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Introduction

In the limit of large center of mass energy /s and fixed momentum trans-
fer /—t (Regge limit) the most appropriate approach for the description of
the the scattering amplitudes is given by the theory of the complex angular
momenta (Gribov-Regge theory). One of the remarkable properties of QCD
is the Reggeization of its elementary particles. Contrary to QED, where the
electron does Reggeize in perturbation theory,

M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, F. Zachariasen, 1964,
but the photon remains elementary,

S. Mandelstam, 1964,

in QCD the gluon does Reggeize

M. T. Grisaru, H. J. Schnitzer, 1973,

L.N. Lipatov, 1976,

V. F., E.A. Kuraev, L.N.Lipatov, 1975,

E.A.Kuraev, L.N. Lipatov, V.F., 1976,

Ya.Ya. Balitskii, L.N. Lipatov,1978,

Ya.Ya.Balitskii, L.N. Lipatov, V.F., 1979,

as well as the quark

V.F., V.E. Sherman, 1976,

V.F., R. Fiore, 2001,

A.V. Bogdan, V.Del Duca, V.F., EEW.Glover, 2002,

M.I. Kotsky, L.N. Lipatov, A. Principe, M.I. Vyazovsky, 2002.

The property of the Reggeization is very important for high energy QCD.
BFKL (Balitskii-Fadin-Kuraev-Lipatov) approach to the description of the
high energy QCD processes is based on the gluon Reggeization. The BFKL
equation for resummation of leading logarithmic radiative correction to scat-
tering amplitudes of processes with gluon exchanges in the t-channel was
obtained assuming the gluon Reggeization. The Pomeron, determining high
energy behaviour of cross sections, and the Odderon, responsible for the dif-
ference of particle and antiparticle cross sections, appears in QCD as a com-
pound state of two and three Reggeized gluons respectively. Colorless objects
constructed from Reggeized quarks and antiquarks should be relevant to phe-
nomenological Reggeon trajectories successfully used for the description of
processes with exchange of quantum numbers.



In the BFKL approach the amplitude for the process
A+B — A+ B

at large center of mass energy /s and fixed momentum transfer v/—t, s> |t|,
can be represented by the picture

A e N A

> A A >

B\

and may be symbolically written as the convolution
b4 @ G ® Ppp

where the impact factors &4, 4 and &5 describe the transitions A — A’ and
B — B’ due to scattering on the Reggeized gluons, while G is the Green’s
function for the two interacting Reggeized gluons. All dependence on prop-
erties of particles A, A’ (B, B’) is contained in the impact factors &4, (®p3),
which are energy independent, so that dependence on energy is determined
by the universal (process independent) Green’s function G. This represen-
tation is valid both in the leading logarithmic approximation (LLA), when
only the leading terms (aslns)* are resummed, and in the next-to-leading
approximation (NLA), when the ag(aslns)” terms are also resummed, not
only for forward scattering with ¢ = 0, but for the non-forward case as well.

In the case of the forward scattering (4’ = A, B’ = B, q=0) with the help of
the optical theorem we obtain:

d+ico dw [ d*qq  d’qp [ s\V
== —_ @ 7, G 74, —0q] (P 7] )
oaB(s) /6—ioo ot / 27“?:42 27”732 (80) A(G4)Gu(d4, —4B)®B(qB)

where the vector sign is used for vector components transverse to the initial
momenta p4,pp and sy is a certain energy scale.



What does the term ”gluon Reggeization” mean

It was claimed already that the BFKL approach is based on the gluon Reggeiza-
tion. But one needs to know precisely what does it mean. The notion
“Reggeization” of an elementary particle with spin s in perturbation theory
was introduced for denotation of disappearance, due to radiative corrections,
of non analytic in J terms (4,,) in the complex angular momentum J plane,
which appear in the Born approximation from Feynman diagrams with ex-
change of the particle with spin s. We use this notion in more strong, but
transparent sense. Talking about the gluon Reggeization in QCD wec mean
not only the existence of the Reggeon with gluon quantum numbers, negative
signature and trajectory
Jt)=1+w(t)

passing through 1 at ¢t = 0. We mean also that in each order of perturbation

theory this Reggeon gives the leading contribution to the amplitudes of the
processes at large relative energies of the participating particles and fixed
(i.e. not increasing with s) momentum transfers.

Let us explain this in more details. Consider the elastic scattering process
A+B —- A+ B

in Regge kinematical region:

§ @ —u — oo, t fixed (i.e. not growing with s) For this amplitude the term
gluon Reggeization used by us means that the elastic scattering amplitude
with the gluon quantum numbers in the ¢t-channel and negative signature (i.e.
odd under s < u exchange) has the Regge form

DA b4 ) —g\J® i)
N > \A'B' S S
ot =rua[(2) - (2]
J(t) =1+w(t);5(0) =1,
w(t) — Reggeized gluon trajectory ,
wa=9g(A|T|AT w4 ,
> > T° -colour group generators in fundamental
PB Pp

(quarks) or adjoint (gluons)representation.



With this assumption the vertices I’j(f,)A and the gluon Regge trajectory w(

can be easily calculated in the leading order (LO). The result is:

dP- 2k I'2(e)
9 _ 5 M) (¢ Lz 2ver \€)
AA AarAa w () 27r D 1 2 /k2 q k)_L g (q ) P(2€) ’
where I' is the Euler gamma-function and
g*NI'(1 — €)
=2 _ 22 .
(47T)D/2 3 t—q ——QL,

We keep the space-time dimension D = 4 + 2¢ # 4 to regularize infrared
divergencies and use the the Sudakov decomposition of momenta:

p=P0p+aps+p.’ pA =—p?;

(p1, p2) - light-cone basis of the initial particle momenta plane
2 2
m m
Pa=pi+—2p, P =p2+—2p1 2p1-pr=s.
Of course, neither the calculation, nor the results are not so simple in the

next-to-leading order (NLO). In particular, s-cannel helicity is not conserved
in this approximation, so that

Tl = oI5 ) + 83,2 5()

The vertices I‘ff) for quarks and gluons were calculated at arbitrary D.

V. F., L.N. Lipatov, 1993; V. F., R. Fiore, 1992;
V. F., R. Fiore, A. Quartarolo; 1994; V. F., R. Fiore, M.I. Kotsky, 1995

The two-loop contribution w®(t) to the gluon trajectory was obtained at
arbitrary D in terms of integrals over transverse momenta.

V. F.,;1995; V. F., R. Fiore, M.I. Kotsky, 1995; V. F., R. Fiore, A. Quartarolo,
1996; V. F., R. Fiore, M.1. Kotsky, 1996

The integral can be expressed in terms of elementary functions only for ¢ — 0:

w<2><t>:(m)2 3+ (w0-F)e+ (T rvn-2yw)e

€

b)

where ¢(z) = I'(z)/T(z).

V. F., M. Kotsky, 1996; J. Bluemlein, V. Ravindran, W.L. van Neerven, 1998;
- V.Del Duca, E.W.N. Glover, 2001



Amplitudes for production of particles have complicated analytical
structure. It is not simple even in the multi-Regge kinematics (MRK)

A+B - A+B+n

Pa M ko
]\ fCh

I g
! kz‘_
k)= Gt k)
kn,
\ Lf Gn+1
PB —\/ > kn+1
ki = Bipr+oipatk, |,  sq;B; = k2—k% = k&2 ko=pz, knyi=p

1~ Ant1 2> Qp > Qpq.... > Qg
L= 060> 61> B > Bry

$ > sy =(ki+k;)? > |k2|

In this regime

1—1 n+1 1—1
% =pa— 'Zo ki = —(pp — IZ ki) =~ Bip1 — a;_1p; — 'Eo ki1,
]: =1 =
b = qi2 = qi2_L = —g’

Quasi multi-Regge kinematics (QMRK): instead of one of the particles in the
MRK there are a couple of particle with limited invariant mass, ;
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The real parts of the production amplitudes in the MRK and
QMRK have a simple factorized form

AB+ _ c n P, S; w(t;) 1 1 Sn+1 w(tn+1) Cnsl

R AAB "=2s FAIA (zgl 7c,-c,-+1 (qza Qi+1) (—S_R) t_z toel \ S FBE
SR - energy scale, irrelevant in the LLA

'ycI:,icm(qi, gi+1) - (non-local) effective vertex for production of

the particles P, in the Reggeon-Reggeon collisions

A— A
+ a1
Py
; + q;
75’&,-“((1z',fh+1) — §— P,
. + di+1
P,
* dn+1
B - B

LLA: {P} states of a single gluon

’Ygé,-ﬂ((h, Gi+1) = gTas. € (k)C*(gi, Giv1)

2 2
q; (kip2)) ( qi+1 (kz'pl))
Ci,iz_i_i+ + 2 — + 2
(G4 6) = =4 ~ G ((kz-pn m1p2)) 7' T \Gipn) " “(rpe)) P

L.N. Lipatov, 1976; V. F., E.A. Kuraev, L.N. Lipatov, 1975



The gluon Reggeization and the BFKL approach

Unitarity relations:

pa 1 pa
a : { g1
|
. I .
gi 1 I } ¢
. 3
/
Gi+1 1< | c dln
)
l
Gn+1 | } @
1
PB Py
That gives
Pa
pp "2y
@g,z}f ) — impact factors in the ¢-channel color state (R, v)

G(®) — Mellin transform of the Green’s functions for
Reggeon-Reggeon scattering in the ¢-channel color
representation R



Colour decomposition:

ALE = z<AR>A’B’

AIBI dD* dD—2
Imy(Ar)4p = 2/ ql_qq)zfq G _@22%% (G; G s0)
§+ioo dw w . ~
/5 —100 271'2 |:( 0) G(R)(qlaQqu) B'B)( —q2, —4q, 30)

The Green’s functions obey the equation
WG (@1, & §) = 3@ - 9*6°2 (@ - &)

dD 2 .
+/‘*2 )(QMQN(DG( (QTaQ2;6)

K™ (G, 6:9) = [w (~q2) +w (@ - 9] 6P (@ - &)+K® (1, & @)
Kernel: “virtual” part “real” part

V. F., E.A. Kuraev, L.N. Lipatov, 1975

Impact factors and kernel are defined without any ambiguity

in terms of the gluon Regge trajectory and vertices of Reggeon
interactions

e The NLO kernel is known completely in the forward case
(t =0) for the all color representations

e In the non-forward case, the ICRRGG contribution is missing
for the singlet color representation

e The NLA kernel is known completely in the non-forward case
for the octet color representation
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Bootstrap of the gluon Reggeization

In the case of Gluon quantum numbers in the t-channel the rep-
resentation for the elastic scattering process A+ B — A’ + B’
derived from s-channel unitarity, must reproduce the represen-
tation with one Reggeized gluon exchange in the t-channel.

PA Pa
>
P = pp
. ¢\ 1)
(4 = T () O
It leads to the following conditions: [V.F., R. Fiore (1999)]

First bootstrap condition (on the NLA kernel)

2 D— 2 D-2
gNt . d "0 3)1) (7 = D) (5) (@)
2(271' D 1/ 1/2 q22q2;2 (QI q2 q-) ( ) ( )

Second bootstrap condition (on the NLA impact factors)

igVNt dP2q s, - -
(271-)1)—1 q_'12q"1/2 q)f‘l,.z)( )(QI) q, SO) = FA(’A) w(l)(t)

w3 () + (w(l)( )) In (SO)J

q2

1
+5 re5)




In the NLA, the check of the bootstrap was very important

e as a (partial) check of correctness of the NLO BFKL calcu-
lations

® since a formal proof of the gluon Reggeization to all orders
of perturbation theory does not exist in this approximation.

. The first. bootstrap condition has been verified

® at arbitrary space-time dimension, for the part concerning
the quark contribution to the kernel (in massless QCD)
- V.F., R. Fiore, A. Papa, (1999)

Due to simplicity of this part of the kernel

QO [~ = . = g an
’CT (q17q27q) 24(2'”)5
1 6 [F(2+f)]2( ) =212 | =22 =2 ((=2\e [ =2\e ~2\e
7r€—_(47r)2f (—¢) F(d+2€) | &2 (@R +Hq7)+q ((Q) (q) ((12))
=92 =19 o ed Y
q — 49 - VR -
(142 2(12 1 )ln(%—)-i- (G (11,, & qu)}
k qs

it was not a complicated problem.

e in the D — 4 limit, for the part concerning the gluon contri-

bution to the kernel V.F., R. Fiore, M.I. Kotsky,
(2000)

SR

The second bootstrap condition is process-dependent (it should
be checked for every new impact factor which is calculated!).

It has been checked at arbitrary space-time dimension for quark
and gluon impact factors in QCD with massive quarks
V.F., R. Fiore, M.1I. Kotsky, A. Papa (2000)



Strong bootstrap

The bootstrap conditions for elastic amplitudes give a possibility
to check, but not to prove the hypothesis of the gluon Reggeiza-
tion. However, it can be proved (so that the BFKL approach
.. can obtain a firm basis), with the help of s-channel unitarity

" relations for production amplitudes.

- Of course, we need to use analytical properfi:é’vs'"of these ampli-

/" tudes. Unfortunately, we know not much about them. But,

fortunately, we don’t need much.

Let us consider the one-particle production amplitude

A+B — A+B +G

. A .
PA /f\ @ | ko
} S = (k() + k1)2
k1
} Sy = (kl + k2)2
f[ q
PB . > \J k()

" in MRK. Note that we are interested in Ohly‘negative':-:s'ignatutes
in both ¢ channels, i.e. in the part of the amplitude which
is antisymmetric with respect to any of the substitutions S; —
—s; , t=1,2. Note that due to the relation
1% _
S
which is hold in all physical channels, this part is also antisym-

metric with respect to s — —s.



Dependece on k 2 can be very complicated (the simplest example

s (— —k %) it reproduces correctly real value at all negative s-
1s) Fortunately, it can be made irrelevant taking appropriate
combinations of the discontinuities. .

An important observation is that a discontinuity of a product fg
is expressed through the discontinuities of f and g:

Fige = f-0- = 5UFe = F)gs 400+ o(f+ F)or —g)
The second important ovservation that in the sum of discontinu-
ities of F(/;12) on s; and s (as well as the sum of the discontinuities
on s; and s or the difference of the discontinuities on s; and S9)
is zero. From these two observations it follows that in such sum
(or diference) we can take instead of analytic functions of k2
their real parts.

Now, if the variables s;, s; and s does not enter into the combina-
tion s1s5/s = k 2, they can enter only as S In™(—s;) In"2(—s9) In"3(Ls),
with n; + ny + n3 = n, where n is less or equal the order of per-
turbation theory and S is the operator of symmetrization with
respect to exchanges

81> =81, § —§,

and
Sy > —Sy, §+> —8§.

Note that the terms containing products of In(—s;)In(s;), where s;
can be si, s; or s, are forbiden, on the same ground as the terms
containing In(—s)In(s) are forbiden in elastic scattering ampli-
tudes. Since in the NLO we need to keep only the first two
leading total powers n, calculating imaginary part of discontinu-
ity in anyone of variables s;, s; or s we can take only real parts
of logarithms of other variables. It means that



R

[ 21mdzscs (S’ In"(—s1)In"?(—s7) 1n"3(:i:s))}
1.0
~ 28In(s;)
where s; can be s;, s; or s and the partial derivative is taken at
fixed s; # s;.

Therefore we have, for example

‘1(m§&y+mig)%

where in the right part the first derivative is taken at fixed s,
and s and the second at fixed s; and s;. Using that

R [S In"(—s;) In"?(—s7) ln"3(:l:s)] ,

1 AA'GB'
S

R (discs, + discs) ALGE

—2m8

0 d __0 S1, 52
(am@g+amwﬂf“h””f—am@0ﬂamm75ﬁ,

1
we come to

1 0
201n(s;)

where in the right part the amplitude is considered as functionﬂ
of s1, s, and k;°

R [ ! — (discs, + discs) A5G| =

AA' GB'
—2m18

R

)

The requirement of the Reggeized form of the amplitude in the
right part gives us the bootstrap relation:

1 AGB'
= jw(t2)R AYp™

1 A'GB
14 [_ o (discs, + discs) A4p

In the same way we obtain

1 1

R

(discs, + discs) AACE| —

—27m1




)

The bootstrap relations for amplitudes of multl-partlcle produc-
tion can be derived in the same way. Denoting AA B'+" the ampli-

tude of the production of n particles in the MRK in the process

A+B — A + B +n,

Pa > N— g k‘o
] \ f q
. kl

Lf Qn+1 o

PB \/ kn+1

we have

n+1 It
R [ ! , ( i discs,, — Z dzscslk) AAB+"

—2m18 \i=k+1
1 ( ] 0

~ 2\0log st Olog Sk—1k

)§R [SAA,BI+n(3i—1,i)] :

where s;; = (k; + k;)* and in the right part the amplitudes are

expressed in terms of s;_;;, which are considered as independent
variables.

If the amplitudes have the Reggeized form,

i w(t;) 1 1 Sn w(tns1)
%A(Sil,z’) = 28 Fiil (H 7c,cz+1 (q27 q2+1) (SR) —) ; ( +1> Fcll+1 .

t;) thy1 \ SR BB

we obtain bootstrap relations.




The bootstrap relations:

1 n+1 ! o
R [ , ( > discs,, Z dzscslk) AAB+"
=271 \I=k+1

(W(trs1) — w(te)) R AGE T

DO =

are much more restrictive (”strong bootstrap”) than the con- §
ditions obtained from the requirement of the Reggezation in .
the elastic amplitudes. Their fulfilment means a proof of the

Reggeization in the NLO, since the energy dependence of am- I
plitudes can be calculated order by order in perturbation theory z
using the equalities .

n+1 1t
R [ L , ( i discs,, Z dzscslk) ALB T

—2m1S \i=k+1

— 1 a 3 A'B'+n . | :|
- 2 (alog Sk.k+1 810g Sk—l,k) % [SA (S’l-—l,Z) )

valid in the NLO.
Indeed, the discontinuities entering in the L.H.S. of these equa-
tions in some order in the coupling constant g can be expressed
with the help of the unitarity relations through the multi-particle
amplitudes in lower orders in g. Fulfillment of the bootstrap re-
lations means that the energy dependence has the Regge form.




The bootstrap relations

R nil dzscskl.AA’B tn 1dzscslkAA,Bl+"_
I=k+1 —2mi =0 —2me
1 ,
— L () — wlt) R AL

impose connections on the gluon trajectory, colour octet BFKL
kernel and vertices of interaction of the Reggeized gluon with
quarks an gluons (bootstrap conditions). To formulate these
conditions it is convenient to introduce operators in transverse I
momentum representation. From t¢-channel point of view we
have to consider two interacting Reggeized gluons with ”coordi-
nates” in the transverse momentum space 7 and ¢§— 7, where ¢ is
the total transverse momentum in the t-channel. Let us intro-
duce 7 as the operator of ”coordinate” of one of the Reggelzed |
gluons in the transverse momentum space:

|G = Gl@) -
The total transverse momentum ¢ is conserved and is considered -
as the c-number. It is convenient to use the normalization
(@) = @@ — 920G - &)
so that
dD 2k‘ - .
(A|B) = (Alk)(k|B) = PO A(k)B(k) .

The impact factors appear in this formalism as the wave func- §
tions of the t-channel states &

(I)A’A(qla q, 30) <q1 IA, >

and the BFKL kernel as the operator
K@ &, 9) = (@IK|q) -




In these denotations the s-channel discontinuity of the elastic
amplitude can be written as

K

) 18'B).

I R/
dzscS.AAB . —2s

—27i (277)D“1<
If the bootstrap relation

—2s w(t) s\v®)
—__(27T)D 1<A,A| ( 0) |B,B> = ——é— 28 FA’A (;(—)—) FB’B

A Al (

S0

were exact, then it should be

(K —w(t)|A/A" =0
and

IA,Aa> = Z’AlRw> J

with an universal (process independent) eigenstate |R,,) of the
kernel with the eigenvalue w(t). In usual denotations it reads

dP=2g, . I I
( (D2 (qla g2, q) Rw(QQ’ q, 80) = w(t) Rw(qla q, 80)

and
wald, q, 30) =Ty 4Ru(q1, G, S0)

These conditions are known as the strong bootstrap conditions
for the kernel and impact factors. They were suggested, without
derivation, by

M. Braun, G.P. Vacca,1999.




In fact, since we work in the NLO, these conditions can not
be derived from the bootstrap requirement for the elastic am-
plitudes. Nevertheless, they were checked and their fulfillment
was shown for the quark and gluon impact factors

M. Braun, G.P. Vacca,1999,

V.F., R. Fiore, M.I. Kotsky, A. Papa, 2000,

for the quark contribution to the kernel

M. Braun, G.P. Vacca,1999,

V.F, R. Fiore, M.I. Kotsky, A. Papa, 2000

and, finaly, quite recently for the gluon part of the kernel

V.F, A. Papa, 2002.

It occurs, that these conditions must be satisfied for fulfillment

of the bootstrap relations for inelastic amplitudes. Thus, for the
gluon production amplitude

A+B — A+B+G

Pa > \ > kg
f 41
b 51 = (ko + ky)?
, k
} So = (k‘l + k2)2
*] q2
PB - ko

in the MRK we obtain

disc,, A4 EP’ —2s 1 /s\wt) s\K
o =g T (2) (GRI(Z) 1B

—27i (27) t1




where (GR| is the t;-channel state of the produced gluon G and
the t;-channel Reggeized gluon R with the wave function, which
is expressed in terms of vertices of interactions of the Reggeized
gluon (in fact, this wave function is the impact factor in the case
when instead of on mass-shell particle we have the Reggeized
gluon).

For the s-channel discontinuity we obtain

dzscs.AAGB' —2s £, 82 K /
—2mi  (2m)P-1 <AA|( ) g<8_0) BB} ,

where G is the operator of the gluon production with change of
total two-Reggeon state momentum from ¢; to ¢;. The matrix
elements of these operator are also expressed in terms of vertices
of interactions of the Reggeized gluon.

The bootstrap relation

R [ discs, + discy) AAIGB ,

27r(

_w( ) 1 S1 w(t1) 1 S9 w(t2) :
-y 2s FA’At (80) 72]((11,612) t2< ) FB’B

leads, together with the strong bootstrap conditions for the
impact factors and kernel, to new bootstrap condition, which
can be written as

(2r)P-1 t1(R.IGIR.) + (RGR,)]

= w(t2)’75 (91, g2)

Fulfillment of this bootstrap condition is not checked yet.



Till now we have discussed the bootstrap relations for the scat-
tering amplitudes in the MRK. But in the NLA in the unitarity
relations not only multi-Regge, but quasi-multi-Regge kinemat-
ics as well does contribute, so that in the derivation of the NLO

BFKL the multi-Regge form was assumed for production ampli-
tudes in the QMRK as well.

If rapidities of components of the the produced couple (it can be
or gg or qq pair) are far away from rapidities of colliding particles,
then it is created by two Reggeized gluons, and its production
is described by the vertices

vEP (g1, o) §<

where ¢;,c; and —¢qy,c; are momenta and colour indices of the
Reggeized gluons.

If the pair is produced in the region of fragmentation of par-
ticle A due to interaction of this particle with the Reggeized
gluon with momentum ¢ and colour index ¢, the production is
described by the vertices

I'{ P1P2},A(q ) %

The produced particles can be gg or ¢g pair if the particle A is a
gluon and gqg when the particle A is a quark.

Note that because using of multi-Regge kinematics leads to lost
of large logarithm, these vertices are needed only in the LO.



The QMRK vertices must satisfy the following bootstrap condi-
tions:

, . dP%r
. pjbb F e
'lf /T-QL q2 —r)_L Z%b(Qh ) {P1P},G
pigfeh T PP G
g (ql _ r) ’b’ ql ?q2
P! (K} Py(k
+ZFP1 P1 zbl( 1) 2 2)(q1,7')
Py(ky) P5 (K
+ZFP2 P 2bl( 1) P 2)(Q1,7‘)
2
. ridla diL
T = HIER
Py(k Pk
x7al)2( 2)(ql - )7a’})’( 1)( 92— ’I”)}
Ne  pi(k1)Po(kp) dP2r,
- _9—2_7131 ' (QIaQ2)/ r2 (q _ 7,)2

i

(note that the last term in the L.H.S. does contribute only in -
the case of two-gluon producion) -

and

/

dP~2q,, ifea

@G g—q)t N,
qiL

g dD—2
=T q :
= ol hmal )/Q%L(Q—QI)?L
These conditions are checked

V. F., M.G. Kozlov, A.V. Reznichenko, 2002
and it is shown that they are satisfied.

{% P%},A(ql)F%},Ple(q_QI)




Summary

e The gluon Reggeization is a remarkable property of QCD. It is very im-
portant for description of high energy processes. In particular, the BFKL
approach is based on this property.

e The gluon Reggeization is proved in the LLA, but still remains a hypoth-
esis in the NLO.

e Selfconsistency of the hypothesis can be checked, and, hopefully,the gluon
Reggeization can be proved in the NLO using unitarity relations.

e The selfconsistency requires fulfillment of bootstrap conditions on the
gluon trajectory and vertices. Most restrictive are conditions arising from
the requirement of the Reggeized form of inelastic amplitudes (strong
bootstrap conditions).

e The strong bootstrap conditions for the impact factors of quarks and
gluons and the BFKL kernel are proved to be satisfied.

e Now it is checked also that the conditions for the pair production in
the fragmentation region, as well as for the pair production in Reggeon-
Reggeon collisions are satisfied.

e The condition for the one-gluon production in Reggeon-Reggeon collisions
is formulated now. Its check is under consideration.

e Fulfillment of all these conditions opens a way to prove the gluon Reggeiza-
tion in the NLA.




