STAR Results from Polarized Proton Collisions at RHIC

- Long-term goals
- Polarized protons in RHIC
- STAR
- Results from first polarized proton collisions
- Summary

L.C. Bland, for the STAR collaboration Brookhaven National Laboratory

Xth Workshop on High Energy Spin Physics Dubna, September 16-20, 2003

Gluon Contribution to the proton's spin

qg Compton scattering with polarized protons provides a direct measure of gluon polarization.

 \vec{p} \vec{q} \vec{q} \vec{p} \vec{p}

Quark-Gluon Compton scattering

 $\overrightarrow{p}+\overrightarrow{p}\rightarrow\gamma\left(+\,jet\right)+X$

Coincident detection of γ and away-side jet \Rightarrow event determination of initial-state partonic kinematics.

STAR Spin STAR Simulations of W Production

>Different W^+ vs. W^- decay patterns **P** quite different **h** distributions for daughters

➢ Quark vs. antiquark polarization sensitivity are separated most cleanly for **h** > 1, especially for W⁻

d quark

 $p_{z} > 0$

u quark

d quark

 $p_{_{2}} > 0$

0.4 0.6 0.8

0.4 0.6 0.8

0.2

0.2

 $\vec{p} + \vec{p} \rightarrow W^* X \rightarrow e^*(v) X$

600

400

200

x

 $\vec{p} + \vec{p} \to W^- X \to e^-(\bar{\nu})X$

800

600

400

200 E

0

x

0

0

u quark

d quark

0.4

0.2 0.4

0.6 0.8

0.2

0.6

0.8

ū quark

 $p_{z} < 0$

 $p_z < 0$

Transversity at STAR

using spin dependent jet Fragmentation Function(FF)

The Relativistic Heavy Ion Collider at Brookhaven National Laboratory

R-HI

New state of matter QGP De-confinement

polarized proton Nucleon Spin Structure Spin Fragmentation pQCD

RHIC is a QCD lab

BROOKHAVEN NATIONAL LABORATORY Polarized Proton Operation at RHIC

Equipment/developments for runs 2 (1/02) and 3 (3/03 \rightarrow 5/03)...

- Helical dipole snake magnets
- CNI polarimeters in RHIC,AGS
 - \rightarrow fast feedback

- $\beta^*=1m$ operataion
- spin rotators \rightarrow longitudinal polarization

What is required for a spin experiment at RHIC? (a summary of the multiple concurrent experiments) Run 2 Run 3 Stages of the RHIC-spin Project Concept \rightarrow Learning \rightarrow Production

- Production of high-energy/intensity/polarization proton bunches that collide \Rightarrow A successful accelerator physics experiment employing `snakes', rotators, etc. Rarest probes require P_{beam}=70% and $\int \mathcal{L} dt = 320(800) \text{ pb}^{-1} \text{ at } \sqrt{s} = 200(500) \text{ GeV}$
- Large experimental facilities capable of detecting hadrons/jets, γ , e^{\pm} , μ^{\pm} ...
 - \Rightarrow Experimental sophistication comparable to other colliders (Tevatron, HERA,...)
- Polarimeters to monitor polarization and establish its absolute magnitude \Rightarrow Coulomb-nuclear interference / polarized gas jet target / local polarimeters Require ΔP_{beam} / $P_{\text{beam}} \sim 5\%$
- Interaction-region monitors of spin-dependent relative luminosity
 - \Rightarrow Precision experiments to minimize systematic errors in final answer

STAR Upgrades for Spin

STAR

STAR adding lots of EM calorimetry to detect highenergy $g e^{\pm}$, \mathbf{p}^{0} plus Beam-Beam Counters for relative luminosity and polarization monitoring. EMC's and FPD's partially implemented for 2003 run, will be completed before 2005.

Run 2 Progress / Results

- $\int \mathcal{L} dt \sim 350 \text{ nb}^{-1} \text{ and } \langle P_{\text{beam}} \rangle \sim 18\%$ (Yellow) / 15% (Blue) delivered to experiments. Polarization limited by performance of AGS.
- STAR / PHENIX / pp2pp experiments commissioned for *pp* collisions at $\sqrt{s} = 200$ GeV.

NATIONAL LABORATORY

- Critical *pp* reference measurements for heavy-ion program completed providing important physics results.
- Transverse single-spin measurements completed providing physics results + local polarimeters for spin-rotator tuning in Run 3.

Di-jet Reference for Heavy-Ion Physics (jet physics is central to spin program)

STAR p+p, $\sqrt{s} = 200 \text{ GeV}$

Hadronic high- p_T azimuthal correlations in pp collisions

- di-jet events clearly observed in *pp* collisions at $\sqrt{s} = 200$ GeV.
- di-hadrons serve as di-jet surrogates for heavy-ion collisions.
- clear near-side and away-side di-hadron correlations in *pp* collisions serve as contrast for central AuAu collisions where away-side correlations are strongly suppressed.

expected to persist up to RHIC collision energies...

STAR Forward π^0 Detector

- Measured cross sections consistent with pQCD calculations
- Large spin effects observed for $\sqrt{s} = 200 \text{ GeV } pp$ collisions Status: final analysis complete / paper in preparation

Relative Luminosity Monitoring

- RHIC stores up to 120 bunches per ring
- Different bunches injected with different spin orientation
- Collision luminosity can vary significantly with spin combination
- Precision of relative luminosity monitoring critical – demonstrated better than 10⁻³ in 2002 run
- Special problem for A_{LL} measurements: asymmetry **f**-independent, shows up <u>only</u> as yield change per integrated luminosity unit
- Must demonstrate that L monitor reaction does not have its own A_{LL} of magnitude comparable to physics of interest D comparisons of different L monitors

STAR Electromagnetic Calorimeters

Barrel EMC: 2400/4800 towers installed for 2003, with SMD but not yet preshower readout

Endcap EMC: 240/720 towers installed; no SMD, preshower or postshower readout yet

STAR

STAR Forward Pion Detector (construction for Run 3). $t + Au \rightarrow \pi^0 + X, \forall s_{NN} = 200 \text{ GeV}$ $\int_{0}^{0} \int_{0}^{0} \int_{0}^{0} (0 < E_{\pi} < 80 \text{ GeV}) \\ 0 & (\pi - 4 \text{ (relative to d)}) \\ 0 & (\pi - 4 \text{ (rel$

Run 3 Objectives:

- probe of Color Glass Condensate in d+Au $\Rightarrow p_T$ dependence of large η yield
- improve understanding of dynamical origin of A_N in $p_\uparrow + p \to \pi^0 + X \Rightarrow$
 - \succ Collins effect \rightarrow sensitivity to transversity
 - \succ Sivers effect \rightarrow sensitivity to orbital motion
 - > twist-3 effect \rightarrow quark/gluon correlations
- serve as local polarimeter at STAR IR

BNL, Penn State, IHEP-Protvino, UC Berkeley/SSL, UCLA, ANL

Beam Beam Counter

1cm thick scintillator hex tiles with PMT readout (2.1<| η |<5)

- Feed back to RHIC to make collision at STAR
- Measure relative luminosity ~10⁻³ level
- Measure absolute luminosity ~ 15% level
- Minimum bias trigger (covers ~50% of total σ)
- Reject beam gas events from biased trigger
- Measure multiplicity at forward rapidity
 - A_N for forward charged particles

RHIC performance during run 3

Polarization

- •Maximum at injection: ~50%,
- •Maximum at 100GeV: ~40%

•Average P ~25%

•Improved by factor of two compared to run 2

•Yellow ring affected by problem with snake magnet

Luminosity

•New problem 'beam-beam tune shift' surfaced, limiting luminosity

•Adequate to accomplish physics goals from Run 3.

⇒ Longitudinal Polarization at STAR

BBC & ZDC for relative luminosity monitor

Is there A_{LL} in Relative Luminosity ($R=N_{++}/N_{+-}$) measurement? BBC sees ~50% of total cross section (~87% of inelastic, non-diffractive cross section). ZDC sees ~0.5% of total cross section.

Longitudinal spin asymmetry (A_{LL}) for mid-rapidity jet production

 \Rightarrow first measurements sensitive to gluon polarization

Status:

- data analysis underway
- understand trigger bias
- understand jet yields

Possible Timeline for STAR Spin Program

RHIC RUN <u>YEAR</u>	NEW EQUIPMENT TO BE COMMISSIONED	STAR/RHIC SPIN <u>MEASUREMENTS</u>
FY04	New AGS warm snake; H gas jet; rf spin flipper; BEMC preshower; EEMC SMD + preshower; completed FPD	Test <i>L</i> improvement schemes; calibrate P _{beam} to 10%; continue A _{LL} (jets)
FY05	New strong AGS cold snake; Completed BEMC, EEMC (incl. postshower); forward hadron calorimeter?	Calibrate P _{beam} to 5%; improve ℒ; Collins frag. with forward p ⁰ 's; more A _{LL} (jets); first look at g+jet
FY06+07	Whatever is needed to achieve full design <i>L</i> and P _{beam} ; is = 500 GeV polarized collisions;	A _{LL} (g + jet), transversity measurements at mid- rapidity, at ö s = 200 GeV
FY08+09	Improved STAR forward tracker (1< h <2)	A _{LL} (g + jet), A _L (W [±]) at ü s = 500 GeV

Summary

- 1) STAR spin program well under way. Essential equipment and procedures commissioned during RHIC runs 2,3: snakes, rotators, polarimeters, accurate relative luminosity monitors; STAR EMC's, FPD, BBC's.
- 2) 1st pp collisions with transversely polarized beams in run 2
 ▶ large analyzing power in hard scattering at **ö**s = 200 GeV. Additional data on A_N(fwd. p⁰) in run 3, including correlations with midrapidity tracks, negative Feynman-x spin asymmetry.
- 3) 1st pp collisions with longitudinally polarized beams in run 3
 begin search for DG sensitivity in jet production.
- 4) For next ~2 years, STAR spin physics focus on **D**G via A_{LL} (jets) and A_{N} (fwd. **p**⁰) vs. Collins angle from jet axis, while $P^{4}\mathcal{L}$ brought to ~design goals.
- 5) High priority programs on A_{LL}(g + jet), A_L^{PV}(W[±]) and transversity via mid-rapidity jet fragmentation likely to take rest of decade to complete.

~ 500 collaborators48 institutions12 countries

Note strong <u>new</u> STAR spin interest from: *CalTech, LBNL, MIT, Valparaiso U., Zagreb*

China: IHEP-Beijing, IMP-Lanzhou, Shanghai INR, Tsinghua, USTC, IPP-Wuhan Sao Paolo **Brazil:** Czech Republic: Nuclear Physics Institute-AS-CR Croatia: Zagreb **England: Birmingham** France: IReS - Strasbourg, SUBATECH-Nantes Germany: Frankfurt, MPI-Munich India: Bhubaneswar, Jammu, IIT, Panjab, Rajasthan, VECC-Kolkata Poland: Warsaw U. of Technology Netherlands: NIKHEF Russia: JINR - Dubna, IHEP – Protvino, MEPHI - Moscow **U.S.:** Argonne, Berkeley, Brookhaven National Laboratories UC Berkeley, UC Davis, UCLA, CalTech, Creighton, Carnegie-Mellon, Indiana, Kent State, MIT, Michigan State, CCNY, Ohio State, Penn State, Purdue, Rice, Texas, Texas A&M, Valparaiso, Washington, Wayne State, Yale Universities