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Introduction

Effects which are not connected with small ,(Q?)
=NP effects in jets
Role of NP effects ig large. Among them:

e confinement and hadronization

e cxact YM field equations, solutions, ex. Instantons. vac-
uum properties

e long distances, soft collisions, diffraction
® power corrections
e NP evolution

e MC hadronization models, LPHD are not connected with

QCD

Jets give example of separation between P and NP stages

(1) (2) (3 (4)

Figure 1: Jet evolution
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e Here we consider time gluon field evolution

e Demonstrate under simnple assumptions quantim squeezing

e Consider chaos in jet in classical limit and chaos-squeezing
connection.




Time gluon evolution in jet

Consider glnon self-interaction Hamiltonian

Iﬁfi: -gt[fmhnEﬂ,.Ag,fig d3I -+ %/‘fﬁcha[AaAc]d%-{—
Qz h 012 5’2 \2 13
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(Eq = =V A, — 0)A., B, = [VA,], A is a potential of the gluon field
with colour a=1,8; fa. is the structure constant of the SU,(3) group; g is

(1)

a coupling constant.)

Take jet ring with cone angle 6 € (6, 0+d6)]

dé

Figure 2: Jet ring

In terms of annihilation (creation) operators we have
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Here Qo =0 Gy

alal, + a"ataf el + alattaTal + hec.,
al(a)™) are annihilation (production) operators, k, is a gluon energy,

o 15 a gluon virtuality.



For simplicity we put at the @nd of P cascade
e energles and virtualities of gluons are equal

e terms ~ A are not written because they don’t give con-
tribution to the squeezing conditions (it’ll be scen fur-
ther)

(the same we obtain if assume collinearity of final gluon mo-
menta)

The Hamiltonian determines the evolution of gluon state
vectors.

e [or small time evolution t we have final state
|f}z|in}-it¥t|in} (3)

e any state can be exp‘!atr‘%d Into raw on coherent states
[a?), b - colour index, [ is a polarization index.

It is natural state for quantum system consideration.
Also at the end of perturbative cascade we have multiplicity

distribution close to |[NBD ) = > w; |a;)

i

) evolution under Vi

Therefore we study




Some hints and guess:

e Hamiltonian f?}nt has squares of operators of annihilation
and creation. As it is known from QM and QO such
structures in evolution Hamiltonian are nessesary condi-
tion of SS production because squeezing operator S(z)
has such operators:

*

) _z_ 2 E +\2 i
5(~)—e>cp{ —a?— 2(a")?} (@
o f5¢=({n%n )) — (n)?) < 0 (sub-poissonian distri

bution) when \/Z < 3 GeV corresponds SS
e confinement needs pairing of partons (SS?)

e Guess: gluon self-interaction can produce SS and play
role of external nonlinear device in QO transforming co-
herent state to SS

e Task: to study evolution of |a) under Viy and search
possibility of quantum squeezing.



Gluon SS pI'OdllCtiOIl |Kuvshinov, Shaporov
| APP, 30, 59, 1999
To check whether final gluon state describes SS we should
by analogyto quantum optics to introduce operators

(XD = [a} + (@))*]/2 and (XP)o = [a} — (af)"] /2

and to find out that dispersion of one then is smaller than that
for coherent state.

Some properties of SS in QO:

o Usual uncertainty relations:

Ry X] = % <(QX,)2><(&X2)3> > ll_h

AX =X — (X)

A,
o
L

e for coherent state

(COPRCOPES )

sy

— most close to classical state

e For S5
<(,g X 1)2> < (&J&' 2)2> = E’ (ideal squeezing) (7)

but ! one of component has

|F.Walls, Nature 306, 141, 1983
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Pure quantum state (nofclassical analog)
More organized then coherent state (entropy is small)

Can have sub-Poisson multiplicity distribution (antibunch
ing, or super-Poisson for bunching)

Pairing of photons
Can decrease quantum noise

Can be obtained from CS by nonlinear interaction with
out side devices

Can be detected by interaction with controlling CS



Condition of squeezing

(&(Xﬂ))/—w( (XD); )2>_ lI<Lll

| )‘é b 4
or | (N (a(xg Jé) > < (]._l (8)
Averaging goes through the vector which appear as a result of
evolution
8 3 S 8 J
[T TIes®) = [T o500)) - itV [TTTes0)). ()
e=li{j=1 =1 =] e=11=1

time begins from the state [][]|af(d) ) prepared by previ-
ce=1i{=]
ous development

example end of P cascade

we have super position of coherent statg for simplicity we
take one

example colour index b=1, vector index §- any
<N (&(Xxl)i)2> =+ 4Ar ust sinﬁ-:iﬁ{{i + 1) [5;1{2'33 + Zg)+
(1= dn)Zn1 | + G sy + b1s Zont
uy sin? {—“511(322 Z33) + 612(Z3z — 5211) + 813(Zaz — —211)] } # 0.

(10)
Here Z,,,, = Z <(}Lm 1){[ 3> m,n = 1,2, 3),

; H‘E' i 4 2
)=l r+5 () “I—( ~g§) Uy = k“}:,_% .

=2 =2 k=4 427




We have phase squeczed state if

«X’il)ﬂ <4, «Xﬁ;f; <{ |P.F.Walls, G.J.Milburn,
B |Quantum Optics,

<(Xf§,.)1> > 0, <LX,’;,2} >0, |[Camb. Univ. Pr.1992

k#1,m # 1 We have amplitude squeezing state if

(X)) > 0,{(XE),) <0
or

((XE)) < 0,{(XE)) >0
k#1l,m#l

e The conditions cover all possible cases = SS - should
exist

e The same 1s true for other colours

8 3
| Thus vector J]]]|af(¢)} describes SS
e=1{=1
We can estimate parameter of squeezing

r=12< {&X:}E} (11)
r=—8nr Up i sin o dﬂ{{l = E -ul) [5{1 (Zﬂg -+ Z-zg) = i:l = 6“)Z]_]_j| i
+012 Z33 + 013 Z0a+
+147 5in? 6 [—%5;1(333 + Z33) + 813(Zaz — 5211) + 613(Zag — éZu}] } ==,
(12)
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It can be shown that ~ A? terms don’t lead to 0 squeezing.

In fact, the squeezing condition may be write as

<N (&(-XE'EQ;) >:$%{<al[ o (k). lafyy (k) , V] ]|a)—
—({e|[[ V“+h (k)]vﬂ*m(k I}

(13)
Hamiltonian of the three-gluon self-interaction in momentum
representation has the next form

V =19Q2m)3 foed 3 /dkldkzdﬂa (k1€pg () (€5 (ky) ) Epg k) X

Al,A2,A5

X { [a'& (1) g (ko) am_ﬂ(k@ - ”’u;j l}aa'ﬂk)} aw ;Q] (hl + ko + ky) x
X % (k) afyfied) % — agfk) af, (ko) af (ks | 6(ky — Ky — Ks)x
Pt LLA}‘) (_J {AJJ h+u(k1 E}iﬂkﬂﬂl (ﬂa(kl—kg“i-k:i))(
< [l o) s — o gl af o oK, + K — R}
(

Obwviously, that

[“{x} (k) [a?;x} (k),V]l=0, [[V. ﬂ'a’; (k)] a m j (k)] =0 because fup =0
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Corr EIEItiOIlS in; [[Kuvshinov, Shaporov

gluon squeezing state |phys. of Atom. Nuel.

V. 65, num. 2, 2002
The second normalized correlation function is the tulluwmg

Cla)(61,0)

K9(601,0;) = : : 15
(2){¥1, 72) ﬁ](gl}pl{{}gl { —"']
where Cio)(61,82) = pa(0y, 62) — p1(61)p1(62),
palbh, 6) (p1(0) ) — two (one) particle inclusive distribution
) |
Pf{g}(ﬁl 02) .
Ko (0,,0,) = =1 16)
s ) .if){“;{ﬂ‘ )P;n;,{gz} (
L[, ), H lel,; 0:,t), af(6s,1))
c=1{=1
p1(6) = (£(8,8)|a%al£(6, 1)), } -
J”i;.‘-{,gl 1 92) — (1(6’2 f): f(Sh t)la_La'_ra a|f(191 3 t} Jr(bi? t))

Then second gluon normalized function has the form

‘F_TE(Q'[ HQJ = J'nl/f](gjﬁg)/{l {l? [E -2 | {kf iz .'Ml(ﬁl,eg} -+ IWQ{HI.. [93&!
- (18)

Example: for b = 1, and any I:

My (61,0:) = 24tusw|a|? 82 sin (f:u g) {(1 +81)(2+ ug — 6p) x

cx . 1 .
X (sinf; +sinf,) — gt (361 — 1)(sin®8; +sin? Hg)}(l.@)

. d 7
Mg(ﬁljf;g) = 80tuy 7w I 3 |3| 3 |dI sin (5 = 5 %) {(J. =1 (5“)(2 Uy = 5;1) X
1 >
X (sinf +sinés) — 5 U1 (361 — 1)(sin” 61 + sin® 92}} (20)
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Here lor simplicity we supposed that o; =|a| e, { = any and of =|3| ™,
when b # 1, for VI, 91 — 73 = /2 + 7/4 (phase § definies the direction of
squeezing maximum)

Comparison K3 and K5 in QO

2) | — \{TE.E" (:E {1; flg}

Kio)=g; (21)

- ]
" *a \
< 1+ £>
(Averaging over final state at moment t)
| For SS:
- Ky > 0 = bunching of photon
(2) g OI photor

- Ky % U = antibunching (sub-Poisson multiplicity distri-
bution)

For coherent field: K i2) =0

For photon SS (when parameter of squeezing r is small)

) rilode= 4 o )%e¥]
jig{gj = I[ ! ( ) (22)
| a; |* =2r | a; |2 [a e~ 4 (af)%eid]’

In QCD

. We had Kf’(z)(&, 62) which include function My(fy, 85) due to
‘ nonlinear combinations of creation and annihilation operators
ll of gluons with different colours in Hamiltonian
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Example:

Angle dependence of correlation function [(%{2)(91, Gy = 0)
parameters: b= 1,1 = 1,4 = 0.001, 6, = 0, g2 = 1 GeV,
ko ~ v/8/2 < 1 >giuon, V'8 = 91 GeV
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Figure 3. The angular dependence of the squeezed gluon correlation
function at |a*>=1,|8* =1,0 =0

For synphase case:

f - If |a| = | 8| for any color and vector index = K} is in negative region =
l antibunching of gluons with sub-Poisson multiplicity distribution

- when 6, — Oy I{I{Q}{H. » = 0) — const = —2.80094

The behavior is similar te photon case |Hirota, Squeezed Light.
| — Tokio, 1992
- [¥=" > [@*!| K> has singularity at: a) 6, ~ 1.518928762 x 1077 af

la|? =3, |82 = 1; b) 6; ~ 7.8873381715 x 107 at |a|* = 10, |p|2
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Figure 4: a) |a]® = 3, |8]> = 1,b) |a)* =10, |8 - 1.

For antiphase SS (6 = 7)

- Correlation function lies in positive region = bunching of
gluons with
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Figure 5: a) |a|? = 1, |8]? = 1,b) |of?2=3, [8]2=1.



Using well known transformation

d |
— ()
coshy v/uy — tanh“y

tanh*
sin @ = - y! df = —
Uy

we can obtain correlation function of SS in terms of rapidity

For synphase

= (LIS

(o001

¥ y2=10)

ne =0LMMITS

00002

Figure 6: The rapidity dependence of the squeezed gluon correlation
0: |af* = 1,|8* = 1— solid line, |al? = 3,|8]2 = 1-

function at 4 =
dotted line

- rapidity correlation lies in negative region
- minimum in center y; = y» = 0 and two maxima

Behavior of second order correlation function could be one of

criteria for gluon SS existence
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Chaos in jets
Chaos and squeezing — coexistence

1) Role of C in QFT and HEP is a kind of challenge
There are a lot of footprint of C here:

- chaotic solutions of classical Yang-Mills field equations of all
fundamental interactions. Chaos and order in classical
YMH models |Savvidy PL (1983),

| Kawabe PRD (1983)

- C assisted quantum tunneling: probability of tunneling be-
tween wells increases by several orders in presence of clas-
sical driving chaotic force || Ly . (1990) PR

- CA f.'ﬂ_g’?‘afr?‘:m f#aneﬁnj ‘{’&Ua‘ﬁchnﬁfdﬂf (2002) _ .

- quantum footprints of classical chaos in nuclear physics (en

ergy level spacing distribution) and stochastic billiards
| Zaslavskii,Sagdeev,
|| Introduction in nonlinear physics (1988)

In semiclassics Gutzwiller formula gives connection between
level spacing and classical phase trajectories

- Chaos simulates confinement | Savvidy, PL (1977)
- Higgs field lead YMH system to order (in classics)

- (Quantum fluctuations of YM field lead the system chaos-
order transition | Kuvshinov, Kuzmin,

*Ia%ehML#%{ WK (2002)

ﬁ Pée“”‘n{w#
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- chaos and squeezing are connected: roughly -

the more chaos — the more squeezing | Alekseev, Perina

| chao-dyn/ 9804041 (19 9%)

- GS'E.I('E'{'CM{ af Cands. Kuvs heuo v etql (,Zacug)

2) chaos theory is developed in

- classical mechanics with finite number degrees of freedom
and statistical physics

- In semi-classical regime of QM

- there is no generally recognized definition of chaos for QM
and QFT . C.eriteron i OPT || Kuvshinov, Kuzmin,
|PLA (2001)

New quantum chaos criterion was suggested for QFT in
terms of Green function, true also for QM and which in classical
limit comes to known Toda criterion.

| Does jet Hamiltonian giving squeezing lead to chaos?

Local instabilities. Toda criterion (in classical mechanics)

- If the distance between two phase space trajectories initially
very close-behaves with time as follows:

@ Lyapunov exponent = the system is locally unstable,
leads to mixing and to chaos. Regular stable motion is

characterized by = [53

18



- 'Toda criterion based on Hamiltonian equation analysis
dg oH dp  OH 2
dt 05 dt  0q

d(d’ﬁj . d(ﬁ@ - BZPI'M:.i
— L= ———L = —~§(1)d v =
dt op dt >(2)og, 0q;0p;
Y 0 I instability matrix
J — _Sr(t) 0 3 i ___.} -

e If at least one of eigenvalues of (G is real than separation of
neighboring trajectories grows exponentially and motion
1s unstable

e If all eigenvalues are imaginary than the motion is stable

Coexistence of chaos and squeezing conditions (Examples)

Squeezing is pure quantum effect

Condition of chaos is basically understood in classical sys-
tems H Shuster,
|Deterministic chaos (1984)

it was shown that effects of squeezing and chaos exist in semi-
classical level || Alekseev, Perina,
|JETP (1998)

it is possible study chaos in classical system, when corre-
sponding quantum system has squeezing
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we cmmider Hamiltonians:
@) SU(2 Jet Haml]toman

@ H=3+%+%4+ 2 + §(pras + b1 + Pags + Gop2) -
degenerate 1}arameter dmphhm

@ Hy = g(p1g2 + qip2) - non-degenerate parameter ampli-
fier
For H; (see below)

for Hy: A1p = £4/¢? — 1, for H3: A = g = H; - chaotical
if ¢ > 1 and Hj - always chaotical.
It is interesting that squeezing condition here has the form:

2
@ 25 10y #0

Ipdq;
@)~ is coherent state and is closely connected with instability
matrix.

" - analysis of components ;f if they are not equal zero —

we have effect of the squeezing

For Hy, Hy, H3- squeezing exists.
| Thus S and C can coexist under some conditions.

Chaos and order in SU(2) jet
SU(2) Vin; for jet:

vo—_f_ (| _® wqgw ~-q—g—5i“25(1—q—§ X
™ 4(27)3 k) - k2 k?

2
[I r
x [a955; + iy — s — afss] + (l +sin 9( k%)) x (24
0

behe boch :
x [abss, rzmj]}smﬂdﬁ
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Analysis is made numerically.
(Power of computer was not enough for SU(3) case and for
analytical SU(2) calculations).

- We come to classical Hamiltonian by keeping the order of
operators a™, @ and consider them as c-numbers

- We have 18 variables and calculate matrix instability 18 x 18
for this case

- next step is calculation of its eigenvalues to find out whether
they are real or imaginary

the result is:
1) If all variable a and a”

- are real or
- are imaginary

than the system of gluons described by the above mentioned
Hamiltonian is strictly ordered and effect of the squeezing is
absent

2) If at least one of @ or a” is imaginary and other dee real
or at least one of @ and a* are real and other are imaginarv -
we have chaotical system. (ForSuf®)syxmem & Qﬁt‘f}?f dectec )

- Experimental consequences of chaos in HEP are not known
because there is no yet chaos theory for QF T (quanturn-
ness and infinite number degrees of freedom)tis not yet
developed
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- Our quantum chaos criterion states, that we have chaos if
Green function

Gla,y) ~ 4

(Suitable for any number degrees of freedom, corresponds
symmetry breaking in classical field theory, can be used
in QM and corresponds Toda criterion in classical me-
chanics)

- corresponds to confinement condition in Lattice Models
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Conclusion

- evolution of gluon field can lead to quantum squeezed gluon
states in QCD jet

- (55 have many unusual properties, in particular can have
second correlation function with angle singularity (ex-
perimental signature)

- Yang-Mills systems are chaotical at different energy and lead

to chaos in QCD jet
- Chaos and squeezing coexist
O's:
- Role of chaos and quantum squeezing in HEP processes

- Connections of chaos and SS with confinement

- Experimental signatures and search C and SS
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