Energy dependence of hadron production in nuclear collisions and the Nuclotron energy range

M. Gazdzicki Frankfurt, Kielce

- Introductory remarks
- Energy dependence of hadron production
- The Nuclotron energy range
 - Summary

Dubna, July 2005

Two basic questions driving physics of high energy nuclear collisions:

How do the transitions between them look like?

Schematic phase diagram of strongly interacting matter

... and nucleus-nucleus collisions

Two basic problems:

Understand mechanism(s) of equilibration in high energy nuclear collisions

> **Develop and test statistical mechanics of relativistic strongly interacting particles**

two possible distinguished trajectories in the energy dependence

A+A physics vs collision energy

the onset of deconfinement

dense confined (hadronic) matter

the onset of criticality

dense QGP

ENERGY

The primary goal: a search for the onset points

Energy dependence of hadron production

- Experimental landscape
- Basic data
- Pions and strange hadrons
 Transverse mass spectra

ENERG

- Two-pion correlations
 - Anisotropic flow
- Chemical freeze-out
 Onset of deconfinement

Heavy Ion Accelerators

LAB ACC (center of mass energy per nucleon-nucleon pair in GeV)

Examples of large acceptance tracking detectors:

before 1990 mainly streamer chambers:

SKM-200

NA35

after 1990 mainly time projection chambers:

BNL AGS → CERN SPS → BNL RHIC

E895 NA49 STAR

... and many, many other experiments

<u>Basic data</u>

Examples: transverse mass spectra

Examples: rapidity spectra

central Pb+Pb collisions

Examples: mean multiplicities

Pions and strange hadrons

Electric charge fluctuations

No significant suppression: charge fluctuations are significantly increased by resonance decays

Relative strangeness yield

Relative strange hadron yields

central Pb+Pb(Au+Au) collisions

Fluctuations of the kaon to pion ratio

Soon many more results on energy dependence of fluctuations and correlations (multiplicity, transverse momentum, balance functions) at SPS and RHIC.

The corresponding results at lower energies (NT) are missing!

T – inverse slope parameter
 of transverse mass spectra

_ <m_> of various hadrons

central Pb+Pb(Au+Au) collisions

Two-pion correlations

central Pb+Pb (Au+Au) collisions

Elliptic flow

A surprising success of statistical models

- T chemical freeze-out temperature
- $\mu_{_{\rm B}}$ baryo-chemical potential

Becattini et al.

<u>Sketch of the phase diagram and</u> <u>the chemical freeze-out points</u>

central Pb+Pb (Au+Au) collisions

Onset of deconfinement

The basic idea - heating curve of water

M.G., Gorenstein

The models

Models with the 1st order phase transition reproduce the data

The most of the existing data come from the AGS energy scan (1996): 2A, 4A, 6A, 8A, 10.8A GeV

Experiments:

E895 - EOS TPC

E917 – rotatable magnetic spectrometer, E802

IQMD simulation of Au+Au collision

E895

E895

Pions and protons in central Au+Au collisions

Pions in central Au+Au collisions

Protons in Au+Au collisions

E917

Kaons in Au+Au collisions

System size dependence at the top AGS energy

the onset of deconfinement

The Nuclotron energy range may be ideal to:

Understand mechanism(s) of equilibration in high energy nuclear collisions

> **Develop and test statistical mechanics of relativistic strongly interacting particles**

They are also urgently needed as a reference for the SPS and RHIC data

Missing and needed hadron data in the Nuclotron energy range:

- -fluctuations and long range correlations in central Pb+Pb collisions:
- -urgently needed reference for the SPS and RHIC results, -test of statistical mechanics of relativistic strongly interacting particles
- -heavy hadron production and resonances in central Pb+Pb collisions:
- -statistical vs dynamical models,
- -freeze-out conditions

-system size dependence (starting from p+p)
-mechanism(s) of equilibration,
-reference for the SPS and RHIC data

Experimental requirements:

-large acceptance (≈100%),
-good centrality determination,
-high event rate: event statistics per reaction ≈10⁶

EOS TPC at NT?

Additional slides

