: T-dependence of the π, σ masses.

$2 \mathrm{U}(3) \otimes \mathrm{U}(3)$ model with the 't Hooft interaction

We use the three-flavor Nambu-Jona-Lasinio model, including the determinantal 't Hooft interaction that breaks the $U_{A}(1)$ symmetry, that has the following Lagrangian:

$$
\begin{aligned}
\mathcal{L} & =\bar{q}\left(i \gamma^{\mu} \partial_{\mu}-\hat{m}\right) q+\frac{1}{2} g_{S} \sum_{a=0}^{8}\left[\left(\bar{q} \lambda^{a} q\right)^{2}+\left(\bar{q} i \gamma_{5} \lambda^{a} q\right)^{2}\right] \\
& +g_{D}\left\{\operatorname{det}\left[\bar{q}\left(1+\gamma_{5}\right) q\right]+\operatorname{det}\left[\bar{q}\left(1-\gamma_{5}\right) q\right]\right\} .
\end{aligned}
$$

Case I: the anomaly coefficient g_{D} is constant for all range of temperatures or densities.
Case II: the anomaly coefficient g_{D} is a dropping function of temperature or density. The temperature dependence of g_{D} is extracted by making use of the lattice results for the topological susceptibility.

Case III: the anomaly coefficient has the form of a decreasing exponential $\left(g_{D}(T)=g_{D}(0) \exp \left[-\left(T / T_{0}\right)^{2}\right]\right)$. This phenomenological pattern of restoration of the axial symmetry was proposed by Kunihiro in the framework of the present model. Here we consider a dependence of the anomalous coupling constant on density also inspired on the finite temperature scenario.

We also consider a simplistic scenario without $\mathrm{U}_{A}(1)$ anomaly $\left(\mathrm{g}_{\mathrm{D}}=\mathbf{0}\right)$

