Chromodynamic Lensing and Single Spin Asymmetries

or: GPDs ⇒ distributions of partons in impact parameter space

spin dependence ⇒ ↓ spin asymmetries

Matthias Burkardt

burkardt@nmsu.edu

New Mexico State University
Las Cruces, NM, 88003, U.S.A.
(brief) Motivation

DIS $\underset{opt.\,theorem}{\rightarrow}$ forward Compton amplitude $\underset{Bj-limit}{\rightarrow} q(x)$

\[q(x) = \int \frac{dx^{-}}{2\pi} \langle p | q \left(-\frac{x^{-}}{2}, 0_{\perp} \right) \gamma^{+} q \left(\frac{x^{-}}{2}, 0_{\perp} \right) | p \rangle \, e^{ix^{-}x^{P^{+}}} \]

- Light-cone coordinates $x^{\pm} = \frac{1}{\sqrt{2}} (x^{0} \pm x^{1})$
- $q(x) =$ light-cone momentum distribution of quarks in the target; $x =$ (light-cone) momentum fraction
- no information about position of partons!
(brief) Motivation

- generalization to $p' \neq p \Rightarrow \text{Generalized Parton Distributions}$

$$GPD(x, \xi, t) \equiv \int \frac{dx^-}{2\pi} \langle p' | q \left(-\frac{x^-}{2}, 0_\perp \right) \gamma^+ q \left(\frac{x^-}{2}, 0_\perp \right) | p \rangle e^{ix^-xP^+}$$

with $\Delta = p - p'$, $t = \Delta^2$, and $\xi(p^+ + p'^+) = -2\Delta^+$.

- can be probed e.g. in Deeply Virtual Compton Scattering (DVCS) (HERMES, JLab@12GeV, eRHIC, COMPASS, ...)

$$\langle J_q \rangle = \frac{1}{2} \int_0^1 dx \ x \left[H_q(x, 0, 0) + E_q(x, 0, 0) \right]$$

DVCS ⇔ **GPDs** ⇔ \vec{J}_q

- But: what other “physical information” about the nucleon can we obtain by measuring/calculating GPDs?
Probabilistic interpretation of GPDs as Fourier transforms of impact parameter dependent PDFs

\[H(x, 0, -\Delta^2_\perp) \xrightarrow{FT} q(x, b_\perp) \]
\[\tilde{H}(x, 0, -\Delta^2_\perp) \xrightarrow{FT} \Delta q(x, b_\perp) \]

\[E(x, 0, -\Delta^2_\perp) \xrightarrow{\perp} \text{distortion of PDFs when the target is transversely polarized} \]

Chromodynamik lensing and \(\perp \) single-spin asymmetries (SSA)

transverse distortion of PDFs + final state interactions \(\Rightarrow \) \(\perp \) SSA in \(\gamma N \xrightarrow{} \pi + X \)

Summary
\[
\int \frac{dx^-}{2\pi} e^{ix^-\cdot p^+} x \left< p' \left| \bar{q} \left(-\frac{x^-}{2}\right) \gamma^+ q \left(\frac{x^-}{2}\right) \right| p \right> = H(x, \xi, \Delta^2) \bar{u}(p') \gamma^+ u(p) + E(x, \xi, \Delta^2) \bar{u}(p') \frac{i\sigma^{+\nu} \Delta^\nu}{2M} u(p)
\]

\[
\int \frac{dx^-}{2\pi} e^{ix^-\cdot p^+} x \left< p' \left| \bar{q} \left(-\frac{x^-}{2}\right) \gamma^+ \gamma_5 q \left(\frac{x^-}{2}\right) \right| p \right> = \tilde{H}(x, \xi, \Delta^2) \bar{u}(p') \gamma^+ \gamma_5 u(p) + \tilde{E}(x, \xi, \Delta^2) \bar{u}(p') \frac{\gamma_5 \Delta^+}{2M} u(p)
\]

where $\Delta = p - p'$ is the momentum transfer and ξ measures the longitudinal momentum transfer on the target $\Delta^+ = \xi (p^+ + p'^+)$.
\[
\int \frac{dx}{2\pi} e^{ix\cdot \bar{p}^+ x} \left\langle p' \left| \bar{q} \left(-\frac{x^-}{2} \right) \gamma^+ q \left(\frac{x^-}{2} \right) \right| p \right\rangle = H(x, \xi, \Delta^2) \bar{u}(p') \gamma^+ u(p) \\
+ E(x, \xi, \Delta^2) \bar{u}(p') \frac{i\sigma^{+\nu} \Delta^\nu}{2M} u(p)
\]

- \(x \) = mean long. momentum fraction carried by active quark
- \(\xi \) = longitudinal \((p^+)\) momentum transfer
- In general no probabilistic interpretation since initial and final state not the same
- Instead: interpretation as transition amplitude
- \(\int dx H(x, \xi, \Delta^2) = F_1(\Delta^2) \) and \(\int dx E(x, \xi, \Delta^2) = F_2(\Delta^2) \)
- \(\Leftrightarrow \) GPDs provide a decomposition of form factor w.r.t. the momentum fraction (in IMF) carried by the active quark
- Actually \(GPD = GPD(x, \xi, \Delta^2, q^2) \), but will not discuss \(q^2 \) dependence of GPDs today!
What is Physics of GPDs?

Definition of GPDs resembles that of form factors

\[
\langle p' \mid \hat{O} \mid p \rangle = H(x, \xi, \Delta^2) \bar{u}(p')\gamma^+ u(p) + E(x, \xi, \Delta^2) \bar{u}(p') \frac{i\sigma^{+\nu} \Delta^\nu}{2M} u(p)
\]

with \(\hat{O} \equiv \int \frac{dx^-}{2\pi} e^{ix^- \bar{p}^+ x} \bar{q} \left(-\frac{x^-}{2} \right) \gamma^+ q \left(\frac{x^-}{2} \right) \)

\(\leftrightarrow \) relation between PDFs and GPDs similar to relation between a charge and a form factor

\(\leftrightarrow \) If form factors can be interpreted as Fourier transforms of charge distributions in position space, what is the analogous physical interpretation for GPDs?
<table>
<thead>
<tr>
<th>operator</th>
<th>forward matrix elem.</th>
<th>off-forward matrix elem.</th>
<th>position space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{q}\gamma^+ q$</td>
<td>Q</td>
<td>$F(t)$</td>
<td>$\rho(\vec{r})$</td>
</tr>
<tr>
<td>$\int \frac{dx^- e^{ixp^+ x^-}}{4\pi} \bar{q}\left(\frac{-x^-}{2}\right) \gamma^+ q\left(\frac{x^-}{2}\right)$</td>
<td>$q(x)$</td>
<td>$H(x, \xi, t)$</td>
<td>?</td>
</tr>
</tbody>
</table>
Form Factors vs. GPDs

<table>
<thead>
<tr>
<th>operator</th>
<th>forward matrix elem.</th>
<th>off-forward matrix elem.</th>
<th>position space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{q}\gamma^+q$</td>
<td>Q</td>
<td>$F(t)$</td>
<td>$\rho(\vec{r}^\perp)$</td>
</tr>
<tr>
<td>$\int \frac{dx^-e^{ixp^+x^-}}{4\pi} \bar{q}\left(\frac{-x^-}{2}\right)\gamma^+q\left(\frac{x^-}{2}\right)$</td>
<td>$q(x)$</td>
<td>$H(x,0,t)$</td>
<td>$q(x,\vec{b}_{\perp})$</td>
</tr>
</tbody>
</table>

$q(x,\vec{b}_{\perp}) = \text{impact parameter dependent PDF}$
Impact parameter dependent PDFs

define state that is localized in \perp position:

$$|p^+, R_\perp = 0, \lambda\rangle \equiv N \int d^2 p_\perp |p^+, p_\perp, \lambda\rangle$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has

$$R_\perp \equiv \frac{1}{P^+} \int dx^- d^2 x_\perp x_\perp T^{++}(x) = 0_\perp$$

(parton interpretation: $R_\perp = \sum_i x_i b_\perp, i$)

cf.: working in CM frame in nonrel. physics (\rightarrow Soper’s thesis)

define impact parameter dependent PDF

$$q(x, b_\perp) \equiv \int \frac{dx^-}{4\pi} \langle p^+, 0_\perp | \bar{q} \left(-\frac{x^-}{2}, b_\perp \right) \gamma^+ q \left(\frac{x^-}{2}, b_\perp \right) |p^+, 0_\perp \rangle e^{ixp^+x^-}$$
Impact parameter dependent PDFs

- use translational invariance to relate to same matrix element that appears in def. of GPDs

\[
q(x, b_\perp) \equiv \int dx^- \langle p^+, R_\perp = 0_\perp | q(-\frac{x^-}{2}, b_\perp) \gamma^+ q(\frac{x^-}{2}, b_\perp) | p^+, R_\perp = 0_\perp \rangle e^{ixp^+x^-} \\
= |\mathcal{N}|^2 \int d^2 p_\perp \int d^2 p_\perp' \int dx^- \langle p^+, p_\perp' | q(-\frac{x^-}{2}, b_\perp) \gamma^+ q(\frac{x^-}{2}, b_\perp) | p^+, p_\perp \rangle e^{ixp^+x^-}
\]
Impact parameter dependent PDFs

- use translational invariance to relate to same matrix element that appears in def. of GPDs

\[q(x, b_\perp) \equiv \int dx^- \langle p^+, R_\perp = 0_\perp | \bar{q}(-\frac{x^-}{2}, b_\perp) \gamma^+ q(\frac{x^-}{2}, b_\perp) | p^+, R_\perp = 0_\perp \rangle e^{ixp^+ x^-} \]

\[= |\mathcal{N}|^2 \int d^2 p_\perp \int d^2 p'_\perp \int dx^- \langle p^+, p'_\perp | \bar{q}(-\frac{x^-}{2}, b_\perp) \gamma^+ q(\frac{x^-}{2}, b_\perp) | p^+, p_\perp \rangle e^{ixp^+ x^-} \]

\[= |\mathcal{N}|^2 \int d^2 p_\perp \int d^2 p'_\perp \int dx^- \langle p^+, p'_\perp | \bar{q}(-\frac{x^-}{2}, 0_\perp) \gamma^+ q(\frac{x^-}{2}, 0_\perp) | p^+, p_\perp \rangle e^{ixp^+ x^-} \times e^{ib_\perp \cdot (p_\perp - p'_\perp)} \]
Impact parameter dependent PDFs

use translational invariance to relate to same matrix element that appears in def. of GPDs

\[q(x, b_\perp) \equiv \int dx^- \langle p^+, R_\perp = 0_\perp | \bar{q}(-\frac{x^-}{2}, b_\perp) \gamma^+ q(\frac{x^-}{2}, b_\perp) | p^+, R_\perp = 0_\perp \rangle e^{ixp^+x^-} \]

\[= |N|^2 \int d^2p_\perp \int d^2p_\perp' \int dx^- \langle p^+, p_\perp' | \bar{q}(-\frac{x^-}{2}, b_\perp) \gamma^+ q(\frac{x^-}{2}, b_\perp) | p^+, p_\perp \rangle e^{ixp^+x^-} \]

\[\times e^{ib_\perp \cdot (p_\perp - p_\perp')} \]

\[= |N|^2 \int d^2p_\perp \int d^2p_\perp' H \left(x, 0, -(p_\perp' - p_\perp)^2 \right) e^{ib_\perp \cdot (p_\perp - p_\perp')} \]

\[\rightarrow q(x, b_\perp) = \int \frac{d^2\Delta_\perp}{(2\pi)^2} H(x, 0, -\Delta_\perp^2) e^{ib_\perp \cdot \Delta_\perp} \]
Impact parameter dependent PDFs

\[q(x, b_\perp) = \int \frac{d^2 \Delta_\perp}{(2\pi)^2} H(x, 0, -\Delta^2_\perp) e^{ib_\perp \cdot \Delta_\perp} \]

\((\Delta_\perp = p_\perp - p'_\perp, \xi = 0)\)

- \(q(x, b_\perp)\) has physical interpretation of a density

\[q(x, b_\perp) \geq 0 \quad \text{for} \quad x > 0 \]

\[q(x, b_\perp) \leq 0 \quad \text{for} \quad x < 0 \]
GPDs allow simultaneous determination of longitudinal momentum and transverse position of partons

\[q(x, b_\perp) = \int \frac{d^2 \Delta_\perp}{(2\pi)^2} H(x, 0, -\Delta_\perp^2) e^{ib_\perp \cdot \Delta_\perp} \]

\(q(x, b_\perp) \) has interpretation as density (positivity constraints!)

\[q(x, b_\perp) \sim \langle p^+, 0_\perp | b^+(xp^+, b_\perp) b(xp^+, b_\perp) | p^+, 0_\perp \rangle \]
\[= | b(xp^+, b_\perp) | p^+, 0_\perp \rangle |^2 \geq 0 \]

→ positivity constraint on models
Discussion: \(GPD \leftrightarrow q(x, b_{\perp}) \)

- Nonrelativistically such a result not surprising! Absence of relativistic corrections to identification \(H(x, 0, -\Delta_{\perp}^2) \overset{FT}{\longleftrightarrow} q(x, b_{\perp}) \) due to Galilean subgroup in IMF.

- \(b_{\perp} \) distribution measured w.r.t. \(R_{\perp}^{CM} = \sum_i x_i r_{i,\perp} \)
 \(\leftarrow \) width of the \(b_{\perp} \) distribution should go to zero as \(x \to 1 \), since the active quark becomes the \(\perp \) center of momentum in that limit!
 \(\leftarrow H(x, 0, t) \) must become \(t \)-indep. as \(x \to 1 \).
 (recently confirmed in LGT calcs. by J.W. Negele et al.)

- very similar results for impact parameter dependent polarized quark distributions (nucleon longitudinally polarized)

\[
\Delta q(x, b_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} \tilde{H}(x, 0, -\Delta_{\perp}^2) e^{i b_{\perp} \cdot \Delta_{\perp}}
\]

- inequality: \(|\Delta q(x, b_{\perp})| \leq |q(x, b_{\perp})| \)
Use intuition about nucleon structure in position space to make predictions for GPDs:

- **large** \(x \): quarks from **localized** valence ‘core’,
- **small** \(x \): contributions from **larger** ‘meson cloud’

\[H(x, 0, t) \] as \(x \) decreases

- **small** \(x \), expect transverse size to increase
The physics of $E(x, 0, -\Delta^2_\perp)$

- So far: only unpolarized (or long. polarized) nucleon

In general, use ($\Delta^+ = 0$)

$$
\int \frac{dx^- e^{ip^+ x^- x}}{4\pi} \left< P+\Delta, \uparrow \left| \bar{q} \left(\frac{-x^-}{2} \right) \gamma^+ q \left(\frac{x^-}{2} \right) \right| P, \uparrow \right> = H(x,0,-\Delta^2_\perp)
$$

$$
\int \frac{dx^- e^{ip^+ x^- x}}{4\pi} \left< P+\Delta, \uparrow \left| \bar{q} \left(\frac{-x^-}{2} \right) \gamma^+ q \left(\frac{x^-}{2} \right) \right| P, \downarrow \right> = -\frac{\Delta_x - i\Delta_y}{2M} E(x,0,-\Delta^2_\perp).
$$

- Consider nucleon polarized in x direction (in IMF)

$|X\rangle \equiv |p^+, \mathbf{R}_\perp = 0_\perp, \uparrow\rangle + |p^+, \mathbf{R}_\perp = 0_\perp, \downarrow\rangle$.

\hookrightarrow unpolarized quark distribution for this state:

$$
q_X(x, b_\perp) = q(x, b_\perp) - \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2\Delta_\perp}{(2\pi)^2} E(x, 0, -\Delta^2_\perp) e^{ib_\perp \cdot \Delta_\perp}
$$
The physics of $E(x, 0, -\Delta^2_{\perp})$

- $q_X(x, b_{\perp}) \geq 0$ (for $x > 0$) \Rightarrow

$$q(x, b_{\perp}) \geq \left| \frac{1}{2M} \nabla_{b_{\perp}} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E(x, 0, -\Delta^2_{\perp}) e^{ib_{\perp} \cdot \Delta_{\perp}} \right|$$

- Actually, stronger (“Soffer-type”) inequality exists (Pobylitsa):

$$|q(x, b_{\perp})|^2 \geq |\Delta q(x, b_{\perp})|^2 + \left| \frac{1}{2M} \nabla_{b_{\perp}} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E(x, 0, -\Delta^2_{\perp}) e^{ib_{\perp} \cdot \Delta_{\perp}} \right|^2$$
The physics of $E(x, 0, -\Delta^2_\perp)$

- $q_X(x, b_\perp)$ in transversely polarized nucleon is transversely distorted compared to longitudinally polarized nucleons!

- **Mean displacement of flavor q (\perp flavor dipole moment)**

$$d_y^q \equiv \int dx \int d^2 b_\perp q_X(x, b_\perp)b_y = \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{k^p_q}{2M}$$

with $k^{p/u,d}_q \equiv F^u/d_2(0) = O(1 - 2)$ \implies $d_y^q = O(0.2 \text{ fm})$}

- CM for flavor q shifted relative to CM for whole proton by

$$\int dx \int d^2 b_\perp q_X(x, b_\perp)xb_y = \frac{1}{2M} \int dx x E_q(x, 0, 0)$$

\text{not surprising to find that second moment of E_q is related to angular momentum carried by flavor q}
Comparison of a non-rotating sphere that moves in z direction with a sphere that spins at the same time around the z axis and a sphere that spins around the x axis. When the sphere spins around the x axis, the rotation changes the distribution of momenta in the z direction (adds/subtracts to velocity for $y > 0$ and $y < 0$ respectively). For the nucleon, the resulting modification of the (unpolarized) momentum distribution is described by $E(x, 0, -\Delta^2_\perp)$.
simple model for \(E_q(x, 0, -\Delta^2) \)

For simplicity, make ansatz where \(E_q \propto H_q \)

\[
E_u(x, 0, -\Delta^2) = \frac{\kappa_u^p}{2} H_u(x, 0, -\Delta^2) \\
E_d(x, 0, -\Delta^2) = \kappa_d^p H_d(x, 0, -\Delta^2)
\]

with

\[
\kappa_u^p = 2\kappa_p + \kappa_n = 1.673 \\
\kappa^p_d = 2\kappa_n + \kappa_p = -2.033.
\]

Satisfies: \(\int dx E_q(x, 0, 0) = \kappa^p_q \)

Model too simple but illustrates that anticipated distortion is very significant since \(\kappa_u \) and \(\kappa_d \) known to be large!
Chromodynamic Lensing and Single Spin Asymmetries – p.23/58
Single Spin Asymmetry (Sivers)

example: $\gamma p \rightarrow \pi X$ (Breit frame)

What is the sign/magnitude of the left-right asymmetry?

\perp asymmetry of outgoing π resulting from both Sivers and Collins effect

Sivers: asymmetry of π due to asymmetry of \perp momentum of outgoing quark $\langle k_\perp \rangle \sim \int dx \int d^2k_\perp f(x, k_\perp) k_\perp$ with

$$f(x, k_\perp) \propto \int \frac{d\xi - d^2\xi_\perp}{(2\pi)^3} e^{ip \cdot \xi} \langle P, S | \bar{q}(0) U_{[0, \infty]} \gamma^+ U_{[\infty, \xi]} q(\xi) | P, S \rangle |_{\xi^+=0}. $$

with $U_{[0, \infty]} = P \exp \left(i g \int_0^\infty d\eta^- A^+(\eta) \right)$
Modulo gauge links this yields ... (Mankiewicz et al., Sterman, Boer et al.,..)

\[
\langle \mathbf{k}_\perp \rangle \sim \left\langle P, S \left| \bar{q}(0) \gamma^+ \int_0^\infty \frac{d\eta^-}{2\pi} G^{+\perp}(\eta)q(\xi) \right| P, S \right\rangle
\]

physical (semi-classical) interpretation:

- net transverse momentum is result of averaging over the transverse force from spectators on active quark

\[
\int_0^\infty \frac{d\eta^-}{2\pi} G^{+\perp}(\eta) \text{ is } \perp \text{ impulse due to FSI}
\]

- What is sign/magnitude of this result?
connection with \(⊥\) distortion of PDFs

- example: \(\gamma p \rightarrow \pi X\) (Breit frame)

\[\vec{p}_{\gamma} \]

\[\vec{p}_N \]

\(\pi^+\)

- \(u, d\) distributions in \(⊥\) polarized proton have left-right asymmetry in \(⊥\) position space (T-even!); sign determined by \(\kappa_u\) & \(\kappa_d\)

- attractive FSI deflects active quark towards the center of momentum

\(\leftrightarrow\) FSI converts left-right position space asymmetry of leading quark into right-left asymmetry in momentum

- compare: convex lens that is illuminated asymmetrically

\(\leftrightarrow\) semi-classical picture for recent results by Brodsky et al.

- natural explanation for correlation between sign of \(\kappa_q\) and sign of Sivers contribution to SSA that has been seen in some models (Brodsky at al., Feng,..)
other predictions:
Other topics

- QCD evolution
- extrapolating to $\xi = 0$
DVCS allows probing GPDS

\[\int \frac{dx^-}{2\pi} e^{ixp^+x^-} \left\langle p' \left| \bar{q} \left(-\frac{x^-}{2} \right) \gamma^+ q \left(\frac{x^-}{2} \right) \right| p \right\rangle \]

GPDS resemble both PDFs and form factors: defined through matrix elements of light-cone correlator, but \(\Delta \equiv p' - p \neq 0 \).

t-dependence of GPDS at \(\xi = 0 \) (purely \(\perp \) momentum transfer) \(\Rightarrow \) Fourier transform of impact parameter dependent PDFs \(q(x, b_\perp) \)

knowledge of GPDS for \(\xi = 0 \) provides novel information about nonperturbative parton structure of nucleons: distribution of partons in \(\perp \) plane

\[
q(x, b_\perp) = \int \frac{d^2\Delta_\perp}{(2\pi)^2} H(x, 0, -\Delta_\perp^2) e^{ib_\perp \cdot \Delta_\perp} \\
\Delta q(x, b_\perp) = \int \frac{d^2\Delta_\perp}{(2\pi)^2} \tilde{H}(x, 0, -\Delta_\perp^2) e^{ib_\perp \cdot \Delta_\perp}
\]

\(q(x, b_\perp), \Delta q(x, b_\perp) \) have probabilistic interpretation, e.g. \(q(x, b_\perp) > 0 \) for \(x > 0 \)
$\frac{\Delta_{\perp}}{2M} E(x, 0, -\Delta_{\perp}^2)$ describes how the momentum distribution of unpolarized partons in the \perp plane gets transversely distorted when the nucleon is polarized in \perp direction.

(Attractive) final state interaction converts \perp position space asymmetry into \perp momentum space asymmetry

\leftrightarrow simple physical explanation for sign of Sivers asymmetry

Similar mechanism also applicable to many other semi-inclusive events, such as transverse polarizations in hyperon production.

extrapolating to $\xi = 0$

- **bad news:** $\xi = 0$ not directly accessible in DVCS since long. momentum transfer necessary to convert virtual γ into real γ

- **good news:** moments of GPDs have simple ξ-dependence (polynomials in ξ)
 \leftrightarrow should be possible to extrapolate!

even moments of $H(x, \xi, t)$:

$$
H_n(\xi, t) \equiv \int_{-1}^{1} dx x^{n-1} H(x, \xi, t) = \sum_{i=0}^{\left[\frac{n-1}{2} \right]} A_{n,2i}(t) \xi^{2i} + C_n(t)
$$

$$
= A_{n,0}(t) + A_{n,2}(t) \xi^2 + \ldots + A_{n,n-2}(t) \xi^{n-2} + C_n(t) \xi^n,
$$
i.e. for example

\[\int_{-1}^{1} dxxH(x, \xi, t) = A_{2,0}(t) + C_2(t)\xi^2. \]

- For \(n^{th} \) moment, need \(\frac{n}{2} + 1 \) measurements of \(H_n(\xi, t) \) for same \(t \) but different \(\xi \) to determine \(A_{n,2i}(t) \).
- GPDs @ \(\xi = 0 \) obtained from \(H_n(\xi = 0, t) = A_{n,0}(t) \)
- similar procedure exists for moments of \(\tilde{H} \)
QCD evolution

So far ignored! Can be easily included because:

- For $t \ll Q^2$, leading order evolution t-independent
- For $\xi = 0$ evolution kernel for GPDs same as DGLAP evolution kernel

likewise:

- impact parameter dependent PDFs evolve such that different b_\perp do not mix (as long as \perp spatial resolution much smaller than Q^2)
above results consistent with QCD evolution:

\[
H(x, 0, -\Delta^2_\perp, Q^2) = \int d^2b_\perp q(x, b_\perp, Q^2)e^{ib_\perp \Delta_\perp} \\
\tilde{H}(x, 0, -\Delta^2_\perp, Q^2) = \int d^2b_\perp \Delta q(x, b_\perp, Q^2)e^{ib_\perp \Delta_\perp}
\]

where QCD evolution of \(H, \tilde{H}, q, \Delta q \) is described by DGLAP and is independent on both \(b_\perp \) and \(\Delta^2_\perp \), provided one does not look at scales in \(b_\perp \) that are smaller than \(1/Q \).
suppression of crossed diagrams

Flow of the large momentum q through typical diagrams contributing to the forward Compton amplitude. a) ‘handbag’ diagrams; b) ‘cat’s ears’ diagram. Diagram b) is suppressed at large q due to the presence of additional propagators.
define state that is localized in position space (center of mass frame)

\[| \vec{R} = \vec{0} \rangle \equiv \mathcal{N} \int d^3 \vec{p} | \vec{p} \rangle \]

define charge distribution (for this localized state)

\[\rho(\vec{r}) \equiv \langle \vec{R} = \vec{0} | j^0(\vec{r}) | \vec{R} = \vec{0} \rangle \]
use translational invariance to relate to same matrix element that appears in def. of form factor

\[\rho(\vec{r}) \equiv \left\langle \vec{R} = \vec{0} \left| j^0(\vec{r}) \right| \vec{R} = \vec{0} \right\rangle \]

\[= |\mathcal{N}|^2 \int d^3 \vec{p} \int d^3 \vec{p}' \langle \vec{p}' | j^0(\vec{r}) | \vec{p} \rangle \]

\[= |\mathcal{N}|^2 \int d^3 \vec{p} \int d^3 \vec{p}' \langle \vec{p}' | j^0(\vec{0}) | \vec{p} \rangle e^{i \vec{r} \cdot (\vec{p} - \vec{p}')} \]

\[= |\mathcal{N}|^2 \int d^3 \vec{p} \int d^3 \vec{p}' F \left(- (\vec{p}' - \vec{p})^2 \right) e^{i \vec{r} \cdot (\vec{p} - \vec{p}')} \]

\[\rho(\vec{r}) = \int \frac{d^3 \vec{\Delta}}{(2\pi)^3} F(-\vec{\Delta}^2) e^{i \vec{r} \cdot \vec{\Delta}} \]
express quark-bilinear in twist-2 GPD in terms of light-cone ‘good’ component $q_+(+) = \frac{1}{2} \gamma^- \gamma^+ q$

$$q'\gamma^+ q = q'_+(+)\gamma^+ q(+) = \sqrt{2} q'_(+) q(+) .$$

expand $q(+) \text{ in terms of canonical raising and lowering operators}$

$$q_+(x^-, x_\perp) = \int_0^\infty \frac{dk^+}{\sqrt{4\pi k^+}} \int \frac{d^2k_\perp}{2\pi} \sum_s \left[u_+(k, s) b_s(k^+, k_\perp) e^{ikx} + v_+(k, s) d_s^\dagger(k^+, k_\perp) e^{ikx} \right] ,$$
density interpretation of \(q(x, b_\perp) \)

with usual (canonical) equal light-cone time \(x^+ \) anti-commutation relations, e.g.

\[
\{ b_r(k^+, k_\perp), b_s^\dagger(q^+, q_\perp) \} = \delta(k^+ - q^+)\delta(k_\perp - q_\perp)\delta_{rs}
\]

and the normalization of the spinors is such that

\[
\bar{u}_{(+)}(p, r)\gamma^+ u_{(+)}(p, s) = 2p^+\delta_{rs}.
\]

Note: \(\bar{u}_{(+)}(p', r)\gamma^+ u_{(+)}(p, s) = 2p^+\delta_{rs} \) for \(p^+ = p'^+ \), one finds for \(x > 0 \)

\[
q(x, b_\perp) = \mathcal{N}' \sum_s \int \frac{d^2 k_\perp}{2\pi} \int \frac{d^2 k'_\perp}{2\pi} \langle p^+, 0_\perp | b_s^\dagger(x p^+, k'_\perp) b_s(x p^+, k_\perp) | p^+, 0_\perp \rangle \\
\times e^{ib_\perp \cdot (k_\perp - k'_\perp)}.
\]
Switch to mixed representation:

momentum in longitudinal direction

position in transverse direction

\[\tilde{b}_s(k^+, x_\perp) \equiv \int \frac{d^2k_\perp}{2\pi} b_s(k^+, k_\perp) e^{ik_\perp \cdot x_\perp} \]

\[q(x, b_\perp) = \sum_s \langle p^+, 0_\perp | \tilde{b}_s^\dagger(xp^+, b_\perp) \tilde{b}_s(xp^+, b_\perp) | p^+, 0_\perp \rangle . \]

\[= \sum_s \left| \tilde{b}_s(xp^+, b_\perp) | p^+, 0_\perp \rangle \right|^2 \]

\[\geq 0. \]
Boosts in nonrelativistic QM

\[\vec{x}' = \vec{x} + \vec{v}t \quad t' = t \]

purely kinematical (quantization surface \(t = 0 \) inv.)

1. boosting wavefunctions very simple

\[q_{\vec{v}}(\vec{p}_1, \vec{p}_2) = q_{\vec{0}}(\vec{p}_1 - m_1 \vec{v}, \vec{p}_2 - m_2 \vec{v}). \]

2. dynamics of center of mass

\[\vec{R} = \sum_i x_i \vec{r}_i \quad \text{with} \quad x_i \equiv \frac{m_i}{M} \]

decouples from the internal dynamics
Relativistic Boosts

\[t' = \gamma \left(t + \frac{v}{c^2} z \right), \quad z' = \gamma (z + vt) \quad x'_\perp = x_\perp \]

generators satisfy Poincaré algebra:

\[
\begin{align*}
[P^\mu, P^\nu] &= 0 \\
[M^{\mu\nu}, P^\rho] &= i \left(g^{\nu\rho} P^\mu - g^{\mu\rho} P^\nu \right) \\
[M^{\mu\nu}, M^{\rho\lambda}] &= i \left(g^{\mu\lambda} M^{\nu\rho} + g^{\nu\rho} M^{\mu\lambda} - g^{\mu\rho} M^{\nu\lambda} - g^{\nu\lambda} M^{\mu\rho} \right)
\end{align*}
\]

rotations: \(M_{ij} = \varepsilon_{ijk} J_k \), boosts: \(M_{i0} = K_i \).
introduce generator of \(\perp \) ‘boosts’:

\[
B_x \equiv M^{+x} = \frac{K_x + J_y}{\sqrt{2}} \quad B_y \equiv M^{+y} = \frac{K_y - J_x}{\sqrt{2}}
\]

Poincaré algebra \(\Rightarrow \) commutation relations:

\[
[J_3, B_k] = i\varepsilon_{kl}B_l \quad [P_k, B_l] = -i\delta_{kl}P^+
\]

\[
[P^-, B_k] = -iP_k \quad [P^+, B_k] = 0
\]

with \(k, l \in \{x, y\} \), \(\varepsilon_{xy} = -\varepsilon_{yx} = 1 \), and \(\varepsilon_{xx} = \varepsilon_{yy} = 0 \).
Together with $[J_z, P_k] = i\varepsilon_{kl} P_l$, as well as

$$
\begin{align*}
[P^-, P_k] &= [P^-, P^+] = [P^-, J_z] = 0 \\
[P^+, P_k] &= [P^+, B_k] = [P^+, J_z] = 0.
\end{align*}
$$

Same as commutation relations among generators of nonrel. boosts, translations, and rotations in x-y plane, provided one identifies

\begin{align*}
P^- &\quad \rightarrow \quad \text{Hamiltonian} \\
P_\perp &\quad \rightarrow \quad \text{momentum in the plane} \\
P^+ &\quad \rightarrow \quad \text{mass} \\
L_z &\quad \rightarrow \quad \text{rotations around } z\text{-axis} \\
B_\perp &\quad \rightarrow \quad \text{generator of boosts in the plane},
\end{align*}

back to discussion
Consequences

- many results from NRQM carry over to \perp boosts in IMF, e.g.

 - \perp boosts kinematical

 $$ q_{\Delta}(x, k_{\perp}) = q_{0}(x, k_{\perp} - x\Delta_{\perp}) $$

 $$ q_{\Delta}(x, k_{\perp}, y, l_{\perp}) = q_{0}(x, k_{\perp} - x\Delta_{\perp}, y, l_{\perp} - y\Delta_{\perp}) $$

 - Transverse center of momentum $R_{\perp} \equiv \sum_{i} x_{i} r_{\perp,i}$ plays role similar to NR center of mass, e.g. $\int d^{2}p_{\perp} |p^{+}, p_{\perp}\rangle$ corresponds to state with $R_{\perp} = 0_{\perp}$.

back
Center of Momentum

- Field theoretic definition

\[p^+ R_\perp \equiv \int dx^- \int d^2x_\perp T^{++}(x) x_\perp = M^{+\perp} \]

- \(M^{+\perp} = B^\perp \) generator of transverse boosts

- Parton representation:

\[R_\perp = \sum_i x_i r_{\perp,i} \]

\((x_i = \text{momentum fraction carried by } i^{th} \text{ parton}) \)

back
Poincaré algebra:

\[[P^\mu, P^\nu] = 0 \]
\[[M^{\mu\nu}, P^\rho] = i (g^{\nu\rho} P^\mu - g^{\mu\rho} P^\nu) \]
\[[M^{\mu\nu}, M^{\rho\lambda}] = i (g^{\mu\lambda} M^{\nu\rho} + g^{\nu\rho} M^{\mu\lambda} - g^{\mu\rho} M^{\nu\lambda} - g^{\nu\lambda} M^{\mu\rho}) \]

rotations: \(M_{ij} = \varepsilon_{ijk} J_k \),
boosts: \(M_{i0} = K_i \).

back
introduce generator of \(\downarrow \) ‘boosts’:

\[
B_x \equiv M^{+x} = \frac{K_x + J_y}{\sqrt{2}} \quad B_y \equiv M^{+y} = \frac{K_y - J_x}{\sqrt{2}}
\]

Poincaré algebra \(\Longrightarrow \) commutation relations:

\[
\begin{align*}
\left[J_3, B_k\right] &= i\varepsilon_{kl} B_l \\
\left[P_k, B_l\right] &= -i\delta_{kl} P^+ \\
\left[P^-, B_k\right] &= -i P_k \\
\left[P^+, B_k\right] &= 0
\end{align*}
\]

with \(k, l \in \{x, y\}, \varepsilon_{xy} = -\varepsilon_{yx} = 1, \text{ and } \varepsilon_{xx} = \varepsilon_{yy} = 0. \)
Together with \([J_z, P_k] = i \varepsilon_{kl} P_l\), as well as

\[
\begin{align*}
[P^-, P_k] &= [P^-, P^+] = [P^-, J_z] = 0 \\
[P^+, P_k] &= [P^+, B_k] = [P^+, J_z] = 0.
\end{align*}
\]

Same as commutation relations among generators of nonrel. boosts, translations, and rotations in x-y plane, provided one identifies

\[
\begin{align*}
P^- &\rightarrow \text{Hamiltonian} \\
P_{\perp} &\rightarrow \text{momentum in the plane} \\
P^+ &\rightarrow \text{mass} \\
L_z &\rightarrow \text{rotations around } z\text{-axis} \\
B_{\perp} &\rightarrow \text{generator of boosts in the plane,}
\end{align*}
\]
Consequences of Galilean subgroup

- many results from NRQM carry over to \(\perp \) boosts in IMF, e.g.
- \(\perp \) boosts kinematical

\[
\psi_{\Delta \perp}(x, k_{\perp}) = \psi_{0 \perp}(x, k_{\perp} - x \Delta_{\perp})
\]

\[
\psi_{\Delta \perp}(x, k_{\perp}, y, l_{\perp}) = \psi_{0 \perp}(x, k_{\perp} - x \Delta_{\perp}, y, l_{\perp} - y \Delta_{\perp})
\]

- Transverse center of momentum \(\mathbf{R}_{\perp} \equiv \sum_i x_i \mathbf{r}_{\perp,i} \) plays role similar to NR center of mass, e.g. \(|p^+, \mathbf{R}_{\perp} = 0_{\perp} \rangle \equiv \int d^2 p_{\perp} |p^+, \mathbf{p}_{\perp} \rangle \) corresponds to state with \(\mathbf{R}_{\perp} = 0_{\perp} \).
Proof that $B_\perp |p^+, R_\perp = 0_\perp \rangle = 0$

Use

$$e^{-i\mathbf{v}_\perp \cdot \mathbf{B}_\perp} |p^+, \mathbf{p}_\perp, \lambda \rangle = |p^+, \mathbf{p}_\perp + p^+ \mathbf{v}_\perp, \lambda \rangle$$

$$\implies$$

$$e^{-i\mathbf{v}_\perp \cdot \mathbf{B}_\perp} \int d^2 \mathbf{p}_\perp |p^+, \mathbf{p}_\perp, \lambda \rangle = \int d^2 \mathbf{p}_\perp |p^+, \mathbf{p}_\perp, \lambda \rangle$$

$$\implies$$

$$B_\perp \int d^2 \mathbf{p}_\perp |p^+, \mathbf{p}_\perp, \lambda \rangle = 0$$
Ansatz: \(H_q(x, 0, -\Delta^2_\perp) = q(x) e^{-a\Delta^2_\perp (1-x) \ln \frac{1}{x}}. \)

\[
q(x, b_\perp) = q(x) \frac{1}{4\pi a(1-x) \ln \frac{1}{x}} e^{-\frac{b^2_\perp}{4a(1-x) \ln \frac{1}{x}}}
\]
simple model for $q(x, b_\perp)$
Application: ↓ hyperon polarization

model for hyperon polarization in \(pp \rightarrow Y + X \) \((Y \in \Lambda, \Sigma, \Xi)\) at high energy:

- peripheral scattering
- \(s\bar{s} \) produced in overlap region, i.e. on “inside track”

\(\leftrightarrow \) if \(Y \) deflected to left then \(s \) produced on left side of \(Y \) (and vice versa)

\(\leftrightarrow \) if \(\kappa_s > 0 \) then intermediate state has better overlap with final state \(Y \) that has spin down (looking into the flight direction)

\(\leftrightarrow \) remarkable prediction: \(\vec{P}_Y \sim -\kappa_s \vec{p}_P \times \vec{p}_Y \).
Figure 1: \(P + P \rightarrow Y + X \) where the incoming \(P \) (from bottom) is deflected to the left during the reaction. The \(s\bar{s} \) pair is assumed to be produced in the overlap region, i.e. on the left ‘side’ of the \(Y \).
SU(3) analysis for κ_s^B yields (assuming $|\kappa_s^p| \ll |\kappa_u^p|, |\kappa_d^p|$)

$$\kappa_s^\Lambda = \kappa^p + \kappa_s^p = 1.79 + \kappa_s^p$$
$$\kappa_s^\Sigma = \kappa^p + 2\kappa^n + \kappa_s^p = -2.03 + \kappa_s^p$$
$$\kappa_s^\Xi = 2\kappa^p + \kappa^n + \kappa_s^p = 1.67 + \kappa_s^p.$$

\leftrightarrow expect (polarization \mathcal{P} w.r.t. $\vec{p}_P \times \vec{P}_Y$)

$$\mathcal{P}_\Lambda < 0 \quad \mathcal{P}_\Sigma > 0 \quad \mathcal{P}_\Xi < 0$$

\bullet exp. result:

$$0 < \mathcal{P}_{\Sigma^0} \approx \mathcal{P}_{\Sigma^-} \approx \mathcal{P}_{\Sigma^+} \approx -\mathcal{P}_\Lambda \approx -\mathcal{P}_{\Xi^0} \approx -\mathcal{P}_{\Xi^-}$$
Figure 2: Schematic view of the transverse distortion of the s quark distribution (in grayscale) in the transverse plane for a transversely polarized hyperon with $\kappa_s^Y > 0$. The view is (from the rest frame) into the direction of motion (i.e. momentum into plane) for a hyperon that moves with a large momentum. In the case of spin down (a), the s-quarks get distorted towards the left, while the distortion is to the right for the case of spin up (b).
anomalous magnetic moment coupling in Dirac eq:

\[
\frac{i\kappa}{2M} \bar{q} \sigma^{\mu\nu} q F_{\mu\nu} = \frac{i\kappa}{2M} \left[\bar{q} \sigma^{ij} q F_{ij} + 2 \bar{q} \sigma^{0\nu} q F_{0\nu} \right]
\]

\[\leftrightarrow \kappa \left[\vec{\sigma} \cdot \vec{B} + (\sigma \times \vec{p}) \cdot \vec{E} \right]\]

moving spin \(\frac{1}{2}\) particle with anomalous magnetic moment has (viewed from observer at rest) transverse electric dipole moment, which is perp. to both its spin and momentum.

\[\leftrightarrow \perp \text{ distortion of } q(x, b_{\perp}) \text{ is consequence of Lorentz invariance for Dirac particle with anomalous magnetic moment.}\]