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® Between the heaviest atomic elements and neutron stars lies a

vast unpopulated "nuclear desert”.

matter (strangelets).

@ The fluxes of candidates for strangelets measured in cosmic ray

experiments on different depths of atmosphere are investigated,

@ The flux of strangelets reaching the Earth atmosphere as a func-
tion of mass is estimated and compared with astrophysical limit.
It turnes out that its expected power-like mass spectrum con-
tinue the observed abundance distribution of normal nuclei in

the Universe.

#® We discuss the possible growth mechanism of strangelets in sources

of production, which results in such power-law distribution.
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SQM and strangelets

e What it is St?‘:_m_qff Q wark M atter 7
— true ground state of QCD ! consisting of roughly
equal number of up (u), down (d) and strange (s)

quarks: (u,d.s)

e It is absolutely stable at high mass numbers A (A >
Agrit = 300 + 400). For small A it decays rapidly by

evaporating neutrons,

e SQM formed at very early stage of the Universe would,
however, evaporated (because of weak decays) long time

ago

® but it is probably continuously produced in neutron
stars with a superdense quark surface and in quark
stars with a thin nucleon envelope
—
collisions of such objects could therefore produce small
lumps of SQM called STRANGELETS, with 10?2 «
A < 10° permeating the Galaxy and possibly reach-
ing Earth.

'E.Witten, PRD30 (1984) 272.
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SQM and strangelets

e NOTICE: strangelet is NOT a nucleus but rather a

BAG of (u,s,d) quarks with geometrical radii
R =Ty- ;“fll'f:j

comparable to those of ordinary nuclei of the corre-

sponding mass number A:

1/3
37 /

= RCYLE

2 (1 - ‘"’—‘_‘L) [;1.3 F (e — -rr'a.j']‘j*ﬂ

where:
1 is s-quark chemical potential

m 18 s-quark mass

—

¢ PROBLEM: how they can reach deep into atmosphere

(and form known candidates for strangelets)?



Propagation of strangelets thrugh atmosphere

Simple estimation:

e the mean free path of strangelets with mass A in the

atmosphere (A, = 14.5) is

*“r'ln: Tk

)',l'-r‘rf'l'l -

7 (:I.IQA’*”"* + ;-HAW)E

air

and is equal to: 16, 5 and 1.4 g/cm? for A = 102, ()"
and 10* (for m= 150 Mev and p=300 MeV)

— almost typical nuclear values —>

e PROBLEM:

how they can reach deep into atmosphere

(and form known candidates for strangelets)?



Cosmic nuclearities

There are several reports suggesting direct candidates for SQM. In par-
ticular, the following anomalous massive particles, which can be interpreted
as strangelets, have been apparently observed in Cosmic Ray (CR) experi-
ments:

(¢) In counter experiment devoted to study primary CR nuclei two anoma-
lous events have been observed (Saito) [10] with values of charge Z 214
and of mass numbers A4 = 350 and A = 450, respectively.

(4) The so called Price’s event [11] with Z = 46 and A > 1000, regarded
previously as possible candidate for magnetic monopuole,

(¢2i) The so called Exotic Track (ET) event with Z 2 20 and A & 460
has been reported in [12]. The name comes from the fact that the
projectile causing that event has apparently traversed a 200 g/em? of
atmosphere.

It is remarkable that all possible candidates for SQM have mass numbers

near or slightly exceeding A.y, (it is also argued that Centauro [13] event
regarded to be possible candidate for strangelet, containg probably =~ 200

baryons [14]). Also the values of Z and A mentioned above are fully consis-
tent with the existing theoretical estimations for Z[A ratio, which is char-
acteristic for the SQM [15], ¢f. Fig. 4.

[-ln] T. Saide Q.Q‘J/, 97475, oo . lﬂ\@‘ﬂ f(f;a/zqu
[44] 0. 8.0 ee p¥ e/, D&‘),;, Qﬁb’;l}f&(ﬁfg) 1352

[42] M. Jeluwsoe efol. Nueve Gue 410 (1953) 843
[3] €.M.C- Loder efad., @E)J. @Aﬁ[/"‘;’gﬂ/ff-y



I'ossible mechanism leading to power law..,

To resolve contradiction:

"normal size” vs "strong penetrability”
——

propositions:

strangelets reaching deeply into atmosphere are formed
in many successive interactions with air nuclei according

to one of the scenarios:
e initially small strangelet picks up mass from the collision:

e initiall very large strangelet (A ~ lf}ﬂ‘) decreases due to
the subsequent collisions until A = A..; at which point

it disintegrates’

Hint: strangelet of 4 ~ 10° is much more stable than

air nuclei

25.Banerjee et al. PRL 85 (2000) 1384.
*G.Wilk and Z.Wtodarezyk, JPG22 (1996) 1,105, NPB (PS) B52 (1997) 215,

)
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Fig. 3. The estimation of the expected flux of strangelets on the border of atmo-
sphere, N(Ap), as a function of their mass number as obtained from SM (full
symbols; solid line for power fits) and TM (empty symbols; dashed line). See [3,9]

for further details.
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data archives from the ALEPH CoSMo-2£(7 /’"ﬁ”* s

[ more than 3.7 10° muon events have been recorded in
the effective run time 10° seconds

1 multi-muon events observed in the 16 m*> TPC with
momentum cut-off 70 GeV have been analysed and
good agreement with MC simulations obtained for
multiplicities N, between 2 and 40

[ there are 5 events

with unexpectedly large multiplicities N, (up to 150)
which rate cannot be explained,
even assuming pure iron primaries

notice that the high multiplicity events discussed here
(with Ny, = 110 recorded on 16 m®) correspond to

~ 5600 muons in total (E, = 70 GeV) or
~ 1000 muons with energies above 220 GeV

Baksan Valley experiment (E, > 220 GeV) observed

7 events with more than 3000 muons



Monte Carlo simulation

O primaries were sampled from P(E) ~ E* with
energies above 10 TeV/A

W ‘normal’ chemical composition (40% p. 20% He,
20% C-N-O, 10% Ne-S and 10% Fe)

U strangelets with A=400

y E=25 TeV/A
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Muon bundles from CosmoLEP

We would like to bring ones attention to the data from the cosmic-ray
run of the ALEPH detector at the CosmoLEP experiment. Data archives
from the ALEPH runs have revealed a substantial collection of cosmic ray
muon events [23]. More than 3.7 x 10° muon events have been recorded
in the effective run time 10° seconds. Multi-muon events observed in the
16 m? time projection chamber with momentum cut-off 70 GeV have been
analysed and good agreement with the Monte Carlo simulations obtained
for multiplicities N, between 2 and 40. However, there are 5 events with
unexpectedly large multiplicities Ny, (up to 150) which cannot be explained,
even assuming pure iron primaries.

il \ |

20 40 60 80 100 120 140 160 180 200
Ny

Fig.9. Integral multiplicity distribution of muons for the CosmoLEP data [24]
(stars). Monte Carlo simulations for primary nuclei with “normal” composition
(dotted line) and for primary strangelets with A = 400 (dashed line). Full line
shows the summary (calculated) distribution.



to deseribe the observed rate of high multiplicity events
one needs the relative flux of strangeleis

Fo/Fim = 2.4 107

(at the same energy per particle)

O this is pecisely the flux we have estimated when
interpreting direct candidates for strangelets and

[ is fully consistent with exising experimental
estimations

U it accomodates also roughly the observed flux of
Centauro events
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Fig.13. The expected flux (our results) of strangelets compared with the upper
experimental limits, compiled by Price [33], and predicted astrophysical limits:
Big Bang estimation comes from nucleosynthesis with quark nuggets formation;
Dark Matter one comes from local flux assuming that galactic halo density is given
solely by quark nuggets.
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Fig.14. Comparison of the estimated mass spectrum N(A4g) for sirangelets with
the known abundance of elements in the Universe [34].
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IPessible mechanism leading to power law...

o Seed with mass m = A;(l;) appears in time ¢; with the

uniform probability P({;) = %

e This seed absorbs neutrons increasing its mass accord-

ing to the growth equation

oy _ =
ot A

where o = nA4;Lo (in time ¢ our object traverses dis-
tance L absorbing neutrons, which density is n, with

the cross section o)

=

e The resulting mass spectrum has power-like form:

1

mao 1+ 1

P(A) = —f.A( 3

1 + 5

e —> universal scanario leading to power-like abundance

of ALL elements (including strangelets) ?



