ROOT

An Object-Oriented
Data Analysis Framework

Users Guide v0.6.3

Draft, November 2000

Comments to: rootdoc@root.cern.ch

The ROOT User's Guide:

Authors: René Brun/CERN, Fons Rademakers, Suzanne Panacek/FNAL,
Damir Buskulic/Universite de Savoie/LAPP, Jorn Adamczewski/GSI, Marc

Hemberger/GSI
Editor: Suzanne Panacek/FNAL

Special Thanks to: Philippe Canal/FNAL, Andrey Kubarovsky/FNAL

mailto:J.Adamczewski@gsi.de
mailto:M.Hemberger@gsi.de
mailto:M.Hemberger@gsi.de

Preface

In late 1994, we decided to learn and investigate Object Oriented
programming and C++ to better judge the suitability of these relatively new
techniques for scientific programming. We knew that there is no better way to
learn a new programming environment than to use it to write a program that
can solve a real problem. After a few weeks, we had our first histogramming
package in C++. A few weeks later we had a rewrite of the same package
using the, at that time, very new template features of C++. Again, a few
weeks later we had another rewrite of the package without templates since
we could only compile the version with templates on one single platform
using a specific compiler. Finally, after about four months we had a
histogramming package that was faster and more efficient than the well-
known FORTRAN based HBOOK a histogramming package. This gave us
enough confidence in the new technologies to decide to continue the
development. Thus was born ROOT.

Since its first public release at the end of 1995, ROOT has enjoyed an ever-
increasing popularity. Currently it is being used in all major High Energy and
Nuclear Physics laboratories around the world to monitor, to store and to
analyze data. In the other sciences as well as the medical and financial
industries, many people are using ROOT. We estimate the current user base
to be around several thousand people.

In 1997, Eric Raymond analyzed in his paper "The Cathedral and the Bazaar"
the development method that makes Linux such a success. The essence of
that method is: "release early, release often and listen to your customers".
This is precisely how ROOT is being developed. Over the last five years,
many of our "customers" became co-developers. Here we would like to thank
our main co-developers and contributors:

Masaharu Goto who wrote the CINT C++ interpreter. CINT has become an
essential part of ROOT. Despite being 8 time zones ahead of us, we often
have the feeling he is sitting in the room next door.

Valery Fine who ported ROOT to Windows and who also contributed largely
to the 3-D graphics and geometry packages.

Nenad Buncic who developed the HTML documentation generation system
and integrated the X3D viewer in ROOT.

Philippe Canal who developed the automatic compiler interface to CINT. In
addition to a large number of contributions to many different parts of the
system, Philippe is also the ROOT support coordinator at FNAL.

Suzanne Panacek who is the main author of this manual. Suzanne is also
very active in preparing tutorials and giving lectures about ROOT.

Further, we would like to thank the following people for their many
contributions, bug fixes, bug reports and comments:

Preface

Draft, December 2000 - version 0.6.3 i

Maarten Ballintijn, Stephen Bailey, Damir Buskulic, Federico Carminati, Mat
Dobbs, Rutger v.d. Eijk, Anton Fokin, Nick van Eijndhoven, George
Heintzelman, Marc Hemberger, Christian Holm Cristensen, Jacek M.
Holeczek, Stephan Kluth, Marcel Kunze, Christian Lacunza, Matthew D.
Langston, Michal Lijowski, Peter Malzacher, Dave Morrison, Eddy
Offermann, Pasha Murat, Valeriy Onuchin, Victor Perevoztchikov, Sven
Ravndal, Reiner Rohlfs, Gunther Roland, Andy Salnikov, Otto Schaile,
Alexandre V. Vaniachine, Torre Wenaus and Hans Wenzel, and many more
who have also contributed

You all helped in making ROOT a great experience.
Happy ROOTing!

Rene Brun & Fons Rademakers
Geneva, August 2000.

Draft, December 2000 - version 0.6.3 Preface

Table of Contents

Preface i
Table of Contents iii
1 Introduction 1
The ROOT Mailing List......ccceioiiiiiniiiiiiiiiieneeeeeeee e 2
Contact INfOrmMationcccvvierieeiieeiie et ereesre e e aeeseaeas 2
Conventions Used in This BOOKcccccveiiiiriiiiiiieecie e 3
The FramewWOrK........cccveeiiiiiiieeiie ittt et e e e eaee st eeaeesnbeeenaeesnne 3
What is a Framework?ccoocvvieiieiieiie e 3

Why Object-Oriented?.........cceeverieriieieeiesieeeere e 4
Installing ROOTcciiieiieieeeee ettt 5
The Organization of the ROOT Frameworkc.cceceverieienicnienincncnenne. 6
SROOTSY S/DIN ..ttt 7
SROOTSY S/ID ..ttt 7
SROOTSY SAULOTIALS ...t 9
SROOTSY SACSE vttt 9
SROOTSYS/INCIUAE ...t 10
SROOTSY S/<HDIary>......ooveieeiieieeiieiieieiee et 10

How to Find More Information...........c.ceceeervierieeniienieesie e eieeeiee e 11
2 Getting Started 13
Start and Quit @ ROOT SeSSI0Nccovviiiuiiiiiieeiiieiieeree e 13
EXit ROOT ...ttt 14

First Example: Using the GUIcccooovviiiiiiiiiieeie e 15
Second Example: Building a Multi-pad Canvascccceeevveeveeecieenneennne. 19
The ROOT Command Line..........cccveeevieiiiienciieiiieeiie e eieesieeeveesvee e 20
CINT EXtENSIONS ..eveevrieiiieiieeireesiieesieeesieeeieeesaeeesaeesseesseessseesnns 20

Helpful Hints for Command Line Typingccccceverveeneeneennrnne 20
Multi-line CommAaNdS..........ccveevrerereierieniierieee e see e seeeseeeeees 21
CONVENTIONSvvieieiieiieiieteerteeteeteetesseesseeseeseeseessesssessnessnesseesseanseenseans 21
Coding CONVENTIONSveeuveeeierrieriiereeieeteereeereseeesseeseeseensesnneses 21
Machine Independent TYPES........cceeverieniieiierieeiierieseeee e 22

TIODJECL ..ttt ettt ettt ae e neene e enne e 22

GloDbal Variablescecuieiiieiiieiiiee et e eaee s e eaee e 23
SROOT .t sttt 23

ROOT's Housekeeping ListS.........cccvereveeriiienieenieenieenieesveenneens 23

BFILC e 23
EDATECTOTY «.eeeeeie ettt st st s 23

BPAA . e 24
ERANAOM.....eiiiiiieiee e 24

EENV e 24

HIStOTY FIle .ot 24
ENvIronment SETUD.......ceerveerieriieiieriereeie et eitesie e eee e seeseeesseenaesnnees 25

Table of Contents

Draft, December 2000 - version 0.6.3 iii

The Script Pathccoocviiiiieiiieeeceeeee e 25

Logon and Logoff SCripts ...c..eeoueiierierieiieieeieseseceeee e 25
Converting HBOOK/PAW fI1€S......cccouieiiiiiiieiierie e 26
Histograms 27
The Histogram Classes.......ccceruiiierierieniieieeite ettt 27
Creating HiStOZIamSc..coiiiriiriiiiieieeiesiiet et 28
Fixed or Variable Bin SiZe.........ccocveiiiiiiiniinieiiiieeeereee e 29

Bin numbering convention.........cc..ceoeereeieriienienienieneeneenieeeens 29

RE-DINNINGoeeiiiiiiieii ettt 30
Filling HiStOZIAMS ...c..coouiiiiiiiiieieeie et 30

Automatic Re-binning Optioncceeceevverieneeseniiesieneeieeeenne 30
Random Numbers and HiStOgramsccecevienienieenennienie e 31
Adding, Dividing, and Multiplying............cccoeeveieniienieniee e 31
PrOJECLIONS ..ovvieiiieiieeiieetteitete ettt ettt ae e seeesneenseenneens 32
Drawing HiStOGIAMSccueerviriieiieriierieie et eteeteesieeieeeesaesneseeesseeseenneens 32

Setting the StYIC.....occvieiirieieieee e 32
DIaW OPLIONS ...vveeerieiiieeieecie ettt et e ete e et e sbeesbeesbeeesbeessbeeenseesnseeenseeas 33
StatiStiCs DISPlaAY...ccivieriiiiiieiie ettt ettt 34
Setting Line, Fill, Marker, and Text Attributes..........cceeeveerviercieenveenereenne. 35
Setting Tick Marks on the AXISc.ccccveeiiiirieeriieieeciie e 35
Giving Titles to the X, Y and Z AXIScecoveveereiieiieniencee e 35
The SCATLEr PLot OPHON ..coveeiieieeiieeiieieeieete ettt 35
The ARROW OPHON c..covieniieiieie ettt te e saesaeseeesseenseenneens 36
The BOX OPtiOn.....cceeciieiiieiieieiiesiieseeie et etesieesiee e esesaeseaeseeesseensesnnenns 36
The ERROT Bars OPiONScccuevieriieriieiieieeieeiiesieeie e sae e seee e eeeeneeens 36
The COLOT OPtON ..c..eeiiieiieiieieeieeieesieeie et eetesteesteeseessesaeseaesseesseenseennenns 37
The TEXT OPtiOn ...ccueeciieiieiieie ettt ettt ete e saeseeesseeseenne e 38
The CONTOUI OPLIONS.....vieiieeeiieiieeeiieiieenieesieeereesseeeseesseeesseesseesseens 39
The LEGO OPtONSveeevieiieeeiieeieeeieesieeeieesreesveesveeesveeseseessneesssaessneens 40
The SURFACE OPLIONS ..cevveeiieeiiieeiieeiiecieeeieesteeeveesveeeveesbeessaeesesaesnveens 41
The Z Option: Display the Color Palette on the Pad..........c.ccceeevreinennnn. 42

Setting the color PalEttec.eevvierieeiieieeee e 42
Drawing Options for 3-D HiStograms...........ceceeverienienennenicieenceneeienns 42
Superimposing Histograms with Different Scalesccceevervenvrciennnnne. 43
Making a Copy of an HiStogram............cccoeeveeierienienieeienie e 44
Normalizing HiStOZramsceecueeierierienieniienie et eee e eae e seees 44
Saving/Reading Histograms to/from a file.........ccocceevvrecienienienienceieee 44
Miscellaneous OPErationsccveveeiereerieesieeresaeseeseeesseeseeeneseeesseenseens 44
Graphs 47
[1G5 o) o PSSR 47

Creating GraphiS......ocvecvieieieiieeie ettt 47

Graph Draw OPtions..........cceceeevereerieniienieeieeieseeeeeee e seeeseeenees 47

Continuous line, Axis and Stars (AC*)......cccvevveeerienieneeieeeeee 48

Bar Graphs (AB).....cooueeeeeieeeeeeeeeeeee e 49

Filled Graphs (AF).....coocieieeieieieeieeeeeeee et 49

MaArKer OPtIONSccvieerieiiieeiienieeeieesreeereesteesreesbeessaeessseenaneens 50
Superimposing tWo Graphcccveevveeriieiiienie e 51
T GIapREITOTSeeetiieiieeie ettt ettt e e st eenaeessaeeneee s 52
TGraphASYMMETTOTS.ceiitiiiiieiiie et sbeeeaeesbeeeaaee s 53
TIMUIEIGTAPN ..ttt et e s taeenbeessaeensee s 54
Fitting @ Graphoooooiiieiieieee e e 54
Setting the Graph's AXiS Titlec.cccvevieriieiiieieeieeee e 55
Z00MING @ GTAPN c..oevieniieiieie ettt e e sseesseenseennesnnens 55
Fitting Histograms 57
The Fit Panel.......coooeiiiiiiiie e 57

Draft, December 2000 - version 0.6.3 Table of Contents

The Fit MEthOd ... 58

Fit with a Predefined Function...........ccccooceioiiiniiniiniiieececeee 59
Fit with a User- Defined Functionccccceoeeininieniniicienceceee 59
Creating a TF1 with a Formula...........ccoccoevieiiiiiiieieeecee 59
Creating a TF1 with Parameterscccccoevvveeveienienieeeee e 59
Creating a TF1 with a User Function..........ccoccevevenencncnienicnnenn 60
Fitting Sub RanGEeScceeieiiieiieiieecieeecee et 61
Adding Functions to The LiStccceevieriieciinienienieieeie e 61
Combining FUNCHONSceciirieiieii et 62
Access to the Fit Parameters and Results..........ccccooeiininiiniiiineieee 64
Fitting Between Parameter Bounds..........c.ccocevieiiniiniiiiniincieceee 64
ASSOCIAtE EITOIS ...eitiiiieiieiiiiie e e 65
Associated FUNCHONoiiiiiiiiiiiieeeeee e 65
Fit PArameterscc.ceoueiieiieiieiieie e e 65
FIt StatISTICS . eeuteeuteeiieitiet ettt ettt et 65
A Little C++ 67
Classes, Methods and ConStruCtOrS.ovvveuvvvviieeeieiiiieiieeeeee e ee e e 67
Inheritance and Data Encapsulation..........ccceccveeeieeciieiniieeciee e 68
Creating Objects on the Stack and Heap.........ccoocevieniiniiiiiiininieieee 70
CINT the C++ Interpreter 75
WHhat 18 CINT? ..ottt 75
The ROOT Command Line Interfacececcvevevienieninceniecieseeeeene 77
The ROOT ScCript PrOCESSOT ..c.vvieieeeiiieiieciie ettt ettt e e 79
Un-Named SCTIPLS .oouveeeviieriieeiie et ve e sae e 79
NAMEA SCTIPLS..ecuvrieirieiiierte et erte et erteesreesreesbeesaeeseseeseseenenas 80
Resetting the Interpreter Environmentcoceevevienienennenienceneeneeiens 82
A Script Containing a Class Definition..........cccceevevverieniineniineneeceeee 83
DebuggIng SCIIPLS...ecuvertieriiertiee ettt et 85
INSPECHING ODJECES...evviriieiieiieiieie ettt ettt ete sttt ste e eesenesneenseenseens 86
ROOT/CINT ExXtensions to CHt.......cccccueverinenenenerieieieenenene e 87
Interpreting and Compiling @ SCTIPt........cvevvveriieeieriieriesiere e 88
ACLiC - The Automatic Compiler of Libraries for CINTcccccceeeeeee. 89
USAZE -eveenvieeieeeite ettt ettt ettt ettt ettt et et e st et e e st e sane s 89
Intermediate Steps and Files........occoevievieiiiciincieiceceeee 90
Moving between Interpreter and Compiler...........ccocevvevieniennn. 90
Setting the Include Path..........cccoooieeiiiiiiiiiieeee e, 91
Graphics and the Graphical User Interface 93
DIawing ODJECTS ..c..couerueeuieiiniinieriinieeieet ettt ettt 93
Interacting with Graphical ODJEctSccevieriieriieiieiierieeee e 93
Moving, Resizing and Modifying Objects.........ccccevevereeereerirennnne 94
Selecting ODJECESc.veveriirieriinierienieeieetetetete e 95
Context Menus: the Right Mouse Buttonc..ccccceoeveeneneenne. 96
Executing Events when a Cursor passes on top of an Object 98
Graphical Containers: Canvas and Pad............cccoeevveviieeiiniiieccie e 100
Coordinate System of @ Pad........ccccevevieeciiiciieeieciecee e 102
Converting between Coordinates Systems..........ccccceeeeveereveennnnnn 104
Dividing a Pad into Sub-padscccoecieierienieieeee e 104
Making a Pad Transparentccoeceeveeeerienieenieeseeseesne e 106
Setting the Log Scale is a Pad Attributecc.cocoeeeevievieninennens 106
GraphiCal ODJECES......ieiieeieiieiieiieie ettt eeaeseaeneees 107
Lines, Arrows, and Geometrical Objects..........cccccververienueennnne. 107
Text and Latex Mathematical EXpressions...........cccccvevvenerennnnne. 112
25 211 415) (S AP SP P SPS 115
EXaMPIE 2 .ot 116
EXampPle 3. e 117

Table of Contents

Draft, December 2000 - version 0.6.3 v

Text in Labels and TPaves...........ccoovvveveeieiiiiiiiiieeeeeeeieee, 118

SHAGTS ..ottt 120
AAXIS 11ttt bttt et eb e aeent et et e tesaeebeeneeneennens 122
Axis Options and Characteristics..........cveevrrverrereereenerieesnennes 122
AXIS TIIE oo 123
Drawing Axis independently of Graphs or Histograms.............. 123
Orientation of tick Marks 0N aXis.ccecvveeveriereerieereesiesnennens 123
Label POSTHONc.evueeiiiiieieieieenic et 124
Label Orientationceccecvevierienirenenenieieienenese e 124
Tick Mark Label POSTHONcooveiieriieiiiiiiiesieceeeeee e 124
Label FOrmattingcocceveerienienieiieieeiesieiceieee e 124
Optional Grid.......ccueeeiieiiieie et 124
Axis Binning Optimization..........cccceceeeieeienienieneeneeenee e 124
Time FOrmatccoooiiiiiiiiieiecee e 124
AXIS EXampPle 11 .oooviiiiiiiciieceeeece e 126
AXIS EXaMPIE 2: ..o s 127
Graphical Objects AtrIDULES.......c.eecveeieeieiiereee e 128
TeXt ALIIDULES ..ottt 128
LiNne AtrIDULES ..c.veviviiiiieciieieiee st 133
Fill AITDULESeveieeiieiieieeee e 134
Color and Color Palettes.........cccovevererienienienenenenenecccreenen 135
The Graphical EdItOr........c.coccuiiiiieiiieiiieeieeeieeceese e 138
Copy/Paste With DrawClonecccueeviieerieiciieeiie e evee e 140
Copy/Paste Programmatically...........cccocoeviniiniiniinniniinieneeee, 141
LGNS ..t 142
The PostScript INtEIface.......ceevcvieeiieeciieeiieciieeee et 143
Special Charactersccveveriereeiieeie et 144
Multiple Pictures in a PostScript File: Case 1c.ccocceceveeennnene 145
Multiple Pictures a PostScript File: Case 2.....c..ccccoeverenenennenn 146
Create of Modify @ StYle.......ocoveiieiieieiieieee e 147
Input/Output 149
The Physical Layout of ROOT Files.......ccccoeeiievieiiieeieciieeee e 149
File RECOVETY ..cuviieiiiciieeiiecee ettt 152
COMPIESSION ...evieieeieeieteeteeteetesaeseeesseesseenseenseenseesseaseenseensens 153
The Logical ROOT File: TFile and TKey.......cccoevvevienieieniecieceeeee 153
The Current DIreCtOry........c.evverierieriieieeie e siesiee e see e 157
Objects in Memory and Objects on DisK.........cccccvecevecivniennenen. 158
Saving Histograms to DisKcccecvvveriiiiiienieiececeieeies 160
Histograms and the Current Directory..........cccceevenereeeeneenenn 162
Saving Objects t0 DisKccceerieiiiiiiiiiiiiececeeees 163
Saving Collections to Diskccccevieniiiiiiiniinieniceeieeee 163
A TFile Object going Out of SCOPE.....ccvevverierienierieieieeeee 164
Retrieving Objects from DisK.........cceeeievcieeiienciieciecieeeieeee 164
Subdirectories and Navigation..........ccccecceereererrerieencenieeneeeene 164
STIEAITIETSvieurieirieiienieenieeie et ettt ettt eere s e st e bt e bt essesanesaeesbeenneenreeas 167
A Streamer Example........cccovieviieiiiiieieeieeeeee e 168
Byte COUNt.....oouiiiiiiiiiiiieec e 169
WIiting ODJECES....eervieiieieeieeieeiert et 170
Generated Streamers by rOOtCINt.........ccvveeveeierieriieieeieeie e 171
Streamers and ATTAYS........cccverveecreeierienieseeeeeee e seesseeseeeeeens 173
Schema EvOolution.........cooccovieiiiiiniiiieiieiececcc e 174
Accessing ROOT Files Remotely via a 100tdccccveeeeieeciieeneencieeeieeene. 176
TNetFile URL....ccoiiiiiiiieeeeee e 176
Remote Authenticationccecueviereeririenienieseeeeeeee e 176
Using the General TFile::Open() Function.........c.cccoccevceenennne 176
A SIMPIE SESSIONeiiieiieeiieriieiieerie et sveeee e sereeseaeeeees 177
The rootd Daemoncocceeeieiininineneeicceeseeeeeeee e 177
Starting rootd via inetdccceevieeiiiierieeieeee e 178

vi

Draft, December 2000 - version 0.6.3 Table of Contents

10

11

12

13

Command Line Arguments for rootd....cccceeveercieencieesreeennenn. 178

Reading ROOT Files via Apache Web Server.........ccocovveevcvevienvenieenenne, 179
Trees 181
Why should you Use @ TIee?cccveevuvierieeiieeiieeiie e esve e 181
An TNtuple EXamPIEcovvieiieiiiiiiie et 182
The TTEE VICWETeeeuvieeieeiieciieciieeie ettt ettt ettt snee e enes 183
Creating and SaVING TIEESccvervirieeierieiierteesieseeseeseeeeeeeeeeeeseeeseeeneens 185
2 01 1o] 1SR 186
AULOSAVE ..ttt ettt ettt ettt ettt e e 186
Adding a TBranch to hold an Object.........ccccevverirvieiierieenee. 186
Setting the Split-IeVelcccueeviierieeiieciecee e 187
Adding a Branch to hold a List of Variablesc..ccccceeeeeene 189
RETEIENCES ..vvieiiieiiieiie et 192
Five-Steps to Build A TTEEcoocvvveiieeiieeieeteeee et 193
Step 1: Create the TFile for Writing........ccccccveeveveevieeieeecieeeieens 193
Step 2: Create @ TTICC ...uvvvveeeciieeiieeieecieeeve et esveesaae e 193
Step 3: Adding Branchescccceevevieriieiieeiieiie e 194
Step 4: Filling the TTree.....ccvvovevieniieeeie e 194
Step 5: Write the TFile to DisK.......ccovveiiiiierieieceeeieiee 194
Using Trees i ANALYSIS ..oc.verveeriieieeiecieeeee ettt sae e sse e 196
Simple Analysis using TTree::Draw.........ccccovcvevieriecieecienieinnns 196
More Complex Analysis using TTree::MakeClass..................... 203
Analysis USING SEIECtOTSccviervieriieriieriieeieerie e 208
CRAINS ...ttt e e et e e e be e sbeeebeesabeeenbeesnbeesnseesnbeeenneeas 209
RETEIENCES ..vvieiiieiiieiie et 210
Adding a Class 211
IMOIVALIONe.ieneieniieiieeeieeite ettt et e et e et e st e st enteentesnsesnaessaesseenseenseenneenns 211
The Default CONSIUCTOT.ccveiieriieieeieeie ettt ees 212
The CINT Dictionary Generator.........cceeceeeeveeerieerireeesreesveessveesseesssesnens 213
Adding a Class With the Interpreter..........cocevienieiinienienienceeeeeee 217
Adding a Class with a Shared Libraryccccoceviinieniienienncnienieneee, 218
Adding a Class With ACLICcccoiiiiieniiiiiieeeeeee e 219
Collection Classes 221
Understanding ColleCtions...........ccuevierieerierienieieeieeie et 221
General CharacteriStiCsevuverieriierieeierierieesieesteseeseesseereeneeeeeesseeseeneeas 221
Determining the Class of Contained Objectscccevereereenieneeneenene. 222
Types Of COLECHIONSccuvieeiieiiieeiieciie ettt ere et e e vee e 222
Ordered Collections (SEqUENCES).......ccueerveerreeneeerveeneeerveenenens 223
Sorted CollECtioneecviieiieeiieeiieeieeeee et sve e 223
Unordered ColleCtionseecveeereeeiiieeriieeiieeiieeive e eieeeseee s 223
Tterators: Processing @ ColleCtion...........cccueervierciieniieniienieecieeeree e 223
Foundation Classesc.eccuereeriieniieiieiieeiesieeste et seeeseee e ese e snnesnaennes 224
TCOIECHON ...ttt 224
TIEIALOT ..ee ettt e 224
A Collectable Class.......ceeverieiieriieriieie et steeie et ese e ees 225
The TIter Generic Iterator.........cuevverierireieeieeeeeeeeee e 226
The TList COLECHIONeevvieiieiiieeiee ettt ae e 228
Tterating OVer @ TLASt.......cveeciieiiieeieeeiee et ae s 229
The TObJAITaY COIlECHONveeiiieeiie ettt et 230
TClonesArray — An Array of Identical Objectsccoevvevieecieencieenieennne. 231
The Idea Behind TCIONESAITAYeeeevveerereerieeiieerreesereeeveeees 231
Template Containers and STLccccocvveiiiiiieeiieeieceecee e 232
The Tutorials and Tests 235

Table of Contents

Draft, December 2000 - version 0.6.3 vii

14

15

16

17
18
19

SROOTSY S/AULOTIALS ...ttt 235

SROOT SY S/ACSL. ettt sttt e e 236
Event — An Example of a ROOT Applicationccccveeenvenneee. 237
stress - Test and Benchmarkccoooveviiiiiniiiinie, 239
guitest — A Graphical User Interfaceccccoeevvvverveniennenne, 242
Example Analysis 243
EXPLanationccccuveeiuieiiieeiieeiie ettt 243
101 |01 PSP SURUSUUSRURN 246
Networking 251
Setting Up @ CONNECHIONe.veereeeiieiieiieeieeteieeie e seeseee e eeeseesseenseeneeens 251
Sending Objects over the NetWorkcccoecvveeiieriieniee e 252
Closing the CONNECHIONcecuieiiiieeciieeiieeee e eiee e eaee e eseeeeereeaee s 253
A Server with Multiple SOCKELSccocvveeviiiciiieieeieceecee e 254
Writing a Graphical User Interface 255
The New ROOT GUI ClaSSEScccuveveeeieeeieiieiieieeieeiiesieenieeee e sene e e 255
XCLASS'DS ettt et 255
ROOT INtEGIAtIONeveeieeeieeiieciieieeie et eeeeee ettt et siae e eseenseennesneeenes 256
Abstract Graphics Base Class TGXWcccccvvivnienienenieene, 256
Further changes:cccoovvieiiiiiiece e 257
A Simple EXaAMPIE ..cceviiiiieiiiiiiecieeeee et 258
MYMAINFTAME ..ieiuiiiieeiiieeeeiiee et eetee e e e e e e e eeaeeeeeaeeeeeans 258
Laying out the Frame.........ccoocevieriieiieiieieeieceeeeeee e 259
AddINg ACLIONS.....ccviieieieieeiieeiieeeeie e 260
The ReSult.....cc.oiiiiiiiiiiiiece e 260
The Widgets in Detailccceeecuiieiieeiieeiecieeeeeeee e 260
Example: Widgets and the Interpreter...........cooeevieiieenienienienceeee 261
RQuUANt EXAMPIE.....cccvieiiiiiieeiiiecieee ettt s 262
RETETEINCES . ..cniiiieieeiet e e e 262
Automatic HTML Documentation 263
PROOF: Parallel Processing 265
Threads 267
Threads and ProCeSSEScoevieririiririeierineneseeeetetesese e 267
Process Properties........cccuerierieriieniieieeieeieeiiesieeiee e 267
Thread Properties........cveeveeriieiieeeiiesieeeieesee e sre e 268
The Initial Threadcccoooiiiiiiiieece e 268
Implementation of Threads in ROOTccccovveiiiviiieiiieciiecieeeeeee 268
INStAllAtionoc.eeiiiiiiii e 268
CLASSES ..eentteuieeiieeite ettt ettt ettt ettt ettt st sb ettt eat e e neenbeenaean 269
TThread for Pedestrians.........cccccooeiieiienienieiieeeeeecee e 269
Loading: ...oovieiieieee e e 270
CIEALING: «..vveeeieeiieeie ettt et e e ettt e s te st e seenseenteenseseaessaenseensens 270
RUNNING: ..o 270
TThread in More Detailc.ocveeieriiiiiiienieeee e 271
ASYNCHrONOUS ACHONSccvveiieiieiieieeiieeeiesitenieeieeseee e eee e 271
Synchronous Actions: TCondition............cccveevvveerviencieesieenneens 271
X1ib CONNECLIONS ..cnvieneieniieiiieiieniienieeie ettt 272
Canceling @ TThread..........ccceevieerieiiieeie e 273
Advanced TThread: Launching a Method in a Threadc..ccccceeeneene 274
Known Problems............cooiiiiiiiiieieeeecee e 275
GLOSSATY .euvieeitieeiee ettt ette ettt et e et e et e et eete e ebeeetee s taeenseeansaeenseeenssaenneean 276
PrOCESS ..evieuiieiiicieetcce e e 276

viii

Draft, December 2000 - version 0.6.3 Table of Contents

20

21

22

23

24

TRECAA ... 276

(01033161113 1<) 110 2RSSR 276
ParalleliSmooooiiiiiiiie e 276
REENIaNt.....coiiiiiieiiii et 276
Thread-specific data..........cccovierieiieiieieeeeeeeeee e 276
SYNCATONIZALION ...ttt 276
Critical SECHIONccvvieiiieiieciee ettt 277
IMUEEX .ottt ettt e ettt e ettt e e et e e e tte e e stbeeeesebaeeeasaeeesssaeeennnns 277
SEMAPNOTE ..ottt e e enee e 277
Readers/Writer LOCK.........ooocuiiiiiiiiicciie e 277
Condition Variable............oooviieeiiiiiiiieceeeeeee e 277
Multithread safe levels.........ccooieeeiiiiiiiiiieeeeeccee e, 277
DeadlOoCKo 278
IMULEIPTOCESSOT ...veeieeivieeieecieeeree et eete e st e e e e sebeesreessbeesnsaennas 278
List of EXample flleScccuiiiiiiiiieiiieciiecieeeieeceeee et 279
Example Mmhs3oooiiiiiieiieeee e 279
Example cOnditionsccceeeevieeniiecieeieeienieieeie e 279
Example TMhS3ooooiiiiiiieieeec e 279
Example CalcPiThread..........ccoocoevieiieciiiiieieeieeeeeeee e 279
Appendix A: Install and Build ROOT 281
ROOT Copyright and Licensing Agreement:cccceeveereenverruenneneenne 281
Installing ROOTcccuiiieieieeee et 282
ChOOSING @ VEISION.......eciiieiieiieiieeiieiieieeieeteseeseee st esseeseenresseessaenseensens 282
Installing Precompiled Binariesccvevverierieniieiieieeiecieseeeeee e 283
Installing the SOUICEecveiieiieieeie ettt 283
More Build Optionsccccvevveeriieriieiieieeieeiesieeie e 284
Setting the Environment Variablesccoooveviriiviieiienieieeic e 285
Documentation to Downloadcccoooeeiiiiiiiiicce e 286
Appendix B: Event.h 289
Appendix C: SplitClass 293
Quizzes and Answers 297
QuizZ 0N ROOt FIleS ..uvviiiiiiiiiciecee e 297
QUIZ ON STTCAIMETSveieevieerieeiieeteeeteeeieeeeteeeeteeeeteeetaeeteeeseeeseeensseesneas 299
QUIZ 0N TIEES ..veieutiieiie ettt ettt ettt et r e eveeeveeebeeeanea s 301
Answers to Quiz on ROOT FileSccovvevviiiiiiiciiiciieceeceeceere e 303
Answers to QUIZ 0N StrEamMETS.......c.eeecviieiiieeiieeieeeree et eeree e v 304
Answers to Quiz on ROOt TIees:ocvviiiiieiiiicieccieecee e 305
Index 307

Table of Contents

Draft, December 2000 - version 0.6.3 ix

Draft, December 2000 - version 0.6.3 Table of Contents

1 Introduction

In the mid 1990's, René Brun and Fons Rademakers had many years of
experience developing interactive tools and simulation packages. They had
lead successful projects such as PAW, PIAF, and GEANT, and they knew the
twenty-year-old FORTRAN libraries had reached their limits. Although still
very popular, these tools could not scale up to the challenges offered by the
Large Hadron Collider, where the data is a few orders of magnitude larger
than anything seen before.

At the same time, computer science had made leaps of progress especially in
the area of Object Oriented Design, and René and Fons were ready to take
advantage of it.

ROOT was developed in the context of the NA49 experiment at CERN. NA49
has generated an impressive amount of data, around 10 Terabytes per run.
This rate provided the ideal environment to develop and test the next
generation data analysis.

One cannot mention ROOT without mentioning CINT its C++ interpreter.
CINT was created by Masa Goto in Japan. It is an independent product,
which ROOT is using for the command line and script processor.

ROOT was, and still is, developed in the "Bazaar style", a term from the book
"The Cathedral and the Bazaar" by Eric S. Raymond. It means a liberal,
informal development style that heavily leverages the diverse and deep talent
of the user community. The result is that physicists developed ROOT for
themselves, this made it specific, appropriate, useful, and over time refined
and very powerful.

When it comes to storing and mining large amount of data, physics plows the
way with its Terabytes, but other fields and industry follow close behind as
they acquiring more and more data over time, and they are ready to use the
true and tested technologies physics has invented. In this way, other fields
and industries have found ROOT useful and they have started to use it also.

The development of ROOT is a continuous conversation between users and
developers with the line between the two blurring at times and the users
becoming co-developers.

In the bazaar view, software is released early and frequently to expose it to
thousands of eager co-developers to pound on, report bugs, and contribute
possible fixes. More users find more bugs, because more users add different
ways of stressing the program. By now, after six years, many, many users
have stressed ROOT in many ways, and it is quiet mature. Most likely, you
will find the features you are looking for, and if you have found a hole, you
are encouraged to participate in the dialog and post your suggestion or even
implementation on roottalk, the ROOT mailing list.

Introduction

Draft, December 2000 - version 0.6.3 1

http://www.oreilly.com/catalog/cb/chapter/copyright.html
http://www.netaxs.com/~esr/writings/cathedral-bazaar/

The ROOT Mailing List

You can subscribe to roottalk, the ROOT Mailing list by registering at the
ROOT web site: http://root.cern.ch/root/Registration.phtml.

This is a very active list and if you have a question, it is likely that it has been
asked, answered, and stored in the archives. Please use the search engine
to see if your question has already been answered before sending mail to
root talk.

You can browse the roottalk archives at:
http://root.cern.ch/root/roottalk/AboutRootTalk.html.

You can send your question without subscribing to: roottalk@root.cern.ch

Contact Information

This book was written by several authors. If you would like to contribute a
chapter or add to a section, please contact us. This is the first and early
release of this book, and there are still many omissions. However, we wanted
to follow the ROOT tradition of releasing early and often to get feedback early
and catch mistakes. We count on you to send us suggestions on additional
topics or on the topics that need more documentation. Please send your
comments, corrections, questions, and suggestions to rootdoc@root.cern.ch.

We attempt to give the user insight into the many capabilities of ROOT. The
book begins with the elementary functionality and progresses in complexity
reaching the specialized topics at the end.

The new user wanting a quick start and just a taste of ROOT should read the
Introduction, and the chapters: Getting Started, Histograms, Graphs, and
Fitting Histograms.

The user interested in learning and using ROOT should read the Introduction,
and the chapters on CINT, Input/Output, Graphics and the Graphical User
Interface, and Trees.

The user with some experience will be interested in the chapters on Graphics
and the Graphical User Interface, Collection Classes, The Tutorials and
Tests, and the Example Analysis.

The experienced user looking for special topics may find these chapters
useful: Networking, Writing a Graphical User Interface, Threads, and
PROOF: Parallel Processing.

Because this book was written by several authors, you may see some
inconsistencies and a "change of voice" from one chapter to the next. We felt
we could accept this in order to have the expert explain what they know best.

2 Draft, December 2000 - version 0.6.3 Introduction

http://root.cern.ch/root/Registration.phtml
http://root.cern.ch/root/roottalk/AboutRootTalk.html
mailto:roottalk@root.cern.ch
mailto:rootdoc@root.cern.ch

Conventions Used in This Book

We tried to follow a style convention for the sake of clarity. Here are the few
styles we used.

To show source code in scripts or source files:

cout << " Hello" << endl;

float x = 3.;

float y = 5.;

int i = 101;

cout <<" x = "<K<x<" y = "<y<<" 1 = "<<i<< endl;

To show the ROOT command line, we show the ROOT prompt without
numbers. In the interactive system, the ROOT prompt has a line number (root
[12]), for the sake of simplicity we left off the line number.

Bold monotype font indicates text for you to enter at verbatim.

root[] TLine 1
root[] 1l.Print()
TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000

Italic bold monotype font indicates a global variable, for example
gDirectory.

We also used the italic bold font to highlight the comments in the code
listing.

When a variable term is used, it is shown between angled brackets. In the
example below the variable term <library> can be replaced with any library in
the SROOTSYS directory.

$ROOTSYS/<library>/inc

The Framework

ROOT is an object-oriented framework aimed at solving the data analysis
challenges of high-energy physics. There are two key words in this definition,
object oriented and framework. First, we explain what we mean by a
framework and then why it is an object-oriented framework.

What is a Framework?

Programming inside a framework is a little like living in a city. Plumbing,
electricity, telephone, and transportation are services provided by the city. In
your house, you have interfaces to the services such as light switches,
electrical outlets, and telephones. The details, for example the routing
algorithm of the phone switching system, are transparent to you as the user.
You do not care, your are only interested in using the phone to communicate
with your collaborators to solve your domain specific problems.

Programming outside of a framework may be compared to living in the
country. In order to have transportation and water, you will have to build a
road and dig a well. To have services like telephone and electricity you will
need to route the wires to your home. In addition, you cannot build some
things yourself. For example, you cannot build a commercial airport on your
patch of land. From a global perspective, it would make no sense for

Introduction Draft, December 2000 - version 0.6.3 3

everyone to build their own airport. You see you will be very busy building the
infrastructure (or framework) before you can use the phone to communicate
with your collaborators and have a drink of water at the same time.

In software engineering, it is much the same way. In a framework the basic
utilities and services, such as 1/0 and graphics, and are provided. In addition,
ROOT being a HEP analysis framework, it provides a large selection of HEP
specific utilities such as histograms and fitting. The drawback of a framework
is that you are constrained to it, as you are constraint to use the routing
algorithm provided by your telephone service. You also have to learn the
framework interfaces, which in this analogy is the same as learning how to
use a telephone.

If you are interested in doing physics, a good HEP framework will save you
much work.

Below is a list of the more commonly used components of ROOT:

Command Line Interpreter
Histograms and Fitting
Graphic User Interface widgets
2D Graphics

I/O

Collection Classes

Script Processor

There are also less commonly used components, these are:

3D Graphics

Parallel Processing (PROOF)

Run Time Type Identification (RTTI)
Socket and Network Communication
Threads

Advantages of Frameworks

The benefits of frameworks can be summarized as follows:

e Less code to write: The programmer should be able to use and reuse
the majority of the code. Basic functionality, such as fitting and
histogramming are implemented and ready to use and customize.

e More reliable and robust code: Code inherited from a framework has
already been tested and integrated with the rest of the framework.

e More consistent and modular code: Code reuse provides consistency
and common capabilities between programs, no matter who writes them.
Frameworks also make it easier to break programs into smaller pieces.

e More focus on areas of expertise: Users can concentrate on their
particular problem domain. They don't have to be experts at writing user
interfaces, graphics, or networking to use the frameworks that provide
those services.

Why Object-Oriented?

Object-Oriented Programming offers considerable benefits compared to
Procedure-Oriented Programming:

e Encapsulation enforces data abstraction and increases opportunity for
reuse.

Draft, December 2000 - version 0.6.3 Introduction

e Sub classing and inheritance make it possible to extend and modify
objects.

o Class hierarchies and containment hierarchies provide a flexible
mechanism for modeling real-world objects and the relationships among
them.

o Complexity is reduced because there is little growth of the global state,
the state is contained within each object, rather than scattered through
the program in the form of global variables.

e Objects may come and go, but the basic structure of the program
remains relatively static, increases opportunity for reuse of design.

Installing ROOT

The installation and building of ROOT is described in Appendix A: Install and
Build ROQOT. You can download the binaries (7 MB to 11 MB depending on
the platform), or the source (about 3.4 MB). ROOT can be compiled by the
GNU g++ compiler on most Unix platforms.

ROOT is currently running on the following platforms:

e Intel x86 Linux (g++, egcs and KAI/KCC)

. Intel Itanium Linux (g++)

e HP HP-UX 10.x (HP CC and aCC, egcsl.2 C++ compilers)
e IBM AIX 4.1 (xlc compiler and egcsl.2)

e Sun Solaris for SPARC (SUN C++ compiler and egcs)
e Sun Solaris for x86 (SUN C++ compiler)

e Sun Solaris for x86 KAI/KCC

e Compaqg Alpha OSF1 (egcsl.2 and DEC/CXX)

e Compag Alpha Linux (egcsl.2)

e SGI Irix (g++ , KAI/KCC and SGI C++ compiler)

e Windows NT and Windows95 (Visual C++ compiler)

e Mac MkLinux and Linux PPC (g++)

e Hitachi HI-UX (egcs)

e TLynxOS

e MacOS (CodeWarrior, no graphics)

Introduction

Draft, December 2000 - version 0.6.3 5

The Organization of the ROOT Framework

Now we know in abstract terms what the ROOT framework is, let's look at the
physical directories and files that come with the installation of ROOT.

You may work on a platform where your system administrator has already

installed ROOT. You will need to follow the specific development

environment for your setup and you may not have write access to the
directories. In any case, you will need an environment variable called
ROOTSYS, which holds the path of the top directory.

> echo $ROOTSYS
/home/root

cint
makecint
new
proofd
proofserv
rmkdepend
root
root.exe
rootcint
root-config

Lrootd

* Optional
Installation

In the ROOTSYS directory are examples, executables, tutorials, header files,

and if you opted to download the source it is also here. The directories of

special interest to us are bin, tutorials, 1ib, test,and include. The
diagram on the next page shows the contents of these directories.

bin—Ilib=— tutorials

libCint.so
libCore.so
libEG.so
*libEGPythia.so
*libEGPythia6.so
libEGVenus.so
libGpad.so
libGraf.so
libGraf3d.so
libGui.so
1ibGX11.s0
*libGX11TTF.so
libHist.so
libHistPainter.so
libHtml.so
libMatrix.so
libMinuit.so
libNew.so
libPhysics.so
libPostscript.so
libProof.so
*libRFIO.so
*libRGL.so
libRint.so
*libThread.so
libTree.so
libTreePlayer.so
libTreeViewer.so
*libttf.so
1ibX3d.so
libXpm.a

\\\\\\\\\;\\\\\\\‘

Aclock.cxx
Aclock.h
Event.cxx
Event.h
EventLinkDef.h
Hello.cxx
Hello.h
MainEvent.cxx
Makefile
Makefile.in
Makefile.win32
README
TestVectors.cxx
Tetris.cxx
Tetris.h
eventa.cxx
eventb.cxx
eventload.cxx
guitest.cxx
hsimple.cxx
hworld.cxx
minexam.cxx
Stress.cxx
tcollbm.cxx
teollex.cxx
test2html.cxx
tstring.cxx
vlazy.cxx
vmatrix.cxx
vvector.cxx

$ROOTSYS
T |
test include
EditorBar.C fitslicesy.C ntuplel.C
Ifit.C formulal.C oldbenchmarks.C
analyze.C framework.C pdg.dat
archi.C games.C psexam.C
arrow.C gaxis.C pstable.C
basic.C geometry.C rootalias.C
basic.dat gerrors.C rootenv.C
basic3d.C gerrors2.C rootlogoff.C
benchmarks.C ~ graph.C rootlogon.C
canvas.C hldraw.C rootmarks.C
classcat.C hadd.C runcatalog.sql
cleanup.C hclient.C runzdemo.C
compile.C hcons.C second.C
copytree.C hprod.C shapes.C
copytree2.C hserv.C shared.C
demos.C hserv2.C splines.C
demoshelp.C hsimple.C sqlcreatedb.C
dialogs.C hsum.C sqlfilldb.C
dirs.C hsumTimer.C sqlselect.C
ellipse.C htmlex.C staff.C
eval.C i0.C staff.dat
event.C latex.C surfaces.C
execl.C latex2.C tcl.C
exec2.C latex3.C testrandom.C
feynman.C manyaxis.C tornado.C
fildir.C multifit.C tree.C
file.C myfit.C two.C
fillrandom.C na49.C xyslider.C
first.C na49geomfile.C xysliderAction.C
fitl.C na49view.C zdemo.C
fitl_C.C na49visible.C hlanalysis.C

Draft, December 2000 - version 0.6.3

Introduction

$ROOTSYS/bin

The bin directory contains several executables.

root shows the ROOT splash screen and calls root .exe.

root.exe is the executable that root calls, if you use a debugger such
as gdb, you will need to run root . exe directly.

rootcint is the utility ROOT uses to create a class dictionary for CINT.
You will see how this utility is used in the chapter: Trees

rmkdepend is a modified version of makedepend that works for C++. It
is used by the ROOT build system.

root-config is a script returning the needed compile flags and
libraries for projects that compile and link with ROOT.

cint is the C++ interpreter executable that is independent of ROOT.
makecint is the pure CINT version of rootcint. It is used to generate
a dictionary. It is used by some of CINT's install scripts to generate
dictionaries for external system libraries.

proofd is a small daemon used to authenticate a user of ROOT's
parallel processing capability (PROOF).

proofserv is the actual PROOF process, which is started by proofd
after a user, has successfully been authenticated.

rootd is the daemon for remote ROOT file access (see TNetFile).

$ROOTSYS/lib

There are several ways to use ROOT, one way is to run the executable by
typing root at the system prompt another way is to link with the ROOT
libraries and make the ROQOT classes available in your own program.

Here is a short description for each library, the ones marked with a * are only
installed when the options specified them.

libCint. so is the C++ interpreter (CINT).

libCore. so is the Base classes

1ibEG. so is the abstract event generator interface classes

*11ibEGPythia. so is the Pythiab event generator interface

*1ibEGPythia6. so is the Pythia6 event generator interface

1ibEGVenus. so is the Venus event generator interface

1libGpad. so is the pad and canvas classes which depend on low level
graphics

libGraf. so is the 2D graphics primitives (can be used independent of
libGpad. so)

libGraf3d. so is the3D graphics primitives

1ibGui.so is the GUI classes (depend on low level graphics)

1ibGX11.so is the low level graphics interface to the X11 system

*1ibGX11TTF.so is an add on library to 1ibGX11. so providing
TrueType fonts

libHist.so is the histogram classes

libHistPainter.so is the histogram painting classes

libHtml. so is the HTML documentation generation system

libMatrix.so is the matrix and vector manipulation

libMinuit.so - The MINUIT fitter

libNew. so is the special global new/delete, provides extra memory
checking and interface for shared memory (optional)

libPhysics. so is the physics quantity manipulation classes
(TLorentzVector, etc.)

Introduction

Draft, December 2000 - version 0.6.3 7

- libPostScript.so is the PostScript interface

- libProof.so is the parallel ROOT Facility classes

- *1ibRFIO0.so is the interface to CERN RFIO remote I/O system.

- *1ibRGL. so is the interface to OpenGL.

- 1libRint.so is the interactive interface to ROOT (provides command
prompt).

- *1libThread.so is the Thread classes.

- 1libTree.so is the TTree object container system.

- libTreePlayer.so is the TTree drawing classes.

- libTreeViewer. so is the graphical TTree query interface.

- 1ibX3d.so is the X3D system used for fast 3D display.

Library Dependencies

The libraries are designed and organized to minimize dependencies, such
that you can include just enough code for the task at hand rather than having
to include all libraries or one monolithic chunk.

The core library (1ibCore. so) contains the essentials; it needs to be
included for all ROOT applications. In the diagram, you see that 1ibCore is
made up of Base classes, Container classes, Meta information classes,
Networking classes, Operating system specific classes, and the ZIP
algorithm used for compression of the ROOT files.

The CINT library (1ibCint. so) is also needed in all ROOT applications, but
libCint can be used independently of 1ibCore, in case you only need the
C++ interpreter and not ROOT. That is the reason these two are separate.

A program referencing only TObject only needs 1ibCore and 1ibCint.
This includes the ability to read and write ROOT objects, and there are no
dependencies on graphics, or the GUI.

Root CORE classes |
Base ﬁfont | Meta [[er |2 | Cint
]

inMT

| Tree | Hist
)
E Graf

Graf3d || GPad

TreePlayer

TreeViewer

Gy [P EmmEm
int |

Draft, December 2000 - version 0.6.3 Introduction

A batch program, one that does not have a graphic display, which creates,
fills, and saves histograms and trees, only needs the core (1ibCore and
libCint), 1ibHist and 1ibTree. If other libraries are needed, ROOT
loads them dynamically. For example if the TreeViewer is used,
libTreePlayer and all the libraries the TreePlayer box below has an
arrow to, are loaded also. In this case: GPad, Graf3d, Graf,
HistPainter, Hist, and Tree. The difference between 1ibHist and
libHistPainter is that the former needs to be explicitly linked and the
latter will be loaded automatically at runtime when needed. In the diagram,
the dark boxes outside of the core are automatically loaded libraries, and the
light colored ones are not automatic. Of course, if one wants to access an
automatic library directly, it has to be explicitly linked also.

An example of a dynamically linked library is Minuit. To create and fill
histograms you need to link 1ibHist. If the code has a call to fit the
histogram, the "Fitter" will check if Minuit is already loaded and if not it will
dynamically load it.

$ROOTSYS/tutorials

The tutorials directory contains many example scripts. They assume some
basic knowledge of ROOT, and for the new user we recommend reading the
chapters: Histograms and Input/Output before trying the examples. The
more experienced user can jump to chapter The Tutorials and Tests to find
more explicit and specific information about how to build and run the
examples.

$ROOTSYS/test

The test directory contains a set of examples that represent all areas of the
framework. When a new release is cut, the examples in this directory are
compiled and run to test the new release's backward compatibility.

We see these source files:

- hsimple.cxx_ - Simple test program that creates and saves some
histograms

- MainEvent.cxx - Simple test program that creates a ROOT Tree
object and fills it with some simple structures but also with complete
histograms. This program uses the files Event.cxx, EventCint.cxx
and Event . h. An example of a procedure to link this program is in
bind Event. Note that the Makefile invokes the d utility to generate
the CINT interface EventCint.cxx.

- Event.cxx -Implementation for classes Event and Track

- minexam.cxx - Simple test program to test data fitting.

- tcollex.cxx - Example usage of the ROOT collection classes

- tcollbm.cxx - Benchmarks of ROOT collection classes

- tstring.cxx - Example usage of the ROOT string class

- vmatrix.cxx - Verification program for the TMatrix class

- vvector.cxx - Verification program for the Tvector class

- wvlazy.cxx - Verification program for lazy matrices.

- hworld.cxx - Small program showing basic graphics.

- guitest.cxx - Example usage of the ROOT GUI classes

- Hello.cxx - Dancing text example

- Aclock.cxx -Analogclock (ala X11 xclock)

- Tetris.cxx - The famous Tetris game (using ROOT basic graphics)

Introduction

Draft, December 2000 - version 0.6.3 9

- stress.cxx_ - Important ROOT stress testing program.

The SROOTSYS/test directory is a gold mine of ROOT-wisdom nuggets,
and we encourage you to explore and exploit it. However, we recommend
that the new user read the chapters:. The chapter The Tutorials and Tests,
has instructions on how to build all the programs and goes over the examples
Event and stress.

$ROOTSYS/include

The include directory contains all the header files, this is especially
important because the header files contain the class definitions.

$ROOTSYS/<library>

The directories we explored above are available when downloading the
binaries or the source. When downloading the source you also get a directory
for each library with the corresponding header and source files. Each library
directory contains an inc and a src subdirectory. To see what classes are in
a library, you can check the <1ibrary>/inc directory for the list of class
definitions. For example, the physics library contains these class definitions:

> 1s -m $ROOTSYS/physics/inc
CVS, LinkDef.h, TLorentzRotation.h, TLorentzVector.h,
TRotation.h, TVector2.h, TVector3.h

Draft, December 2000 - version 0.6.3 Introduction

How to Find More Information

The ROOT web site has up to date documentation. The ROOT source code
automatically generates this documentation, so each class is explicitly
documented on its own web page, which is always up to date with the latest
official release of ROOT. The class index web pages can be found at
http://root.cern.ch/root/html/Classindex.html. Each page contains a class

description, and an explanation of each method. It shows the class it was
derived from and lets you jump to the parent class page by clicking on the
class name. If you want more detail, you can even see the source. In addition
to this, the site contains tutorials, "How To's", and a list of publications and

example applications.

7 http://root t Explorer [_[O]]
| Fie Edt ‘}
\a -» 3 k -5 »
Back Fomwerd Stop Refresh Home Search Favoriites History Mail Print
| Address [@] hitp:/ /root.cem.ch/ioot/html/TTree it T Tree:description =] @60
3 TNamed - Microsoft Internet Explorer Class Description =
| Ele Edt View Favortes Tooks Help 4
/
o y % > B = » /
- =~ @ ﬁ @ 4 < i \g TTree |
Back Forward! Stop Refresh Home Search Favorites History Mail Print
| Address [@] hitp:/ 100t cem.ch/root/himl/ TNamed himl ~| @6 /| =& ITree object has a header with a name and a title.
/ It consists of a list of independent branches (TBranch). Each branch
= / has its own definition and list of buffers. Branch buffers may be
TN d Q automatically written to disk or kept in memory until the Tree attribu
ame fMaxVirtualSize is reached.
» .O/ Variables of one branch are written to the same buffer.
A i Ql A branch buffer is automatically compressed if the file compression
N / attribute is set (default).
class description - source file - inheritance tree i L)
S
N Branches may be written to different files (see TBranch::SetFile).
\
- » N q 5 2 i
claSS 'I'Named . publlc Tob ect \\ Thg ROOT user l:ahvdec:tde to make one single branch and serialize one
e L1Jbject \/0 object into one single I/0 buffer or to make several branches.
\\ Making one single branch and one single buffer can be the right choice
\Q when one wants to process only a subset of all entries in the tree.
public: f (you know for example the list of entry numbers you want to process).
Making several branches is particularly interesting in the data analys
TNamed TNamed () phase, when one wants to histogram some attributes of an object (entry
TNamed TNawed({const char* name, const r* ticle) without reading all the attributes.
TNemed TNemed (const TStringé name, const !@ﬂg& tit _'_'J
TNamed TNawed (const TNamedé& named) / I E
virtual void ~TNamed() Q 7 [[Intemet 7
static TClass* Class() d\ k)/ =
virtual Int_t Compare(TObject® obj) w / TTree
virtual void Copy(TObject& named) /
wvirtual void FillBuffer (char*& buffer) N //
virtual const char* GetName() const Y 7
i * i / : ;
d virtual const char® GetTitle() const | } clasf description - source file - inheritance tree
s
(3] [[| intemet a

TAttMarker

protected:

public:

TITree
TTree

7 http://r00t.cern.ch/root/html/T Tree.ht TTree

TTree()

TTree (TTree
~TTree ()

class TTree : public TNamed, TNamed pubhc TAttLine, public TAttFill, public

\

const char* GetNameByIndex (TString& var
virtual void MakeIndex (TString& varexp,

TTiee (const char?® name,\ccmsl: char* title, Int t maxvirtualsize = 0)

e
<

IM/t* index)

Int t* index, Int _t colindex) const

\
\

\

Mail

Print

| Fle Edt View Favortes Tools Hel vireual void
- 5 B
Stop

Back

(| ol

Aok F_F_F_F_f_F_*_*Normal Tree CONSTLrUCTLOr —F—F—f_f_ F_ F_#_F_F_F_F_F_%_%
£

The Tree is created in the current directory
Use the various functions Branch below to add branches to this Tree.

((‘ \ Internet g
Fomward - — - V [=] ot
| Address [&] htp: /oot cemchioot/ml/ T Tree hinl#T Tree:TTree ~] @6 ri” |
TTree::TTree (const char *name,const char *title, Int t maxvirtualsize)
: Tamed (name, title) =

& 3|
TTree(const char *name,const char *title, Int t maxvirtualsize) "I'Nameal(n'e:‘me,titleS(llhllgﬁ‘I

~TTree()

BB K KK F A A Tree deSLrUCTOL FmF e F e e F o F o F o F o F o FF_FoF_F_F
£

« |

(3] [[Intemet

’//t-w-t-a-a-u-a.ﬁ.w.mom Tree CONStructor#—#—#—A—k—&——#—*—k—K—N—h—h—#
Ji%—*

1
// The Tree is created in the current directory
il Use the various functions Branch below to add branches to this Tree.
fScanField = 25;
fMaxEntryLoop = 1000000000;
fMaxVirtualSize = maxvirtualsize;
fDirectory = gbirectory:
fEntries = 0; hud
4] | »
Done [[ntemet 7

Introduction

Draft, December 2000 - version 0.6.3

11

http://root.cern.ch/root/html/ClassIndex.html

2 Getting Started

We begin by showing you how to use ROOT interactively. There are two
examples to click through and learn how to use the GUI. We continue by
using the command line, and explaining the coding conventions, global
variables and the environment setup.

If you have not installed ROOT, you can do so by following the instructions in
the appendix, or on the ROOT web site:
http://root.cern.ch/root/Availability.html

Start and Quit a ROOT Session

To start ROOT you can type root at the system prompt. This starts up CINT
the ROOT command line C/C++ interpreter, and it gives you the ROOT
prompt (root [01]).

o\°

root
ER R i b 4

WELCOME to ROOT
Version 2.25/02 21 August 2000

You are welcome to visit our Web site
http://root.cern.ch

*
*
*
*
*
*
*
*
*

o S R A S S

R R R I I b I I I I S I I I S I I b I e I b b 2 S I b b b I b b b 4h b b 2 e

CINT/ROOT C/C++ Interpreter version 5.14.47, RAug 12 2000
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.

root [0]

Getting Started Draft, December 2000 - version 0.6.3 13

http://root.cern.ch/root/Availability.html

It is possible to launch ROOT with some command line options, as shown
below:

% root -/7?
Usage: root [-1] [-b] [-n] [-g] [filel.C ... fileN.C]
Options:
-b : run in batch mode without graphics
-n do not execute logon and logoff macros as
specified in .rootrc
-gq : exit after processing command line script files
-1 do not show the image logo (splash sceen)

—b: Run in batch mode, without graphics display. This mode is useful in case
one does not want to set the DISPLAY or cannot do it for some reason.

—n: Usually, launching a ROOT session will execute a logon script and
quitting will execute a logoff script. This option prevents the execution of
these two scripts.

It is also possible to execute a script without entering a ROOT session. One
simply adds the name of the script(s) after the ROOT command. Be warned:
after finishing the execution of the script, ROOT will normally enter a new
session.

—q: exit after processing command line script files. Retrieving previous
commands and navigating on the Command Line.

ROOT's powerful C/C++ interpreter gives you access to all available ROOT
classes, global variables, and functions via a command line. By typing C++
statements at the prompt, you can create objects, call functions, execute
scripts, etc. For example:

root []

(double)4.000000000000e+00
root[]for (int i = 0; i<5; i++) cout << "Hello" << i << endl

Hello
Hello
Hello
Hello
Hello
root[]

l+sgrt(9)

0

Sw N

-q

Exit ROOT

To quit the command line type . g.

root []

-q

14

Draft, December 2000 - version 0.6.3 Getting Started

First Example: Using the GUI

In this example, we show how to use a function object, and change its
attributes using the GUI. Again, start ROOT:

Note: The GUI on MS-Windows looks and works a little different from the one
on UNIX. We are working on porting the new GUI class to Windows. Once
they are available, the GUI will be changed to be identical to the one in UNIX.
In this book, we used the UNIX GUI.

[)

% root

root[] TF1 £1("funcl", "sin(x)/x", 0, 10)

root

root

root

(Double t)4.70400026866224020e-02

[] £1.Derivative (3)

(Double t) (-3.45675056671992330e-01)
[] £f1.Integral(0,3)

(Double t)1.84865252799946810e+00

[] £1.Draw()

root[] f£1l.Draw()
You should see something like this:
gct __ HEE
Eile Edit ¥iew Opfions Inspect Classes Help
sin(x)ix |
1_
03}
05}
04l
02
of
-2
0
Drawing a function is interesting, but it is not unique to a function. Evaluating
and calculating the derivative and integral are what one would expect from a
function. TF1, the function class defines these methods for us.
root [] £f1.Eval(3)

Classes, Methods and Constructors

Object oriented programming introduces objects, which have data members
and methods.

The line TF1 f1 ("funcl", "sin(x)/x", 0, 10) creates an object
named f£1 of the class TF1 that is a one-dimensional function. The type of an

Getting Started

Draft, December 2000 - version 0.6.3 15

object is called a class. The object is called an instance of a class. When a
method builds an object, it is called a constructor.

TF1 f£1("funcl", "sin(x)/x", 0, 10)

In our constructor, we used sin (x) /x, which is the function to use, and 0
and 10 are the limits. The first parameter, func1 is the name of the object
£1. Most objects in ROOT have a name. ROOT maintains a list of objects
that can be searched to find any object by its given name (in our example
funcl).

The syntax to call an object's method, or if one prefers, to make an object do
something is:

object.method name (parameters)

This is the usual way of calling methods in C++. The dot can be replaced by
" ->"if object is a pointer. In compiled code, the dot MUST be replaced by
a"->"if object is a pointer.

object ptr->method name (parameters)

So now, we understand the two lines of code that allowed us to draw our
function. £1.Draw () stands for “call the method Draw associated with the
object £1 of class TF1”. We will see the advantages of using objects and
classes very soon.

One point, the ROOT framework is an object oriented framework; however
this does not prevent the user from calling plain functions. For example, most
simple scripts have functions callable by the user.

User interaction

If you have quit the framework, try to draw the function sin (x) /x again.
Now, we can look at some interactive capabilities. Every object in a window
(which is called a Canvas) is in fact a graphical object in the sense that you
can grab it, resize it, and change some characteristics with a mouse click.

For example, bring the cursor over the x-axis. The cursor changes to a hand
with a pointing finger when it is over the axis. Now, left click and drag the
mouse along the axis to the right. You have a very simple zoom.

16

Draft, December 2000 - version 0.6.3 Getting Started

When you move the mouse over any object, you can get access to selected
methods by pressing the right mouse button and obtaining a context menu. If
you try this on the function (TF1), you will get a menu showing available
methods. The other objects on this canvas are the title a TPaveText, the x
and y-axis, which are TAx1is objects, the frame a TFrame, and the canvas a
TCanvas. Try clicking on these and observe the context menu with their

methods.
] I [B3
File Edit ¥iew Options [nspect Classes Help
sin(x)/x |
T
C TF1::funcl
I~ DrawPanel
0.3 [SetMaximum
- Sethinimum
— Sethpx
0.6 SetRange
[setParames
B Settame
0.4 [SefTitle
= Delete
B DrawClass
0.2 [DrawClone
- Dump
= Inspect
0 SetDrawCptian
- Setlineatiributes
B SetFillAtributes
—g2[cerllAmmbuies |
C SEIM&rKEan”bUtES III|IIII|II\Il\llllllllllllllllll
0 1 2 3 4 5 6 7 8 9 10

For the function, try for example to select the setRange method and put -10,
10 in the dialog box fields. This is equivalent to executing the member
function £1.SetRange (-10,10) from the command line prompt, followed
by f1.Draw ().

Here are some other options you can try. For example, select the
DrawPanel item of the popup menu.

You will see a panel like this:

[drawpanel: funcl

a0 teaoz |0 teaus |
o [cone | coma|

E1: errorsiedges E2: errorsirectangles

E3: errorsiill E4: errorsfcontour

Getting Started Draft, December 2000 - version 0.6.3 17

Try to resize the bottom slider and click Draw. You can zoom your graph. If
you click on "lego2" and "Draw", you will see a 2D representation of your
graph:

G c1 H[=] E3
File Edit ¥iew Options Inspect Classes Help

sin(x)f«

This 2D plot can be rotated interactively. Of course, ROOT is not limited to
1D graphs - it is possible to plot real 2D functions or graphs. There are
numerous ways to change the graphical options/colors/fonts with the various
methods available in the popup menu.

Line attributes Text attributes Fill attributes
@ attline: funcl M= 3 5] atttent: itlo @ atfill: func1 M= 3
T TT NN o
WEEEETT SN (.
EEEREEE N FHHF""

NN
N

Once the picture suits your wishes, you may want to see the code you should
put in a script to obtain the same result. To do that, choose the "Save as
canvas.C" option in the "File" menu. This will generate a script showing the
various options. Notice that you can also save the picture in PostScript or
GIF format.

One other interesting possibility is to save your canvas in native ROOT
format. This will enable you to open it again and to change whatever you like,
since all the objects associated to the canvas (histograms, graphs) are saved
at the same time.

Draft, December 2000 - version 0.6.3 Getting Started

Second

Example: Building a Multi-pad Canvas

Let’'s now try to build a canvas (i.e. a window) with several pads. The pads
are sub-windows that can contain other pads or graphical objects.

root[] TCanvas *MyC = new TCanvas ("MyC","Test canvas",1l)

root[] MyC->Divide(2,2)
Once again, we called the constructor of a class, this time the class
TCanvas. The difference with the previous constructor call is that we want to
build an object with a pointer to it.
Next, we call the method Divide of the TCanvas class (that is
TCanvas: :Divide ()), which divides the canvas into four zones and sets
up a pad in each of them.

root[] MyC->cd(1)

root[] £1->Draw()
Now, the function £1 will be drawn in the first pad. All objects will now be
drawn in that pad. To change the active pad, there are three ways:
Click on the middle button of the mouse on an object, for example a pad. This
sets this pad as the active one
Use the method TCanvas: : cd with the pad number, as was done in the
example above:

root[] MyC->cd(3)
Pads are numbered from left to right and from top to bottom.
Each new pad created by TCanvas: : Divide has a hame, which is the
name of the canvas followed by 1, 2, etc. For example to apply the method
cd () to the third pad, you would write:

root[] MyC_3->cd()

The third pad will be selected since you called TPad: : cd () for the object
MyC 3.

The obvious question is: what is the relation between a canvas and a pad? In
fact, a canvas is a pad that spans through an entire window. This is nothing
else than the notion of inheritance. The TPad class is the parent of the
TCanvas class.

Getting Started

Draft, December 2000 - version 0.6.3 19

The ROOT Command Line

We have briefly touched on how to use the command line, and you probably
saw that there are different types of commands.

1.CINT commands start with “.”

root [].?

//this command will list all the CINT commands
root [].l1 <filename>

//load [filename]

root [].x <filename>

//load [filename] and execute function [filename]

2.SHELL commands start with “. !” for example:

root [] .! 1ls
3. C++ commands follow C++ syntax (almost)

root [] TBrowser *b = new TBrowser ()
CINT Extensions
We can see that some things are not standard C++. The CINT interpreter has
several extensions. See the section ROOT/CINT Extensions to C++ in
chapter CINT the C++ Interpreter
Helpful Hints for Command Line Typing
The interpreter knows all the classes, functions, variables, and user defined
types. This enables ROOT to help the user complete the command line. For
example we do not know yet anything about the TLine class. We can use
the Tab feature to get help. Where <TAB> means type the <TAB> key. This
lists all the classes starting with TL.

root [] 1 = new TL<TAB>

TLeaf

TLeafB

TLeafC

TLeafD

TLeafF

TLeafl

TLeafObject

TLeafsS

TLine

TLatex

TLegendEntry

TLegend

TLink

TList

TListIter

TLazyMatrix

TLazyMatrixD

This lists the different constructors and parameters for TLine.

20

Draft, December 2000 - version 0.6.3 Getting Started

root []
TLine TLine ()
TLine TLine (Double t x1,

1l = new TLine (<TAB>

Double t yI1,

TLine TLine (const TLine& line)

Double t x2,

Double t y2)

Multi-line Commands

You can use the command line to execute multi-line commands. To begin a
multi-line command you must type a single left curly bracket {, and to end it
you must type a single right curly bracket }.

For example:

end
end
end
end
end
end

root[] {

with
with
with
with
with
with
with

=0, J =
:1Ij:

2, 3

nt t j = 0;

j + i;

or (Int_ t i = 0; i < 3; i++)

J
out <<"i = " Kik", j = " <<j<<endl;

It is more convenient to edit scripts than the command line, and if your multi
line commands are getting unmanageable you may want to start a script
instead.

Conventions

In this paragraph, we will explain some of the conventions used in ROOT
source and examples.

Coding Conventions

From the first days of ROOT development, it was decided to use a set of
coding conventions. This allows a consistency throughout the source code.
Learning these will help you identify what type of information you are dealing
with and enable you to understand the code better and quicker. Of course,
you can use whatever convention you want but if you are going to submit
some code for inclusion into the ROOT sources you will need to use these.
These are the coding conventions:

e Classes begin with T: TTree, TBrowser
¢ Non-class types end with _t: Int t
e Data members begin with f: fTree
e Member functions begin with a capital: TLoop ()
e Constants begin with k: kInitialSize, kRed
e Global variables begin with g: gEnv
e Static data members begin with fg: fgTokenClient
e Enumeration types begin with E: EColorLevel
e Locals and parameters begin with
a lower case: nbytes

Getters and setters begin with
Get and Set:

SetLast(), GetFirst()

Getting Started

Draft, December 2000 - version 0.6.3 21

Machine Independent Types

Different machines may have different lengths for the same type. The most
famous example is the int type. It may be 16 bits on some old machines
and 32 bits on some newer ones.

To ensure the size of your variables, use these pre defined types in ROOT:

e Char t Signed Character 1 byte

e Uchar t Unsigned Character 1 byte

e Short t Signed Short integer 2 bytes
e UShort t Unsigned Short integer 2 bytes
e Int t Signed integer 4 bytes

e Ulnt t Unsigned integer 4 bytes

e Long t Signed long integer 8 bytes

e Ulong t Unsigned long integer 8 bytes
e Float t Float 4 bytes

e Double t Float 8 bytes

e Bool t Boolean (O=false, 1=true)

If you do not want to save a variable on disk, you can use int or Int_t, the
result will be the same and the interpreter or the compiler will treat them in
exactly the same way.

TObject

In ROOT, almost all classes inherit from a common base class called
TObject. This kind of architecture is also used in the Java language. The
TObject class provides default behavior and protocol for all objects in the
ROOT system. The main advantage of this approach is that it enforces the
common behavior of the derived classes and consequently it ensures the
consistency of the whole system.

TObject provides protocol, i.e. (abstract) member functions, for:

e Object /O (Read (), Write())

e Error handling (Warning (), Error(), SysError(), Fatal())
e Sorting (IsSortable (), Compare(), IsEqual(), Hash())

e Inspection (Dump (), Inspect())

e Printing (Print ())

e Drawing (Draw (), Paint(), ExecuteEvent())

e Bithandling (SetBit (), TestBit())

e Memory allocation (operator new and delete, IsOnHeap())
e Access to meta information (IsA (), InheritsFrom())

e Object browsing (Browse (), IsFolder())

Draft, December 2000 - version 0.6.3 Getting Started

Global Variables

ROOT has a set of global variables that apply to the session. For example,
gDhirectory always holds the current directory, and gStyle holds the

“

current style. All global variables begin with “g” followed by a capital letter.

gROOT

The single instance of TROOT is accessible via the global grOOT and holds
information relative to the current session. By using the grOOT pointer you
get the access to basically every object created in a ROOT program. The
TROOT object has several lists pointing to the main ROOT objects.

ROOT's Housekeeping Lists

During a ROOT session, the system keeps a series of lists to maintain the
environment. These can be accessed with the grROOT object. They are:

gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-
gROOT-

>GetListOfClasses ()
>GetListOfColors ()
>GetListOfTypes ()
>GetListOfGlobals ()
>GetListOfGlobalFunctions ()
>GetListOfFiles ()
>GetListOfMappedFiles ()
>GetListOfSockets ()
>GetListOfCanvases ()
>GetListOfStyles ()
>GetListOfFunctions ()
>GetListOfSpecials () // for example graphical cuts
>GetListOfGeometries ()
>GetListOfBrowsers ()
>GetListOfMessageHandlers ()

These methods return a TSeqCollection, meaning a collection of objects,
and they can be used to do list operations such as finding an object, or
traversing the list and calling a method for each of the members. See the
TCollection class description for the full set of methods supported for a
collection.

For example, to find a canvas called c1 n2:

root []

gROOT->GetListOfCanvases () ->FindObject ("cl n2")

This returns a pointer to a TObject, and before you can use it as a canvas
you will need castittoa TCanvas*.

gFile

gFile is the pointer to the current opened file.

gDirectory

gDirectory is a pointer to the current directory. The concept and role of a
directory is explained in chapter Input/Qutput.

Getting Started

Draft, December 2000 - version 0.6.3 23

gPad

A graphic object is always drawn on the active pad. It is convenient to access
the active pad, no matter what it is. For that we have gPad that is always
pointing to the active pad. For example, if you want to change the fill color of
the active pad to blue, but you do not know its name, you can use gPad.

root[] gPad->SetFillColor (38)
To get the list of colors, if you have an open canvas, click in the "View" menu,
selecting the "Colors" entry.
gRandom
gRandom is a pointer to the current random number generator. By default, it
points to a TRandom object. Setting the seed to 0 implies that the seed will be
generated from the time. Any other value will be used as a constant.
The following basic random distributions are provided:
Gaus (mean, sigma)
Rndm ()
Landau (mean, sigma)
Poisson (mean)
Binomial (ntot, prob)
You can customize your ROOT session by replacing the random number
generator. You can delete gRandom and recreate it with your own:
root[] delete gRandom;
root[] gRandom = new TRandom3(0); //seed=0

TRandom3 derives from TRandom and is a very fast generator with higher
periodicity.

gEnv

gEnv is the global variable (of type TEnv) with all the environment settings
for the current session. This variable is set by reading the contents of a
.rootrc file at the beginning of the session. See "Environment Setup" below
for more information.

History File

You can use the up and down arrow at the command line, to access the
previous and next command. The commands are recorded in the history file
$HOME/ .root hist. It contains the last 100 commands. It is a text file, and
you can edit and cut and paste from it.

You can specify the history file in the system.rootrc (see below) file, by
setting the Rint .History option. You can also turn off the command
logging in the system. rootzrc file with the option: Rint.History: -

24

Draft, December 2000 - version 0.6.3 Getting Started

Environment Setup

The behavior of a ROOT session can be tailored with the options in the
rootrc file. At start-up, ROOT looks for a rootrc file in the following order:

e ./.rootrc //local directory
e SHOME/.rootrc //user directory
e SROOTSYS/system.rootrc //global ROOT directory

If more than one rootrc file is found in the search paths above, the options
are merged, with precedence local, user, global.

While in a session, to see current settings, you can do

root [

] gEnv->Print ()

The rootrc file typically looks like:

Unix.
Unix.

Unix.
Unix.

Rint.
Rint.
Rint.
Rint.

Rint.
Rint.

Path used by dynamic loader to find shared libraries

Path where to look for TrueType fonts

Activate memory statistics

* . Root.DynamicPath: .:~/rootlibs:$ROOTSYS/1lib
* _Root.MacroPath: .:~/rootmacros:SROOTSYS/macros

*.Root.UseTTFonts: true
* Root.TTFontPath:

Root.MemStat: 1

Load: rootalias.C
Logon: rootlogon.C
Logoff: rootlogoff.C
Canvas.MoveOpaque: false

Canvas.HighLightColor: 5

The various options are explained in SROOTSYS/ . rootrc.

The . rootrc file contents are combined. For example, if the flag to use true
type fonts is set to true in one of the system. rootrc files, you have to
explicitly overwrite it and set it to false. Removing the UseTTFonts
statement in the local . rootrc file will not disable true fonts.

The Script Path

ROOT looks for scripts in the path specified in the rootrc file in the
Root.Macro.Path variable. You can expand this path to hold your own
directories.

Logon and Logoff Scripts

The rootlogon.C and rootlogoff.C files are script loaded and executed
at start-up and shutdown. The rootalias.C file is loaded but not executed.
It typically contains small utility functions. For example, the rootalias.C
script that comes with the ROOT distributions and is in the
SROOTSYS/tutorials defines the function edit (char *file). This
allows the user to call the editor from the command line. This particular

Getting Started

Draft, December 2000 - version 0.6.3 25

function will start the VI editor if the environment variable EDITOR is not set.

root

[0] edit("cl.C")

For more details, see SROOTSYS/tutorials/rootalias.C.

Converting HBOOK/PAW files

ROOT has a utility called h2root that you can use to convert your
HBOOK/PAW histograms or ntuples files into ROOT files. To use this
program, you type the shell script command:

h2root <hbookfile> <rootfile>

If you do not specify the second parameter, a file name is automatically
generated for you. If hbookfile is of the form file.hbook, then the ROOT
file will be called file.root.

This utility converts HBOOK histograms into ROOT histograms of the class
TH1F. HBOOK profile histograms are converted into ROOT profile
histograms (see class TProfile). HBOOK row-wise and column-wise
ntuples are automatically converted to ROOT Trees (see the chapter on
Trees). Some HBOOK column-wise ntuples may not be fully converted if the
columns are an array of fixed dimension(e.g. var [6]) or if they are a multi-
dimensional array.

HBOOK integer identifiers are converted into ROOT named objects by
prefixing the integer identifier with the letter "nh" if the identifier is a positive
integer and by "h_ " if it is a negative integer identifier.

In case of row-wise or column-wise ntuples, each column is converted to a
branch of a tree.

Note that h2root is able to convert HBOOK files containing several levels of
sub-directories.

Once you have converted your file, you can look at it and draw histograms or
process ntuples using the ROOT command line. An example of session is
shown below:

// this connects the file hbookconverted.root
root[] TFile f ("hbookconverted.root")

//display histogram named h10 (was HBOOK id 10)
root[] hl0.Draw() ;

//display column "var" from ntuple h30
root[] h30.Draw("var") ;

You can also use the ROOT browser (see TBrowser) to inspect this file.

The chapter on trees explains how to read a Tree. ROOT includes a function
TTree: :MakeClass to automatically generate the code for a skeleton
analysis function (see the chapter Example Analysis).

In case one of the ntuple columns has a variable length (e.g. px (ntrack)),
h.Draw ("px") will histogram the px column for all tracks in the same
histogram. Use the script quoted above to generate the skeleton function and
create/fill the relevant histogram yourself.

26

Draft, December 2000 - version 0.6.3 Getting Started

3 Histograms

This chapter covers the functionality of the histogram classes. We begin with
an overview of the histogram classes and their inheritance relationship. Then
we give instructions on the histogram features.

We have put this chapter ahead of the graphics chapter so that you can
begin working with histograms as soon as possible. Some of the examples
have graphics commands that may look unfamiliar to you. These are covered
in the chapter Graphics and the Graphical User Interface .

The Histogram Classes

ROOT supports the following histogram types:
1-D histograms:

. TH1C: are histograms with one byte per channel. Maximum bin content = 255

. TH1S: are histograms with one short per channel. Maximum bin content =
65,535

. TH1F: are histograms with one float per channel. Maximum precision 7 digits

. TH1D: are histograms with one double per channel. Maximum precision 14 digits

2-D histograms:

e TH2C: are histograms with one byte per channel. Maximum bin content = 255

e TH2S: are histograms with one short per channel. Maximum bin content = 65535
e TH2F: are histograms with one float per channel. Maximum precision 7 dig

e TH2D: are histograms with one double per channel. Maximum precision 14 digits

3-D histograms:

e TH3C: are histograms with one byte per channel. Maximum bin content = 255
e TH3S: are histograms with one short per channel. Maximum bin content = 65535
e TH3F: are histograms with one float per channel. Maximum precision 7 digits
e TH3D: are histograms with one double per channel. Maximum precision 14 digits

Profile histograms:

e TProfile: one dimensional profiles
e TProfile2D: two dimensional profiles

Profile histograms are used to display the mean value of Y and its RMS for
each bin in X. Profile histograms are in many cases an elegant replacement
of two-dimensional histograms. The inter-relation of two measured quantities
X and Y can always be visualized with a two-dimensional histogram or

Histograms

Draft, December 2000 - version 0.6.3 27

scatter-plot. If Y is an unknown but single-valued approximate function of X, it
will have greater precisions in a profile histogram than in a scatter plot.

All histogram classes are derived from the base class TH1. This image shows
the class hierarchy of the histogram classes.

THA1
A
TH1C TH1S TH1F TH1D
i
TH3 TH2 TProfile
? ?
| | | | |
TH3C TH3S TH3F TH3D TH2C TH2S TH2F TH2D
?
TProfile2D

The TH*C classes also inherit from the array class TArraycC.
The TH*S classes also inherit from the array class TArrays.
The TH*F classes also inherit from the array class TArrayF.
The TH*D classes also inherit from the array class TarrayD.

The histogram classes have a rich set of methods. Below is a list of what one
can do with the histogram classes.

Creating Histograms

Histograms are created with constructors:

TH1F *hl
*h2 = new TH2F("h2","h2 title",40,0,4,30,-3,3);

new TH1F("h1l","hl title",100,0,4.4);

The parameters to the TH1 constructor are: the name of the histogram, the
title, the number of bins, the x minimum, and x maximum.

Histograms may also be created by:

e Calling the clone method of an existing histogram (see below)
e Making a projection from a 2-D or 3-D histogram (see below)
e Reading a histogram from a file

When a histogram is created, a reference to it is automatically added to the
list of in-memory objects for the current file or directory. This default behavior
can be disabled for an individual histogram or for all histograms by setting a
global switch.

28

Draft, December 2000 - version 0.6.3 Histograms

Here is the syntax to set the directory of a histogram:

// to set the in-memory directory for h the current histogram
h->SetDirectory (0);

// global switch to disable

TH1::AddDirectory (kFALSE) ;

When the histogram is deleted, the reference to it is removed from the list of
objects in memory. In addition, when a file is closed, all histograms in
memory associated with this file are automatically deleted. See chapter
Input/Output.

Fixed or Variable Bin Size

All histogram types support fixed or variable bin sizes. 2-D histograms may
have fixed size bins along X and variable size bins along Y or vice-versa. The
functions to fill, manipulate, draw, or access histograms are identical in both
cases.

To create a histogram with variable bin size one can use this constructor:

THI1 (const char *name,const char *title,Int t nbins,Float t
*xbins)

The parameters to this constructor are:

e title: histogram title
e nbins: number of bins
e xbins: array of low-edges for each bin. This is an array of size nbins+1

Each histogram always contains three TAx1is objects: fXaxis, fYaxis,
and fzaxis. To access the axis parameters first get the axis from the
histogram, and then call the Tax1is access methods.

TAxis *xaxis = h->GetXaxis();
Double t binCenter = xaxis->GetBinCenter (bin);

See class TAx1i s for a description of all the access methods. The axis range
is always stored internally in double precision.

Bin numbering convention
For all histogram types: nbins, xlow, xup

Bin# 0 contains the underflow.

Bin# 1 contains the first bin with low-edge (x1ow INCLUDED).
The second to last bin (bin# nbins) contains the upper-edge (xup
EXCLUDED).

The Last bin (bin# nbins+1) contains the overflow.

In case of 2-D or 3-D histograms, a "global bin" number is defined. For
example, assuming a 3-D histogram with binx, biny, binz, the function
returns a global/linear bin number.

Histograms

Draft, December 2000 - version 0.6.3 29

http://root.cern.ch/root/html/ListOfTypes.html#char
http://root.cern.ch/root/html/ListOfTypes.html#Int_t
http://root.cern.ch/root/html/ListOfTypes.html#Float_t

Int t bin = h->GetBin(binx,biny,binz);

This global bin is useful to access the bin information independently of the
dimension.

Re-binning

At any time, a histogram can be re-binned via the TH1: :Rebin method. It
returns a new histogram with the re-binned contents. If bin errors were
stored, they are recomputed during the re-binning.

Filling Histograms

A histogram is typically filled with statements like:

hl->Fill (x);
hl->Fill(
h2->Fill(
h2->Fill (x,y,wW);
h3->Fill (x,vy,2);
h3->Fill(x,vy,2z,W);

x,w); //with weight

W
X,Y) 7

The rill method computes the bin number corresponding to the given x, y
or z argument and increments this bin by the given weight. The Fi11 method
returns the bin number for 1-D histograms or global bin number for 2-D and
3-D histograms. If TH1 : : Sumw2 has been called before filling, the sum of
squares is also stored.

One can also increment a bin number directly by calling
TH1::AddBinContent. Replace the existing content via
TH1::SetBinContent, and access the bin content of a given bin via
TH1::GetBinContent

Double t binContent = h->GetBinContent (bin);

Automatic Re-binning Option

By default, the number of bins is computed using the range of the axis. You
can change this to automatically re-bin by setting the automatic re-binning
option:

h->SetBit (TH1: :kCanRebin) ;

Once this is set, the Fi11 method will automatically extend the axis range to
accommodate the new value specified in the Fi11 argument. The method
used is to double the bin size until the new value fits in the range, merging
bins two by two.

This automatic binning options is extensively used by the TTree: : Draw
function when drawing histograms of variables in TTrees with an unknown
range. The automatic binning option is supported for 1-D, 2-D and 3-D
histograms.

During filling, some statistics parameters are incremented to compute the
mean value and root mean square with the maximum precision. In case of
histograms of type TH1C, TH1S, TH2C, TH2S, TH3C, TH3S acheckis
made that the bin contents do not exceed the maximum positive capacity

30

Draft, December 2000 - version 0.6.3 Histograms

(127 or 65535). Histograms of all types may have positive or/and negative bin
contents.

Random Numbers and Histograms

TH1::FillRandom can be used to randomly fill a histogram using the
contents of an existing TF1 function or another TH1 histogram (for all
dimensions). For example, the following two statements create and fill a
histogram 10000 times with a default Gaussian distribution of mean 0 and
sigma 1:

TH1F hl("hl1l","histo from a gaussian",100,-3,3);
hl.FillRandom("gaus",10000) ;

TH1: :GetRandom can be used to return a random number distributed
according the contents of a histogram.

To fill a histogram following the distribution in an existing histogram you can
use the second signature of TH1: : Fi1l1Random.

This code snipped assumes that h is an existing histogram (TH1).

root [] TH1F h2("h2","Random Histo",100,-3,3);
root [] h2->FillRandom(h,1000) ;

The distribution contained in the histogram h (TH1) is integrated over the
channel contents. It is normalized to 1. Getting one random number implies:

e Generating a random number between 0 and 1 (say r1)
e Find the bin in the normalized integral for r1
e Fill histogram channel

The second parameter (1000) indicates how many random numbers are
generated.

Adding, Dividing, and Multiplying

Many types of operations are supported on histograms or between
histograms:

Addition of a histogram to the current histogram
Additions of two histograms with coefficients and storage into the current
histogram

e Multiplications and Divisions are supported in the same way as
additions.

e The Add, Divide and Multiply functions also exist to add, divide or
multiply a histogram by a function.

If a histogram has associated error bars (TH1 : : Sumw2 has been called), the
resulting error bars are also computed assuming independent histograms. In
case of divisions, binomial errors are also supported.

Histograms Draft, December 2000 - version 0.6.3 31

Projections

One can:

e Make a 1-D projection of a 2-D histogram or Profile. See functions
TH2::ProjectionX, TH2::Projection¥Y, TH2::ProfileX,
TH2::ProfileY, TProfile::ProjectionX,

TProfile2D: :ProjectionXY

e Make a 1-D, 2-D or profile out of a 3-D histogram see functions

TH3::ProjectionZ, TH3::Project3D.

One can fit these projections via: TH2: : FitSlicesX,
TH2::FitSlicesY, TH3::FitSlicesZ.

Drawing Histograms

When you call the Draw method of a histogram (TH1 : : Draw) for the first
time, it creates a THistPainter object and saves a pointer to painter as a
data member of the histogram. The THistPainter class specializes in the
drawing of histograms. It is separate from the histogram so that one can have
histograms without the graphics overhead, for example in a batch program.
The choice to give each histogram have its own painter rather than a central
singleton painter, allows two histograms to be drawn in two threads without
overwriting the painter's values.

When a displayed histogram is filled again, you do not have to call the Draw
method again. The image is refreshed the next time the pad is updated. A
pad is updated after one of these three actions:

e A carriage control on the ROOT command line
e Aclick inside the pad
e Acallto TPad: :Update

By default, a call to TH1 : : Draw clears the pad of all objects before drawing
the new image of the histogram. You can use the "SAME" option to leave the
previous display in tact and superimpose the new histogram. The same
histogram can be drawn with different graphics options in different pads.

When a displayed histogram is deleted, its image is automatically removed
from the pad.

To create a copy of the histogram when drawing it, you can use
TH1::DrawClone. This will clone the histogram and allow you to change
and delete the original one without affecting the clone.

Setting the Style

Histograms use the current style (gStyle). When you change the current
style and would like to propagate the change to a previously created
histogram you can call TH1: : UseCurrentStyle. You will need to call
UseCurrentStyle on each histogram.

When reading many histograms from a file and you wish to update them to
the current style you can use gROOT: : ForceStyle and all histograms read
after this call will be updated to use the current style.

When a histogram is automatically created as a result of a TTree: : Draw,
the style of the histogram is inherited from the tree attributes and the current

32

Draft, December 2000 - version 0.6.3 Histograms

Options

style is ignored. The tree attributes are the ones set in the current TStyle at
the time the tree was created. Currently there is no way to force an existing

tree to use the current style, but this feature will be added shortly.DraW

The following draw options are supported on all histogram classes:

e "AXIS™
"HIST™

"SAME":
"CYL"
"POL"
"SPH":
"PSR":
"LEGO™

"SURF":

"LEGO1™:
"LEGO2":

"SURF1"
"SURF2"
"SURF3"
"SURF4":

Draw only the axis

Draw only the histogram outline (if the histogram has errors,
they are not drawn)

Superimpose on previous picture in the same pad

Use cylindrical coordinates

Use polar coordinates

Use spherical coordinates

Use pseudo-rapidity/phi coordinates

Draw a lego plot with hidden line removal

Draw a lego plot with hidden surface removal

Draw a lego plot using colors to show the cell contents
Draw a surface plot with hidden line removal

Draw a surface plot with hidden surface removal

Draw a surface plot using colors to show the cell contents
Same as SURF with a contour view on the top

Draw a surface plot using Gouraud shading

The following options are supported for 1-D histogram classes:

"AH":
"B":
"C"
"E"
"EO™
"E1™
"E2™
"E3™

° llE4|l:

|ILII:
llPll:

° "*H":

Draw the histogram, but not the axis labels and tick marks
Draw a bar chart

Draw a smooth curve through the histogram bins

Draw the error bars

Draw the error bars including bins with O contents

Draw the error bars with perpendicular lines at the edges
Draw the error bars with rectangles

Draw a fill area through the end points of the vertical error
bars

Draw a smoothed filled area through the end points of the
error bars

Draw a line through the bin contents

Draw a (Poly) marker at each bin using the histogram's
current marker style

Draw histogram with a * at each bin

The following options are supported for 2-D histogram classes:

« "ARR":

« "BOX"

« "COL"

¢ "COLZ":
« "CONT"
« "CONTO"
« "CONT1"
+ "CONT2"
+ "CONT3"

Arrow mode. Shows gradient between adjacent cells

Draw a box for each cell with surface proportional to contents
Draw a box for each cell with a color scale varying with
contents

Same as "CcoL" with a drawn color palette

Draw a contour plot (same as CONTO0)

Draw a contour plot using surface colors to distinguish
contours

Draw a contour plot using line styles to distinguish contours
Draw a contour plot using the same line style for all contours
Draw a contour plot using fill area colors

Histograms

Draft, December 2000 - version 0.6.3 33

e "CONT4": Draw a contour plot using surface colors (SURF option at

theta = 0)

o "LIST™ Generate a list of TGraph objects for each contour

e "FB"™ To be used with LEGO or SURFACE, suppress the Front-
Box

e "BB"™ To be used with LEGO or SURFACE, suppress the Back-
Box

e "SCAT": Draw a scatter-plot (default)

Most options can be concatenated without spaces or commas, for example:

h->Draw ("E1SAME") ;

The options are not case sensitive:

h->Draw ("elsame") ;

The options BOX, COL and COLZ, use the color palette defined in the current
style (see TStyle: :SetPalette)

The options CONT, SURF, and LEGO have by default 20 equidistant contour
levels, you can change the number of levels with TH1: : SetContour.

You can also set the default drawing option with TH1 : : SetOption. To see
the current option use TH1: : GetOption.

Statistics Display

By default, drawing a histogram includes drawing the statistics box. To
eliminate the statistics box use: TH1: :SetStats (kFALSE) .

If the statistics box is drawn, you can select the type of information displayed
with gStyle->SetOptStat (mode) . The mode has up to seven digits that
can be set to on (1) or off (0). Mode = iourmen (default = 0001111)

the name of histogram is printed
the number of entries printed

the mean value printed

the root mean square printed

the number of underflows printed
the number of overflows printed
the integral of bins printed

RS L L (I U I UL U N

[]
O € 8 3 03

When trailing digits is left out, they are assumed 0. For example:

gStyle->SetOptStat (11);

This displays only the name of histogram and the number of entries.

When the option "same" is used, the statistic box is not redrawn; and hence
the statistics from the previously drawn histogram will still show. With the
option "sames", you can rename a previous "stats" box and/or change its
position with these lines:

34

Draft, December 2000 - version 0.6.3 Histograms

[]TPaveStats *st = (TPaveStats*)gPad->GetPrimitive ("stats")
[]1st->SetName (newname)
root[]st->SetX1NDC (newxl); //new x start position
[1st->SetX2NDC (newx2); //new x end position
[Inewhist->Draw ('"sames")

Setting Line, Fill, Marker, and Text Attributes

The histogram classes inherit from the attribute classes: TAttLine,
TAttFill, TAttMarker and TAttText. See the description of these
classes for the list of options.

Setting Tick Marks on the Axis

The TPad: : SetTicks method specifies the type of tick marks on the axis.
Assume tx = gPad->GetTickx () and ty = gPad->GetTicky() .

e tx =1;tick marks on top side are drawn (inside)

e tx =2;tick marks and labels on top side are drawn

e ty =1, tick marks on right side are drawn (inside)

e ty =2;tick marks and labels on right side are drawn

e By default only the left Y axis and X bottom axis are drawn (tx = ty =
0)

Use TPad: :SetTicks (tx, ty) to setthese options. See also The TAxis
methods to set specific axis attributes. In case multiple color filled histograms
are drawn on the same pad, the fill area may hide the axis tick marks. One
can force a redraw of the axis over all the histograms by calling:

gbPad->RedrawAxis () ;

Giving Titles to the X, Y and Z Axis

Because the axis title is an attribute of the axis, you have to get the axis first
and then call TAxis: :SetTitle.

h->GetXaxis () ->SetTitle ("X axis title");
h->GetYaxis () ->SetTitle ("Y axis title");

The histogram title and the axis titles can be any TLatex string. The titles are
part of the persistent histogram.

The SCATter Plot Option

By default, 2D histograms are drawn as scatter plots. For each cell (i, j) a
number of points proportional to the cell content is drawn. A maximum of 500
points per cell are drawn. If the maximum is above 500 contents are
normalized to 500.

Histograms Draft, December 2000 - version 0.6.3 35

The ARRow Option

The ARR option shows the gradient between adjacent cells. For each cell (i,j)
an arrow is drawn. The orientation of the arrow follows the cell gradient

The BOX Option

For each cell (i,j) a box is drawn with surface proportional to contents.

The ERRor Bars Options

e 'E Default. Draw only the error bars, without markers
e 'EOQ Draw also bins with 0 contents
e 'ET Draw small lines at the end of the error bars
o 'E2 Draw error rectangles
o 'E3 Draw a fill area through the end points of the vertical error
bars
o 'E4 Draw a smoothed filled area through the end points of the
error bars
| This is the total distribution | intal
Hent - 30000
Mean - -D0.643764
00 RM3 - 14162
350
300
250
200
150
100
=0
UEIIII'IIII'IIII

-4 -3 -2

36 Draft, December 2000 - version 0.6.3 Histograms

The COLor Option

For each cell (i,j) a box is drawn with a color proportional to the cell content.
The color table used is defined in the current style (gStyle). The color
palette in TStyle can be modified with TStyle: :SetPalette.

[xygaus + xygausi5) + xylandaui10) | [xygaus + xygausi5) + xylandaui10)

LTS

-
f
o -
&

[xygaus + xygausi5) + mlandau(10)

a———————————— | ARR '—

("]
TrrTT

S s e a i
O T o .
| T T T T T S S E . g
> -~ * % =~ % 1 & & i s s s s or " "
e . .
T .-
D L T T T T PO
e . PO
P o
- L T S
L R A
A ' — e
- P P ——_— % — -
- % oh - - ERP R A W M
___________ o s -
B L L T L e T T T a
QP =S A A Y S P
-4 -3 -2 -1 [} 1 2 3 4

Histograms Draft, December 2000 - version 0.6.3 37

The TEXT Option

For each cell (i, j) the cell content is printed. The text attributes are:

Text font
Text size
Text color = marker color

= current TStyle font

= 0.02* pad-height * marker-size

Xygaus + xygaus(5) + xylandau(10)

4 —0 22 16 20 29 :36 26 26 2T 20 :2 20 13 14 : :
22w W 43 64 62 65 71 63 43 iS6 32 3 23 139 M 3 & 2
G Doz 6 68122 1365120140 142 14883 8262 50—+ 3223 A5 B G S A
86 112 146 168 185 212 210 211 213 161 (162 123 9D TG 42 (34 19 11 & 3
124 176 213 218 249294 321 293 262 243 196 159 133 100 61 39 39 15 8 8
2 47 165 229 278 333 (370 353 3E4 314 307 (220 168 118 106 83 (S0 36 20 12 5
[422 205 261 279 376 382 379 35 36 320 2T 217 15T 120 79 (60 3B 18 M0 7
4 448 145 232308 316 5316350339314 284 1230 482136 401 63 6035 AT T
L103 139 181 231 241 1280 269 280 241 195 176 148 106 T 42 38 2 7 T &
L6088 143 143 184 153 187 162 180 136 117 88 7T 45 51 .23 18 10 5 1
0 ; 43 T 4 1001041181021{493 ?459 ST 4“ 33 2713 11 9 4 5
13 23 ® 67 97 77 85 S5 58 45 45 20 3 20 13 .1 16 15 5 1
) SRR SR SN SR PRSI SRS SO ST
3 19 56 62 69 : 73 60 67 4T 45 i 27 22 58 143 216 :210 122 3 9 &
3 2 53 75 10487 95 9 4T 4 (42 35 G0 209 394395 220 55 15 14
ST e T e T e e e Ty e e
44 58 146 202 248 (260 201 196 144 120 .95 75 92 161 260 (233 121 51 30 25
_3:,4 80 481297 3425333306 264 206162~ 14240695109 4058970 4T 4144 -
10 64 138 203 195 214 188 148 16 12.82 T2 M T 0 % 27 23 23 14
-4_|I:flq.ll'iill*iqI-{I:il‘*ll*i?rlqlérlqlqi%l?rlill||
4 -3 -2 1 0 1 2 3 4

38

Draft, December 2000 - version 0.6.3

Histograms

The CONTour Options

The following contour options are supported:

"CONT™": Draw a contour plot (same as CONTO)

"CONTO": Draw a contour plot using surface colors to distinguish contours
"CONT1": Draw a contour plot using line styles to distinguish contours
"CONT2": Draw a contour plot using the same line style for all contours
"CONT3": Draw a contour plot using fill area colors

"CONT4": Draw a contour plot using surface colors (SURF option at theta = 0)

The default number of contour levels is 20 equidistant levels and can be
changed with TH1: : SetContour.

When option "LIST" is specified together with option "CONT", the points used
to draw the contours are saved in the TGraph object and are accessible in
the following way:

TObjArray *contours =
gROOT->GetListOfSpecials () ->FindObject ("contours")

Int t ncontours = contours->GetSize();

TList *list = (TList*)contours->At (i) ;

Where "i" is a contour number and list contains a list of TGraph objects.
For one given contour, more than one disjoint poly-line may be generated.
The number of TGraphs per contour is given by 1ist->GetSize () . Here
we show how to access the first graph in the list.

TGraph *grl = (TGraph*)list->First();

[xygaus + xygaus(5) + mlandau(10) | [xygaus + xygaus(5) + mlandau(10) |

e CONTZ .40 4 i i i — : CONT1 '_
af-] e e N
C —135i : : : :

z;_ _'30 | R e v P SO
1;_ —_ZE 15_
“; ol “;
1;] - 1;_ = S e
zz _zz_] kL
3 3 S e : =
N T W e ey PR R T e — |....|..m
4 -3 2 4 3 2 1 L] 1 2 3 4

f

-
i

-

-1 0 1 2 3

[__xygaus + xygaus(5) + xandau(10) | |

R — - e CONT2I

4 3 -2 0 2

B EHEERAERA i L nur

T4 -3 -2 -1 0 1 3

4 4

Histograms Draft, December 2000 - version 0.6.3 39

The LEGO Options

In a lego plot, the cell contents are drawn as 3-d boxes, with the height of the
box proportional to the cell content. A lego plot can be represented in several
coordinate systems; the default system is Cartesian coordinates. Other

possible coordinate systems are CYL, POL, SPH, and PSR.

e "LEGO"™ Draw alego plot with hidden line removal
e "LEGO1"™ Draw a lego plot with hidden surface removal
e "LEGO2": Draw alego plot using colors to show the cell contents

See TStyle: :SetPalette to change the color palette. We suggest you

use palette 1 with the call

gStyle->SetColorPalette (1) ;

[xygaus + xygaus(5) + xandau({10) |

[xygaus + xygaus(5) + xandau({10) |

[xygaus + xygaus(5) + xandau({10) |

SURF1POL

| xygaus + xygaus(5) + xandau{10) |

SURF1CHL

40 Draft, December 2000 - version 0.6.3

Histograms

The SURFace Options

In a surface plot, cell contents are represented as a mesh. The height of the
mesh is proportional to the cell content. A surface plot can be represented in
several coordinate systems. The default is Cartesian coordinates, and the
other possible systems are CYL, POL, SPH, and PSR.

"SURF":

"SURF1"
"SURF2"
"SURF3"
"SURF4":

Draw a surface plot with hidden line removal

Draw a surface plot with hidden surface removal

Draw a surface plot using colors to show the cell contents
Same as SURF with a contour view on the top

Draw a surface plot using Gouraud shading

The following picture uses SURF1. See TStyle: :SetPalette to change
the color palette. We suggest you use palette 1 with the call:

gStyle->SetColorPalette (1) ;

[xwgaus + xygaus(5) + xyandau({10) |

3

\v‘
|

v
(A

|“\‘\‘ I

[xygaus + xygaus(5) + xylandau{10) |

Histograms

Draft, December 2000 - version 0.6.3 41

The Z Option: Display the Color Palette on the

Pad

For the options BOX, COL, CONT, SURF, and LEGO you can display the
color palette with an axis indicating the value of the corresponding color.

Setting the color palette

You can set the color palette with TStyle: :SetPalette, e.g.

gStyle->SetPalette (ncolors,colors) ;

For example, the option COL draws a 2-D histogram with cells represented by
a box filled with a color index, which is a function of the cell content. If the cell
content is N, the color index used will be the color number in colors [N]. If
the maximum cell content is greater than ncolors, all cell contents are
scaled to ncolors.

If ncolors <= 0, a default palette (see below) of 50 colors is defined. This
palette is recommended for pads, labels.

Ifncolors == 1 && colors == 0, a pretty palette with a violet to red
spectrum is created. We recommend you use this palette when drawing lego
plots, surfaces, or contours.

If ncolors > 0andcolors == 0, the default palette is used with a
maximum of ncolors.

The default palette defines:

Index 0 to 9: shades of gray
Index 10 to 19: shades of brown
Index 20 to 29: shades of blue
Index 30 to 39: shades of red
Index 40 to 49: basic colors

The color numbers specified in the palette can be viewed by selecting the
item "colors" in the "VIEW" menu of the canvas toolbar. The color's red,
green, and blue values can be changed via TColor: : SetRGB.

Drawing Options for 3-D Histograms

By default a 3-d scatter plot is drawn. If the "BOX" option is specified, a 3-D
box with a volume proportional to the cell content is drawn.

42

Draft, December 2000 - version 0.6.3 Histograms

Superimposing Histograms with Different
Scales

The following script creates two histograms; the second histogram is the bins
integral of the first one. It shows a procedure to draw the two histograms in
the same pad and it draws the scale of the second histogram using a new
vertical axis on the right side.

void twoscales () {
TCanvas *cl = new TCanvas ("cl","hists with different
scales",600,400);

//create, fill and draw hl

gStyle->SetOptStat (kFALSE) ;

TH1F *hl = new TH1F("h1l","my histogram",100,-3,3);
Int_t i;

for (i=0;i<10000;i++) hl->Fill (gRandom->Gaus (0,1));
hl->Draw() ;

cl->Update () ;

//create hintl filled with the bins integral of hl
TH1F *hintl = new TH1F ("hintl","hl bins integral",100,-3,3);
Float t sum = 0;
for (i=1;1<=100;1i++) {
sum += hl->GetBinContent (i) ;
hintl->SetBinContent (i, sum) ;

}

//scale hintl to the pad coordinates
Float t rightmax = 1l.l1*hintl->GetMaximum()
Float t scale = gPad->GetUymax()/rightmax;
hintl->SetLineColor (kRed) ;

hintl->Scale (scale);

hintl->Draw ("same") ;

//draw an axis on the right side
TGaxis *axis = new TGaxis (gPad->GetUxmax (), gPad->GetUymin (),
gPad->GetUxmax (),
gPad->GetUymax (), 0, rightmax, 510, "+L") ;
axis->SetLineColor (kRed) ;
axis->SetTextColor (kRed) ;
axis->Draw () ;

my histogram |

250 — 10000

200 — —|8000

150 — 6000

100 — 4000

50— 2000

3 2 -1 0 1 2 3

Histograms Draft, December 2000 - version 0.6.3 43

Making a Copy of an Histogram

Like for any other ROOT object derived from TObject, one can use the
Clone method. This makes an identical copy of the original histogram
including all associated errors and functions:

TH1F *hnew = (TH1F*)h->Clone();

hnew->SetName ("hnew") ;

// renaming is recommended, because otherwise you will
// have 2 histograms with the same name.

Normalizing Histograms

You can scale a histogram (TH1 *h) such that the bins integral is equal to the
normalization parameter norm with:

Double t scale = norm/h->Integral () ;
h->Scale (scale);

Saving/Reading Histograms to/from a file

The following statements create a ROOT file and store a histogram on the
file. Because TH1 derives from TNamed, the key identifier on the file is the
histogram name:

TFile f("histos.root","new");

TH1F hl ("hgaus","histo from a gaussian",100,-3,3);
hl.FillRandom("gaus",10000) ;

hl->Write () ;

To read this histogram in another ROOT session, do:

TFile f("histos.root");
TH1F *h = (TH1F*)f.Get ("hgaus");

One can save all histograms in memory to the file by:

file->Write () ;

For a more detailed explanation, see chapter Input/Output

Miscellaneous Operations

e THI1::KolmogorovTest () : statistical test of compatibility in shape
between two histograms.

e THI1::Smooth () : smoothes the bin contents of a 1-d histogram

e THI1::Integral: returns the integral of bin contents in a given bin
range

44 Draft, December 2000 - version 0.6.3 Histograms

e THI1::GetMean (int axis) :returns the mean value along axis

e THI::GetRMS (int axis) :returns the Root Mean Square along axis
e HIl::GetEntries () : returnsthe number of entries

e THI::Reset () : resets the bin contents and errors of a histogram

Histograms Draft, December 2000 - version 0.6.3 45

4 Graphs

A graph is a graphics object made of two arrays X and Y, holding the x, y
coordinates of n points. There are several graph classes, they are: TGraph,
TGraphErrors, TGraphAsymmErrors, and TMultiGraph.

TGraph

The TGraph class supports the general case with non equidistant points, and
the special case with equidistant points.

Creating Graphs

Graphs are created with the constructor. Here is an example. First we define
the arrays of coordinates and then create the graph. The coordinates can be
arrays of doubles or floats.

}

Int t n = 20;
Double t x([n],

for (Int_t i=0;i<n;i++) {
x[1] = 1*0.1;
y[i] = 10*sin(x[1]+0.2);

TGraph * grl =

yInl;

new TGraph (n, x, Vy);

An alternative constructor takes only the number of points (n). It is expected
that the coordinates will be set later.

TGraph *gr2 =

new TGraph (n);

Graph Draw Options

The various draw options for a graph are explained in
TGraph: : PaintGraph. They are:

- "L A simple poly-line between every points is drawn

- "F" Afill area is drawn

- A" Axis are drawn around the graph

- "c" A smooth curve is drawn

- A star is plotted at each point

- "P" The current marker of the graph is plotted at each point
- "B" A bar chart is drawn at each point

Graphs

Draft, December 2000 - version 0.6.3 47

http://root.cern.ch/root/htmldoc/ListOfTypes.html#point
http://root.cern.ch/root/htmldoc/ListOfTypes.html#point

The options are not case sensitive and they can be concatenated in most
cases.

Let's look at some examples.

Continuous line, Axis and Stars (AC¥)

@Elaph Draw Options - (O] x|
File Edit “iew Options |nspect Classes Help
Graph |

10

[}
[TTT III|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

L1 04 0.6 0.4 1 1.2 14 1.6 1.4 a

=

Int t n = 20;
Double t x[n], y[n];

for (Int_t i1=0;i<n;i++) {
x[1] = 1%0.1;
y[i] = 10*sin(x[1]+0.2);
}

// create graph
TGraph *gr = new TGraph(n,x,Vy);

TCanvas *cl = new TCanvas ("cl","Graph Draw Options",

200, 10, 600, 400);

// draw the graph with axis,contineous line, and
// put a * at each point
gr->Draw ("AC*") ;

48

Draft, December 2000 - version 0.6.3 Graphs

Bar Graphs (AB)

File Edit Wiew Options Inspect Classes Help
Graph
0E
aE
af-
7E
(4=8
SE-
af-
aE.
2d
- L L L 1 1 1 1 1
a 0.2 04 06 0.8 1 1.2 1.4 1.6 1.8 Z

root
root
root

[] TGraph *grl = new TGraph(n,x,y)
[] grl->SetFillColor (40) ;
[1] grl->Draw ("AB") ;

This code will only work if n, x, and y are defined. The previous example
defines these.

You need to set the fill color, because by default the fill color is white and will
not be visible on a white canvas. You also need to give it an axis, or the bar
chart will not be displayed properly.

Filled Graphs (AF)

@Elaph Draw Options H=] 3
File Edit ¥iew Options Inspect Classes Help

Graph |

10

-
=
P
)
L
=
&=
e
[=-}
o
a
ra
-
S
-
=
-t
i
n

root
root
root

[] TGraph *gr3 = new TGraph(n,x,y)
[] gr3->SetFillColor (45) ;
[] gr3->Draw("AF")

This code will only work if n, x, and y are defined. The first example defines
these.

You need to set the fill color, because by default the fill color is white and will
not be visible on a white canvas. You also need to give it an axis, or the bar
chart will not be displayed properly.

Currently one can not specify the "CF" option.

Graphs

Draft, December 2000 - version 0.6.3 49

Marker Options

@Glaph Draw Options _ 0] %]
File Edit ¥iew Options Inspect Classes Help
Graph |

10

Int t n = 20;
Double t x[n], y[n];

// build the arrays with the coordinate of points
for (Int_t i=0;i<n;i++) {

x[1] = 1i*0.1;

y[i] = 10*sin(x[1]+0.2);
}

// create graphs
TGraph *gr3 = new TGraph(n,x,y);

TCanvas *cl = new TCanvas ("cl","Graph Draw Options",
200,10, 600, 400);

// draw the graph with the axis,contineous line, and put
// a marker using the graph's marker style at each point
gr3->SetMarkerStyle (21);

cl->cd(4);

gr3->Draw ("APL") ;

// get the points in the graph and put them into an array
Double t *nx = gr3->GetX();
Double t *ny = gr3->GetY();

// create markers of different colors
for (Int t j=2;j<n-1;j++) {
TMarker *m = new TMarker (nx[]j], 0.5*ny[7j],22);
m->SetMarkerSize (2) ;
m->SetMarkerColor (31+7);
m->Draw () ;

50

Draft, December 2000 - version 0.6.3 Graphs

Superimposing two Graph

To super impose two graphs you need to draw the axis only once, and leave
out the "A" in the draw options for the second graph. Here is an example:

@Two Graphs |- [O] x]
Eile Edit Wiew Options Inspect Classes Help
Graph |

=
']
£
[}
-]
=
=]

gROOT->Reset () ;
Int t n = 20;
Double t x[n], y[n], x1[n], yl[n];

// create the blue graph with a cos function
for (Int_t i=0;i<n;i++) {

x[1] = 1*0.5;
y[i] = 5*cos(x[1]4+0.2);
x1[i] = 1*0.5;
yl[i] = 5*sin(x[1i]+0.2);

}

TGraph *grl = new TGraph(n,x,vy);
TGraph *gr2 = new TGraph(n,x1,vyl);

TCanvas *cl = new TCanvas ("cl","Two Graphs" , 200,
10, 600, 400);

// draw the graph with axis,contineous line, and
// put a * at each point

grl->SetLineColor (4);

grl->Draw ("AC*");

// superimpose the second graph by leaving out
// the axis option "A"

gr2->SetLineWidth (3) ;

gr2->SetMarkerStyle (21);

gr2->SetLineColor (2);

gr2->Draw ("CP") ;

Graphs Draft, December 2000 - version 0.6.3 51

TGraphErrors

A TGraphErrors is a TGraph with error bars. The various format options to
draw a TGraphErrors are the same for TGraph. In addition, it can be
drawn with the "Z" option to leave off the small lines at the end of the error

bars.
@A Simple Graph with error bars = B3 @A Simple Graph with error bars =1
File Edit View Options Inspect Classes Help File Edit ¥iew Options Inspect Classes Help

10

TCGraphErrors Example | TGraghErrors Example |

10

The constructor has four arrays as parameters. X and Y as in TGraph and X-
errors and Y-errors the size of the errors in the x and y direction.

This example is in SROOTSYS/tutorials/gerrors.C.

bars",200,10,700,500) ;

gROOT->Reset () ;

cl = new TCanvas("cl","A Simple Graph with error

cl->SetFillColor (42);
cl->SetGrid () ;
cl->GetFrame () ->SetFillColor (21);
cl->GetFrame () ->SetBorderSize (12) ;

// create the coordinate arrays

Int t n = 10;

Float t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Float t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

// create the error arrays
Float t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Float t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

// create the TGraphErrors and draw it
gr = new TGraphErrors(n,x,y,ex,ey);
gr->SetTitle ("TGraphErrors Example");
gr->SetMarkerColor (4) ;
gr->SetMarkerStyle (21);
gr->Draw ("ALP") ;

cl->Update () ;

52

Draft, December 2000 - version 0.6.3 Graphs

TGraphAsymmErrors

@A Simple Graph with error bars

File Edit Wiew Options Inspect Classes

A TGraphAsymmErrors is a

=0l TGraph with asymmetric error

Help

| TGraphAsymmErrors Example |

bars. The various format options
to draw a

10

TGraphAsymmErrors are as
for TGraph.

The constructor has six arrays
as parameters. Xand Y as
TGraph and low X-errors and
high X-errors, low Y-errors and
high Y-errors. The low value is
the length of the error bar to the
left and down, the high value is
the length of the error bar to the
right and up.

gROOT->Reset () ;
cl = new TCanvas ("cl","A Simple Graph with error bars",

cl->SetFillColor (42);

cl->SetGrid ()
cl->GetFrame (
cl->GetFrame (

// create the arrays for the points

Int t n = 10;
Double t x([n]
Double t y[n]

// create the
Double t exl([n]
Double t eyl[n]
Double t exhl[n]
Double t eyh[n]

// create TGraphAsymmErrors with the arrays

gr = new TGraphAsymmErrors (n,x,y,exl,exh,eyl,evh);
gr->SetTitle ("TGraphAsymmErrors Example");
gr->SetMarkerColor (4);

gr->SetMarkerStyle (21);

gr->Draw ("ALP") ;

)
)

200,10,700,500) ;

->SetFillColor (21);
->SetBorderSize (12) ;

{-.22,.05,.25,.35,.5, .61,.7,.85,.89,.95};
{(1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

arrays with high and low errors
= {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
{.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
= {.02,.08,.05,.05,.03,.03,.04,.05,.06,.03};
{.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};

Graphs

Draft, December 2000 - version 0.6.3 53

TMultiGraph

A TMultiGraph is a collection of TGraph (or derived) objects. Use
TMultiGraph: :Add to add a new graph to the list. The TMultiGraph
owns the objects in the list. The drawing options are the same as for TGraph.

File Edit ¥iew Opfions Inspect Classes Help

Q | | | | | | |
-1 -02-05 0 Q02 0G4 04 0.481.5 1 2

// create the points

Int t n = 10;

Double t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Double t y[n] {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

Double t x2([n] = {-.12,.15,.35,.45,.6,.71,.8,.95,.99,1.05};
Double t y2([n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

// create the width of errors in x and y direction
Double t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Double t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

// create two graphs
TGraph *grl = new TGraph(n,x2,y2);
TGraphErrors *gr2 = new TGraphErrors(n,x,y,ex,ey);

// create a multigraph and draw it
TMultiGraph *mg = new TMultiGraph();
mg->Add (grl) ;

mg->Add (gr2) ;

mg->Draw ("ALP") ;

Fitting a Graph

The rit method of the graph works the same as the TH1::Fit (see Fitting
Histograms).

54 Draft, December 2000 - version 0.6.3 Graphs

Setting the Graph's Axis Title

To give the axis of a graph a title you need to draw the graph first, only then
does it actually have an axis object. Once drawn, you set the title by getting
the axis and calling the TAxis: :SetTitle method, and if you want to
center it you can call the TAxis: :CenterTitle method.

Assuming that n, x, and y are defined, this code sets the titles of the x and y
axes.

root
root

root
root
root
root
root
root

<TCanvas: :MakeDefCanvas>: created default TCanvas with name cl

[] gr5 = new TGraph(n,x,y):
[] gr5->Draw()

[] gr5->Draw ("ALP")

] gr5->GetXaxis ()->SetTitle ("X-Axis")
] gr5->GetYaxis()->SetTitle("Y-Axis")
] gr5->GetXaxis () ->CenterTitle()

] gr5->GetYaxis () ->CenterTitle()

]

[
[
[
[
[] gr5->Draw("ALP")

[c1 - [O[x]
File Edit Miew Options Inspect Classes Help
Graph

10

Y - Ais
-
II|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

T N N A A
g 02 04 06 048 1
- B

M S I WA
12 14 16 18 2
is

For more graph examples see: these scripts in the SROOTSYS/tutorials
directory graph.C, gerrors.C, zdemo.C, and gerrors2.C

Zooming a Graph

To zoom a graph you can create a histogram with the desired axis range first.
Draw the empty histogram and then draw the graph using the existing axis
from the histogram.

The example below is the same graph as above with a zoom in the x and y
direction.

Graphs

Draft, December 2000 - version 0.6.3 55

gROOT->Reset () ;
cl = new TCanvas("cl","A Zoomed Graph",200,10,700,500);

// create a histogram for the axis range
hpx = new TH2F
("hpx","Zoomed Graph Example",10, 0,0.5,10,1.0,8.0);
// no statistics
hpx->SetStats (KFALSE) ;
hpx->Draw () ;

// create a graph

Int t n = 10;

Double t x[n] {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Double t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

gr = new TGraph(n,x,vy):

gr->SetMarkerColor (4);

gr->SetMarkerStyle (20) ;

// and draw it without an axis

gr->Draw ("LP") ;

@A Zoomed Graph =]

File Edit Miew Options Inzpect Classes Help

| Zoomed Graph Cxample |
Ll

FEPEPI IEUE RSP BRI SRR ST AT BT R S
0 005 01 015 02 025 03 035 04 045 03

-1 P
IIII|II

56

Draft, December 2000 - version 0.6.3 Graphs

5 Fitting Histograms

To fit a histogram you can use the Fit Panel on a visible histogram using the
GUI, or you can use the TH1 : : Fit method. The Fit Panel, which is limited, is
best for prototyping. The histogram needs to be drawn in a pad before the Fit
Panel is available. The TH1: : Fit method is more powerful and used in
scripts and programs.

The Fit Panel

[T3R_fitpanel: hpx To display the Fit Panel right click on a histogram
to bring up the context menu, then select the menu

m m m m m option: FitPanel.
The first sets of buttons are the predefined
ol7 ola
m m m functions of ROOT that can be used to fit the
m m m histograr_n. You have a choice of several
polynomials, a gaussian, a landau, and an
Ii Ii Ii exponential function. You can also define a
function and call it "user". It will be linked to the
W: Set all weights to 1 user button on this panel.
: You have the option to specify Quiet or Verbose.
This is the amount of feedback printed on the root
command line on the result of the fit.

When a fit is executed the image of the function is
drawn on the current pad. By default the image of
the histogram is replaced with the image of the
function. Select Same Picture to see the function
drawn and the histogram on the same picture.

Select W: Set all weights to 1, to set all errors to 1.

Select E: Compute best errors to use the Minos
technique to compute best errors.

When fitting a histogram, the function is attached
to the histogram's list of functions. By default the
previously fitted function is deleted and replaced with the most recent one, so
the list only contains one function. You can select + : Add to list of functions
to add the newly fitted function to the existing list of functions for the
histogram. Note that the fitted functions are saved with the histogram when it
is written to a ROOT file.

By default, the function is drawn on the pad displaying the histogram. Select
N: Do not store/draw function to avoid adding the function to the histogram
and to avoid drawing it.

Select 0: Do not draw function to avoid drawing the result of the fit.

Fitting Histograms Draft, December 2000 - version 0.6.3 57

Select L: Log Likelihood to use loglikelihood method (default is chisquare
method).

The slider at the bottom of the panel allows you to set a range for the fit. Drag
the edges of the slider towards the center to narrow the range. Draw the
entire range to change the beginning and end.

To returns to the original setting, you need press Defaults.

To apply the fit, press the Fit button.

The Fit Method

To fit a histogram programmatically, you can use the TH1: : Fit method.
Here is the signature of TH1: : Fit and an explanation of the parameters:

void Fit (const char *fname , Option_t *option , Option t
*goption, Axis t xxmin, Axis t xxmax)

* fname : The name of the fitted function (the model) is passed as the first
parameter. This name may be one of the of ROOT's pre-defined function
names or a user-defined function.

The following functions are predefined, and can be used with the TH1::Fit
method.

e gaus: A gaussian function with 3 parameters:
f(x) = pO*exp(-0.5* ((x-pl)/p2)"2))
e expo: An exponential with 2 parameters:
f(x) = exp(p0+tpl*x).
e polN: A polynomial of degree N:
f(x) = p0 + p1*x + p2*x*2 +...
e landau: A landau function with mean and sigma. This function has
been adapted from the CERNLIB routine G110 denlan.

*option: The second parameter is the fitting option. Here is the list of fitting
options:

- "W Set all errors to 1

- Use integral of function in bin instead of value at bin center

- "L Use loglikelihood method (default is chisquare method)

- "t Use a user specified fitting algorithm

- "Q" Quiet mode (minimum printing)

A Verbose mode (default is between Q and V)

- "E" Perform better errors estimation using Minos technique

- "M" Improve fit results

- "R" Use the range specified in the function range

- "N" Do not store the graphics function, do not draw

- "o" Do not plot the result of the fit. By default the fitted function is
drawn unless the option "N" above is specified.

- "+ Add this new fitted function to the list of fitted functions (by default,

the previous function is deleted and only the last one is kept)
*goption: The third parameter is the graphics option (goption), itis the
same as in the TH1::Draw (see Draw Options above) .

xxmin, xxmax: The fourth and fifth parameters specify the range over
which to apply the fit

58

Draft, December 2000 - version 0.6.3 Fitting Histograms

http://root.cern.ch/root/htmldoc/ListOfTypes.html#Option_t
http://root.cern.ch/root/htmldoc/ListOfTypes.html#Axis_t

By default, the fitting function object is added to the histogram and is drawn in
the current pad.

Fit with a Predefined Function

To fit a histogram with a predefined function, simply pass the name of the
function in the first parameter of TH1: : Fit. For example, this line fits
histogram object hist with a gaussian.

root[] hist.Fit("gaus") ;

For pre-defined functions, there is no need to set initial values for the
parameters, it is done automatically.

Fit with a User- Defined Function

You can create a TF1 object and use it in the call the TH1: :Fit. The
parameter in to the Fit method is the NAME of the TF1 object.

There are three ways to create a TF1.

1. Using C++ like expression using x with a fixed set of operators and
functions defined in TFormula.

Same as #1, with parameters

Using a function that you have defined

Creating a TF1 with a Formula

Let's look at the first case. Here we call the TF1 constructor by giving it the
formula: sin (%) /x.

root[] TF1 *fl1 = new TF1("£f1", "sin(x)/x", 0,10)

You can also use a TF1 object in the constructor of another TF1.

root[] TF1 *£f2 = new TFl("£2", "£f1 * 2", 0,10)

Creating a TF1 with Parameters

The second way to construct a TF1 is to add parameters to the expression.
For example, this TF1 has 2 parameters:

root[] TFl *fl1l = new TF1("£f1","[0]*x*sin([1]*x)",-3,3);

The parameter index is enclosed in square brackets. To set the initial
parameters explicitly you can use the SetParameter method.

root[] fl->SetParameter(0,10);

This sets parameter 0 to 10. You can also use SetParameters to set
multiple parameters at once.

Fitting Histograms Draft, December 2000 - version 0.6.3 59

root[] fl->SetParameters(10,5);

This sets parameter 0 to 10 and parameter 1 to 5.

We can now draw the TF1:

root[] £1->Draw()

=] =
Eile Edit ¥iew Qptions Inspect Classes Help

o1 sin{[1T%] |

S0

[=]
L L L B L

Creating a TF1 with a User Function

The third way to build a TF1 is to define a function yourself and then give its
name to the constructor. A function for a TF1 constructor needs to have this
exact signature:

Double t fitf (Double t *x, Double t *par)

The two parameters are:

e Double t *x:a pointer to the dimension array. Each element contains
a dimension. For a 1D histogram only x[0] is used, for a 2D histogram
x[0] and x[1] is used, and for a 3D histogram x[0], x[1], and x[2] are
used. For histograms, only 3 dimensions apply, but this method is also
used to fit other objects, for example a ntuple could have 10 dimensions.

e Double t *par: a pointer to the parameters array. This array contains
the current values of parameters when it is called by the fitting function.

The following script SROOTSYS/tutorials/myfit.C illustrates how to fita
1D histogram with a user-defined function. First we declare the function.

// define a function with 3 parameters
Double t fitf(Double_t *x, Double_t *par)

{

Double t arg = 0
if (par[2]) arg
Double t fitval
return fitval;

(x[0] - par[l])/par[2];
par[0]*TMath: :Exp (-0.5%arg*arqg) ;

I~

60

Draft, December 2000 - version 0.6.3 Fitting Histograms

Now we use the function:

// this function used fitf to fit a histogram
void fitexample ()

{

// open a file and get a histogram
TFile *f = new TFile("hsimple.root");
TF1 *hpx = (TF1*)f->Get ("hpx");

// create a TF1 object using the function defined above.
// The last 3 specifies the number of parameters

// for the function.

TF1l *func = new TF1 "fit",fitf,-3,3,3);

// set the parameters to the mean and RMS of the histogram
func->SetParameters (500, hpx->GetMean () , hpx->GetRMS ()) ;

// give the parameters meaningful names

func->SetParNames ("Constant","Mean value","Sigma");

// call TH1::Fit with the name of the TF1l object
hpx->Fit ("fit");

Fitting Sub Ranges

By default,TH1 : : Fit will fit the function on the defined histogram range. You
can specify the option "R" in the second parameter of TH1: : Fit to restrict
the fit to the range specified in the TF1 constructor. In this example, the fit will

be limited to —3 to 3, the range specified in the TF1 constructor.

root[] TFl1l *fl = new TF1("£f1","[0]*x*sin([1]*x)",-3,3);
root[] hist->Fit("£f1", "R"):;

You can also specify a range in the call to TH1: : Fit:

root[] hist->Fit ("£1","","", -2,2)

For more complete examples, see SROOTSYS/tutorials/myfit.C and

SROOTSYS/tutorials/multifit.cC.

Adding Functions to The List

The example SROOTSYS/tutorials/multifit.C also illustrates how to
fit several functions on the same histogram. By default a Fit command
deletes the previously fitted function in the histogram object. You can specify
the option "+" in the second parameter to add the newly fitted function to the

existing list of functions for the histogram.

root[] hist->Fit("£1","+","", -2,2)

Note that the fitted function(s) are saved with the histogram when it is written

to a ROOT file.

Fitting Histograms Draft, December 2000 - version 0.6.3

Combining Functions

You can combine functions to fit a histogram with their sum. Here is an
example, the code is in SROOTSYS/tutorials/FitDemo.C. We have a
function that is the combination of a background and lorenzian peak. Each

function contributes 3 parameters.

y(E) = aq +azE +a3E2 + Ap (G/2p)/((E-m)? +(G/2)?)

background lorenzianPeak
par[0] = a4 par[0] = Ap
par[1] = a; par[1]1=G
par[2] = a3 par[2] =m

The combination function (fitFunction) has six parameters:

fitFunction = background (x, par) + lorenzianPeak (x, &par[3])

par[0] = a
par[1] = a;
par[2] = a3
par[3] = A,
par[4] = G
par[5] =m

This script creates a histogram and fits the combination of the two functions.
First we define the two functions and the combination function:

// Quadratic background function

Double t background(Double t *x, Double t *par) {
return par[0] + par[1]*x[0] + par[2]*x[0]*x[0];

}

// Lorenzian Peak function

Double t lorentzianPeak (Double t *x, Double t *par) ({

return (0.5*par[0]*par([1l]/TMath::Pi()) /
TMath::Max(1.e-10,
(x[0]-par(2])*(x[0]-parl2]) +
.25%par([l]*par[l]
)
}

// Sum of background and peak function
Double t fitFunction(Double t *x, Double t *par) {

return background (x,par) + lorentzianPeak(x, &par[3])

}

// .. continued on the next page

62

Draft, December 2000 - version 0.6.3

Fitting Histograms

void FittingDemo () ({
// Bevington Exercise by Peter Malzacher,
// modified by Rene Brun

const int nBins = 60;

Stat_t data([nBins] = { 6, 1,10,12, 6,13,23,22,15,21,
23,26,36,25,27,35,40,44,66,81,
75,57,48,45,46,41,35,36,53,32,
40,37,38,31,36,44,42,37,32,32,
43,44,35,33,33,39,29,41,32, 44,
26,39,29,35,32,21,21,15,25,15};

TH1F *histo = new THIF ("example 9 1",

"Lorentzian Peak on Quadratic Background",60,0,3);

for(int 1i=0; i < nBins; i++) {
// we use these methods to explicitly set the content
// and error instead of using the fill method.
histo->SetBinContent (i+1,datali]) ;
histo->SetBinError (i+l, TMath::Sqrt (data[i]));

}

// create a TF1l with the range from 0 to 3
// and 6 parameters
TF1l *fitFcn = new TF1 ("fitFcn", fitFunction,0,3,6);

// first try without starting values for the parameters
// This defaults to 1 for each param.

histo->Fit ("fitFcn");

// this results in an ok fit for the polynomial function
// however the non-linear part (lorenzian) does not

// respond well.

// second try: set start values for some parameters
fitFcn->SetParameter (4,0.2); // width
fitFcn->SetParameter (5,1) ; // peak

histo->Fit ("fitFcn","V+");

// improve the picture:

TF1 *backFcn = new TF1l ("backFcn",background, 0,3, 3);
backFcn->SetLineColor (3);

TF1 *signalFcn = new TFl("signalFcn",lorentzianPeak,0,3,3);
signalFcn->SetLineColor (4);

Double t par[6];

// writes the fit results into the par array
fitFcn->GetParameters (par) ;

backFcn->SetParameters (par) ;
backFcn->Draw ("same") ;

signalFcn->SetParameters (&par([3]);
signalFcn->Draw ("same") ;

Fitting Histograms Draft, December 2000 - version 0.6.3 63

This is the result:

5 c1 [O[x
File Edit Wiew Options Inspect Classes Help

|Lorentzian Peak on Quadratic Backgroud exampie_0_1
Hent=10

Mean = 1.56
RMS = 0.7277

90

a0

70

60

50

40

3o

20

10

+H|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|II

0 0.5 1 1.5 2 25 3

For another example see:
http://root.cern.ch/root/html/examples/backsig.C.html

Access to the Fit Parameters and Results

Once a histogram has been fitted, you can get the parameters of the fitted
function with the Get methods of the TF1 and TFormula classes. For
example:

[] TF1 *fit = hist->GetFunction(function_name) ;
root[] Double t chi2 = fit->GetChisquare()

[] Double_t pl fit->GetParameter(1l) ;

[] Double_t el fit->GetParError(l) ;

Note that above p1 refers to the second parameter.

Fitting Between Parameter Bounds

To set bounds for one parameter, use TF1: :SetParLimits:

root[] func->SetParLimits(0, -1, 1);

Where func is the pointer to the function to be fitted. If you only have the
function name, you can get the pointer to this function with:

Root > gROOT->GetFunction (func_name) ;

64 Draft, December 2000 - version 0.6.3 Fitting Histograms

http://root.cern.ch/root/html/examples/backsig.C.html

Associated Errors

By default, for each bin, the sum of weights is computed at fill time. One can
also call TH1 : : Sumw2 to force the storage and computation of the sum of the
square of weights per bin. If Sumw2 has been called, the error per bin is
computed as the sgrt (sum of squares of weights), otherwise the
error is set equal to the sqrt (bin content). To return the error for a
given bin number, do:

Double t error = h->GetBinError (bin);

Associated Function

One or more objects (typically a TF1*) can be added to the list of functions
(fFunctions) associated to each histogram. When TF1: :Fit is invoked,
the fitted function is added to this list. Given a histogram h, one can retrieve
an associated function with:

TF1 *myfunc = h->GetFunction ("myfunc");

Fit Parameters

Given a pointer (see above) to an associated function myfunc, one can
retrieve the function/fit parameters with calls such as:

Double t chi2 = myfunc->GetChisquare () ;
Double t par0O = myfunc->GetParameter (0);
// value of lst parameter
Double t err0O = myfunc->GetParError(0);
//error on first parameter

Fit Statistics

You can change the statistics box to display the fit parameters with the
TH1::SetOptFit (mode) method. This mode has four digits.

Mode = pcev (default =0111)

e v = 1 print name/values of parameters

e ¢ 1 print errors (if e=1, v must be 1)

e C 1 print Chi-square/number of degrees of freedom
e p = 1 print probability

For example:

gStyle->SetOptFit (1011);

This prints the fit probability, parameter names/values, and errors.

Fitting Histograms Draft, December 2000 - version 0.6.3 65

6 A Little C++

This chapter introduces you to some useful insights into C++, to allow you to
use of the most advanced features in ROOT. It is in no case a full course in
C++,

Classes, Methods and Constructors

C++ extends C with the notion of class. If you're used to structures in C, a
class is a struct, that is a group of related variables, which is extended with
functions and routines specific to this structure (class). What is the interest?
Consider a struct that is defined this way:

struct Line {
float x1;
float yl;
float x2;
float y2;

This structure represents a line to be drawn in a graphical window. (x1, y1)
are the coordinates of the first point, (x2, y2) the coordinates of the second
point.

In standard C, if you want to effectively draw such a line, you first have to
define a structure and initialize the points (you can try this):

Line firstline;

firstline.x1 = 0.2;
firstline.yl = 0.2;
firstline.x2 = 0.8;
firstline.y2 = 0.9;

This defines a line going from the point (0.2,0.2) to the point (0.8,0.9). To
draw this line, you will have to write a function, say LineDraw (Line 1) and
call it with your object as argument:

LineDraw (firstline);

A Little C++ Draft, December 2000 - version 0.6.3 67

In C++, we would not do that. We would instead define a class like this:

class

TLine (int x1, int y1, int x2, int y2);

}

TLine {

Double t x1;
Double t yl;
Double t x2;
Double t y2;

void Draw () ;

Here we added two functions, that we will call methods or member functions,
to the TLine class. The first method is used for initializing the line objects we
would build. It is called a constructor.

The second one is the Draw method itself. Therefore, to build and draw a
line, we have to do:

TLine

1.Draw () ;

1(0.2,0.2,0.8,0.9);

The first line builds the object 1 by calling its constructor. The second line
calls the TLine: : Draw () method of this object. You don’t need to pass any
parameters to this method since it applies to the object 1, which knows the
coordinates of the line. These are internal variables x1, y1, x2, y2 that
were initialized by the constructor.

Inheritance and Data Encapsulation

Inheritance

We've defined a TLine class that contains everything necessary to draw a
line. If we want to draw an arrow, is it so different from drawing a line? We
just have to draw a triangle at one end. It would be very inefficient to define
the class TArrow from scratch. Fortunately, inheritance allows a class to be
defined from an existing class. We would write something like:

class

TArrow : public TLine {

int ArrowHeadSize;

void Draw () ;

volid SetArrowSize (int arrowsize);

The keyword "public" will be explained later. The class TArrow now
contains everything that the class TLine does, and a couple of things more,
the size of the arrowhead and a function that can change it. The Draw
method of TArrow will draw the head and call the draw method of TLine.
We just have to write the code for drawing the head!

Method Overriding

Giving the same name to a method (remember: method = member function of
a class) in the child class (TArrow) as in the parent (TLine) doesn't give any

68

Draft, December 2000 - version 0.6.3 A Little C++

problem. This is called overriding a method. Draw in TArrow overrides
Draw in TLine. There is no possible ambiguity since, when one calls the
Draw () method; this applies to an object which type is known. Suppose we
have an object 1 of type TLine and an object a of type TArrow. When you
want to draw the line, you do:

1.Draw ()

Draw () from TLine is called. If you do:

a.Draw ()

Draw () from TArrow is called and the arrow a is drawn.

Data Encapsulation

We have seen previously the keyword "public". This keyword means that
every name declared public is seen by the outside world. This is opposed to
"orivate" which means only the class where the name was declared private
could see this name. For example, suppose we declare in TArrow the
variable ArrowHeadSize private.

private

int ArrowHeadSize;

Then, only the methods (=member functions) of TArrow will be able to
access this variable. Nobody else will see it. Even the classes that we could
derive from TArrow will not see it. On the other hand, if we declare the
method Draw () as public, everybody will be able to see it and use it. You
see that the character public or private doesn't depend of the type of
argument. It can be a data member, a member function, or even a class.

For example, in the case of TArrow, the base class TLine is declared as
public:

class

TArrow : public TLine {

This means that all methods of TArrow will be able to access all methods of
TLine, but this will be also true for anybody in the outside world. Of course,
this is true provided that TLine accepts the outside world to see it's
methods/data members. If something is declared private in TLine, nobody
will see it, not even TArrow members, even if TLine is declared as a public
base class.

What if TLine is declared "private" instead of "public"? Well, it will
behave as any other name declared private in TArrow: only the data
members and methods of TArrow will be able to access TLine, it's methods
and data members, nobody else.

This may seem a little bit confusing and readers should read a good C++
book if they want more details. Especially since, besides public and private, a
member can be protected.

Usually, one puts private the methods that the class uses internally, like
some utilities classes, and that the programmer doesn’t want to be seen in
the outside world.

With "good" C++ practice (which we have tried to use in ROOT), all data
members of a class are private. This is called data encapsulation and is one

A Little C++

Draft, December 2000 - version 0.6.3 69

of the strongest advantages of Object Oriented Programming (OOP). Private
data members of a class are not visible, except to the class itself. So, from
the outside world, if one wants to access those data members, one should
use so called "getters" and "setters" methods, which are special methods
used only to get or set the data members. The advantage is that if the
programmers want to modify the inner workings of their classes, they can do
so without changing what the user sees. The user doesn’t even have to know
that something has changed (for the better, hopefully).

For example, in our TArrow class, we would have set the data member
ArrowHeadSize private. The setter method is SetArrowSize (), we don’t
need a getter method:

class TArrow : public TLine {
private:
int ArrowHeadSize;

public:
void Draw () ;
volid SetArrowSize (int arrowsize);

To define an arrow object you call the constructor. This will also call the
constructor of TLine, which is the parent class of TArrow, automatically.
Then we can call any of the line or arrow public methods such as
SetArrowSize and Draw.

root[] TArrow* myarrow = new TArrow(1l,5,89,124);
root[] myarrow->SetArrowSize (10) ;
root[] myarrow->Draw() ;

Creating Objects on the Stack and Heap

To explain how objects are created on the stack and on the heap we will use
the Quad class. You can find the definition in
SROOTSYS/tutorials/Quad.h and Quad.cxx.

The Quad class has four methods. The constructor and destructor,
Evaluate which evaluates ax**2 + bx +c , and Solwve which solves
the quadratic equation ax**2 + bx +c = 0.

Quad.h:

class Quad {

public:

Quad(Float t a, Float t b, Float t c);
~Quad() ;

Float t Evaluate (Float t x) const;
void Solve () const;

private:

Float t fA;
Float t fB;
Float t fC;

70 Draft, December 2000 - version 0.6.3 A Little C++

Quad.cxx:

#include <iostream.h>
#include <math.h>
#include "Quad.h"

Quad: :Quad(Float_t a, Float_t b, Float_t c) {

fA = a;
fB = b;
fC = c;

}

Quad: :~Quad () {
cout << "deleting object with coeffts: "
<< fA << "," << fB << "," << fC << endl;
}

Float_t Quad::Evaluate(Float_t x) const {
return fA*x*x + fB*x + fC;
}

void Quad: :Solve () const {
Float t temp = fB*fB - 4.*fA*fC;
if (temp > 0.) {
temp = sqrt(temp);
cout << "There are two roots: "

<< (-fB - temp) / (2.*fRh)
<< " and "
<< (-fB + temp) / (2.*fA)
<< endl;
} else {
if (temp == 0.) {

cout << "There are two equal roots: "
<< -fB / (2.*fA) << endl;
} else {
cout << "There are no roots" << endl;

}

Let's first look how we create an object. When we create an object by

root[] Quad my object(l.,2.,-3.);

We are creating an object on the stack. A FORTRAN programmer may be
familiar with the idea; it's not unlike a local variable in a function or
subroutine. Although there are still a few old timers who don't know i,
FORTRAN is under no obligation to save local variables once the function or
subroutine returns unless the SAVE statement is used. If not then it is likely
that FORTRAN will place them on the stack and they will "pop off" when the
RETURN statement is reached.

To give an object more permanence it has to be placed on the heap.

root[] .L Quad.cxx
root[] Quad* my objptr = new Quad(l., 2., -3.);

The second line declares a pointer to Quad called my objptr. From the
syntax point of view, this is just like all the other declarations we have seen

A Little C++ Draft, December 2000 - version 0.6.3 71

http://webnt.physics.ox.ac.uk/minos/software/oo/companion/cxx_crib/dereference.html
http://webnt.physics.ox.ac.uk/minos/software/oo/companion/cxx_crib/new.html

so far, i.e. this is a stack variable. The value of the pointer is set equal to new
Quad(l., 2., -3.);

new, despite its looks, is an operator and creates an object or variable of the
type that comes next, Quad in this case, on the heap. Just as with stack
objects it has to be initialized by calling its constructor. The syntax requires
that the argument list follow the type. This one statement has brought two
items into existence, one on the heap and one on the stack. The heap object
will live until the delete operator is applied to it.

There is no FORTRAN parallel to a heap object; variables either come and
go as control passes in and out of a function or subroutine, or, like a
COMMON block variables, live for the lifetime of the program. However, most
people in HEP who use FORTRAN will have experience of a memory
manager and the act of creating a bank is a good equivalent of a heap object.
For those who know systems like ZEBRA, it will come as a relief to learn that
objects don't move, C++ does not garbage collect, so there is never a danger
that a pointer to an object becomes invalid for that reason. However, having
created an object, it is the user's responsibility to ensure that it is deleted
when no longer needed, or to pass that responsibility onto to some other
object. Failing to do that will result in a memory leak, one of the most
common and most hard-to-find C++ bugs.

To send a message to an object via a pointer to it, you need to use the "->"
operator e.g.:

root[] my objptr->Solve();

Although we chose to call our pointer my objptr, to emphasize thatitis a
pointer, heap objects are so common in an OO program that pointer names
rarely reflect the fact - you have to be careful that you know if you are dealing
with an object or its pointer! Fortunately, the compiler won't tolerate an
attempt to do something like:

root[] my objptr.Solve();

Although this is a permitted by the CINT shortcuts, it is one that you are
strongly advised not to follow!

As we have seen, heap objects have to be accessed via pointers, whereas
stack objects can be accessed directly. They can also be accessed via
pointers:

root[] Quad stack_quad(1l.,2.,-3.);
root[] Quad* stack ptr = &stack quad;
root[] stack_ptr->Solve();

Here we have a Quad pointer that has been initialized with the address of a
stack object. Be very careful if you take the address of stack objects. As we
shall see soon, they get deleted automatically, which could leave you with an
illegal pointer. Using it will corrupt and may well crash the program!

It is time to look at the destruction of objects. Just as its constructor is called
when it is created, so its destructor is called when it is destroyed. The
compiler will provide a destructor that does nothing if none is provided. We
will add one to our Quad class so that we can see when it gets called.

The destructor is named by the class but with the prefix ~ which is the C++
one's complement i.e. bit wise complement, and hence has destruction
overtones! We declare it in the .h file and define it in the . cxx file. It does not
do much except print out that it has been called (still a useful debug
technique despite today's powerful debuggers!). Now run root, load the Quad

72

Draft, December 2000 - version 0.6.3 A Little C++

http://webnt.physics.ox.ac.uk/minos/software/oo/companion/cxx_crib/address.html

class and create a heap object:

root[]
root []

.L Quad.cxx
Quad* my objptr = new Quad(l., 2., -3.);

To delete the object:

root []
root[]

delete my objptr;
my objptr = 0;

You should see the print out from its destructor. Setting the pointer to zero
afterwards isn't strictly necessary (and CINT does it automatically), but the
object is no more, and any attempt to use the pointer again will, as has
already been stated, cause grief.

So much for heap objects, but how do stack objects get deleted? In C++ a
stack object is deleted as soon as control leaves the innermost compound
statement that encloses it. So it is singularly futile to do something like:

root[]

{ Quad my object(l.,2.,-3.); }

CINT does not follow this rule; if you type in the above line you will not see
the destructor message. As explained in the Script lesson, you can load in
compound statements, which would be a bit pointless if everything
disappeared as soon as it was loaded! Instead, to reset the stack you have to

type:

root []

gROOT->Reset() ;

This sends the Reset message via the global pointer to the ROOT object,
which, amongst its many roles, acts as a resource manager. Start ROOT
again and type in the following:

root
root
root
root

[]
[]
[]
[]

.L Quad.cxx

Quad my object(l.,2.,-3.);

Quad* my objptr = new Quad(4., 5., -6.);
gROOT->Reset() ;

You will see that this deletes the first object but not the second. We have also
painted ourselves into a corner, as my objptr was also on the stack. This
command will fail.

root [

] my_objptr->Solve() ;

CINT no longer knows what my objptr is. This is a great example of a
memory leak; the heap object exists but we have lost our way to access it. In
general, this is not a problem. If any object will outlive the compound
statement in which it was created then it will be pointed to by a more
permanent pointer, which frequently is part of another heap object. See
Resetting the Interpreter Environment in the chapter CINT the C++
Interpreter

A Little C++

Draft, December 2000 - version 0.6.3 73

7 CINT the C++ Interpreter

The subject of this chapter is CINT, ROOT's command line interpreter and script
processor. First, we explain what CINT is and why ROOT uses it. Then CINT as
the command line interpreter, the CINT commands, and CINT's extensions to C++
are discussed. CINT as the script interpreter is also explained and illustrated with
several examples.

What is CINT?

CINT, which is pronounced C-int, is a C++ interpreter. An interpreter takes a
program, in this case a C++ program, and carries it out by examining each
instruction and in turn executing the equivalent sequence of machine language. For
example, an interpreter translates and executes each statement in the body of a
loop "n" times. It does not generate a machine language program. This may not be
a good example, because most interpreters have become 'smart' about loop
processing.

A compiler on the other hand, takes a program and makes a machine language
executable. Once compiled the execution is very fast, which makes a compiler best
suited for the case of "built once, run many times". For example, the ROOT
executable is compiled occasionally and executed many times. It takes anywhere
from 1 to 45 minutes to compile ROOT for the first time (depending on the CPU).
Once compiled it runs very fast. On the average, a compiled program runs ten
times faster than an interpreted one.

Because it takes much time to compile, using a compiler is cumbersome for rapid
prototyping when one changes and rebuilds as often as every few minutes. An
interpreter, optimized for code that changes often and runs a few times, is the
perfect tool for this.

Most of the time, an interpreter has a separate scripting language, such as Python,
IDL, and PERL, designed especially for interpretation, rather than compilation.
However, the advantage of having one language for both is that once the prototype
is debugged and refined, it can be compiled without translating the code to a
compiled language.

CINT being a C++ interpreter is the tool for rapid prototyping and scripting in C++.
It is a stand-alone product developed by Masaharu Goto. It's executable comes
with the standard distribution of ROOT ($ROOTSYS/bin/cint), and it can also be
installed separately from:

http://root.cern.ch/CINT.html

This page also has links to all the CINT documentation. The downloadable tar file
contains documentation, the CINT executable, and many demo scripts, which are
not included in the regular ROOT distribution.

Here is a list of CINT's main features:

CINT the C++ Interpreter Draft, December 2000 - version 0.6.3 75

http://root.cern.ch/CINT.html

Supports K&R-C, ANSI-C, ANSI-C++

CINT covers 80-90% of the K&R-C, ANSI-C and C++ language constructs. It
supports multiple inheritance, virtual function, function overloading, operator
overloading, default parameter, template, and much more. CINT is robust
enough to interpret its own source code. CINT is not designed to be a 100%
ANSI/ISO compliant C++ language processor. It is a portable scripting
language environment, which is close enough to the standard C++.

Interprets Large C/C++ source code

CINT can handle huge C/C++ source code, and loads source files quickly. It
can interpret its own, over 70,000 lines source code.

Enables mixing Interpretation & Native Code

Depending on the need for execution speed or the need for interaction, one
can mix native code execution and interpretation. "makeCINT" encapsulates
arbitrary C/C++ objects as a precompiled libraries. A precompiled library can
be configured as a dynamically linked library. Accessing interpreted code and
precompiled code can be done seamlessly in both directions.

Provides a Single-Language solution

CINT/makeCINT is a single-language environment. It works with any ANSI-
C/C++ compiler to provide the interpreter environment on top of it.

Simplifies C++

CINT is meant to bring C++ to the non-software professional. C++ is simpler to
use in the interpreter environment. It helps the non-software professional (the
domain expert) to talk the same language as the software counterpart.
Provides RTTI.and a Command Line

CINT can process C++ statements from command line, dynamically
define/erase class definition and functions, load/unload source files and
libraries. Extended Run Time Type Identification is provided, allowing you to
explore unthinkable way of using C++.

Has a Built-in Debugger and Class Browser

CINT has a built-in debugger to debug complex C++ code. A text based class
browser is part of the debugger.

Is Portable

CINT works on number of operating systems: HP-UX, Linux, SunOS, Solaris,
AIX, Alpha-OSF, IRIX, FreeBSD, NetBSD, NEC EWS4800, NewsOS, BeBox,
Windows-NT, Windows-9x, MS-DOS, MacOS, VMS, NextStep, Convex.

76

Draft, December 2000 - version 0.6.3 CINT the C++ Interpreter

The ROOT Command Line Interface

Start up a ROOT session by typing ROOT at the system prompt.

hproot) [199] root

R R I I b I b I e b b b 2 b I e S b I I b b e S b b b Sb b b dh b b b Sh b 2 2b b 3

*

WELCOME to ROOT

Version 2.25/02 21 August 2000

http://root.cern.ch

*
*
*
*
*
*
*
*
*

*
*
*
*
* You are welcome to visit our Web site
*
*
*

R R R I I I I I I I S I I b b I I b I e I b I 2 b I e b b I b b b 4h b 2 e

CINT/ROOT C/C++ Interpreter version 5.14.47, RAug 12 2000
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.

Now create a TLine object:

root [] TLine 1

root [] 1.Print()

TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000
root [] 1l.SetX1(10)

root [] 1l.Set¥1l(1ll)

root [] 1.Print()

TLine X1=10.000000 Y1=11.000000 X2=0.000000 Y2=0.000000
root [] .g

0x4038f080 class TLine 1 , size=40

0x0 protected: Double t £fX1 //X of 1lst point
0x0 protected: Double t fY1 //Y of 1lst point
0x0 protected: Double t £fX2 //X of 2nd point
0x0 protected: Double t fY2 //Y of 2nd point
0x0 private: static class TClass* fgIsA

Here we note:

e Terminating ; not required (see the section ROOT/CINT Extensions to C++).

e Emacs style command line editing.
e Raw interpreter commands start with a . (dot).

CINT the C++ Interpreter Draft, December 2000 - version 0.6.3

77

root [] .class TLine

class TLine //A line segment

size=0x28
List of base class-—-—————="-""""""="""""""-"-""—"—"—"—"-~———
0x0 public: TObject //Basic ROOT object
Oxc public: TAttLine //Line attributes
List of member variable----———-----"---"-"-"-"------—~
Defined in TLine

0x0 protected: Double t £fX1 //X of 1lst point
0x0 protected: Double t fY1 //Y of 1st point
0x0 protected: Double t £fX2 //X of 2nd point
0x0 protected: Double t fY2 //Y of 2nd point
0x0 private: static class TClass* fgIsA

List of member function--------——---------————-——-
Defined in TLine

filename line:size busy function type and name
(compiled) 0:0 0 public: class TLine TLine (void);
(compiled) 0:0 0 public: Double t GetXl (void);
(compiled) 0:0 0 public: Double t GetX2(void);
(compiled) 0:0 0 public: Double t GetYl (void);
(compiled) 0:0 0 public: Double t GetY2(void);
(compiled) 0:0 public: virtual void SetXl (Double t x1);
(compiled) 0:0 public: virtual void SetX2 (Double t x2);
(compiled) 0:0 public: virtual void SetYl (Double t yl);
(compiled) 0:0 public: virtual void Set¥Y2 (Double t y2);
(compiled) 0:0 0 public: void ~TLine (void);
root [] 1.Print(); > test.log
root [] 1.Dump(); >> test.log
root [] ?

Here we see:

e Use .class as quick help and reference

e Unix like I/O redirection (; is required before >)

e Use 2 to get help on all ““raw" interpreter commands

78 Draft, December 2000 - version 0.6.3 CINT the C++ Interpreter

Now lets execute a multi-line command:

root
end
end
end
end
end
end
end
TLin
TLin
TLin
TLin
TLin
root

(1 {
with '}'> TLine 1;
with '}'> for (int i = 0;
with '}'> 1l.SetX1(1i);
with '}'> 1.SetY1 (i+l);
with '} '> 1.Print();
with '}'> }
with '}'> }
e X1=0.000000 Y1=1.000000
e X1=1.000000 Y1=2.000000
e X1=2.000000 Y1=3.000000
e X1=3.000000 Y1=4.000000
e X1=4.000000 Y1=5.000000

[]

i<y5;

X2=0.
X2=0.
X2=0.
X2=0.
X2=0.

it++) {

000000
000000
000000
000000
000000

Y2=0.
Y2=0.
Y2=0.
Y2=0.
Y2=0.

000000
000000
000000
000000
000000

Here we note:

A multi-line command starts with a { and ends with a }.
Every line has to be correctly terminated with a ; (like in "real" C++).
All objects are created in global scope.

There is no way to back up, you are better off writing a script.
Use . g to exit root.

The ROOT Script Processor

ROOT script files contain pure C++ code. They can contain a simple sequence of
statements like in the multi command line example given above, but also arbitrarily

complex class and function definitions.

Un-named Scripts

Lets start with a script containing a simple list of statements (like the multi-

command line example given in the previous section). This type of script must start
with a { and end with a }and is called an un-named script. Assume the file is called

scriptl.C

{

float x = 3.;
float y = 5.7
int i = 101;
cout <<" x = "<

#include <iostream.h>

<x<<"

cout << " Hello" << endl;

y = "<<y<<"

1 = "<<i<< endl;

To execute the stream of statements in script1.cC do:

root

[]

.xX scriptl

.C

This loads the contents of file script1.C and executes all statements in the

interpreter's global scope.

CINT the C++ Interpreter

Draft, December 2000 - version 0.6.3

79

One can re-execute the statements by re-issuing ".x scriptl.cC" (since there is

no function entry point).

Scripts are searched for in the Root .MacroPath as defined in your . rootrc file.

To check which script is being executed use:

root [] .which scriptl.C
/home/rdm/root/./scriptl.C

Named Scripts

Lets change the un-named script to a named script. Copy file scriptl.Cto
script2.C and add a function statement. Like this:

#include <iostream.h>

int main ()

{
cout << " Hello" << endl;
float x = 3.;

float y = 5.7
int i= 101;
cout <<" x = "<K<x<" y = "<<y<<" 1 = "<<i<<endl;

return 0;

Notice that no surrounding { } are required in this case. To execute function
main () in script2.C do:

root [] .L secript2.C // load script in memory
root [] main() // execute entry point main

Hello

x =3 y=54i=101

(int) 0

root [] main() // execute main() again

Hello

x =3 y=54i=101

(int) 0

root [] .func // list all functions known by CINT
filename line:size busy function type and name
script2.C 4:9 0 public: int main();

The last command shows that main () has been loaded from file script2.c, that
the function main () starts on line 4 and is 9 lines long. Notice that once a function
has been loaded it becomes part of the system just like a compiled function.

Draft, December 2000 - version 0.6.3 CINT the C++ Interpreter

Now we copy file script2.Cto script3.C and change the function name from
main () to script3(int j = 10):

#include <iostream.h>

int script3(int j = 10)

{
cout << " Hello" << endl;
float x = 3.;
float y = 5.7
int i =7
cout <<" x
return 0;

’

"Lx<<" y = "<<y<<" i = "<<i<<endl;

To execute script3 () in script3.cC type:

root [] .x script3.C(8)

This loads the contents of file script3.C and executes entry point script3 (8).
Note that the above only works when the filename (minus extension) and function
entry point are both the same. Function script3 () can still be executed multiple

times:

root [] script3()
Hello

x =3y =51=10
(int) 0

root [] script3(33)
Hello

x =3y =051= 33
(int) 0

In a named script, the objects created on the stack are deleted when the function
exits. For example, this scenario is very common. You create a histogram in a
named script on the stack. You draw the histogram, but when the function exits the
canvas is empty and the histogram disappeared.

To avoid histogram from disappearing you can create it on the heap (by using
new). This will leave the histogram object intact, but the pointer in the named script
scope will be deleted.

Since histograms (and trees) are added to the list of objects in the current
directory, you can always retrieve them to delete them if needed.

root[] TH1F *h = (TH1F*)gDirectory->Get ("myHist") ;

or

root[] TH1F *h = (TH1F*)gDirectory->GetList()->FindObject ("myHist") ;

In addition, histograms and trees are automatically deleted when the current
directory is closed. This will automatically take care of the clean up. See chapter
Input/Output.

CINT the C++ Interpreter Draft, December 2000 - version 0.6.3 81

Resetting the Interpreter Environment

Variables created on the command line and in un-named scripts are in the

interpreter's global scope, which makes the variables created in un-named scripts
available on the command line event after the script is done executing. This is the
opposite of a named script where the stack variables are deleted when the function
in which they are defined has finished execution.

When running an un-named script over again and this is frequently the case since

un-named scripts are used to prototype, one should reset the global environment to

clear the variables. This is done by calling grROOT->Reset () . It is good practice,
and you will see this in the examples, to begin an un-named script with grOOT -
>Reset. It clears the global scope to the state just before executing the previous
script (not including any logon scripts).

The gROOT->Reset () calls the destructor of the objects if the object was created
on the stack. If the object was created on the heap (via new) it is not deleted, but
the variable is no longer associated with it. Creating variables on the heap in un-
named scripts and calling grROOT->Reset () without you calling the destructor
explicitly will cause a memory leak.

This may be surprising, but it follows the scope rules. For example, creating an

object on the heap in a function (in a named script) without explicitly deleting it will
also cause a memory leak. Since when exiting the function only the stack variables
are deleted.

The code below shows gROOT->Reset calling the destructor for the stack
variable, but not for the heap variable. In the end, neither variable is available, but
the memory for the heap variable is not released.

Here is an example.

root [] gDebug = 1
(const int)1l

root [] TFile stackVar ("stack.root","RECREATE")
TKey Writing 86 bytes at address 64 for ID= stack.root Title=
root [] TFile *heapVar = new TFile("heap.root", "RECREATE")

TKey Writing 84 bytes at address 64 for ID= heap.root Title=

We turn on Debug to see what the subsequent calls are doing. Then we create two
variables, one on the stack and one on the heap.

root [] gROOT->Reset()
TKey Writing 48 bytes at address 150 for ID= stack.root Title=
TKey Writing 54 bytes at address 198 for ID= stack.root Title=
TFile dtor called for stack.root
TDirectory dtor called for stack.root

When we call grOOT->Reset, CINT tells us that the destructor is called for the
stack variable, but it doesn't mention the heap variable.

root [] stackVar

Error: No symbol stackVar in current scope
FILE:/var/tmp/faaa0ljWe cint LINE:1

*** Interpreter error recovered ***

root [] heapVar

Error: No symbol heapVar in current scope
FILE:/var/tmp/gaaa0ljWe cint LINE:1

*** Interpreter error recovered ***

Neither variable is available in after the call to reset.

82

Draft, December 2000 - version 0.6.3 CINT the C++ Interpreter

root [] gROOT->FindObject("stack.root")
(class TObject*)0x0

root [] gROOT->FindObject ("heap.root")
(class TObject*)0x106bfb30

The object on the stack is deleted and shows a null pointer when we do a
FindObject. However, the heap object is still around and taking up memory.

A Script Containing a Class Definition

Lets create a small class TMyClass and a derived class TChild. The virtual
TMyClass::Print () method is overridden in TChild . Save this in file called
script4.C.

#include <iostream.h>

class TMyClass {

private:

float £X; //x position in centimeters

float £Y; //y position in centimeters
public:

TMyClass () { fX = fY = -1; }

virtual void Print () const;

void SetX (float x) { fX = x; }

void SetY (float y) { fY = y; }

i

void TMyClass: :Print() const // parent print method
{

cout << "fX = " << fX << ", fY = " << fY << endl;
}
Y
class TChild : public TMyClass {
public:
void Print () const;

}s

void TChild: :Print() const // child print metod
{
cout << "This is TChild::Print ()" << endl;
TMyClass: :Print () ;

CINT the C++ Interpreter Draft, December 2000 - version 0.6.3 83

To execute script4.C do:

root [] .L script4.C

root [] TMyClass *a = new TChild
root [] a->Print()

This is TChild: :Print ()

fX = -1, fy = -1

root [] a->SetX(10)

root [] a->SetY¥(12)

root [] a->Print()

This is TChild: :Print ()
fX = 10, fYy = 12
root [] .class TMyClass

class TMyClass

size=0x8 FILE:script4.C LINE:3
List of base class-—————"""""""""""""""""""—"-"—"—-"————~——
List of member variable----———-------"-"""-"-"""-"-"-"-—————
Defined in TMyClass

0x0 private: float £fX

0x4 private: float fY
List of member function-------——----"-""-"-"-"-"-"—"-"-"-"-"——————
Defined in TMyClass

filename line:size busy function type and name
script4d.C 16:5 0 public: class TMyClass

TMyClass (void) ;
scriptd.C 22:4 0 public: void Print (void);
scriptd.C 12:1 0 public: void SetX(float x);
script4d.C 13:1 0 public: void SetY(float y);
root [] .qg

As you can see an interpreted class behaves just like a compiled class.

Note: Classes defined in a script cannot inherit from TObject. Currently the
interpreter cannot patch the virtual table of compiled objects to reference
interpreted objects.

Draft, December 2000 - version 0.6.3 CINT the C++ Interpreter

Debugging Scripts

A powerful feature of CINT is the ability to debug interpreted functions by means of
setting breakpoints and being able to single step through the code and print
variable values on the way. Assume we have script4.C still loaded, we can then

do:
root [] .b TChild: :Print
Break point set to line 26 scripté4.C
root [] a.Print()

26 TChild::Print () const

27 {

28 cout << "This is TChild::Print ()" << endl;
FILE:script4.C LINE:28 cint> .s

311 operator<<(ostream& ostr,G CINT ENDL& 1)
{return (endl (ostr));
FILE:iostream.h LINE:311 cint> .s

}
This is TChild::Print ()

29 MyClass::Print () ;
FILE:script4.C LINE:29 cint> .s

16 MyClass::Print () const

17 {

18 cout << "fX = " << fX << ", fY = " << fY << endl;
FILE:script4.C LINE:18 cint> .p £X
(float)1.000000000000e+01

FILE:script4.C LINE:18 cint> .s

311 operator<<(ostream& ostr,G_CINT ENDL& i)
{return (endl (ostr));

FILE:iostream.h LINE:311 cint> .s

}

fX = 10, fy = 12

19 }
30 }
2 }
root [] .g

CINT the C++ Interpreter Draft, December 2000 - version 0.6.3 85

Inspecting Objects

An object of a class inheriting from TObject can be inspected, with the Inspect
method. The TObject: : Inspect method creates a window listing the current
values of the objects members. For example, this is a picture of TFile.

root[] TFile f£("staff.root")
root[] f.Inspect()

@ ROOT Object Inspector = 3
File Edit View Options Inspect Classes Help
backward | forward |
TFile staff.root:0
Member Name Value Title
e 10 File descriptor
fBEGIN 64 First used byte in file
fEND 38474 Last used byte in file
fYersion 22600 File formal version
fCompress 1 (=1 file is compressed, 0 otherwise)
fOption.*fData READ
fUnits 4 Number of bytes for file pointers
fSeekFree 38420 Location on'disk of free segments structive
fNbytesFree 54 Number of bytes for free segments struciure
fWritten 0 Number of objects written so far
fSumButter 0 Sum of buffer sizes of obfects written so far
fSum2Bufier 0 Sum of squares of buffer sizes of objects written so far
fFree =0 Free segiments linked list table
fBytesirite 0 Number of bytes written to this file
fBytesRead 352 Number of bytes read from this file
fModitied 1 true & direciory has been modified
fWritable 0 trie i directory is writable

fCatimeC.1Datime 20001012/173203
fCatimeM.tDatime 20001012/173204

fNbytesKeys 118 Number of bytes for the keys
fNbytesName 56 Number of Bytes in TNamed af creation time
fSeekDir 64 Location of directory on file
fSeekParent 0 Location of parent Q.:'rece‘ory on file

{SeekKeys 38304 Location of Keys record on file

“fFile =>10711b60 | pointer to curvent file in memory

“fMother -0 pointer to mother (}f the directory

‘fList ->10613918 | ‘Foiwrer to abjects list in memaory
fKeys -=10711e08 | Foinrer to keys list in memory
fName."iData stafl.root

fTitle.*fCala

fUniquelD 0 object uniqie ident ifier

fBits 50331649 bif fleld status wor

You can see the pointers are in red and can be clicked on to follow the pointer to
the object. For example, here we clicked on fKeys, the list of keys in memory.

86 Draft, December 2000 - version 0.6.3 CINT the C++ Interpreter

I ROOT Object Inspector =] B3
Eile Edit Miew Options Inspect Classes Help
backward | forward | =
THashLis1 0 Doubly linked list with hashtable for lookup
Member Hame Valne Title
“fTable —-=10711e30 Hashtable used for guick lookup of objects
*fFirst —=108a7dd0 pointer to first entry in linked list
"fLast -+10Ga7ddo pointer to last entry in linked list
"fCache —=0 aache to speedup segqientiod cailing of Before() and After!) functions
fAscending \ sorting erder (when calling Sortf) or for TSortedLis?)
1Sorted \ true if collection has been sorted
Hlame “Data
1Size 1 number of elements in collection o
fUniquelD \ object znigue identifier
TIBitS 50331644 bit field status word | _|;I
4 >

If you clicked on fList, the list of objects in memory and there were none, no new
canvas would be shown.

On top of the page are the navigation buttons to see the previous and next screen.

ROOT/CINT Extensions to C++

In the next example, we demonstrate three of the most important extensions
ROOT/CINT makes to C++. Start ROOT in the directory SROOTSYS/tutorials
(make sure to have firstrun ".x hsimple.C"):

root

(class TFile*)0x4045e690

root [] £.1s()

TFile** hsimple.root

TFile* hsimple.root
KEY: THI1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1l py ps px
KEY: THProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;l Demo ntuple

root [] hpx.Draw()

NULL

Warning in <MakeDefCanvas>: creating a default canvas with name

cl

root [] .qg

£

[] new TFile ("hsimple.root")

The first command shows the first extension; the declaration of £ may be omitted
when "new" is used. CINT will correctly create £ as pointer to object of class
TFile.

The second extension is shown in the second command. Although £ is a pointer to
TFile we don't have to use the pointer de-referencing syntax "->" but can use the

simple "." notation.

CINT the C++ Interpreter

Draft, December 2000 - version 0.6.3 87

The third extension is more important. In case CINT cannot find an object being
referenced, it will ask ROOT to search for an object with an identical name in the
search path defined by TROOT: : FindObject () . If ROOT finds the object, it
returns CINT a pointer to this object and a pointer to its class definition and CINT
will execute the requested member function. This shortcut is quite natural for an
interactive system and saves much typing. In this example, ROOT searches for
hpx and finds it in simple.root.

The fourth is shown below. There is no need to put a semicolon at the end of a
line. The difference between having it and leaving it off is that when you leave it off
the return value of the command will be printed on the next line. For example:

root[] 23+5 // no semicolon prints the return value
(int) 28

root[] 23+5; // semicolon no return value is printed
root[]

Be aware that these extensions do not work when the interpreter is replaced by a
compiler. Your code will not compile, hence when writing large scripts, it is best to
stay away from these shortcuts. It will save you from having problems compiling
your scripts using a real C++ compiler.

Interpreting and Compiling a Script

With some simple #ifdef's one can instrument a script so it can be either
interpreted by root (the executable) or compiled and linked with ROOT (the
libraries). CINT will ignore all statements between the "#ifndef = CINT " and
"#endif CINT ".

#ifndef CINT

#include <stdio.h>
#include "Root.h"
#include "Class.h"
#include "Method.h"
#include "ClassTable.h"
#include "Collection.h"

#endif

void listmemfun (char *cls = 0)

{
}
#ifndef CINT

// Initialize the ROOT framework
TROOT api ("TestApi", "Test CINT API");

int main()

{
listmemfun ("TObject") ;
listmemfun ("TClassTable") ;

return 0;

}
#endif

88 Draft, December 2000 - version 0.6.3 CINT the C++ Interpreter

ACLiC -
CINT

The Automatic Compiler of Libraries for

Instead of having CINT interpret your script there is a way to have your scripts
compiled, linked and dynamically loaded using the C++ compiler and linker. The
advantage of this is that your scripts will run with the speed of compiled C++ and
that you can use language constructs that are not fully supported by CINT. On the
other hand, you cannot use any CINT shortcuts (see CINT extensions) and for
small scripts, the overhead of the compile/link cycle might be larger than just
executing the script in the interpreter.

ACLIC will build a CINT dictionary and a shared library from your C++ script, using
the compiler and the compiler options that were used to compile the ROOT
executable. You do not have to write a makefile remembering the correct compiler
options, and you do not have to exit ROOT.

Usage

Before you can compile your interpreted script you need to add include statements
for the classes used in the script. Once you did that, you can build and load a
shared library containing your script. To load it, use the .. command and append
the file name with a "+".

root [] .L MyScript.C+
root [] .files

*file="/home/./MyScript.so"

The newly created shared library is named after the script file name and has a . so
extension. If we execute a . files command we can see the newly created shared
library is in the list of loaded files.

When a + command is executed as above the shared library is rebuilt if the date of
the script file has changed. Note that it does not automatically check the time
stamp of the include files. To ensure that the shared library is rebuilt you can use
the ++ syntax:

Creating shared library
/home/./MyScript.so

root[] .L MyScript.C++
To build, load, and execute the function with the same name as the file you can
use the .x command. This is the same as executing a named script. You can have
parameters and use .x or .X. The only difference is you need to append a + or a
++,

root[] .x MyScript.C+ (4000)

CINT the C++ Interpreter Draft, December 2000 - version 0.6.3 89

The alternative to . L is to use gROOT: : LoadMacro. For example, in one script
you can use ACLIC to compile and load another script.

gROOT-
gROOT-

>LoadMacro ("MyScript.C+")
>LoadMacro ("MyScript.C++")

+ and ++ have the same meaning as described above. You can also use the
gROOT: :Macro method to load and execute the script.

gROOT-

>Macro ("MyScript.C++")

NOTE: You should not call ACLiC with a script that has a function called main ().
When ACLIC calls rootcint with a function called main it tries to add every
symbol it finds while parsing the script and the header files to the dictionary. This
includes the system header files and the ROOT header files. This will result in
duplicate entries at best and crashes at worst, because some classes in ROOT
needs special attention before they can be added to the dictionary.

Intermediate Steps and Files

ACLIC executes two steps and a third one if needed. These are:

e Calling rootcint to create a CINT dictionary. rootcint is a ROOT specific
version of makecint, CINT's generic dictionary generator.

e Calling the compiler to build the shared library from the script

o If there are errors, it calls the compiler to build a dummy executable to clearly
report unresolved symbols.

ACLIC makes a shared library with a CINT dictionary containing the classes and
functions declared in the script. It also adds the classes and functions declared in
included files with the same name as the script file and any of the following
extensions: .h, .hh, .hpp, .hxx, .hPP, .hxX.This means you cannot
combine scripts from different files into one library by using #include statements;
you will need to compile each script separately. In a future release, we plan to add
the global variables declared in the script to the dictionary also. If you are curious
about the specific calls, you can raise the ROOT debug level (gDebug = 5).
ACLIC will print the three steps.

Moving between Interpreter and Compiler

The best way to develop portable scripts is to make sure you can always run them
with both, the interpreter and with ACLiIC. To do so, do not use the CINT
extensions and program around the CINT limitations. When it is not possible or
desirable to program around the CINT limitations, you can use the C preprocessor
symbols defined for CINT and rootcint.

For example, the following will hide the declaration and initialization of the array
gArray from both CINT and rootcint.

#if !d

#endif

int gArrayl[] =

efined(CINT)
{ 2, 3, 4};

Because ACLIC calls rootcint to build a dictionary, the declaration of gArray
will not be included in the dictionary, and consequently, gArray will not be
available at the command line even if ACLIC is used. CINT and rootcint will

90

Draft, December 2000 - version 0.6.3 CINT the C++ Interpreter

ignore all statements between the "#1if !defined (_CINT)" and
"#endif". If you want to use gArray in the same script as its declaration, you can
do so. However, if you want use the script in the interpreter you have to bracket the
usage of gArray between #1f's, since the definition is not visible.

If you add the following preprocessor statements, garray will be visible to
rootcint but still not visible to CINT. If you use ACLIC, gArray will be available
at the command line and be initialized properly by the compiled code.

#if

int gArrayl[] =

#elif defined(MAKECINT)
int gArrayl[];

#endif

'defined(CINT)
{ 2, 3, 4};

We recommend you always write scripts with the needed include statements. In
most cases, the script will still run with the interpreter. However, a few header files
are not handled very well by CINT. Rtypes.h is one of those header files. If you
need to make it available to the compiler, you can use the following syntax:

#if

#include "Rtypes.h"
fendif

!defined(_ CINT_) || defined(_ MAKECINT)

In summary, the symbol CINT s defined for both CINT and rootcint. The
symbol MAKECINT _ is only defined in rootcint.

Use 'defined(___ CINT) || defined(__ MAKECINT) to bracket code that
needs to seen by the compiler and rootcint, but invisible to the interpreter. The
typical use is when a CINT dictionary entry is needed.

Use 'defined (__CINT) to bracket code that should be seen only by the
compiler and not by CINT or rootcint.

Setting the Include Path
You can get the include path by typing:

root [] .include

You can append to the include path by typing:
root [] .include "-I$HOME/mypackage/include "

In a script you can set the include path:
gSystem->SetIncludePath (" -ISHOME/mypackage/include ")

The $SROOTSYS/1include directory is automatically appended to the include path,
so you don't have to worry about including it, however if you have already added a
path, this command will overwrite it.

CINT the C++ Interpreter Draft, December 2000 - version 0.6.3 91

8 Graphics and the
Graphical User Interface

Graphical capabilities of ROOT range from 2D objects (lines, polygons,
arrows) to various plots, histograms, and 3D graphical objects. In this
chapter, we are going to focus on principals of graphics and 2D objects. Plots
and histograms are discussed in a chapter of their own.

Drawing Objects

In ROOT, most objects derive from a base class TObject. This class has a
virtual method Draw () so all objects are supposed to be able to be "drawn".

The basic whiteboard on which an object is drawn is called a canvas (defined
by the class TCanvas). If several canvases are defined, there is only one
active at a time. One draws an object in the active canvas by using the
statement:

object.Draw ()

This instructs the object "object" to draw itself. If no canvas is opened, a
default one (named "c1") is instantiated and drawn. Thy the following
commands:

cl

root [] TLine a (0.1,0.1,0.6,0.6)
root [] a.Draw()
<TCanvas: :MakeDefCanvas>: created default TCanvas with name

The first statement defines a line and the second one draws it. A default
canvas is drawn since there was no opened one.

Interacting with Graphical Objects

When an object is drawn, one can interact with it. For example, the line
drawn in the previous paragraph may be moved or transformed. One very
important characteristic of ROOT is that transforming an object on the screen
will also transform it in memory. One actually interacts with the real object,
not with a copy of it on the screen. You can try for instance to look at the
starting X coordinate of the line:

root[]

(double)1.000000000e-1

a.GetX1l ()

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 93

X1 is the x value of the starting coordinate given in the definition above. Now
move it interactively by clicking with the left mouse button in the line's middle
and try to do again

root[] a.GetXl1l()
(Double t)1.31175468483816005e-01

You do not obtain the same result as before, the coordinates of 'a' have
changed. As said, interacting with an object on the screen changes the object
in memory.

Moving, Resizing and Modifying Objects

Changing the graphic objects attributes can be done with the GUI or
programmatically. First, let's see how it is done in the GUI.

The Left Mouse Button
As was just seen moving or resizing an object is done with the left mouse
button. The cursor changes its shape to indicate what may be done:

Point the object or one part of it: * %

B
Rotate: =
. . L F
Resize (exists also for the other directions):

Enlarge (used for text):

i
Move: $

Here are some examples of

Moving: Resizing:
Eile Edit ¥iew Options Inspect
abs(sin{x)/x) ||
1:\ }J
E “.s:_

Rotating:

[K2 4472 - RS -ERYE |

B

3

o
(%]

T,
SE o

S s,

94 Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

With C++ Statements (Programmatically)

How would one move an object in a script? Since there is a tight
correspondence between what is seen on the screen and the object in
memory, changing the object changes it on the screen.

For example, try to do:

root[] a.SetX1(0.9)

This should change one of the coordinates of our line, but nothing happens
on the screen. Why is that?

Updating the Canvas

This is the expected behavior. Imagine the waste of processing power if the
canvas was redrawn each time one of its elements changes. To avoid this
waste, the canvas expects an explicit notification that something has
changed. To see your change, you must inform the canvas that something
has changed.

Since we did not create the canvas explicitly, it was created by default. Its
name is also the default, which is "c1". There are several triggers to a
redraw:

1. The explicit command:

root[] el->Modified()

2. Touching the canvas with the mouse. For example resizing it.

3. The end of the execution of a script. If you just want to see the result
of your script, you don’t have to manually update the canvas. But if
you want to see some intermediate results, you will have to issue
cl->Modified () in the script.

Selecting Objects
The Middle Mouse Button

Objects in a canvas, as well as in a pad, are stacked on top of each other in
the order they were drawn. Some objects may become "active" objects,
which means they are reordered to be on top of the others. To interactively
make an object "active", you can use the middle mouse button. In case of
canvases or pads, the border becomes highlighted when it is active.

With C++ Statements (Programmatically)

Frequently we want to draw in different canvases or pads. By default, the
objects are drawn in the active canvas. To activate a canvas you can use the
"TPad: :cd () " method.

root[] el->cd()

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 95

Context Menus: the Right Mouse Button

The context menus are a way to interactively call certain methods of an
object. When designing a class, the programmer can add methods to the
context menu of the object by making minor changes to the header file.

Using Context Menus

On a ROOT canvas, you can right-click on any object and see the context
menu for it. The script hsimple.C draws a histogram. The image below
shows the context menus for some of the objects on the canvas.

O Dynamic Filling Example HE
FEile Edit ¥iew Options Inspect Classes Help
® A
I_ TPaveText:title [ibution | hpx | |
S AR Nent=yl'll'l1
e Mean = TPaveStats:stats
DeleteText RMS ——————————
EditText — Gawveltyle
{Heerhe x ® T SetFarmatFit
InseHTaxd — | Belformatstals
ReadFile SetBordertdade SetOptFit
Setallwith SetBordersize SetOptstat
Setlabel Delete Clear
Sethdargin DrawClass Inserline
SetBordarSize TH1F:hpx DrawClone Setlabel
SetCormerRadius Duthiy SetBorderSize
Sethame D.rawPaneI Ingpect . setCarnerRadius
Delate F?t SetDrawOption Sethame
T s Setl ineatiributes e
S SefFillAtiiautes DrawClass
Do Sethlinimum
Cump DrawiClone
Smaoth
Inspect Dump
SetDrawOption i SetN_ame 2 3 Inspect
Wil SetDrawOption
—— SeilineaAttributes : TCanvas:cl
L coiFilAtributes CenterTitle SetLineatiibutes
- SetRange etCanvassize Setrilatributes
SefTextattributes SefTimeDisplay Divide .
; SetTextattributes
SefTimeFormat UseCurrentStyle
UnZoom . Range
Sethame tion Savehs
SefTitle ibutes SetBorderiode
Delete utes SetBorderSize
DrawiClass L ttributes v SetEd.itabIe
DrawClone ek
Dutp SetGrdy
Inspect Setlogx
SetDrawOptioh selogy
e Setl
Sethdivisians ey

This picture shows that drawing a simple histogram involves as many as
seven objects.

When selecting a method from the context menu and that method has
options, the user will be asked for numerical values or strings to fill in the
option. For example, TAxis::SetTitle will prompt you for a string to use
for the axis title.

Structure of the Context Menus

The curious reader will have noticed that each entry in the context menu
corresponds to a method of the class.

Look for example to the menu named TAxis: :xaxis. xaxis is the name of
the object and TAx1s the name of its class. If we look at the list of TAxis
methods, for example in http://www.root.ch/root/html/T Axis.html, we see the
methods SetTimeDisplay and UnZoom, which appear also in the context
menu.

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

There are several divisions in the context menu, separated by lines. The top
division is a list of the class methods; the second division is a list of the
parent class methods. The subsequent divisions are the methods of multiple
parent classes in case of multiple inheritance.

For example, see the TPaveText::title context menu. A TPaveText
inherits from TAttLine, which has the method SetLineAttributes ().
Adding Context Menus for a Class

For a method to in the context menu of the object it has to be marked by //
MENU in the header file. Below is the line from TAttLine.h that adds the
SetLineAttribute method to the context menu.

virtual void SetLineAttributes (); // *MENU*

Nothing else is needed, since CINT knows the classes and their methods. It
takes advantage of that to create the context menu on the fly when the object
is clicking on.

If you click on an axis, ROOT will ask the interpreter what are the methods of
the Tax1is and which ones are set for being displayed in a context menu.

Now, how does the interpreter know this? Remember, when you build a class
that you want to use in the ROOT environment, you use rootcint that
builds the so-called stub functions and the dictionary. These functions and
the dictionary contain the knowledge of the used classes. To do this,
rootcint parses all the header files.

ROOT has defined some special syntax to inform CINT of certain things, this
is done in the comments so that the code still compiles with a C++ compiler.

For example, you have a class with a Draw () method, which will display
itself. You would like a context menu to appear when on clicks on the image
of an object of this class. The recipe is the following:

1. The class has to contain the ClassDef/ClassImp macros
For each method you want to appear in the context menu, put a
comment after the declaration containing *MENU* or * TOGGLE*
depending on the behavior you expect. One usually uses Set
methods (setters).

For example:

class MyClass : public TObject
{

private
int fvil; // first variable
double fv2; // second variable
public
int GetV1l () {return fV1;}

(
double GetV2() {return £fV2;}
void SetVl (int x1) { fVvl = x1;} // *MENU*
void SetV2 (double d2) { fV2 = d2;} // *MENU*
void SetBoth (int x1, double d2) {fVl = x1; fV2 = d2;}

ClassDef (MyClass,1)

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 97

The *TOGGLE* comment is used to toggle a boolean data field. In that
case, it is safe to call the data field fMyBool where MyBool is the name of
the setter setMyBool. Replace MyBool with your own boolean variable.

3. You can specify arguments and the date members in which to store
the arguments.

For example:

void SetXXX(Int t x1, Float t y2); //*MENU* *ARGS={x1=>fV1}

This statement is in the comment field, after the *MENU*. If there is more than
one argument, these arguments are separated by commas, where £x1 and
f£Y2 are data fields in the same class.

void SetXXX (Int t x1, Float t y2); //*MENU* *ARGS={x1=>fX1,y2=>fY2}

If the arguments statement is present, the option dialog displayed when
selecting setxxxfield will show the values of variables. We indicate to the
system which argument corresponds to which data member of the class.

Executing Events when a Cursor passes on top of
an Object

This paragraph is for class designers. When a class is designed, it is often
desirable to include drawing methods for it. We will have a more extensive
discussion about this, but drawing an object in a canvas or a pad consists in
"attaching" the object to that pad. When one uses object.Draw (), the
object is NOT painted at this moment. It is only attached to the active pad or
canvas.

Another method should be provided for the object to be painted, the
Paint () method. This is all explained in the next paragraph.

As well as Draw () and Paint (), other methods may be provided by the
designer of the class. When the mouse is moved or a button
pressed/released, the TCanvas function named HandleInput () scans the
list of objects in all it's pads and for each object calls some standard methods
to make the object react to the event (mouse movement, click or whatever).

The second one is DistanceToPrimitive (px,py) . This function
computes a "distance" to an object from the mouse position at the pixel
position (px, py, see definition at the end of this paragraph) and returns this
distance in pixel units. The selected object will be the one with the shortest
computed distance. To see how this works, select the "Event Status"item
in the canvas "Options" menu. ROOT will display one status line showing
the picked object. If the picked object is, for example, a histogram, the status
line indicates the name of the histogram, the position x, y in histogram
coordinates, the channel number and the channel content.

It's nice for the canvas to know what is the closest object from the mouse, but
it's even nicer to be able to make this object react. The third standard method
to be provided is ExecuteEvent (). This method actually does the event
reaction.

Its prototype is where px and py are the coordinates at which the event
occurred, except if the event is a key press, in which case px contains the
key code.

98

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

void ExecuteEvent (Int_t event,

Int t px, Int t py);

Where event is the event that occurs and is one of the following (defined in

Buttons.h):

kNoEvent,
kButtonlUp,
kButton2Motion,
kButton2Locate,
kButton2Double,

kButtonlDown,
kButton2Up,

kButton3Motion,
kButton3Locate,
kButton3Double,

kButton2Down,
kButton3Up,

kButton3Down,
kButtonlMotion,
kButtonlLocate,
kButtonlDouble,
kKeyDown, kKeyUp,

kKeyPress, kMouseMotion, kMouseEnter, kMouselLeave.

We hope the names are self-explanatory.

Designing an ExecuteEvent method is not very easy, except if one wants
very basic treatment. We will not go into that and let the reader refer to the
sources of classes like TLine or TBox. Go and look at their ExecuteEvent
method!

We can nevertheless give some reference to the various actions that may be
performed. For example, one often wants to change the shape of the cursor
when passing on top of an object. This is done with the SetCursor method:

gPad->SetCursor (cursor)

The argument cursor is the type of cursor. It may be:

kBottomLeft, kBottomRight,
kBottomSide, kLeftSide,
kCross, kArrowHor,
kArrowRight,

kTopLeft, kTopRight,
kTopSide, kRightSide, kMove,
kArrowVer, kHand, kRotate, kPointer,
kCaret, kWatch.

They are defined in TVirtualX.h and again we hope the names are self-
explanatory. If not, try them by designing a small class. It may derive from
something already known like TLine.

Note that the ExecuteEvent () functions may in turn; invoke such functions
for other objects, in case an object is drawn using other objects. You can also
exploit at best the virtues of inheritance. See for example how the class
TArrow (derived from TLine) use or redefine the picking functions in its
base class.

The last comment is that mouse position is always given in pixel units in all
these standard functions. px=0 and py=0 corresponds to the top-left corner
of the canvas. Here, we have followed the standard convention in windowing
systems. Note that user coordinates in a canvas (pad) have the origin at the
bottom-left corner of the canvas (pad). This is all explained in the paragraph
"Coordinate system of a pad".

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 99

Graphical Containers: Canvas and Pad

We have talked a lot about canvases, which may be seen as windows. More
generally, a graphical entity that contains graphical objects is called a Pad. A
Canvas is a special kind of Pad. From now on, when we say something about
pads, this also applies to canvases.

A pad (class TPad) is a graphical container in the sense it contains other
graphical objects like histograms and arrows. It may contain other pads (sub-
pads) as well. More technically, each pad has a linked list of pointers to the
objects it holds.

File Edit Yiew Options Inspect Classes Help

This i=s a Pad

L

IHistugram e

Hi
T

L
T[T

~

i

Drawing an object is nothing more than adding its pointer to this list. Look for
example at the code of TH1: :Draw (). It is merely ten lines of code. The last
statement is AppendPad () . This statement calls a method of TObject that
just adds the pointer of the object, here a histogram, to the list of objects
attached to the current pad. Since this is a TObjects method, every object
may be "drawn", which means attached to a pad.

We can illustrate this by the following figure.

The image correspond to this structure:

Padl

Arrow

—
—» Text
— Subpad —

—» Histogram

Label

v

—» Polyline

100 Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

When is the painting done then? The answer is: when needed. Every object
that derives from TObject has a Paint () method. It may be empty, but for
graphical objects, this routine contains all the instructions to effectively paint it
in the active pad. Since a Pad has the list of objects it owns, it will call
successively the Paint () method of each object, thus re-painting the whole
pad on the screen. If the object is a sub-pad, its Paint () method will call the
Paint () method of the objects attached, recursively calling Paint () for all
the objects.

The Global Pad: gPad

When an object is drawn, it is always in the so-called active pad. For every
day use, it is comfortable to be able to access the active pad, whatever it is.
For that purpose, there is a global pointer, called gPad. It is always pointing
to the active pad. If you want to change the fill color of the active pad to blue
but you don't know its name, do this.

root[] gPad->SetFillColor (38)

To get the list of colors, go to the paragraph "Color and color palettes"” or if
you have an opened canvas, click on the View menu, selecting the Colors
item.

Finding an Object in a Pad

Now that we have a pointer to the active pad, gPad and that we know this
pad contains some objects, it is sometimes interesting to access one of those
objects. The method GetPrimitive () of TPad, i.e.

TPad: :GetPrimitive (const char* name) does exactly this. Since
most of the objects that a pad contains derive from TObject, they have a
name. The following statement will return a pointer to the object
myobjectname and put that pointer into the variable obj. As you see, the
type of returned pointer is (TObject*).

root[] obj = gPad->GetPrimitive ("myobjectname")
(class TObject*)0x1063cba8

Even if your object is something more complicated, like a histogram TH1F,
this is normal. A function cannot return more than one type. So the one
chosen was the lowest common denominator to all possible classes, the
class from which everything derives, TObject.

How do we get the right pointer then?

Simply do a cast of the function output that is transforming this output
(pointer) into the right type. For example if the object is a TPavelLabel:

root[] obj = (TPavelLabel*) (gPad->GetPrimitive ("myobjectname"))
(class TPaveLabel*)0x1063cba8

This works for all objects deriving from TObject. However, a question
remains. An object has a name if it derives from TNamed, not from TObject.
For example, an arrow (TArrow) doesn't have a name. In that case, the
"name" is the name of the class. To know the name of an object, just click
with the right button on it. The name appears at the top of the context menu.

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 101

Hiding an Object

Hiding an object in a pad can be made by removing it from the list of objects
owned by that pad. This list is accessible by the GetListOfPrimitives ()
method of TPad. This method returns a pointer to a TList. Suppose we get
the pointer to the object, we want to hide, call it obj (see paragraph above).
We get the pointer to the list:

root[] 1li = gPad->GetListOfPrimitives ()

Then remove the object from this list:

root[] li->Remove (obj)

The object will disappear from the pad as soon as the pad is updated (try to
resize it for example).

If one wants to make the object reappear:

root[] obj->Draw()

Caution, this will not work with composed objects, for example many
histograms drawn on the same plot (with the option "same"). There are other
ways! Try to use the method described here for simple objects.

The Coordinate Systems of a Pad

Three coordinate systems may be used in a TPad: pixel coordinates,
normalized coordinates (NDC), and user coordinates.

(0,1) (0,0)

(0,0)

(0,0) (1,0)

User coordinates NDC coordinates Pixel coordinates

The User Coordinate System

The most common is the user coordinate system. Most methods of TPad use
the user coordinates, and all graphic primitives have their parameters defined
in terms of user coordinates. By default, when an empty pad is drawn, the
user coordinates are set to a range from 0 to 1 starting at the lower left
corner. At this point they are equivalent of the NDC coordinates (see below).
If you draw a high level graphical object, such as a histogram or a function,
the user coordinates are set to the coordinates of the histogram. Therefore,
when you set a point it will be in the histogram coordinates

For a newly created blank pad, one may use TPad: : Range to set the user
coordinate system. This function is defined as:

102 Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

void Range (float x1, float yl, float x2, float y2)

The arguments x1, x2 defines the new range in the x direction, and the
yl, vy2 define the new range in the y-direction.

root[] TCanvas MyCanvas ("MyCanvas'")
root[] gPad->Range(-100, -100, 100, 100)

This will set the active pad to have both coordinates to go from -100 to 100,
with the center of the pad at (0,0). You can visually check the coordinates by
viewing the status bar in the canvas. To display the status bar select
Options:Event Status in the canvas menu.

[MyCarwas [321,122 5=t 28, y=-595

The Normalized Coordinate System (NDC)

Normalized coordinates are independent of the window size and of the user
system. The coordinates range from 0 to 1 and (0,0) correspond to the
bottom-left corner of the pad. Several internal ROOT functions use the NDC
system (3D primitives, PostScript, log scale mapping to linear scale). You
may want to use this system if the user coordinates are not known ahead of
time.

The Pixel Coordinate System

The least common is the pixel coordinate system, used by functions such as
DistanceToPrimitive () and ExecuteEvent (). Its primary use is for
cursor position, which is always given in pixel coordinates. If (px, py) is the
cursor position, px=0 and py=0 corresponds to the top-left corner of the pad,
which is the standard convention in windowing systems.

Using NDC for a particular Object

Most of the time, you will be using the user coordinate system. But
sometimes, you will want to use NDC. For example, if you want to draw text
always at the same place over a histogram, no matter what the histogram
coordinates are. There are two ways to do this. You can set the NDC for one
object or may convert NDC to user coordinates. Most graphical objects offer
an option to be drawn in NDC. For instance, a line (TLine) may be drawn in
NDC by using DrawLineNDC () . A latex formula or a text may use
TText::SetNDC () to be drawn in NDC coordinates.

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 103

Converting between Coordinates Systems

There are a few utility functions in TPad to convert from one system of
coordinates to another. In the following table, a point is defined by (px, py)
in pixel coordinates; (ux, uy) in user coordinates, (ndcx, ndcy) in NDC

coordinates.

Pixel to User

PixeltoXY (px,py, &ux, &uy)

Conversion Methods of TPad Returns
PixeltoX (px) double
PixeltoY (py) double

changes ux,uy

User to Pixel

XYtoPixel (ux,uy, &px, &py)

UtoPixel (ndcx) int
NDC to Pixel

VtoPixel (ndcy) int

XtoPixel (ux) int

YtoPixel (uy) int

changes px,py

Dividing a Pad into Sub-pads

Dividing a pad into sub pads in order for instance to draw a few histograms,
may be done in two ways. The first is to build pad objects and to draw them
into a parent pad, which may be a canvas. The second is to automatically

divide a pad into nxm sub pads.

Creating a Single Sub-pad

The simplest way to divide a pad is to build sub-pads in it. However, this
forces the user to explicitly indicate the size and position of those sub-pads.
Suppose we want to build a sub-pad in the active pad (pointed by gPad).
First, we build it, using a TPad constructor:

root[] subpadl = new TPad("subpadl","The first

subpad",.1,.1,.5,.5)

One gives the coordinates of the lower left point (0.1,0.1) and of the upper

right one (0.5,0.5). These coordinates are in NDC. This means that they are
independent of the user coordinates system, in particular if you have already
drawn for example a histogram in the mother pad.

The only thing left is to draw the pad:

root[] subpadl->Draw ()

If you want more sub-pads, you have to repeat this procedure as many times

as necessary.

104

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

Dividing a Canvas into Sub-Pads

The manual way of dividing a pad into sub-pads is sometimes very tedious.
There is a way to automatically generate nxm sub-pads inside a given pad.

root[] padl->Divide(3,2)

If padl is a pad then, it will divide the pad into 3 columns of 2 sub-pads:

The generated sub-pads get names padl i where i is 1 to nxm. In our
case padl 1,padl 2..padl 6:

The names padl 1 etc... correspond to new variables in CINT, so you may
use them as soon as the pad->Divide () was executed. However, in a
compiled program, one has to access these objects. Remember that a pad
contains other objects and that these objects may, themselves be pads. So
we can use the GetPrimitive () method of TPad:

TPad* padl 1 = (TPad*) (padl->GetPrimitive("padl 1"))

One question remains. In case one does an automatic divide, how can one
set the default margins between pads? This is done by adding two
parameters to Divide (), which are the margins in x and y:

root[] padl->Divide(3,2,0.1,0.1)

The margins are here set to 10% of the parent pad width.

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 105

Making a Pad Transparent

As we will see in the paragraph "Fill attributes", a fill style (type of hatching)
may be set for a pad.

root[] padl->SetFillStyle(istyle)
This is done with the SetFi11Style method where istyle is a style
number, defined in "Fill attributes".
A special set of styles allows handling of various levels of transparency.
These are styles number 4000 to 4100, 4000 being fully transparent and
4100 fully opaque.
So, suppose you have an existing canvas with several pads. You create a
new pad (transparent) covering for example the entire canvas. Then you
draw your primitives in this pad.
The same can be achieved with the graphics editor.
For example:

root [] .x tutorials/hldraw.C

root [] TPad *newpad=new TPad('"newpad","a transparent

pad,0,0,1,1);

root [] newpad.SetFillStyle (4000) ;

root [] newpad.Draw() ;

root [] newpad.cd() ;

root [] // create some primitives, etc
Setting the Log Scale is a Pad Attribute
Setting the scale to logarithmic or linear is an attribute of the pad, not the axis
or the histogram. The scale is an attribute of the pad because you may want
to draw the same histogram in linear scale in one pad and in log scale in
another pad. Frequently, we see several histograms on top of each other in
the same pad. It would be very inconvenient to set the scale attribute for each
histogram in a pad. Furthermore, if the logic were in the histogram class (or
each object), one would have to test for the scale setting in each the Paint
methods of all objects.
If you have a pad with a histogram, a right-click on the pad, outside of the
histograms frame will convince you. The SetLogx (), SetLogy () and
SetLogz () methods are there. As you see, TPad defines log scale for the
two directions x and y plus z if you want to draw a 3D representation of some
function or histogram.
The way to set log scale in the x direction for the active pad is:

root [] gPad->SetLogx(1l)
To reset log in the z direction:

root [] gPad->SetLogz (0)

If you have a divided pad, you need to set the scale on each of the sub-pads.
Setting it on the containing pad does not automatically propagate to the sub-
pads. Here is an example of how to set the log scale for the x-axis on a
canvas with four sub-pads:

106

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

root
root
root
root
root
root
root
root

TCanvas MyCanvas ("MyCanvas", "My Canvas")
MyCanvas->Divide (2,2)

MyCanvas->cd (1)

gPad->SetLogx ()

MyCanvas->cd (2)

gPad->SetLogx ()

MyCanvas->cd (3)

gPad->SetLogx ()

L s B B B B e B]
[O T U U R)

Graphical Objects

In this paragraph, we describe the various simple 2D graphical objects
defined in ROOT. Usually, one defines these objects with their constructor
and draws them with their Draw () method. Therefore, the examples will be
very brief. Most graphical objects have line and fill attributes (color, width)
that will be described in “Graphical objects attributes”.

If the user wants more information, the class names are given and he may
refer to the online developer documentation. This is especially true for
functions and methods that set and get internal values of the objects
described here.

Lines, Arrows, and Geometrical Objects

Line: Class TLine

The simplest graphical object is a line. It is implemented in the TLine class.
The constructor is:

TLine (Double t x1, Double t yl, Double t x2, Double t y2)

The arguments x1, y1, x2, y2 are the coordinates of the first and
second point.

This constructor may be used as in:

root
root

[] 1 = new TLine(0.2,0.2,0.8,0.3)
[] 1->Draw()

Arrows: Class TArrow

Different arrow formats as show in the picture below are available.

Examples of various arrow formats

Once an arrow is drawn on the screen, one can:

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 107

e click on one of the edges and move this edge.
e click on any other arrow part to move the entire arrow.

The constructor is:

TArrow (Double t x1, Double t yl,Double t x2, Double t y2,
Float t arrowsize, Option t *option)

It defines an arrow between points x1, y1 and x2, y2. The arrow size is in
percentage of the pad height.

The options are the following:

option = ">"

option = "<"

option="|>" r

option="<|" 4

option = "<>"

option = "< |>" o

If the fill colordefined if FillColor == 0, draw open triangle else draw full

triangle with fill color. If ar is an arrow object, fill color is set with:

ar.SetFillColor (icolor);

Where icolor is the color defined in “Color and color palettes”.

The opening angle between the two sides of the arrow is 60 degrees. It can
be changed with ar->SetAngle (angle), where angle is expressed in
degrees.

Poly-line: Class TPolyLine

A poly-line is a set of joint segments. It is defined by a set of N points in a 2D
space. Its constructor is:

TPolyLine (Int_t n, Double t* x, Double t* y, Option t*
option)

Where n is the number of points, and x and y are arrays of n elements with
the coordinates of the points.

TPolyLine can be used by it self, but is also a base class for other objects,
such as curly arcs.

Circles, Ellipses: Class TEllipse

Ellipse is a general ellipse that can be truncated and rotated. An ellipse is
defined by its center (x1, y1) and two radii r1 and r2. A minimum and
maximum angle may be specified (phimin, phimax). The picture below

108 Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

illustrates different types of ellipses:

Examples of Ellipses

RN I e s
R
)
AR ARA RIS
R

The Ellipse may be rotated with an angle theta.

The attributes of the outline line and of the fill area are described in
“Graphical objects attributes”

The constructor of a TE11ipse object is:

TEllipse (Double t x1, Double t yl,Double t rl,Double t
r2,Double t phimin, Double t phimax, Double t theta)

An ellipse may be created with a statement like:

root [] e = new TEllipse(0.2,0.2,0.8,0.3)
root [] e->Draw ()

Rectangles: Classes TBox and TWbox

A rectangle is defined by the class TBox since it is a base class for many
different higher-level graphical primitives.

A box is defined by its bottom left coordinates x1, vy1 and its top right
coordinates x2, y2.

The constructor being:

TBox (Double t x1, Double t yl, Double t x2, Double t y2)

It may be used as in:

root [] b = new TBox(0.2,0.2,0.8,0.3)
root [] b->Draw ()

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 109

A TWbox is a rectangle (TBox) with a border size and a border mode:

The attributes of the outline line and of the fill area are described in
“Graphical Objects Attributes”

One Point, or Marker: Class TMarker

A marker is a point with a fancy shape! The possible markers are the
following:

® B AV O [IA O g ¥ &
20 21 22 23 24 25 26 27 28 29 30

+ x O X - - @

3 4 5 6 7 8 9 10 11

One marker is build via the constructor:

TMarker (Double t x, Double t y, Int t marker)

The parameters x and y are the coordinates of the marker and marker is the
type, shown above.

Suppose ma is a valid marker. One can set the size of the marker with
ma->SetMarkerSize (size), where size is the desired size. The
available sizes are:

® O O O O

| o 3 o o o

Sizes smaller than 1 may be specified.

Set of Points: Class TPolyMarker

A TPolyMaker is defined by an array on N points in a 2-D space. At each
pointx[i], y[i] a markeris drawn. The list of marker types is shown in
the previous paragraph.

110 Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

The marker attributes are managed by the class TAttMarker and are
described in “Graphical objects attributes”

The constructor for a TPolyMarker is:

TPolyMarker (Int t n, Double t *x, Double t *y, Option t
*option)

Where x and y are arrays of coordinates for the n points that form the poly-
marker.

Curly and Wavy Lines for Feynman Diagrams

This is a peculiarity of particle physics, but we do need sometimes to draw
Feynman diagrams. Our friends working in banking can skip this part.

A set of classes implements curly or wavy poly-lines typically used to draw
Feynman diagrams. Amplitudes and wavelengths may be specified in the
constructors, via commands or interactively from context menus. These
classes are TCurlyLine and TCurlyArc.

These classes make use of TPolyLine by inheritance; ExecuteEvent
methods are highly inspired from the methods used in TPolyLine and
TArc.

The picture below has been generated by the tutorial feynman. C:

e’ q

~

The constructors are:

TCurlyLine (Double t x1, Double t yl, Double t x2, Double t
y2, Double t wavelength, Double t amplitude)

With the starting point (x1, y1), end point (x2, y2).The wavelength and
amplitude are given in percent of the pad height

For TCurlyArc, the constructor is:

TCurlyArc (Double t x1, Double t yl, Double t rad, Double t
phimin, Double t phimax, Double t wavelength, Double t
amplitude)

The centeris (x1, y1) and the radius rad. The wavelength and amplitude
are given in percent of the line length, phimin and phimax, which are the
starting and ending angle of the arc, are given in degrees.

Refer to SROOTSYS/tutorials/feynman.C for the script that built the
picture above.

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 111

Text and Latex Mathematical Expressions

Text displayed in a pad may be embedded into boxes, called paves (such as
PaveLabels), or titles of graphs or many other objects but it can live a life of
its own. All text displayed in ROOT graphics is an object of class TText. For
a physicist, it will be most of the time a TLatex expression (which derives
from TText).

TLatex has been conceived to draw mathematical formulae or equations. Its
syntax is very similar to the Latex one in mathematical mode.

Subscripts and Superscripts

Subscripts and superscripts are made with the and ~ commands. These
commands can be combined to make complicated subscript and superscript
expressions. You may choose how to display subscripts and superscripts
using the 2 functions SetIndiceSize (Double t) and
SetLimitIndiceSize (Int t).

Examples of what can be obtained using subscripts and superscripts:

The expression Gives The expression | Gives The expression Gives
x"* {2y} x2 x*{y~{2}} xyz x*{y}_{1}
x_{2y} Xy, xMy_{1}}) X x_ {11y}
Fractions

Fractions denoted by the / symbol are made in the obvious way. The #frac
command is used for large fractions in displayed formula; it has two
arguments: the numerator and the denominator. For example, this equation is
obtained by following expression.

xzy-l;z/Z
vy +1

x=#frac{y+z/2}{y"{2}+1}

Roots

The #sgrt command produces the square ROOT of its argument; it has an
optional first argument for other roots.

Example: #sqrt{10} #sqrt[3]{10}

112

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

Mathematical Symbols

TLatex can make mathematical and other symbols. A few of them, such as
+ and >, are produced by typing the corresponding keyboard character.

Others are obtained with the commands in the following table.

= #leq 7 #l
% #club * #diamond
<> #leftrightarrow<— #leftarrow

| #downarrow ° #circ

2 #geq % #times

* #bullet ~ #divide

= #Happrox - #3dots

< #downleftarrow® #aleph

@ #odot ® #otimes

™ #cap v #cup

T #notsubset < #subset

€ #notin Z #angle

© #ocopyright ™ #trademark

#upoint — #corner
< #Leftrightarrow— #Leftarrow
U #Downarrow +* #diamond

© #copyright ™ #void3

| #lbar _ #arcbottom
| #bottombar [#arcbar

| #parallel 1 #perp
Delimiters

+H — € §

= > 4d a9n uUu e t— % 3§

<
2

]
)

#infty
#heart
#uparrow
#pm
#propto
#neq
#cbar
#Jgothic
#oplus
#supset
#subseteq
#nabla
#prod
#wedge
#Uparrow
#T
#sum
#topbar
#itbar
#GT

You can produce three kinds of proportional delimiters.

#[1{....} or"ala"Latex #left]|
brackets

#{}¥{....} or #left{
brackets

#11{....} or #left|
value symbol

#(){....} or #left

Y #GT

4 #spade

— #rightarrow

" #doublequote

d #partial

= #equiv

— #topbar

R #Rgothic

& #oslash

= #supseteq

€ #in

® #oright

vV #surd

vV #vee

= #Rightarrow

0 #Box

& #voidn

(. #arctop
#int

f #voidb

#right] : big square

#right}: big curly

#right|: big absolute

#right) : big parenthesis

Graphics and the Graphical User Interface

Draft, December 2000 - version 0.6.3 113

Greek Letters

The command to produce a lowercase Greek letter is obtained by adding a #
to the name of the letter. For an uppercase Greek letter, just capitalize the
first letter of the command name.

#alpha #beta #gamma #delta #epsilon #zeta #eta #theta #iota
#kappa #lambda #mu #nu #xi #omicron #pi #varpi #rho #sigma
#tau #upsilon #phi #varphi #chi #psi #omega #Gamma #Delta
#Theta #Lambda #Xi #Pi #Sigma #Upsilon #Phi #Psi #Omega

Accents, Arrows and Bars

Symbols in a formula are sometimes placed one above another. TLatex
provides special commands for doing this.

#hat{a} =hat

#check =inverted hat
#acute = acute

#grave = accent grave

#dot = derivative

#ddot = double derivative

a Is obtained with #bar{a}
& Is obtained with #vec{a}

Changing Style in Math Mode
You can change the font and the text color at any moment using:

#font [font-number]{...} and #color[color-number]{...}

114

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

Example 1

The following script (SROOTSYS/tutorials/latex.C)

gROOT->Reset () ;
TCanvas cl("cl","Latex",600,700);
TLatex 1;
1.SetTextAlign (12);
1.SetTextSize (0.04) ;
1.DrawLatex(0.1,0.8,"1) C(x) = d #sqrt{#frac{2}{#lambdaD}}
#int~{x} {O}cos (#frac{#pi}{2}t"{2})dt");
1.DrawLatex(0.1,0.6,"2) C(x) = d #sqrt{#frac{2}{#lambdaD}}
#int"{x}cos (#frac{#pilt{2}t~{2})dLt");
1.DrawLatex (0.1,0.4,"3) R = |A|"{2} =
ffrac{1} {2} (#[]{#frac{l}{2}+C(V)}I"{2}+
#[] {(#frac{l}{2}+S(V) I~ {2})"™);
1l.DrawlLatex (0.1,0.2,"4) F(t) = #sum {i=
—#infty} " {#infty}A (i) cos#[] {#frac{i}{t+i}}");

The script makes this picture:

¥ test =1 3
File Edit Miew Optiohs Inspect Classes Help

1) Cy=d \I% ‘[cos(zﬂlz)dt

2) C=d \I% Tcos(zﬂﬁ)dt
3) R- W’ - I({Lcm]+[Lsm])

4) Ft)= S Ali)cos [t_l.]

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 115

Example 2

The following script (SROOTSYS/tutorials/latex2.C):

gROOT->Reset () ;
TCanvas cl("cl","Latex",600,700);
TLatex 1;

1

1

1

.SetTextAlign(23) ;
1.

SetTextSize (0.1);

.DrawlLatex(0.5,0.95,"e"{+}e"{-}#frightarrowzZ"{0}

#rightarrowI#bar{I}, g#bar{qgl"):;

.DrawLatex (0.5,0.75," | #vec{a}#bullet#vec{b}|=

#Sigmaa”{i} {jk}+b"{bj} {i}™);

.DrawLatex (0.5,0.5, "1 (#partial {#mu}#bar{#psi}#gamma” {#mu}

+m#bar{#psi}=0
#Leftrightarrow (#Box+m”~{2}) #psi=0") ;

.DrawLatex(0.5,0.3,"L {em}=eJ”{#mu} {em}A {#mu} ,

J*{#mu} {em}=#bar{I}#gamma {#mu}l
M~{j} {i}=#SigmaA {#alpha}#tau”{#alphaj} {i}");

The result is the following picture:

24 (=] E3
File Edit Yiew Options Inspect Classes Help

ere—7Z°>ll, qq
[3ebl-2a, +b?

i(8ﬁv“+mﬁ=0<=)(n+m2)w=0
Lom=edonA, Jon=ly |, MI=ZA, 10

em" ‘|1 ?

116

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

Example 3

The following script (SROOTSYS/tutorials/latex3.C):

gROOT->Reset () ;

TCanvas cl("cl1l");

TPaveText pt(.1,.5,.9,.9);

pt.AddText ("#frac{2s} {#pitalpha”{2}}
#frac{d#sigma}{dcos#theta}l (e*{+}e”{-}
#rightarrow f#bar{f}) = ");

pt.AddText ("#left| #frac{l}{1l - #Delta#alpha} #right|"{2}
(l+cos™{2}#theta");

pt.AddText ("+ 4 Re #left{ #frac{2}{1 - #Delta#alpha} #chi (s)
#[]{#hat{g} {#nu}~{el#hat{g} {#nu}"{f}
(1 + cos”{2}#theta) + 2 #hat{g} {a}l"{e}
#hat{g} {a}"{f} cos#theta) } #right}");

pt.SetLabel ("Born equation");

pt.Draw () ;

}

The result is the following picture:

! Born equation I

25 _dS e G| _1 P 2
(e'e — ff |1_—M|(1+cosﬁ]

mr2 deost

—p~f et
- F{e{ 1 -2.&05 x(s) [QVQVH + cos ©) +24.g, cost)] }

+ 16l P [@E + 5‘32](o+ +c0526]+ ¢ 5 5.5 o cose]

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 117

Text in Labels and TPaves

Text displayed in a pad may be embedded into boxes, called paves, or may
be drawn alone. In any case, it is recommended to use a Latex expression,
which is covered in the previous paragraph. Using TLatex is valid whether
the text is embedded or not. In fact, you will use Latex expressions without

knowing it since it is the standard for all the embedded text.

A pave is just a box with a border size and a shadow option. The options
common to all types of paves and used when building those objects, are the
following:

Option = "T" Top frame

Option = "B" Bottom frame

Option = "R" Right frame

Option = "L" Left frame

Option = "NDC" x1, y1,x2, y2 are given in NDC
Option = "ARC" corners are rounded

We will see the practical use of these options in the description of the more
functional objects like TPaveLabels.

There are several categories of paves containing text:

TPavelLabels

TPaveLabels are panels containing one line of text. They are used for
labeling. The constructor is:

TPaveLabel (Double t x1, Double t yl,Double t x2, Double t
y2, const char *label, Option t *option)

Where (x1, yl) are the coordinates of the bottom left corner, (x2, y2)
the coordinates of the upper right corner. “1abel” is the text to be displayed
and “option” is the drawing option, described above. By default, the border
size is 5 and the option is “br”.

If one wants to set the border size to some other value, one may use the
SetBorderSize () method. For example, suppose we have a histogram,
which limits are (-100, 100) in the x directionand (0,1000) inthey
direction.

The following lines will draw a label in the center of the histogram, with no
border. If one wants the label position to be independent of the histogram
coordinates, or user coordinates, one can use the option “NDC”. See the
paragraph about coordinate systems for more information.

root[] pl = new TPavelLabel (-50, 0, 50,200,”Some text”)
root[] pl->SetBorderSize (0)
root[] pl->Draw()

118

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

Here are examples of what may be obtained:

This is a Pavelabel with option TL This is a PavelLabel with option TR

This is a Pavelabel with option BL This is a Pavel abel with option BR

TPaveText

A TPaveLabel can contain only one line of text. A TPaveText may contain
several lines. This is the only difference. This picture illustrates and explains
some of the points of TPaveText. Once a TPaveText is drawn, a line can
be added or removed by brining up the context menu with the mouse.

File Edit WYiew Options Inspector Classes Help

A PaveText is a Pave with text lines andfor hoxes
The Position of the text may be automatic
Text/Line/Box attributes may be set for individual elements

The PaveText below has heen created automatically
by reading the macro file with the statements 0
used to generate this PaveText \N\th F.O

pave Fo°

TPaveText pt1{0.015,0.66,0.98,0.98)

TPaveText pt2{0.09,0.015,0.91,0.63)

pt2 SetFillColor{28)

TText “t1=pt1.AddText({"A PaveText i3 a Pave with text lines and/or boxes")
TText “t2=pt1.AddText{"The Position of the text may be automatic"y

TText “t3=pt1.AddText({"TextLine/Box attributes may be set for individual elements "y
t3 . SelTextColon(2)

TText “t30=pt1.AddText{" "}

TLine “M=pt1.AddLine{0,0,0,0)

1. SetLineColon4)

I SetLineWidth{6)

TText “t4=pt1.AddText{"The PaveText below has been created automatically "y
TText “th=pi1.AddText({"by reading the macro File with the statements")

TText “to=pt1.AddText({"used to generate thiz PaveText")

TText “t7=pt1.AddText{"Have Fun with ROOT")

17 SetTextColon(6)

t¥ SetTextAngle(12)

{7 SetTextAlign{22)

t7 SetTextSize(0.05)

ptl.Draw

pt2 BeadFile{pavet mac)

pt2 Draw

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 119

TPavesText

A TPavesText is a stack of text panels (see TPaveText). One can set the
number of stacked panels at building time. The constructor is:

TPavesText (Double t x1, Double t yl, Double t x2, Double t
Int t npaves, Option_ t* option)

By default, the number of stacked panels is 5 and option = “br”

C++ header files

*User.h

Sliders

Sliders may be used for showing the evolution of a process or setting the
limits of an object’s value interactively. A TS1ider object contains a slider
box that can be moved or resized.

Slider drawing options include the possibility to change the slider starting and
ending positions or only one of them.

The current slider position can be retrieved via the functions
TSlider: :GetMinimum () and TSlider: :GetMaximum () . These two
functions return numbers in the range [0, 1].

One may set a C expression to be executed when the mouse button 1 is
released. This is done with the TS1ider: :SetMethod () function.

It is also possible to reference an object. If no method or C expression has
been set, and an object is referenced (SetObject has been called), while
the slider is being moved/resized, the object ExecuteEvent function is
called.

120

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

Let’'s see an example using SetMethod. The script is called xyslider.C.

// Example of script featuring two sliders

TFile *f = new TFile("hsimple.root");

TH2F *hpxpy = (TH2F*) f->Get ("hpxpy") ;

TCanvas *cl = new TCanvas("cl");

TPad *pad = new TPad("pad","lego pad",
0.1,0.1,0.98,0.98);

pad->SetFillColor (33);

pad->Draw () ;

pad->cd () ;

gStyle->SetFrameFillColor (42);

hpxpy->SetFillColor (46) ;

hpxpy->Draw ("legol") ;

cl->cd();

// Create two sliders in main canvas. When buttonl
// of the mouse will be released, action.C will be called
TSlider *xslider = new TSlider
("xslider","x",.1,.02,.98,.08);
xslider->SetMethod (".x action.C");
TSlider *yslider = new TSlider
("yslider","y",.02,.1,.06,.98);
yslider->SetMethod (".x action.C");

The script that is executed when button 1 is released is the following (script
action.C):

Int t nx = hpxpy->GetXaxis()->GetNbins();

Int t ny = hpxpy->GetYaxis ()->GetNbins () ;
()
)

Int t binxmin = nx*xslider->GetMinimum/() ;
Int t binxmax = nx*xslider->GetMaximum() ;
hpxpy->GetXaxis () ->SetRange (binxmin, binxmax) ;

Int t binymin = ny*yslider->GetMinimum() ;
Int t binymax = ny*yslider->GetMaximum /() ;
hpxpy->GetYaxis () ->SetRange (binymin, binymax) ;
pad->cd () ;

hpxpy->Draw ("legol") ;

cl->Update () ;

The canvas and the sliders created in the above script are shown in the
picture below.

File Edit View Options Inspect Classes Help

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 121

The second example uses SetObject (script xyslider.C).Same
example as above but using the SetMethod:

Myclass *obj = new Myclass();
// Myclass derived from TObject

xslider->SetObject (obj) ;
yslider->SetObject (obj) ;

When one of the sliders will be changed, Myclass: :ExecuteEvent () will
be called with px=0 andpy = 0.

Axis

The axis objects are automatically built by various high level objects such as
histograms or graphs. Once build, one may access them and change their
characteristics. It is also possible, for some particular purposes to build axis
on their own. This may be useful for example in the case one wants to draw
two axis for the same plot, one on the left and one on the right.

For historical reasons, there are two classes representing axis.

TAxis is the axis object, which will be returned when calling the
TH1: :GetAxis () method

TAxis

*axlis = histo->GetXaxis ()

Of course, you may do the same for Y and z-axis.

The graphical representation of an axis is done with the TGaxi s class.
Instances of this class are generated by the histogram classes and TGraph.
This is internal and the user should not have to see it.

Axis Options and Characteristics

The axis options are most simply set with the styles. The available style
options controlling specific axis options are the following:

SetAxisColor (Color t color = 1, Option t* axis = X)
SetLabelColor (Color_t color = 1, Option t* axis = X)
SetLabelFont (Style t font = 62, Option_ t* axis = X)
SetLabelOffset (Float t offset = 0.005, Option t* axis = X)
SetLabelSize (Float t size = 0.04, Option t* axis = X)
SetNdivisions (Int t n = 510, Option t* axis = X)

SetTickLength(Float t length = 0.03, Option t* axis = X)
SetTitleOffset (Float t offset = 1, Option t* axis = X)
SetTitleSize (Float t size = 0.02, Option_ t* axis = X)

As one can see, the default is always for x-axis. As an example, if one wants
the label size of all subsequent Y-axis to be 0.07, one may do:

gStyle->SetLabelSize (0.07,"Y");

Of course, getters corresponding to the described setters are available.
Furthermore, the general options, not specific to axis, as for instance
SetTitleTextColor () are valid and do have an effect on axis
characteristics

122

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

Axis Title

The axis title is set, as with all named objects, by

axis->SetTitle ("Whatever title you want");

When the axis is embedded into a histogram or a graph, one has to first
extract the axis object:

h->GetXaxis () ->SetTitle ("Whatever title you want")

Drawing Axis independently of Graphs or
Histograms

An axis may be drawn independently of a histogram or a graph. This may be
useful to draw for example a supplementary axis for a graph. In this case,
one has to use the TGaxis class, the graphical representation of an axis.
One may use the standard constructor for this kind of objects:

TGaxis (Double t xmin, Double t ymin, Double t xmax,
Double t ymax, Double t wmin, Double t wmax, Int t ndiv =
510, Option_ t* chopt, Double t gridlength = 0)

The arguments xmin, ymin are the coordinates of the axis' start in the user
coordinates system, and xmax, ymax are the end coordinates. The
arguments wmin and wmax are the minimum (at the start) and maximum (at
the end) values to be represented on the axis.

ndiv is the number of divisions and should be set to:
ndiv = N1 + 100*N2 + 10000*N3
N1 = number of first divisions.
N2 = number of secondary divisions.
N3 = number of tertiary divisions.
For example:
ndiv = 0:no tick marks.
ndiv =2: 2 divisions, one tick mark in the middle of the axis.

The options, given by the “chopt” string are the following:

'G': logarithmic scale, default is linear.
'B': Blank axis. Useful to superpose the axis.

e chopt

e chopt

Orientation of tick marks on axis.

Tick marks are normally drawn on the positive side of the axis, however,
if xmin = xmax, then negative.

e chopt = '+':tick marks are drawn on Positive side. (Default)

e chopt = '-': tick marks are drawn on the negative side. i.e.: '+-' --
> tick marks are drawn on both sides of the axis.

e chopt = 'U': Unlabeled axis, default is labeled.

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 123

Label Position

Labels are normally drawn on side opposite to tick marks. However,
chopt = '=':on Equal side

Label Orientation

Labels are normally drawn parallel to the axis. However, if xmin =
xmax, then they are drawn orthogonal, and if ymin = ymax they are
drawn parallel.

Tick Mark Label Position

Labels are centered on tick marks. However, if xmin = xmax, then
they are right adjusted.

e chopt = 'R': labels are Right adjusted on tick mark (default is
centered)

e chopt = 'L': labels are left adjusted on tick mark.

e chopt = 'C': labels are centered on tick mark.

'M' : In the Middle of the divisions.

e chopt

Label Formatting

Blank characters are stripped, and then the label is correctly aligned. The dot,
if last character of the string, is also stripped. In the following, we have some
parameters, like tick marks length and characters height (in percentage of the
length of the axis, in user coordinates)

The default values are as follows:

Primary tick marks: 3.0 %
Secondary tick marks: 1.5 %
Third order tick marks: .75 %
Characters height for labels: 4%
Labels offset: 1.0 %

Optional Grid

chopt = 'W': cross-Wire

Axis Binning Optimization

By default, the axis binning is optimized.

e chopt = 'N': No binning optimization
e chopt = 'I': Integer labeling

Time Format

Axis labels may be considered as times, plotted in a defined time format. The
format is set with SetTimeFormat () .

chopt = 't': Plottimes with a defined format instead of values

The format string for date and time use the same options as the one used in
the standard strftime C function. For the date:

124

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

e %a abbreviated weekday name
e 3Db abbreviated month name

e 3dday of the month (01-31)

e 3smmonth (01-12)

e 3y year without century

For the time:

. %$H hour (24-hour clock)

. %I hour (12-hour clock)

. %p local equivalent of AM or PM
. $M minute (00-59)

. %S seconds (00-61)

. %% %

The start time of the axis will be wmin + time offset. Thistime
offset is the same for all axes, since it is gathered from the active
style. One may set the time offset:

gStyle->SetTimeOffset (time)

Where “time” is the offset time expressed in UTC (Universal
Coordinated Time) and is the number of seconds since a standard
date (1970), adjusted for some earth’s rotation drifting. Your
computer time is using UTC as a reference.

Instead of the wmin, wmax arguments of the normal constructor, i.e.
the limits of the axis, the name of a TF1 function can be specified.
This function will be used to map the user coordinates to the axis
values and ticks. The constructor is the following:

TGaxis (Double t xmin, Double t ymin, Double t xmax,
Double t ymax, const char* funcname, Int t ndiv = 510,
Option_ t* chopt, Double t gridlength = 0)

In such a way, it is possible to obtain exponential evolution of the tick
marks position, or even decreasing. In fact, anything you like.

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 125

Axis Example 1:

To illustrate all what was said before, we can show two scripts. This example

creates this picture:

8 - —=0 —=9000
6 - 100_200 300 400 500 600 700 800 900 —i19 — gooo
na 10° —20 — 7000
3 = —330 — 6000
2E— C 1 | | ol | | | = E

: n 10° 107 107 1 10 10° 10° —40 — 5000
0 10 E E

- & 350 — 4000
_2__ C |...|...|...|...|...|...|...|é E

: - 6 4 2 0 2 4 6 8 —60 —3000
4 10 E —270 — 2000
6 C T e R I I e A TP
. = 1.2 1.22 1.24 1.26 1.28 13 1325 E
8= 1 g0 Jo

This script goes along with it::

gROOT->Reset () ;

cl = new TCanvas("cl","Examples of Gaxis",10,10,700,500);
cl->Range (-10,-1,10,1);

TGaxis *axisl = new TGaxis(-4.5,-0.2,5.5,-0.2,-6,8,510,"");
axisl->SetName ("axisl") ;
axisl->Draw () ;

TGaxis *axis2 = new TGaxis(4.5,0.2,5.5,0.2,
0.001,10000,510,"G"™);

axis2->SetName ("axis2") ;

axis2->Draw () ;

TGaxis *axis3 = new TGaxis(-9,-0.8,-9,0.8,-8,8,50510,"");
axis3->SetName ("axis3");
axis3->Draw () ;

TGaxis *axis4 = new TGaxis(-7,-0.8,7,0.8,1,10000,50510,"G");
axis4->SetName ("axis4") ;
axis4->Draw () ;

... the script is continued on the next page

126

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

TGaxis *axis5 = new TGaxis(-4.5,-.6,5.5,-.6,1.2,1.32,80506,"-+");
axisb5->SetName ("axisbh") ;

axis5->SetLabelSize (0.03);

axisb->SetTextFont (72) ;

axisb5->SetLabelOffset (0.025) ;

axis5->Draw () ;

TGaxis *axis6 = new TGaxis(-4.5,0.6,5.5,0.06,
100,900,50510,"=-");

axiso->SetName ("axiso") ;

axis6->Draw () ;

TGaxis *axis7 = new TGaxis(8,-0.8,8,0.8,0,9000,50510,"+L") ;
axis7->SetName ("axis7") ;

axis7->SetLabelOffset (0.01);

axis7->Draw () ;

// one can make axis top->bottom. However because of a
// problem, the two x values should not be equal
TGaxis *axis8 = new TGaxis(6.5,0.8,6.499,-0.8,
0,90,50510,"=");
axis8->SetName ("axis8") ;
axis8->Draw () ;

}

Axis Example 2:

The second example shows the use of the second form of the constructor,
with axis ticks position determined by a function TF1:

void gaxis3a()

{
gStyle->SetOptStat (0) ;

TH2F *h2 = new TH2F("h","Axes",2,0,10,2,-2,2);
h2->Draw () ;

TF1l *fl=new TF1("f1","-x",-10,10);

TGaxis *Al = new TGaxis(0,2,10,2,"f1",510,"-");
Al->SetTitle ("axis with decreasing wvalues");
Al->Draw () ;

TF1 *f2=new TF1 ("f2","exp(x)",0,2);
TGaxis *A2 = new TGaxis(1,1,9,1,"f2");
A2->SetTitle ("exponential axis");
A2->SetLabelSize (0.03);
A2->SetTitleSize (0.03);
A2->SetTitleOffset (1.2);

A2->Draw () ;

TF1 *f3=new TF1("£f3","loglO(x)",0,800);
TGaxis *A3 = new TGaxis(2,-2,2,0,"£f3",505);
A3->SetTitle("logarithmic axis");
A3->SetLabelSize (0.03);

A3->SetTitleSize (0.03);
A3->SetTitleOffset (1.2);

A3->Draw () ;

This script produces the following picture:

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 127

axis with decreasing values

QO 8 6 4 2 0 -2 -4 5 8 -10
_I T T | T T T | T T T | T T T I T T T | T T T | T T T | T T T | T T T I T T T
15—
1:_ bbb by b b v b o by b b |
- 0020406 08 1 1.2 14 1.6 1.8 2
- exponential axis
05—
0— 2 me
C ?EEE—
o ‘E 2000
0.5 £ C
C @ L
— =
10— 2
A5
_2:||||IIIH||||||||II||II|IIII|II||||||||||IIIIIII
0 1 2 3 4 5 6 7 8 9 10

Graphical Objects Attributes

Text Attributes

When a class contains text or derives from a text class, it needs to be able to
set text attributes like font type, size, and color. To do so, the class inherits
from the TAttText class (a secondary inheritance), which defines text
attributes. TLatex and TText inherit from TAttText.

Setting Text Attributes Interactively

When clicking on an object containing text, one of the last items in the
context menu is SetTextAttributes. Selecting it makes the following
window appear:

P attiext: title [_[Ol

III!FWF 2t D

]

”” times -medium-r-normal
greek-medium-r-normal
REREED N pre—
I ’7 I courier-bolt-r-normal
courier-medium -o-normal
courier-medium -r-normal
helvetica-hold-o-normal
helvetica-hold-r-nonmal
helvetica-medium-0-normal
helvetica- medium-r-normal
times -bold -i-normal

times-bold-r-normal

. l times-medium-i-normal
32
23
2z
3

This canvas allows you to set:

128 Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

Zaft- Dinghats
times -medium-r-normal
greek-medium-r-normal IIFFFFFFFF
courier-hold-o-normal
courier-hold-r-nommal FFIFFFFFFI Aa Aa dAdAd
courier-medium-o-nonmal
courier-medium-r-nonmal IIIIIFFFII Aa Aa| Aa Aal Aal
helvetica-bold-o-normal
helvetica-bold-r-nomal IFFFFIIIII A fa fa Ao Aa
helvetica-medium-o-nonmal
helvetica-medium-r-normal FFFFIFIFFI
times-hold-i-normal
times -bold-r-nomal
times-medium-i-nonmal
The text alignment Font Color Size

Setting Text Alignment

Text alignment may also be set by a method call. What is said here applies to
all objects deriving from TAttText, and there are many. We will take an
example that may be transposed to other types. Suppose "1a" is a TLatex
object. The alignment is set with:

root []

la->SetTextAlign (align)

The parameter align is a short describing the alignment:
align = 10*HorizontalAlign + VerticalAlign

For Horizontal alignment the following convention applies:

1 = left
2 = centered
3 = right

°
For Vertical alignment the following convention applies:
1 = bottom

2 = centered
3 =top

For example
Align: 11 = left adjusted and bottom adjusted
Align: 32 = right adjusted and vertically centered

Setting Text Angle

Use TAttText: :SetTextAngle to set the text angle. The angle is the
degrees of the horizontal.

root []

la->SetTextAngle (angle)

Setting Text Color

Use TAttText: :SetTextCoor to set the text color. The color is the color
index. The colors are described in "Color and color palettes".

Graphics and the Graphical User Interface

Draft, December 2000 - version 0.6.3 129

root []

la->SetTextColor (color)

Setting Text Font

Use TAttText::SetTextFont to set the font. The parameter font is the
font code, combining the font and precision:

font = 10 * fontID + precision

root []

la->SetTextFont (font)

The table below lists the available fonts. The font IDs must be between 1 and
14.

The precision can be:

e Precision = 0 fast hardware fonts (steps in the size)
e Precision = 1 scalable and rotate-able hardware fonts (see below)
e Precision = 2 scalable and rotate-able hardware fonts

When precision 0 is used, only the original non-scaled system fonts are used.
The fonts have a minimum (4) and maximum (37) size in pixels. These fonts
are fast and are of good quality. Their size varies with large steps and they
cannot be rotated.

Precision 1 and 2 fonts have a different behavior depending if True Type
Fonts (TTF) are used or not. If TTF are used, you always get very good
quality scalable and rotate-able fonts. However, TTF are slow.

Precision 1 and 2 fonts have a different behavior for PostScript in case of
TLatex objects:

o With precision 1, the PostScript text uses the old convention
(seeTPostScript) for some special characters to draw sub and
superscripts or Greek text.

o With precision 2, the "PostScript" special characters are drawn as such.
To draw sub and superscripts it is highly recommended to use TLatex
objects instead.

For example: font = 62 is the font with ID 6 and precision 2

130

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

The available fonts are:

Font ID XI11 True Type name is italic| "boldness"

1 times-medium-i-normal | "Times New Roman" Yes 4

2 times-bold-r-normal "Times New Roman" No 7

3 times-bold-i-normal "Times New Roman" Yes 7

4 helvetica-medium-r- "Arial" No 4
normal

5 helvetica-medium-o- "Arial" Yes 4
normal

6 helvetica-bold-r-normal "Arial" No 7

7 helvetica-bold-o-normal "Arial" Yes 7

8 courier-medium-r-normal "Courier New" No 4

9 courier-medium-o- "Courier New" Yes 4
normal

10 courier-bold-r-normal "Courier New" No 7

11 courier-bold-o-normal "Courier New" Yes 7

12 symbol-medium-r- "Symbol" No 6
normal

13 times-medium-r-normal | "Times New Roman" No 4

14 "Wingdings" No

Here is an example of what the fonts look like:

ID1:
ID2:
ID3:
ID4:
ID5:
ID6:
ID7:
ID8:
ID9:
ID10:
ID11;
ID12:
ID13:
ID14:

The quick brown fox is not here anymore

The quick brown fox is not here anymore

The quick brown fox is not here anymore

The quick brown fox is not here anymore

The guick brown fox is not here anymore

The quick brown fox is not here anymore

The quick brown fox is not here anymore

The quick brown fox is not here anymaore
The guick brown fox is not here anymore
The quick brown fox is not here anymore
The quick brown fox is not here anymore
Tne dutyk Bpowv $pof 10 voT Mepe avyLope

The quick brown fox is not here anymore

The quick brown fox is not here anymore

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3

131

This script makes the image of the different fonts:

tex
for

tc = new TCanvas ("textc", "Example of text",1);
(int 1=1;1i<15;1i++) {

cid = new char([8];

sprintf (cid,"ID %d :",1);

cid[7] = 0;

1id = new TLatex (0.1,1-(double)i/15,cid);
lid->SetTextFont (62) ;
lid->Draw () ;
1 = new TLatex(.2,1-(double)i/15,

"The quick brown fox is not here anymore");
1->SetTextFont (1*10+2) ;
1->Draw () ;

How to use True Type Fonts

You can activate the True Type Fonts by adding the following line in your
.rootrc file.

Unix.*

.Root.UseTTFonts: true

You can check that you indeed use the TTF in your Root session. When the
TTF is active, you get the following message at the start of a session:

"Free Type Engine v1.x used to render TrueType fonts."

You can also check with the command:

gEnv->Print ()

Setting Text Size

Use TAttText::SetTextSize to set the text size.

root []

la->SetTextSize (size)

The size is the text size expressed in percentage of the current pad size.
The text size in pixels will be:

e |If current pad is horizontal, the size in pixels
textsize * canvas_height

e If current pad is vertical, the size in pixels
textsize * canvas_width

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

Line Attributes

All classes manipulating lines have to deal with line attributes. This is done by
using secondary inheritance of the class TAttLine.

Setting Line Attributes Interactively

When clicking on an object being a line or having some line attributes, one of
the last items in the context menu is SetLineAttributes. Selecting it
makes the following window appear:

% atiline: 11

ERERETE
o | N

W] | |
| | N N NN N

The line color Style Width

Setting Line Color

Line color may be set by a method call. What is said here applies to all
objects deriving from TAttLine, and there are many (histograms, plots). We
will take an example that may be transposed to other types. Suppose "11" is
a TLine object. The line color is set with:

root[] li->SetLineColor (color)

The argument color is a color number. The colors are described in "Color
and Color Palettes”

Setting Line Style

Line style may be set by a method call. What is said here applies to all
objects deriving from TAttLine, and there are many (histograms, plots). We
will take an example that may be transposed to other types. Suppose "11" is
a TLine object. The line style is set with:

root[] li->SetLineStyle(style)

The argument style is one of:

l=so0lid, 2=dash, 3=dash-dot, 4=dot-dot

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 133

Setting Line Width

Line width may be set by a method call. What is said here applies to all
objects deriving from TAttLine, and there are many (histograms, plots). We
will take an example that may be transposed to other types. Suppose "11" is
a TLine object. The line width is set with:

root []

li->SetLineWidth (width)

The width is the width expressed in pixel units.

Fill Attributes

Almost all graphics classes have a fill area somewhere. These classes have
to deal with fill attributes. This is done by using secondary inheritance of the
class TAttFill.

Setting Fill Attributes interactively

When clicking on an object having a fill area, one of the last items in the
context menu is SetFillAttributes. Selecting it makes the following
window appear:

B attfil: f1 =] B3

EREERCEE
NEN-

o |
| [| |
~“ENNEN
AN N

FH T THTH
O,
o,
=,

iEEEE

The fill color Style

Setting Fill Color

Fill color may be set by a method call. What is said here applies to all objects
deriving from TAttFil1, and there are many (histograms, plots). We will
take an example that may be transposed to other types. Suppose "h" is a
TH1F (1 dim histogram) object. The histogram fill color is set with:

root []

h->SetFillColor (color)

The color is a color number. The colors are described in "Color and color
palettes”

134

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

Setting Fill Style

Fill style may be set by a method call. What is said here applies to all objects
deriving from TAttFil1l, and there are many (histograms, plots). We will
take an example that may be transposed to other types. Suppose "h" is a
TH1F (1 dim histogram) object. The histogram fill style is set with:

root[] h->SetFillStyle(style)

The convention for style is:
0: hollow
1001: solid
2001 : hatch style
3000 + pattern number: patterns

4000 to 4100: transparency, 4000 = fully transparent, 4100 = fully
opaque.

The various patterns are represented here:

| Fill styles

3001 3002 3003 3004 3005

_— o
— CINN
Ay i
£
— o
p— ERONN

30086 3007 3008

b
s

3010

i e TeTeTeTeTeTeTeTeTee e Ry bttt st bttt e L S 1 SIS SIS
PR R R ODUDHOOOUO0H0E i, HHEHEEEE
RO, DU000I0000000 Ry LT

3011 3012 3013 3014 3015

LML

el

3018 3017 3018 3019 3020

Y

Color and Color Palettes

At initialization time, a table of basic colors is generated when the first
Canvas constructor is called. This table is a linked list, which can be
accessed from the gROOT object (see TROOT: :GetListOfColors ()).
Each color has an index and when a basic color is defined, two "companion”
colors are defined:

- The dark version (color index + 100)
- The bright version (color index + 150)

The dark and bright colors are used to give 3-D effects when drawing various
boxes (see TWbox, TPave, TPaveText, TPavelLabel, etc).

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 135

If you have a black and white copy of the manual, here are the basic colors
and their indices:

1 = black

2 =red

3 = bright green
4 = bright blue
5 = yellow

6 = hot pink

7 =aqua

8 = green

9 = blue

0 ->9: basic colors

10 -> 19: shades of gray
20 -> 29: shades of brown
30 -> 39: shades of blue
40 -> 49: shades of red

The list of currently supported basic colors (here dark and bright colors are
not shown) is shown in the picture below:

The color numbers specified in the basic palette, and the picture above, can
be viewed by selecting the item "Colors" in the "view" menu of the canvas
toolbar.

Other colors may be defined by the user. To do this, one has to build a new
object of type TColor, which constructor is:

TColor (Int t color, Float t r, Float t g, Float t b, const
char* name)

One has to give the color number and the three Red, Green, Blue values,
each being defined from 0 (min) to 1(max). An optional name may be given.
When built, this color is automatically added to the existing list of colors.

If the color number already exists, one has to extract it from the list and
redefine the R, G, B values. This may be done for example with:

root[] color = (TColor*) (gROOT->GetListOfColors() -
>At (index color))
root[] color->SetRGB(r,g,b)

Where r, g and b go from 0 to 1 and index color is the color number you
wish to change.

136

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

Color Palette (for Histograms)

Defining one color at a time may be tedious. The color palette is used by the
histogram classes (seeDraw Options). For example, TH1::Draw ("col")
draws a 2-D histogram with cells represented by a box filled with a color CI
function of the cell content. If the cell content is N, the color CT used will be
the color number in colors [N]. If the maximum cell contentis > ncolors,
all cell contents are scaled to ncolors.

The current color palette does not have a class or global object of it's own. It
is defined in the current style as an array of color numbers. One may change
the current palette with the TStyle::SetPalette (Int t ncolors,
Int _t* color indexes) method

By default, or if ncolors <= 0, a default palette (see above) of 50 colors is
defined. The colors defined in this palette are good for coloring pads, labels,
and other graphic objects.

If ncolors > 0andcolors = 0, the default palette is used with a
maximum of ncolors. If ncolors == 1 && colors == 0, then a pretty
palette with a spectrum Violet->Red is created. It is recommended to use this
pretty palette when drawing legos, surfaces or contours.

For example, to set the current palette to the “pretty” one, one has to do:

root[] gStyle->SetPalette (1)

A more complete example is shown below. It illustrates the definition of a
custom palette. You can adapt it to suit your needs. In case you use it for
contour coloring, with the current color/contour algorithm, always define two
more colors than the number of contours.

void palette ()
{
// Example of creating new colors (purples)
// and defining of a new palette
const Int t colNum = 10;
Int t palette[colNum];
for (Int t i=0;i<colNum;i++) {
// get the color and
// if it does not exist create
if (! gROOT->GetColor (230+i)) {
TColor *color = new TColor
(230+1i,1-(i/((colNum)*1.0)),0.3,0.5,"");
} else {
TColor *color

= gROOT->GetColor (230+1) ;
color->SetRGB (1-(

i/ ((colNum)*1.0)),0.3,0.5);
}

palette[i] = 230+1i;
}
gStyle->SetPalette (colNum,palette);

TEF2 *£f2 = new TE2("f£2","exp (- (x"2)-(y*2))",-3,3,-3,3);
// two contours less than the

// number of colors in palette

f2->SetContour (colNum-2) ;

f2->Draw ("cont") ;

}

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 137

The Graphical Editor

Editor [W[=] E3

&rc

Line

BT

Buttan

Diamand

Ellipse

Fad

Fave

Favelabel

FaveText

FavesText

PaolyLine

CurlyLine

CurlyArc

TextL atex

karker

<..Graphical Cut..=

ROOT has a built-in graphics editor to draw and edit graphic
primitives starting from an empty canvas or on top of a picture
(e.g. histogram). The editor is started by selecting the “Editor”
item in the canvas “Edit” menu. A menu appears into an
independent window.

You can create the following graphical objects:

An arc or circle: Click on the center of the arc, and then move
the mouse. A rubber band circle is shown. Click again with the
left button to freeze the arc.

A line or an arrow: Click with the left button at the point where
you want to start the arrow, then move the mouse and click
again with the left button to freeze the arrow.

A Diamond: Click with the left button and freeze again with the
left button. The editor draws a rubber band box to suggest the
outline of the diamond.

An Ellipse: Proceed like for an arc. You can grow/shrink the
ellipse by pointing to the sensitive points. They are highlighted.
You can move the ellipse by clicking on the ellipse, but not on
the sensitive points. If, with the ellipse context menu, you have
selected a fill area color, you can move a filled-ellipse by
pointing inside the ellipse and dragging it to its new position.
Using the context menu, you can build an arc of ellipse and tilt
the ellipse.

A Pad: Click with the left button and freeze again with the left
button. The editor draws a rubber band box to suggest the
outline of the pad.

A Pave Label: Proceed like for a pad. Type the text to be putin
the box. Then type a carriage return. The text will be redrawn to
fill the box.

A Pave Text or Paves Text: Proceed like for a pad. You can
then click on the TPaveText object with the right mouse button

and select the option AddText.

A Poly Line: Click with the left button for the first point, move the moose,
click again with the left button for a new point. Close the poly-line with a
double click. To edit one vertex point, pick it with the left button and drag to
the new point position.

A CurlyLine: Proceed as for the arrow/line. Once done, click with the third
button to change the characteristics of the curly line, like transform it to wave,
change the wavelength, etc...

A CurlyArc: Proceed like for the arrow/line. The first click is located at the
position of the center, the second click at the position of the arc beginning.
Once done, one obtains a curly ellipse, for which one can click with the third
button to change the characteristics, like transform it to wavy, change the
wavelength, set the minimum and maximum angle to make an arc that is not
closed, etc...

A Text /Latex string: Click with the left button where you want to draw the
text, then type in the text terminated by carriage return. All TLatex
expressions are valid. To move the text or formula, point on it keeping the left
mouse button pressed and drag the text to its new position. You can
grow/shrink the text if you position the mouse to the first top-third part of the
string, then move the mouse up or down to grow or shrink the text

138

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

respectively. If you position the mouse near the bottom-end of the text, you
can rotate it.

A Marker: Click with the left button where to place the marker. The marker
can be modified by gstyle->SetMarkerStyle () .

A Graphical Cut: Click with the left button on each point of a polygon
delimiting the selected area. Close the cut by double clicking on the last
point. A TCutG object is created. It can b e used as a selection for a
TTree: :Draw. You can get a pointer to this object with TCutG cut =
(TCutG*) gPad->GetPrimitive ("CUTG").

Once you are happy with your picture, you can select the save as
canvas.C item in the canvas File menu. This will automatically generate a
script with the C++ statements corresponding to the picture. This facility also
works if you have other objects not drawn with the graphics editor
(histograms for example).

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 139

Copy/Paste With DrawClone

You can make a copy of a canvas using TCanvas: : DrawClonePad. This
method is unique to TCanvas. It clones the entire canvas to the active pad.
There is a more general method TObject: : DrawClone, which all objects
descendents of TObject, specifically all graphic objects inherit. Below are
two examples, one to show the use of DrawClonePad and the other to show
the use of DrawClone.

Example 1: TCanvas::DrawClonePad
In this example we will copy an entire canvas to a new one with
DrawClonePad.

Run the script draw2dopt.C.

root

[] .x tutorials/hldraw.C

This creates a canvas with 1D histograms. To make a copy of the canvas
follows these steps

Right-click on it to bring up the context menu.
Select DrawClonePad.

This copies the entire canvas and all its sub-pads to a new canvas. The
copied canvas is a deep clone, and all the objects on it are copies and
independent of the original objects. For instance, change the fill on one of the
original histograms, and the cloned histogram retains its attributes.

DrawClonePad will copy the canvas to the active pad; the target does not
have to be a canvas. It can also be a pad on a canvas.

Example 2: TObject::DrawClone

If you want to copy and paste a graphic object from one canvas or pad to
another canvas or pad, you can do so with DrawC1one method inherited
from TObject. The TObject: :DrawClone method is inherited by all
graphics objects.

In this example, we create a new canvas with one histogram from each of the
canvases from the script draw2dopt.C.

1. Start a new ROOT session and execute the script draw2dopt.C
Select a canvas displayed by the script, and create a new canvas from
the File menu (c1).

3. Make sure that the target canvas (c1) is the active one by middle
clicking on it. If you do this step right after step 2, c1 will be active.

4. Select the pad with the first histogram you want to copy and paste.

5. Right click on it to show the context menu, and select DrawClone.

6. Leave the option blank and hit OK.

Repeat these steps for one histogram on each of the canvases created by
the script, until you have one pad from each type.

140

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

If you wanted to put the same annotation on each of the sub pads in the new
canvas, you could use DrawClone to do so. Here we added the date to each
pad. The steps to this are:

1. Create the label in on of the pads with the graphics editor.

2. Middle-click on the target pad to make it the active pad

3. Use DrawClone method of the label to draw it in each of the other
panels.

The option in the DrawClone method argument is the Draw option for a
histogram or graph. A call to TH1: : DrawClone can clone the histogram
with a different draw option.

ot M=l E3

File Edit ¥iew Options Inspect Classes Help

LEGO1

E4gaL1 + thgau[s]+ eandauin

Ey0aLN + tynaua(s]+ eviandauf 10

4

Ei
et 1515000 |

4 £ = -1 o

T

Bl L B . ok om

= 15/9/00

L
L

Copy/Paste Programmatically

To copy and paste the four pads from the command line or in a script you
would execute the following statements:

root [] .x tutorials/draw2dopt.C

root [] TCanvas cl("cl","Copy Paste",200,200,800,600)
root [] surfaces->cd(1l); // get the first pad
root [] TPad * pl = gPad;

root [] lego->cd(2); // get the next pad
root [] TPad * p2 = gPad;

root [] cont->cd(3):; // get the next pad
root [] TPad * p3 = gPad;

root [] e2h->cd(4); // get the next pad
root [] TPad * p4 = gPad;

root [] // draw the four clones
root [] el->cd();

root [] pl->DrawClone() ;

root [] p2->DrawClone() ;

root [] p3->DrawClone() ;

root [] p4->DrawClone() ;

Note that the pad is copied to the new canvas in the same location as in the
old canvas. For example if you were to copy the third pad of surf to the top

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 141

left corner of the target canvas you would have to reset the coordinates of the
cloned pad.

Legends

Legends for a graph are obtained with a TLegend object. This object points
to markers/lines/boxes/histograms/graphs and represent their marker/line/fill
attribute. Any object that has a marker or line or fill attribute may have an
associated legend.

A TLegend is a panel with several entries (class TLegendEntry) and is
created by the constructor

TLegend (Double t x1, Double t yl,Double t x2, Double t y2,
const char *header, Option t *option)

The legend is defined with default coordinates, border size and option
x1,vy1l,x2,y2 are the coordinates of the legend in the current pad (in NDC
coordinates by default). The default text attributes for the legend are:

e Alignment =12 left adjusted and vertically centered

e Angle =0 (degrees)

e Color =1 (black)

e Size = calculate when number of entries is known

e Font = helvetica-medium-r-normal scalable font = 42, and bold =
62 for title

The title It is a regular entry and supports TLatex. The default is no title
(header = 0). The options are the same as for TPave; by default, they are
"brNDC".

Once the legend box is created, one has to add the text with the
AddEntry () method:

TLegendEntry* TLegend::AddEntry (TObject *obj, const char
*label, Option_t *option)

The parameters are:

e *0obj: is a pointer to an object having marker, line, or fill attributes
(for example a histogram, or graph)
e label: isthe label to be associated to the object

e option:
o "L” draw line associated with line attributes of obj if obj has
them (inherits from TAttLine)
o "P” draw poly-marker associated with marker attributes of
obj if obj has them (inherits from TAttMarker)
o "F” draw a box with fill associated with fill attributes of ob if
obj has them (inherits TAttFill)

One may also use the other form of AddEntry:

TLegendEntry* TLegend::AddEntry(const char *name, const
char *label, Option t *option)

Where name is the name of the object in the pad. Other parameters are as in
the previous case.

142 Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

Here's an example of a legend created with TLegend

abs(sin(x)/(x))
1= The Legend Title
i One Theory
0 8_ . Another Theory
L # The Data
i s ﬁ Pr (y) latex fonnula
0.6
= 03
A FaY et
04 & % FA i \.
o 4 ; ‘| i 3
L ; \‘ ! & '; “
N (O Yoo FO
0.2H1 v 1 [L
-] ¥
! Y o L
0 AT . AN 7
0 1 2 3 4] 6 7 8 9 1

The legend part of this plot was created as follows:

leg = new TLegend(0.4,0.6,0.89,0.89);
leg->AddEntry (funl, "One Theory","1");
leg->AddEntry (fun3, "Another Theory","f");
leg->AddEntry (gr, "The Data","p");
leg->Draw () ;
// oops we forgot the blue line...
leg->AddEntry (funz,

"#sqgrt{2#pi} P {T} (#gamma) latex formula","f");
// and add a header (or "title") for the legend
leg->SetHeader ("The Legend Title");
leg->Draw () ;

add it after

Where funl, fun2, fun3 and gr are pre-existing functions and graphs. You
can edit the TLegend by right clicking on it.

The PostScript Interface

To generate a PostScript (or encapsulated PostScript) file for a single image
in a canvas, you can:

Select the “Print PostScript”item in the canvas “File“ menu. By
default, a PostScript file with the name of the canvas.ps is generated.

Click in the canvas area, near the edges, with the right mouse button and
select the “Print® item. You can select the name of the Postscript file. If the
file name is xxx . ps, you will generate a Postscript file named xxx . ps. If the
file name is xxx . eps, you generate an encapsulated Postscript file instead.

In your program (or script), you can type:

cl->Print ("xxx.ps")

Or

cl->Print ("xxx.eps")

This will generate a file of canvas pointed to by c1.

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 143

padl->Print ("xxx.ps")

This prints the picture in the pad pointed by pad1. The size of the PostScript
picture, by default, is computed to keep the aspect ratio of the picture on the
screen, where the size along x is always 20 cm. You can set the size of the
PostScript picture before generating the picture with a command such as:

TPostScript myps ("myfile.ps",111)
myps.Range (xsize,ysize) ;
object->Draw () ;

myps.Close() ;

You can set the default paper size with:

gStyle->SetPaperSize (xsize,ysize);

You can resume writing again in this file with myps.Open () . Note that you
may have several Post Script files opened simultaneously.

Special Characters
The following characters have a special action on the PostScript file:
*: Go to Greek
': Go to special
~: Go to Zapf Dingbats
? : Go to subscript
~: Go to superscript
!': go to normal level of script
&: Backspace one character
#: End of Greek or of Zapf Dingbats

These special characters are printed as such on the screen. To generate one
of these characters on the PostScript file, you must escape it with the escape
character "@".

The use of these special characters is illustrated in several scripts referenced
by the TPostScript constructor.

144

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

Multiple Pictures in a PostScript File: Case 1

The following script is an example illustrating how to open a PostScript file
and draw several pictures. The generation of a new PostScript page is
automatic when TCanvas: :Clear is called by object->Draw () .

TFile f("hsimple.root");
TCanvas cl("cl","canvas",800,600);

//select PostScript output type

Int t type = 111; //portrait ps
// Int_t type = 112; //landscape ps
// Int_t type = 113; //eps

//create a PostScript file and set the paper size
TPostScript ps("test.ps", type);
ps.Range (16,24); [//set x,y of printed page

//draw 3 histograms from file hsimple.root on separate pages
hpx->Draw () ;
cl.Update () ; //force drawing in a script
hprof->Draw () ;
cl.Update();
hpx->Draw ("legol") ;
cl.Update();
ps.Close () ;

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 145

Multiple Pictures a PostScript File: Case 2

This example shows 2 pages. The canvas is divided.

TPostScript: :NewPage must be called before starting a new picture.
object->Draw does not clear the canvas in this case because we clear only
the pads and not the main canvas. Note that c1->Update must be called at
the end of the first picture.

//

TFile *fl = new TFile("hsimple.root");
TCanvas *cl = new TCanvas ("cl");
TPostScript *ps = new TPostScript("file.ps",112);
cl->Divide(2,1);
// picture 1
ps—->NewPage () ;
cl->cd (1) ;
hpx->Draw () ;
cl->cd(2);
hprof->Draw () ;
cl->Update () ;
// picture 2
ps—->NewPage () ;
cl->cd(1l);
hpxpy->Draw () ;
cl->cd(2);
ntuple->Draw ("px") ;
cl->Update() ;
ps—->Close () ;
invoke PostScript viewer
gSystem->Exec ("gs file.ps");

146

Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

Create or Modify a Style

All objects that can be drawn in a pad inherit from one or more attribute
classes like TAttLine, TAttFill, TAttText, TAttMarker.When the
objects are created, their default attributes are taken from the current style.
The current style is an object of the class TStyle and can be referenced via
the global variable gstyle (in TStyle.h). See the class TStyle fora
complete list of the attributes that can be set in one style. ROOT provides
several styles called

e "Default"The default style

e "Plain" The simple style (black and white)

e "Bold" Bolder lines

e "video" Suitable for html output or screen viewing

The "Default" style is created by:

TStyle *default = new TStyle("Default","Default Style");

The "Plain" style can be used if you are working on a monochrome display
or if you want to get a "conventional" PostScript output. As an example, these
are the instructions in the ROOT constructor to create the "P1ain" style.

TStyle *plain = new TStyle("Plain","Plain Style (no
colors/fill areas)");

plain->SetCanvasBorderMode (0) ;
plain->SetPadBorderMode (0) ;
plain->SetPadColor (0) ;
plain->SetCanvasColor (0) ;
plain->SetTitleColor (0)
plain->SetStatColor (0) ;

’

You can set the current style with:

gROOT->SetStyle (style name) ;

You can get a pointer to an existing style with:

TStyle *style = gROOT->GetStyle(style name);

You can create additional styles with:

TStyle *stl = new TStyle("stl","my style");
stl->Set....
stl->cd(); // this becomes now the current style gStyle

In your rootlogon.C file, you can redefine the default parameters via
statements like:

Graphics and the Graphical User Interface Draft, December 2000 - version 0.6.3 147

gStyle->SetStatX (0.7);
gStyle->SetStatW(0.2);
gStyle->SetLabelOffset (1.2);
gStyle->SetLabelFont (72);

Note that when an object is created, its attributes are taken from the current
style. For example, you may have created a histogram in a previous session,
saved it in a file. Meanwhile, if you have changed the style, the histogram will
be drawn with the old attributes. You can force the current style attributes to
be set when you read an object from a file by calling ForceStyle_before
reading the objects from the file.

gROOT->ForceStyle () ;

Let's assume you have a canvas or pad with your histogram or any other
object, you can force these objects to get the attributes of the current style
with:

canvas->UseCurrentStyle() ;

The description of the style functions should be clear from the name of the
TStyle setters or getters. Some functions have an extended description, in
particular:

e TStyle::SetLabelFont

e TStyle::SetlLineStyleString: setthe format of dashed lines.
e TStyle::SetOptStat

e TStyle::SetPalette to change the colors palette

e TStyle::SetTitleOffset

148 Draft, December 2000 - version 0.6.3 Graphics and the Graphical User Interface

9 Input/Output

This chapter covers the saving and reading of objects to and from ROOT
files. It begins with an explanation of the physical layout of a ROOT file. It
includes a discussion on compression, and file recovery. Then we explain the
logical file, the class TFile and its methods. We show how to navigate in a
file, how to save objects and read them back. We also include a discussion
on Streamers. Streamers are the methods responsible to capture an objects
current state to save it to disk or send it over the network. At the end of the
chapter is a discussion on the two specialized ROOT files: TNetFile and
TWebFile.

The Physical Layout of ROOT Files

A ROOT file is like a UNIX file directory. It can contain directories and objects
organized in unlimited number of levels. It also is stored in machine
independent format (ASCII, IEEE floating point, Big Endian byte ordering).

To look at the physical layout of a ROOT file, we first create one. This
example creates a ROOT file and 15 histograms, fills each histogram with
1000 entries from a gaussian distribution, and writes them to the file.

TFile f("demo.root","recreate");
char name[10], title[20];
for

}

f.Close();

(Int_ £t 1 = 0; 1 < 15; i++) |
sprintf (name, "h%d", 1) ;
sprintf(title, "histo nr:%d",1i);
TH1F *h = new TH1F (name,title, 100,-4,4);
h->FillRandom("gaus",1000) ;
h->Write () ;

The example begins with a call to the TFile constructor. TFile is the class

describing the ROOT file. In the next section, when we discuss the logical file
structure, we will cover TFile in detail. You can also see that the file has the
extension " . root™", this convention is encouraged, however ROOT does not
depend on it.

Input/Output

Draft, December 2000 - version 0.6.3 149

The last line of the example closed the file. To view its contents it needs to be
opened again, and once opened we can view the contents in the ROOT
Object browser by creating a TBrowser object.

root [] TFile f("demo.root")
root [] TBrowser browser;

gz ROOT Object Browser M=l E3

Eile iew OCptions Help
Iademn.root j Ly

| &l Folders | Contents of YROOT Files/demo.root"

[Claszes [da bt | b0 [b1 151 [01200 [1310 [1451 [010

[C0 Global Variables PR A R A AR ! A
DCanva,ses Ikh951

[Geometries

DCDlDrS

[5tyles

DFunctions

D Metwork Connections

[Memory Mapped Files

Dmnme.l’ghi.fspanacek.stersMa.m

[ZAROOT Files
e a Clerno.r

[15 Obiests. | y

In the browser, we can see the 15 histograms we created.

Once we have the TFile object, we can call the TFile: :Map () method to
view the physical layout. The output of Map () prints the date/time, the start
address of the record, the number of bytes in the record, the class name of
the record, and the compression factor.

root [] £.Map()

20000719/093453 At:64 N=84 TFile

20000719/093453 At:148 N=353 TH1F CX = 2.42
20000719/093453 At:501 N=351 THLF CX = 2.44
20000719/093453 At:852 N=340 THLF CX = 2.52
20000719/093453 At:1192 N=345 THLF CX = 2.48
20000719/093453 At:1537 N=343 TH1F CX = 2.50
20000719/093453 At:1880 N=358 TH1F CX = 2.39
20000719/093453 At:2238 N=342 THLF CX = 2.50
20000719/093453 At:2580 N=355 THLF CX = 2.41
20000719/093453 At:2935 N=356 TH1F CX = 2.40
20000719/093453 At:3291 N=346 TH1F CX = 2.47
20000719/093453 At:3637 N=347 TH1F CX = 2.48
20000719/093453 At:3984 N=353 THLF CX = 2.44
20000719/093453 At:4337 N=355 TH1F CX = 2.42
20000719/093453 At:4692 N=344 TH1F CX = 2.50
20000719/093453 At:5036 N=345 THLF CX = 2.49
20000719/093453 At:5381 N=732 TFile

20000719/093453 At:6113 N=53 TFile

150

Draft, December 2000 - version 0.6.3 Input/Output

We see our fifteen histograms (TH1F ' s) with the first one starting at byte
148. We also see several entries for TFile. You may notice that the first
entry starts at byte 64. The first 64 bytes are taken by the file header.

This table shows the file header information:

File Header Information

Byte Value Name Description

1->4 "root" Root file identifier

5->8 fVersion File format version

9->12 fBEGIN Pointer to first data record

13->16 fEND Pointer to first free word at the EOF
17 -> 20 fSeekFree Pointer to FREE data record

21->24 fNbytesFree Number of bytes in FREE data record
25->28 nfree Number of free data records

29 -> 32 fNbytesName Number of bytes in TNamed at creation time
33->33 fUnits Number of bytes for file pointers

34 -> 37 fCompress Zip compression level

The first four bytes of the file header contain the string "root" which identifies
a file as a ROOT file. Because of this identifier, ROOT is not dependent on
the ".root™ extension. It is still a good idea to use the extension, just for us
to recognize them easier.

The nfree and value is the number of free records. A ROOT file has a
maximum size of 2 gigabytes. This variable along with FNBytesFree keeps
track of the free space in terms of records and bytes. This count also includes
the deleted records, which are available again.

The 84 bytes after the file header contain the top directory description,
including the name, the date and time it was created, and the date and time,
it was last modified.

20000719/093453 At:64 N=84 TFile

What follows are the 15 histograms, in records of variable length.

20000719/093453 At:148 N=353 TH1F CX = 2.42
20000719/093453 At:501 N=351 TH1F CX = 2.44
20000719/093453 At:5036 N=345 TH1F CX = 2.49

The first four bytes of each record is an integer holding the number of bytes
in this record. A negative number flags the record as deleted, and makes the
space available for recycling in the next write. The rest of bytes in the header
contain all the information to uniquely identify a data block on the file. This is
followed by the object data.

Input/Output Draft, December 2000 - version 0.6.3 151

http://root.cern.ch/root/html/TNamed.html

This table explains the values in each individual record:

Record Information

Byte Value Name Description

1->4 Nbytes Length of compressed object (in bytes)

5->6 Version TKey version identifier

7->10 ObjLen Length of uncompressed object

11->14 Datime Date and time when object was written to file

15->16 KeyLen Length of the key structure (in bytes)

17 ->18 Cycle Cycle of key

19->22 SeekKey Pointer to record itself (consistency check)

23->26 SeekPdir Pointer to directory header

27 lname Number of bytes in the class name

28->.. ClassName Object Class Name

> lname Number of bytes in the object name

> Name 1Name bytes with the name of the object

> 1Title Number of bytes in the object title

> Title Title of the object

..... > DATA Data bytes associated to the object
You see a reference to TKey. It is explained in detail in the next section.
The last two entries on the output of TFile: :Map () are also for TFile.
When a file is closed, it writes a linked list of keys at the end of the file. This is
what we see in the second to last entry. In our example, the list of keys is
stored in 732 bytes beginning at byte# 5381.
The last entry is a list of free blocks. In our case, this starts at 6113 and is not
very long, only 53 bytes, since we have not deleted any objects.

50000719/093453 At:5381 N=732 TFile

20000719/093453 At:6113 N=53 TFile

This is a picture of a ROOT file, showing the file header, record headers, and
object data.

File Recovery

A file may become corrupted or it may be impossible to write it to disk and
close it properly. For example if the file is too large and exceeds the disk
quota, or the job crashes or a batch job reaches its time limit before the file
can be closed. In these cases, it is imperative to recover and retain as much
information as possible. ROOT provides an intelligent and elegant file
recovery mechanism using the redundant directory information in the record
header.

If the file is not closed due to for example exceeded the time limit, and it is
opened again, it is scanned and rebuilt according to the information in the
record header. The recovery algorithm reads the file and creates the saved
objects in memory according to the header information. It then rebuilds the
directory and file structure.

152

Draft, December 2000 - version 0.6.3 Input/Output

If the file is opened in write mode, the recovery makes the correction on disk
when the file is closed; however if the file is opened in read mode, the
correction can not be written to disk. You can also explicitly invoke the
recovery procedure by calling the TFile: :Recover () method.

You must be aware of the 2GB size limit before you attempt a recovery. If the
file has reached this limit, you cannot add more data. You can still recover
the directory structure, but you cannot save what you just recovered to the
file on disk.

You can also explicitly invoke the recovery procedure by calling the
TFile: :Recover () method

Here we interrupted and aborted the previous ROOT session, causing the file
not to be closed. When we start a new session and attempt to open the file, it
gives us an explanation and status on the recovery attempt.

root

Warning in <TFile::TFile>: file demo.root probably not
closed, trying to recoverWarning in <TFile::Recover>:
successfully recovered 15 keys

[] TFile f ("demo.root")

Compression

The last parameter in the TFile constructor is the compression level. By
default, objects are compressed before being written to a file. Data in the
records can be compressed or uncompressed, but the record headers are
never compressed.

ROOT uses a compression algorithm based on the well-known gzip
algorithm. This algorithm supports up to nine levels of compression, and the
default ROOT uses is one. The level of compression can be modified by
calling the TFile: : SetCompressionLevel () method. If the level is set to
zero, no compression is done. Experience with this algorithm indicates a
compression factor of 1.3 for raw data files and around two on

Compression

most DST files is the optimum. The choice of one for the default is

0

1
5
9

Bytes a compromise between the time it takes to read and write the
13797 object vs. the disk space savings. The time to uncompress an
6290 object is small compared to the compression time and is
independent of the selected compression level. Note that the
6103 compression level may be changed at any time, but the new
5912 compression level will only apply to newly written objects.

Consequently, a ROOT file may contain objects with different
compression levels.

The table shows four runs of the demo script that creates 15 histograms with
different compression parameters.

The Logical ROOT File: TFile and TKey

We saw that the TFile: :Map () method reads the file sequentially and
prints information about each record while scanning the file. It is not feasible
to only support sequential access and hence ROOT provides random or
direct access, i.e. reading a specified object at a time. To do so, TFile
keeps a list of TKeys, which is essentially an index to the objects in the file.
The TKey class describes the record headers of objects in the file. For
example, we can get the list of keys and print them. To find a specific object
on the file we can use the TFile: :Get () method.

Input/Output

Draft, December 2000 - version 0.6.3 153

root [] TFile f("demo.root")

root [] f.GetListOfKeys ()->Print()

TKey Name = h(0O, Title = histo nr:0, Cycle =1

TKey Name = hl, Title = histo nr:1, Cycle =1

TKey Name = h2, Title = histo nr:2, Cycle =1

TKey Name = h3, Title = histo nr:3, Cycle =1

TKey Name = h4, Title = histo nr:4, Cycle =1

TKey Name = h5, Title = histo nr:5, Cycle =1

TKey Name = h6, Title = histo nr:6, Cycle =1

TKey Name = h7, Title = histo nr:7, Cycle =1

TKey Name = h8, Title = histo nr:8, Cycle =1

TKey Name = h9, Title = histo nr:9, Cycle =1

TKey Name = hl0, Title = histo nr:10, Cycle =1

TKey Name = hll, Title = histo nr:11, Cycle =1

TKey Name = hl2, Title = histo nr:12, Cycle =1

TKey Name = hl3, Title = histo nr:13, Cycle =1

TKey Name = hl4, Title = histo nr:14, Cycle =1

root [] TH1F *h9 = (TH1F*)f.Get("h9");
The TFile: :Get () finds the TKey object with name "h9". Using the TKey
info it will import in memory the object in the file at the file address #3352
(see the output from the TFile: :Map above). This is done by the Streamer
method that is covered in detail in a later section.
Since the keys are available in a TList of TKeys we can iterate over the list
of keys:

{

TFile f("demo.root");

TI
TK
wh

ter next (f.GetListOfKeys());
ey *key;
ile ((key=(TKey*)next())) {
printf (

"key: %$s points to an object of class: %s at %d\n",
key->GetName (),
key->GetClassName () , key->GetSeekKey ()

)

The output of this script is:

root
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:

[] .x iterate.C

h0 points to an object of class: THIF at 150
hl points to an object of class: THLIF at 503
h2 points to an object of class: THLF at 854
h3 points to an object of class: THI1F at 1194
h4 points to an object of class: TH1F at 1539
h5 points to an object of class: THLF at 1882
h6 points to an object of class: TH1F at 2240
h7 points to an object of class: THLF at 2582
h8 points to an object of class: TH1F at 2937
h9 points to an object of class: TH1F at 3293
h10 points to an object of class: TH1F at 3639
h1ll points to an object of class: TH1F at 3986
h1l2 points to an object of class: TH1F at 4339
h13 points to an object of class: THLF at 4694
h1l4 points to an object of class: THIF at 5038

154

Draft, December 2000 - version 0.6.3 Input/Output

In addition to the list of keys, TFile also keeps two other lists:

TFile::fFreeis a TList of free blocks used to recycle freed up space in
the file. ROOT tries to find the best free block. If a free block matches the
size of the new object to be stored, the object is written in the free block and

this free block is deleted from the list. If not, the first free block bigger than
the object is used.

TFile::fListHead contains a sorted list (TSortedList) of objects in
memory.

The diagram below illustrates the logical view of the TFile and TKey.

ROOT File/Directory/Key description

TF| Ie 1Free = TList of free blocks

First:Last FirstLast | —>

Header

feys = TList of Keys

Key 0 Key1 |—>

fListHead = TSortable of Objects in memory

Object |- |SubDir Object

-

= e ‘
it - 4
i 5t E 4
o L r & {I
et R &
B 3t - £ i 2
e / ~Key 0] >
TModified: True if tlirectory is modified o % '
5 . |
fi¥ritable: True if directory is writable E B %
- .
TDatimeC: Creation DaterTime 3 i o ‘
ol Object}—p>
fDatimeM: Last mod Dale/Time £ ¢ i
x - 1
THhyteskeys: Number of hytes of key = e 5
s # i
THhytesHame : Heauler leigih up to ltle i i o
.
13eekDir: Start of Directory on file i THIytes: Size of compressed Object
o TOhjLen: Size of uncompressed Object
T3eekParent: Slart of Parent Directory % .)
I TDatime: DaterTime when wrilten 1o siore
TS5eekKeys: Mointer to Keys record o TKevien: Humber of bytes for the key
1Cycle | Cycle number
15eekkey: Pointer 1o Ohject on file
15eekMlir: Moinler to directory on file
TClasshame: TEkey’
THame: Object name
1Tille: Ohject Title
Input/Output

Draft, December 2000 - version 0.6.3 155

Viewing the Logical File Contents

TFile is a descendent of TDirectory, which means it behaves like a
Thirectory. We can list the contents, print the name, and create
subdirectories. In a ROOT session, you are always in a directory and the
directory you are in is called the current directory and is stored in the global
variable ghDirectory.

Let's look at a more detailed example of a ROOT file and its role as the
current directory. First, we create a ROOT file by executing a sample script.

root [] .x $ROOTSYS/tutorials/hsimple.C
Now you should have hsimple. root in your directory. The file was closed
by the script so we have to open it again to work with it.
We open the file with the intent to update it, and list its contents.

root [] TFile f£ ("hsimple.root", "UPDATE")

root [] £.1s()

TFile** hsimple.root
TFile* hsimple.root

KEY: TH1F hpx;1 This is the px distribution

KEY: TH2F hpxpy;1l py vs px

KEY: TProfile hprof;1l Profile of pz versus px

KEY: TNtuple ntuple;1l Demo ntuple
It shows the two lines starting with TFi1e followed by four lines starting with
the word "KEY". The four keys tell us that there are four objects on disk in this
file. The syntax of the listing is:

KEY: <class> <variable>;<cycle number> <title>

For example, the first line in the list means there is an object in the file on
disk, called hpx. It is of the class TH1F (one-dimensional histogram of
floating numbers). The object's title is "This is the px distribution”.

If the line starts with OBJ, the object is in memory. The <class> is the name
of the ROOT class (T-something). The <variable> is the name of the object.
The cycle number along with the variable name uniquely identifies the object.
The <title> is the string given in the constructor of the object as title.

156

Draft, December 2000 - version 0.6.3 Input/Output

This picture shows a TFile with five objects in the top directory (kOb3ja; 1,
kObjA;2, kObjB;1l, kObjC;1 and kObjD;1). ObjA is on file twice with
two different cycle numbers. It also shows four objects in memory (mObjE,
mObjeF, mObjM, mObjL). Italso shows several subdirectories.

Cycle number

-

//\

/ N
(kObjA; 1)i/(k0bja-‘"2} (koo 1) —{kObjD; HkObjC; 1

(mOKM |—{ mOBIE |—(MmOkl |—{ MOk)

Legend
Chjects on Disk

Chjects in Memoary
[
[mobje |

Directories

kObiG; 1 kCbijH; 1 | kObjl; 1 SubDir 1B

(kObJ: 1}—(kOt|)J'K; 1)

SubDir |

The Current Directory
If you have a ROOT session running, please quit and start fresh.

When you create a TFile object, it becomes the current directory.
Therefore, the last file to be opened is always the current directory. To check
your current directory you can type:

root[] gDirectory->pwd()
Rint:/

This means that the current directory is the ROOT session (Rint). When you
create a file, and repeat the command you will see the file becomes the
current directory.

root[] TFile f1("AFilel.root"):;
root[] gDirectory->pwd()
AFilel.root:/

If you create two files, the last becomes the current directory.

root[] TFile f£2 ("AFile2.root"):;
root[] gDirectory->pwd()
AFile2.root:/

To switch back to the first file, or to switch to any file in general, you can use
the TDirectory: : cd method. The next command changes the current
directory back to the first file.

Input/Output Draft, December 2000 - version 0.6.3 157

root
root

AFilel.root:/

[]
[]

fl.cd();
gDirectory->pwd ()

Note that even if you open the file in "READ" mode, it still becomes the
current directory.

CINT also offers a shortcut for gDirectory->pwd () and gDirectory-
>1s (), you can type:

(unsigned char)1l

root [] .pwd

AFilel.root:/

root [] .ls

TFile** AFilel.root

TFile* AFilel.root
To return to the home directory, the one we were in before we opened any
files:

root [] gROOT->cd()

root [] gROOT->pwd ()
Rint:/
Objects in Memory and Objects on Disk
The TFile: :1s () method has an option to list the objects on disk ("-d") or
the objects in memory ("-m"). If no option is given it lists both, first the objects
in memory, then the objects on disk. For example:
root [] TFile *f = new TFile("hsimple.root");
root [] gDirectory->1ls("-m")
TFile** hsimple.root
TFile* hsimple.root
Remember that gbirectory is the current directory and at this time is
equivalent to "£". This correctly states that no objects are in memory. The
next command lists the objects on disk in the current directory.
root [] gDirectory->1s("-d")
TFile** hsimple.root
TFile* hsimple.root
KEY: THI1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1l py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1l Demo ntuple

To bring an object from disk into memory, we have to use it or "Get" it
explicitly. When we use the object, CINT gets it for us. For example drawing
hprof will read it from the file and create an object in memory. Here we draw
the profile graph, and then we list the contents.

158

Draft, December 2000 - version 0.6.3 Input/Output

root [] hprof->Draw()

<TCanvas: :MakeDefCanvas>: created default TCanvas with name
cl

root [] £->1s()

TFile** hsimple.root

TFile* hsimple.root

OBJ: TProfile hprof Profile of pz versus px : O
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;l py Vs px

KEY: TProfile hprof;1l Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

We now see a new line that starts with OBJ. This means that an object of
class TProfile, called hprof has been added in memory to this directory.
This new hprof in memory is independent from the hprof on disk. If we
make changes to the hprof in memory, they are not propagated to the
hprof on disk. A new version of hprof will be saved once we call Write.

You may wonder why hprof is added to the objects in the current directory.
hprof is of the class TProfile that inherits from TH1D, which inherits from
TH1. TH1 is the basic histogram. All histograms and trees are created in the
current directory. The reference to "all histograms" includes objects of any
class descending directly or indirectly from TH1. Hence, our TProfile
hprof is created in the current directory £ .

There was another side effect when we called the TH1 : : Draw method. CINT
printed this statement:

<TCanvas: :MakeDefCanvas>: created default TCanvas with name cl

It tells us that a TCanvas was created and it named it c1. This is where
ROOQOT is being nice, and it creates a canvas for drawing the histogram if no
canvas was named in the draw command, and if no active canvas exists.

The newly created canvas, however, is NOT listed in the contents of the
current directory. Why is that? The canvas is not added to the current
directory, because ONLY histograms and trees are added to the object list of
the current directory. Actually, TEventList objects are also added to the
current directory, but at this time, we don't have to worry about those.

If the canvas is not in the current directory then where is it? Because itis a
canvas, it was added to the list of canvases. This list can be obtained by the
command gROOT->GetListOfCanvases () ->1s (). The 1s () will print
the contents of the list. In our list, we have one canvas called c1; it has a
TFrame, a TProfile, a TPaveStats.

root [] gROOT->GetListOfCanvases()->1s()
Canvas Name=cl Title=cl Option=

TCanvas fX1lowNDC=0 fYlowNDC=0 fWNDC=1 fHNDC=1 Name= cl Title= cl
Option= TFrame X1= -4.000000 Y1=0.000000 X2=4.000000
Y2=19.384882

OBJ: TProfile hprof Profile of pz versus px : O

TPaveText X1= -4.900000 Y1=20.475282 X2=-0.950000 Y2=21.686837
title

TPaveStats X1= 2.800000 Y1=17.446395 X2=4.800000 Y2=21.323371
stats

Lets proceed with our example and draw one more histogram, and we see
one more OBJ entry.

Input/Output Draft, December 2000 - version 0.6.3 159

TH1.Print Name= hprof, Entries= 10000, Total sum= 437.642
TH1.Print Name= hpx, Entries= 10000, Total sum= 10000

root [] hpx->Draw ()
root [] £->1s()
TFile** hsimple.root
TFile* hsimple.root
OBJ: TProfile hprof Profile of pz versus px : O
OBJ: THI1F hpx This is the px distribution : 0
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1l py vs px
KEY: TProfile hprof;1l Profile of pz versus px
KEY: TNtuple ntuple;l Demo ntuple
TFile::1s () makes aloop over the list of objects in memory and another
over the list of objects on disk. In both cases, it calls the 1s () method of
each object. The implementation of the 1s method is specific to the class of
the object, but since all of these objects are in a file, they are descendants of
TObject and inherit the TObject: :1s () implementation. The histogram
classes are descendants of TNamed that in turn is a descent of TObject. In
this case, TNamed: : 1s () is executed, and it prints the name of the class,
and the name and title of the object.
Each directory keeps a list of its "in memory" objects. You can get this list by
using Thirectory: :GetList. To see the lists contents you need to call
Print () .
root [] gDirectory->GetList()->Print()

Since the file £ is the current directory, this will yield the same result:

root

TH1.Print Name= hprof, Entries= 10000, Total sum= 437.642
TH1.Print Name= hpx, Entries= 10000, Total sum= 10000

[] £->GetList ()->Print ()

Saving Histograms to Disk

At this time, the objects in memory (OBJ) are identical to the objects on disk
(KEY). Let's change that by adding a fit to the hpx we have in memory.

root

[] hpx->Fit("gaus")

Now the hpx in memory is different from the histogram (hpx) on disk. The
hpx in memory has a TF1 (or a function) added to its structure.

Only one version of the object can be in memory, however, on disk we can
store multiple versions of the object. The TFile: :Write method will write
the list of objects in the current directory to disk. It will add a new version of
hpx and hprof.

160

Draft, December 2000 - version 0.6.3 Input/Output

root [] £->Write()
root [] £->1s()

TFile** hsimple.root

TFile* hsimple.root
OBJ: TProfile hprof Profile of pz versus px : O
OBJ: THI1F hpx This is the px distribution : 0
KEY: TH1F hpx;2 This is the px distribution
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1l py vs px

KEY: TProfile hprof;2 Profile of pz versus px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;l Demo ntuple

The TFile: :Write method wrote the entire list of objects in the current
directory to the file. You see that it added two new keys: hpx; 2 and
hprof; 2 to the file. Unlike memory, a file is capable of storing multiple
objects with the same name. Their cycle number, the number after the
semicolon, differentiates objects on disk with the same name.

This picture shows the file before and after the call to Write.

hsimgleroo Legend
Ohbjects on Disk

hipx:1 }—(hpxpy:])—{hprof:]}—(n’rume; 1)

Chjects in Memary
[MObE

L———4ﬂwpx y————{rmxocﬁi

i

Directones

SubDirl

Psimple. T

{npx 1 }—{ hpxpy: 1}—{ hprof:1 - ntuple:1)}—{ hpx:2 | hprofi2)
% { hproof

If you wanted to save only hpx to the file, but not the entire list of objects, you
could use the TH1: :Write method of hpx:

root [] hpx->Write()

A call to Write without any parameters will call GetName () to find the name
of the object and use it to create a key with the same name. You can specify
a new name by giving it as a parameter to the Write method.

root [] hpx->Write ("newName")

If you want to re-write the same object, with the same key, use the overwrite
option.

Input/Output Draft, December 2000 - version 0.6.3 161

root [] hpx->Write("", TObject::kOverwrite)

If you give a new name and use the kOverwrite, the object on disk with the
matching name is overwritten if such an object exists. If not, a new object
with the new name will be created.

root [] hpx->Write ("newName", TObject: :kOverwrite)

The wWrite method did not affect the objects in memory at all. However, if the
file is closed, the directory is emptied and the objects on the list are deleted.

root [] £->Close()

root [] £->1s()

TFile** hsimple.root
TFile* hsimple.root

In the code snipped above you can see that the directory is now empty. If you
followed along so far, you can see that c1 which was displaying hpx is now
blank. Furthermore, hpx no longer exists.

root [] hpx->Draw ()
Error: No symbol hpx in current scope

This is important to remember, do not close the file until you are done with
the objects or any attempt to reference the objects will fail.

Histograms and the Current Directory

When a histogram is created, it is added by default to the list of objects in the
current directory. You can get the list of histograms in a directory and retrieve
a pointer to a specific histogram.

TH1F *h = (TH1F*)gDirectory->Get ("myHist");
or

TH1F *h = (TH1F*)gDirectory->GetList () -

>FindObject ("myHist") ;

The method TDirectory: :GetList () returns a TList of objects in the
directory.

h->SetDirectory (newDir)

You can change the directory to which a histogram will be added with the
SetDirectory method.

h->SetDirectory (0)

You can also remove a histogram from its directory. Once a histogram is
removed from the directory, it will no longer be deleted when the directory is
closed. It is now your responsibility to delete this histogram object once you
are finished with it.

To change the default that automatically adds the histogram to the current
directory, you can call the static function:

162 Draft, December 2000 - version 0.6.3 Input/Output

TH1: :AddDirectory (kFALSE) ;

In this case, you will need to do all the bookkeeping for all the created
histograms.

Saving Objects to Disk

In addition to histograms and trees, you can save any object in a ROOT file
provided it inherits from TObject. To save a canvas to the ROOT file you

can use TCanvas: :Write.

root [] TFile *f = new TFile("hsimple.root", "UPDATE")
root [] hpx->Draw ()
<TCanvas: :MakeDefCanvas>: created default TCanvas with name
cl
root [] el->Write()
root [] £->1s()
TFile** hsimple.root
TFile* hsimple.root
OBJ: THI1F hpx This is the px distribution 0
KEY: TH1F hpx; 2 This is the px distribution
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1l py vs px
KEY: TProfile hprof;2 Profile of pz versus px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;l Demo ntuple
KEY: TCanvas «cl;1 cl
Saving Collections to Disk
All collection classes inherit from TCollection (see Chapter on Collection
Classes) and hence inherit the TCollection: :Write method. When you
call TCollection: :Write () each objects in the container is written
individually into its own key in the file.
To write all objects into one key you can specify the name of the key and use
the TObject: : kSingleKey option. For example:
root[] TList * list = new TList;
root[] TNamed * nl, * n2;
root[] nl = new TNamed ("namel", "titlel");
root[] n2 = new TNamed("name2", "title2");
root[] list->Add(nl);
root[] list->Add(n2);
root[] list->Write("list", TObject::kSingleKey) ;

Input/Output

Draft, December 2000 - version 0.6.3 163

A TFile Object going Out of Scope

There is another important point to remember about TFile: :Close and

TFile::Write. When a variable is declared on the stack in a function such
as in the code below, it will be deleted when it goes out of scope.

void foo() {
TFile f("AFile.root", "RECREATE");

}

As soon as the function foo is finished executing, the variable £ is deleted.
When a TFile object is deleted an implicit call to TFile: :Close is made.
This will save the file to disk. However, it does not make a call to Write,
which means that the object in memory will not be saved in the file.

You will need to make an explicit call to TFile: :Write () to save the object
in memory to file before the exit of the function.

void foo () {
TFile f ("AFile.root", "RECREATE");
. stuff ..
f->Write () ;

To prevent an object in a function from being deleted when it goes out of
scope, you can create it on the heap instead of on the stack. This will create
a TFile object £, that is available on a global scope, and it will still be
available when exiting the function.

void foo() {
TFile *f = new TFile ("AFile.root", "RECREATE");
}

Retrieving Objects from Disk

If you have a ROOT session running, please quit and start fresh.

We saw that multiple versions of an object with the same name can be in a
ROOT file. In our example, we saved a second histogram hpx with a fit to the
file, which resulted in two hpx ' s uniquely identified by the cycle number:
hpx; 1 and hpx; 2. The question is how do we retrieve the right version of
hpx.

When opening the file and using hpx, CINT retrieves the one with the highest
cycle number.

To read the hpx; 1 into memory, rather than the hpx: 2 we would get by
default, we have to explicitly get it and assign it to a variable.

root [] TFile *fl = new TFile("hsimple.root")
root [] TH1F *hpxl = (TH1F*) fl1->Get("hpx;1")
root [] hpxl->Draw()

Subdirectories and Navigation

The TDirectory class lets you organize its contents into subdirectories,
and TFile being a descendent of TDirectory inherits this ability.

164 Draft, December 2000 - version 0.6.3 Input/Output

Here is an example of a ROOT file with multiple subdirectories as seen in the

ROOT browser.

Creating Subdirectories

gz ROOT Object Browser M=l B
Eile ¥iew Options Help
EE = & e =zl

| &l Folders | Contents of *.../pippa.rookDMIFD"

D Metwork Connections il

Cerere | (5 B 6§ W @ & &

Dmomeighiispanasekmsersh-
Sroorh Mo R RIZT RIED kT k20D K21
iles
= {dpipparoat 3 m m
- C10M T
Lol mEn MRzl R23l 0 Rl K300 R34 kDl kéld
e

om o g [da

- | nazn ka3 ha
{I I 4

[17 Objects. | p

To add a subdirectory to a file use Directory: :mkdir.

The example below opens the file for writing and creates a subdirectory

called "Wed_03_29". Listing the contents of the file shows the new directory

in the file and the TDirectory object in memory.

root [] TFile *f = new TFile ("AFile.root","RECREATE")
root [] f£->mkdir("Wed_03_29")
(class TDirectory*)0x1072b5c8

root [] £->1s()

TFile** AFile.root

TFile* AFile.root
TDirectory* Wed 03 29 Wed 03 29
KEY: TDirectory Wed 03 29;1 Wed 03 29

Navigating to Subdirectories

We can change the current directory by navigating into the subdirectory, and
after changing directory; we can see that gbirectory is now "Wed_03_29".

root [] £->cd("Wed 03 _29")
root [] gDirectory->pwd()
AFile.root:/Wed 03 29

In addition to gbirectory we have gFile, another global that points to the

current file.

In our example, gbirectory points to the subdirectory, and gFile points to

the file (i.e. the files' top directory).

root [] gFile->pwd()
AFile.root:/

Input/Output Draft, December 2000 - version 0.6.3

165

To return to the file's top directory, use cd () without any arguments.

root

AFile.root:/

[1 £->cd()

Change to the subdirectory again, and create a histogram. It is added to the
current directory, which is the subdirectory "Wed_03 29".

root [] £->cd("Wed 03 _29")

root [] TH1F *histo=new TH1lF ("histo","histo",10,0, 10);

root [] gDirectory->1s()

TDirectory* Wed 03 29 Wed 03 29

OBJ: THI1F histo histo : 0
We write the file to save the histogram on disk, to show you how to retrieve it
later.

root [] £->Write()

root [] gDirectory->1s()

TDirectory* Wed 03 29 Wed 03 29

OBJ: THI1F histo histo 0

KEY: THI1F histo;1l histo
When retrieving an object from a subdirectory, you can navigate to the
subdirectory first or give it the path name relative to the file. The read object
is created in memory in the current directory.
In this first example the object will be in the top directory.

root [] TH1 *h = (TH1*) f->Get("Wed 03 _29/histo;1")
In this, the second example histo will be in memory in the subdirectory. If
the file is written, a copy of histo will be in the top directory. This is an
effective way to copy an object from one directory to another.

root [] f£->cd("Wed 03_29");

root [] TH1 *h = (TH1*) gDirectory->Get("histo;1")
Note that there is no warning if the retrieving was not successful. You need to
explicitly check the value of h, and if it is null, the object could not be found.
For example, if you did not give the path name the histogram cannot be
found and 'h' is null:

root [] TH1 *h =(TH1*)gDirectory->Get("Wed 03 29/histo;1")

root [] h

(class TH1*)0x10767de0

root
root

(class TH1*)0xO0

[] TH1 *h =
[l h

(TH1*) gDirectory->Get("histo;1")

Removing Subdirectories

To remove a subdirectory you need to use TDirectory: :Delete. Thereis
no Thirectory: :rmdir. The Delete method takes a string containing the
variable name and cycle number as a parameter.

166

Draft, December 2000 - version 0.6.3 Input/Output

void Delete(const char *namecycle)

The namecycle string has the format name; cycle. Here are some rules to
remember:

*

- name = means all, but don't remove the subdirectories
- cycle = * means all cycles (memory and file)

- cycle = "™ means apply to a memory object

- cycle = 9999 also means apply to a memory object

- namecycle =" means the same as namecycle ="T*"

- namecycle =T"* delete subdirectories

For example to delete a directory from a file, you must specify the directory
cycle,

root [] f->Delete("Wed 03_29;1")
Some other examples of namecycle format are:
e foo: delete the object named foo from memory
e foo;1: delete the cycle 1 of the object named foo from the file
e foo; *: delete all cycles of foo from the file and also from memory
e *;2: delete all objects with cycle number 2 from the file
e *;*: delete all objects from memory and from the file
e T*;*: delete all objects from memory and from the file including all
subdirectories
Streamers

To follow the discussion on streamers, you need to know what a simple data
type is. A variable is of a simple data type if it cannot be decomposed into
other types. Examples of simple data types are longs, shorts, floats, and
chars. In contrast, a variable is of a composite data type if it can be
decomposed. For example, classes, structures, and arrays are composite
types. Simple types are also called primitive types, basic types, and CINT
sometimes calls them fundamental types.

When we say, "writing an object to a file", we actually mean writing the
current values of the data members. The most common way to do this is to
decompose the object into its data members and write them to disk. The
decomposition is the job of the streamer. Every class with ambitions to be
stored in a file has a streamer that decomposes it and "streams" its members
into a buffer.

To decompose the parent classes, the streamer calls the streamer of the
parent classes. It moves up the inheritance tree until it reaches an ancestor
without a parent.

To decompose the object data members it calls their streamer. They in turn
move up their own inheritance tree and so forth.

The simple data members are written to the buffer directly. Eventually the
buffer contains all simple data members of all the classes that make up this
particular object.

Let's look at an example.

Input/Output

Draft, December 2000 - version 0.6.3 167

A Streamer Example

The Event class is defined in SROOTSYS/test/Event.h. If you have a
chance, open the file now and follow along. Looking at the class definition,
we find that indeed it inherits from TObject. Event has four integer data
members, one float, an EventHeader object, a pointer to an array of track
objects, and a pointer to a histogram object. Note that fEvtHdr is an object,
where fTracks and f£H are pointers to objects.

class Event : public TObject {
private:
Int t fNtrack;
Int t fNseg;
Int t fNvertex;
UInt t fFlag;
Float t fTemperature;
EventHeader fEvtHdr;
TClonesArray *fTracks;
TH1F *fH;

The implementation of Event is in SROOTSYS/test/Event.cxx. Open
Event.cxx and locate the Event: : Streamer method. The Streamer
method takes a pointer to a TBuffer as a parameter, and first checks to see
if this is a case of reading or writing the buffer. Let's look at the case of writing
the buffer.

void Event::Streamer (TBuffer &R__b)
{
.. //reading part
} else { // writing part
R ¢ =R _Db.WriteVersion(Event::IsA(), 1);
TObject::Streamer (R__Db);
<< fNtrack;
<< fNseg;
<< fNvertex;
b << fFlag;
R b << fTemperature;
fEvtHdr.Streamer (R b);
fTracks->Streamer (R__b);
fH->Streamer (R__b);
R Db.SetByteCount(R ¢, 1);

Lo R v R
oo o000

First, we see a call to TBuffer: :WriteVersion. Class versioning is
important and deserves a detailed discussion. It is covered a little later in the
Schema Evolution section. For now, let's see how the object is decomposed.

A call to TObject: : Streamer is made because it is the parent of Event. If
Event were to inherit from multiple parents, its streamer would call each of
the parent's St reamer method here.

TObject::Streamer (R Db);

Then each data member is added to the buffer. Simple data members are
added directly.

168 Draft, December 2000 - version 0.6.3 Input/Output

<< fNtrack;

<< fNseg;

<< fNvertex;

<< fFlag;

<< fTemperature;

Object data members are added by calling their Streamer. The Event class
has three object data members: an Event Header (fEvtHdr), an array of
tracks (fTracks), and a histogram (£H).

fEvtHdr.Streamer (R b);
fTracks->Streamer (R_b);
fH->Streamer (R__b);

Note the difference in the syntax of the method call with an object versus
making the call with a pointer to an object. The EventHeader fEvtHdr is
an object and its streamer is called with the "." operator:

fEvtHdr.Streamer (R b);

The variables fTracks and £H are pointer to objects. Their streamer is
called with the "->" operator as in:

fTracks->Streamer (R__b);
fH->Streamer (R b);

The recursive nature of the streamers builds a buffer with only simple
variables. The buffer will contain:

° Data members of all inherited classes

. Data members of the class itself

. Data members of its object data members
Byte Count

The last line in the streamer writes the byte count.

R Db.SetByteCount(R ¢, 1);

When ROOT reads an object and it cannot find its streamer, ROOT has no
way of interpreting the bytes and reassemble the object. In this case, ROOT
skips the object and reads the next object. Root can do this because it reads
the byte count at the beginning of each object. Root skips ahead by the
number of bytes in the byte count. This allows for graceful recovery when
reading undefined objects. It guarantees that even if an object is not
readable, subsequent objects will still be read.

The byte count is also used to check that the number of bytes read matches
the number of bytes expected.

Input/Output

Draft, December 2000 - version 0.6.3 169

Let's look at how the byte count is managed in the streamer.

void Event::Streamer (TBuffer &R__b)
{
// Stream an object of class Event.
Uint t R s, R_c;
if (R__b.IsReading()) {
Version t R v = R Db.ReadVersion(&R s, &R _c);
if (R_v) {}
. < stream in all data members >
R b.CheckByteCount (R s, R ¢, Event::IsA());
} else {
R ¢ =R _Db.WriteVersion(Event::IsA(), kTRUE);

. < stream out all data members >
R b.SetByteCount (R ¢, kTRUE);

In the writing part, WriteVersion returns the offset where the byte count
should be placed. The variable is R c now contains the location just before
the version number.

R ¢ =R _Db.WriteVersion(Event::IsA(), kTRUE);

SetByteCount writes the byte count at the reserved location.

R b.SetByteCount (R ¢, kTRUE);

Now, let's look at the reading part. ReadVersion returns the location of the
current position in the input buffer. This spot is the beginning of the object
description and is returned in the variable R__ s. It also returns the expected
byte count. The variable R__ ¢ now contains the number of bytes we expect
the object to have.

Version t R v = R Db.ReadVersion(&R s, &R _c);

After reading all data members, CheckByteCount is called to check, if the
current position in the buffer matches the expected position by adding the
byte count to the starting position.

R b.CheckByteCount (R s, R ¢, Event::IsA());

If there is no match, an error is printed and the input buffer is positioned
according to the byte count. This allows the system to correctly read the next
object in the stream.

The byte count version of the streamer can read files generated by the
streamer without a byte count. In addition, a standard streamer can read files
produced with a byte count streamer.

Writing Objects

The streamer decomposes the objects into data members and writes them
to a buffer. It does not write the buffer to a file, it simply populates a buffer
with bytes representing the object. This allows us to write the buffer to a file
or do anything else we could do with the buffer. For example, we can write it
to a socket to send it over the network. This is beyond the scope of this

170 Draft, December 2000 - version 0.6.3 Input/Output

chapter, but it is worthwhile to emphasize the need and advantage of
separating the creation of the buffer from its use. Let's look how a buffer is
written to a file.

A class needs to inherit from TObject to be saved to disk because it needs
the TObject: :Write method to write itself to the file. However, a class that
is a data member of another class does not have to inherit from TObject, it
only has to have a streamer. EventHeader is an example of such a case.

The TObject: :Write method does the following:

1. Creates a TKey object in the current directory

2. Creates a TBuf fer object which is part of the newly created Tkey

3. Fills the TBuffer with a call to the class: : Streamer method

4. Creates a second buffer for compression, if needed

5. Reserves space by scanning the TFree list. At this point, the size
of the buffer is known.

6. Writes the buffer to the file

7. Releases the TBuf fer part of the key and returns a 60-byte key as

a reference to what was written to disk.

In other words, the TObject: :Write calls the Streamer method of the class
to build the buffer. The buffer is in the key and the key is written to disk. Once
written to disk the memory consumed by the buffer part is released. The key
part of the TKey is kept and returned as a parameter. The key consumes
only 60 bytes, where the buffer since it contains the object data can be very
large.

Generated Streamers by rootcint

A streamer usually calls other streamers, the streamer of its parents and data
members. This architecture depends on all objects having streamers,
because eventually they will be called. To ensure that a class has a streamer,
rootcint automatically creates one in the ClassDef macro which is
defined in SROOTSYS/include/RTypes.h. rootcint defines several
methods for any class, and one of them is the streamer. The automatically
generated streamer is complete and can be used as long as no
customization is needed.

In our example, the Event class has a custom streamer that we just looked
at. The EventHeader, Track, and HistogramManager classes (also
defined in Event.h) have rootcint-generated streamers. They are in the
file SROOTSYS/test/EventDict.cxx.

Input/Output

Draft, December 2000 - version 0.6.3 171

Below is the automatically generated EventHeader: : Streamer from
EventDict.cxx.

Note: When you use rootcint to generate a dictionary, make sure you use
a unique filename, because rootcint appends it to the name of static
function (see G cpp reset tabableEventDict () and

G set cpp environmentEventDict () in EventDict.cxx).

void EventHeader: :Streamer (TBuffer &R__b)
{

// Stream an object of class EventHeader.

if (R__b.IsReading()) {
Version t R v = R Db.ReadVersion(); if (R__v) { }
R b >> fEvtNum;
R b >> fRun;
R b >> fDate;

} else {

R b.WriteVersion (EventHeader::IsA());
R b << fEvtNum;

R b << fRun;

R Db << fDate;

The EventHeader class has only simple data members, but if we add a
histogram, an object data member, it still works. The resulting streamer looks
like this.

void EventHeader: :Streamer (TBuffer &R__b)
{

// Stream an object of class EventHeader.
if (R__b.IsReading()) {

R b >> fH;
} else {

R b << (TObject*) fH;

At first it looks like the pointer is streamed out, but that is not so. The ">>"
and "<<" operators are overwritten to call ReadObject and WriteObject
respectively.

OK, now we know we have a choice to let rootcint make a streamer for us
or to write our own. How do we let CINT know when to generate one and
when not?

The input to the rootcint command (in the makefile) is a list of classes in
a LinkDef.h file. For example, the list of classes for Event are listed in
SROOTSYS/test/EventLinkDef.h. The "-" at the end of the class name
tells rootcint not to generate a streamer. In the example, you can see the
Event class is the only one for which rootcint is instructed not to generate
a streamer.

172 Draft, December 2000 - version 0.6.3 Input/Output

#ifdef CINT

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;

#pragma link C++ class EventHeader;
#pragma link C++ class Event-;

fpragma link C++ class HistogramManager;
#pragma link C++ class Track;

#endif

To tell rootcint to add the byte count check when generating a streamer,

you need to add a "+" after the name of the class in the LinkDef . h file. For
example to add the byte count check to the EventHeader streamer, add a

"+" to the EventHeader entry.

#pragma link C++ class EventHeader+;

We strongly recommend adding the byte count check. In case of an error in
schema evolution the byte count, check will allow you to locate the problem.

Streamers and Arrays

When the streamer comes across a data member that is a pointer to a simple
type, it assumes it is an array. Somehow, rootcint has to find how many
elements are in the array to reserve enough space in the buffer, and write out
the appropriate number of elements. This is done in the definition of the
class. For example, if we wanted to add an array of floats to the Event class
we would add the following lines in the Event class definition.

class Event : public TObject {

private:
Int t fNtrack;
Int t fN;
Float t *fNArray; //[£N]

The array £tNArray is defined as a pointer of floats (Float t is root's type
for a float). Then a comment mark (//) , and the length of the array in square
brackets. In general the syntax is:

<simple type> *<name> //[<length>]

The length needs to be an integer, and it needs to be a data member defined
in the class ahead of its use. It can also be defined in a base class. The
length can be an expression, as long as the result is an integer.

Now we know how to write our own streamers, but why would you have to do
that? The answer to that question is the subject of the next section on
Schema Evolution.

Input/Output

Draft, December 2000 - version 0.6.3 173

Schema Evolution

Schema evolution means we can use multiple versions of the same class.
Somewhere in the software is a black box that takes care of mapping one
version to another.

In the lifetime of a collaboration, the definition of a class is likely to change
frequently. Not only can the class itself change, but any of its parent classes
can also change. This makes the support for schema evolution necessary.
To do so, ROOT uses class versions.

When a class is defined in ROOT, it must include the C1assDef macro as

the last line in the header file inside the class definition. The syntax of that
call is:

ClassDef (<ClassName>,<VersionNumber>)

The version number is what identifies this particular version of the class. The
version number is written to the file in the streamer by the call
TBuffer::WriteVersion. You, as the designer of the class, need to
customize the streamer to write the appropriate data members for each
version.

As an example, let's say our Event class has changed. It needs a new
integer. We add the data member and bump the version number in the
ClassDef to two:

class Event : public TObject {

private:
Int t fNewInt;
Int t fNtrack;

ClassDef (Event,2)

To correctly read and write this second version of Event, we need to change
the streamer to read fNewInt for all versions greater than version 1, but not
expect it for version one. The streamer now looks like this:

void Event: :Streamer (TBuffer &R_ D)
{
if (R__b.IsReading()) {
Version t R_v = R Db.ReadVersion();
TObject::Streamer (R_ Db);
// read the new data member for all versions
// beyond the first one
if (R_v > 1) {

R b >> fNewlInt;

}
R b >> fNtrack;

} else {
R b.WriteVersion (Event::IsA());
TObject::Streamer (R Db);
R b << fNewlInt;

174 Draft, December 2000 - version 0.6.3 Input/Output

In the writing part of the streamer, you will always want to write all members.
This elegant and simple versioning mechanism allows your objects to evolve
and be backward compatible.

Note that if you are declaring your own classes but are not interested in
writing it to a file you can set the version number to zero and rootcint will
generate an empty streamer.

Automatic Schema Evolution

At this time, ROOT does not support automatic schema evolution, but the
ROOT development team is working on a self-describing object format which
will save the description of the object along with the object it self. Having the
description will allow for automatic schema evolution by mapping an older
version of a class to a newer version. It will also enable one to read an object
without having the class description. Be sure to check for the latest
developments on the ROOT system website, it should be available as soon
as in the 2_26 production version.

References

This concludes the discussion on streamers. This is a lot of information and
we should summarize it before moving on to the quiz. You should now know:

How to write a streamer

How the Write method uses the streamers to write the objects to a file
How to let rootcint generate a streamer for you

How to prevent rootcint from generating a streamer for you

How to customize your streamer for schema evolution

What the byte count is used for

How to let rootcint know to generate a streamer with or without a
byte count check

o How to define an array of simple types in a class so that rootcint can
stream it out in the automatically generated streamer

In this section, we covered the objects in the table below. To find more
information about them, follow the links to the ROOT system page.

TBuffer http://root.cern.ch/root/html/T Buffer.html
TKey http://root.cern.ch/root/html/TKey.html
TObject http://root.cern.ch/root/html/TObject.html
Input/Output Draft, December 2000 - version 0.6.3 175

http://root.cern.ch/root/html/TBuffer.html
http://root.cern.ch/root/html/TKey.html
http://root.cern.ch/root/html/TObject.html

Accessing ROOT Files Remotely via a rootd

Reading and writing ROOT files over the net can be done by creating a
TNetFile object instead of a TFile object. Since the TNetFile class
inherits from the TFile class, it has exactly the same interface and behavior.
The only difference is that it reads and writes to a remote rootd daemon.

TNetFile URL

TNetFile file names are in standard URL format with protocol "root". The
following are valid TNetFile URL's:

root://hpsalo/files/aap.root
root://hpbrun.cern.ch/root/hsimple.root
root://pcna49a:5151/~na49/data/run821.root
root://pcna49d.cern.ch:5050//vl/data/run810.root

The only difference with the well-known httpd URL's is that the root of the
remote file tree is the remote user's home directory. Therefore an absolute
pathname requires a // after the host or port (as shown in the last example
above). Further the expansion of the standard shell characters, like ~, s,

., etc. is handled as expected. The default port on which the remote rootd
listens is 1094 and this default port is assumed by TNetFile (actually by
TUr1 which is used by TNetFile). The port number has been allocated by
the IANA and is reserved for ROOT.

Remote Authentication

Connecting to a rootd daemon requires a remote user id and password.
TNetFile supports three ways for you to provide your login information:

1. Setting it globally via the static TNetFile functions

TNetFile::SetUser () and TNetFile::SetPasswd ()
2. Viathe ~/.netrc file (same format and file as used by ftp)
3. Via command line prompt

The different methods will be tried in the order given above. On machines
with AFS, rootd will obtain an AFS token.

Using the General TFile::Open() Function

To make life simple we provide a general function to open any type of file
(except shared memory files of class TMapFile). This functionality is
provided by the static TFile: :Open () function:

TFile

*TFile::Open(const Text t *name, Option t *option="",
const Text t *title="",

Depending on the name argument, the function returns a TFile, a
TNetFile ora TWebFile object. In case a TNetFile URL specifies a
local file, a TFile object will be returned (and of course no login information
is needed). The arguments of the Open () function are the same as the ones
for the TFile constructor.

176

Draft, December 2000 - version 0.6.3 Input/Output

A Simple Session

root [] TFile *fl = TFile::Open("local/file.root",

"update")

root [] TFile *£f2 =

TFile: :Open("root://pcna49a.cern.ch/data/file.root", "new")

Name (pcnad49%a:rdm):

Password:

root [] TFile *f£f3 =

TFile: :Open("http://root.cern.ch/~rdm/hsimple.root")

root [] £3.1ls()

TWebFile** http://root.cern.ch/~rdm/hsimple.root

TWebFile* http://root.cern.ch/~rdm/hsimple.root

KEY: TH1F hpx;1 This is the px distribution

KEY: TH2F hpxpy;l py Vs px

KEY: TProfile hprof;1l Profile of pz versus px

KEY: TNtuple ntuple;1l Demo ntuple

root [] hpx.Draw()
The rootd Daemon
The rootd daemon works with the TNetFile class. It allows remote
access to ROOT database files in read or read/write mode. The rootd
daemon can be found in the directory SROOTSYS/bin. It can be started
either via inetd or by hand from the command line (no need to be super
user). Its performance is comparable with NFS but while NFS requires all
kind of system permissions to setup, rootd can be started by any user. The
simplest way to start rootd is by starting it from the command line while
being logged in to the remote machine. Once started rootd goes
immediately in the background (no need for the &) and you can log out from
the remote node. The only argument required is the port number (1094) on
which your private rootd will listen. Using TNetFile you can now read and
write files on the remote machine.
For example:

hpsalo [] telnet f£sgiO2.fnal.gov

login: minuser

Password:

<fsgi02> rootd -p 1094

<fsgi02> exit

hpsalo [] root

root [] TFile *f =

TFile: :Open("root://fsgi02.fnal.gov:1094/file.root", "new")

Name (fsgiO2.fnal.gov:rdm): minuser

Password:

root [] £.1s()

In the above example, rootd runs on the remote node under user id
minuser and listens to port 1094. When creating a TNetFile object you
have to specify the same port number 1094and use minuser (and
corresponding password) as login id. When rootd is started in this way, you
can only login with the user id under which rootd was started on the remote
machine. However, you can make many connections since the original
rootd will fork (spawn) a new rootd that will service the requests from the
TNetFile. The original rootd keeps listening on the specified port for other
connections. Each time a TNetFile makes a connection; it gets a new

Input/Output

Draft, December 2000 - version 0.6.3 177

private rootd that will handle its requests. At the end of a ROOT, session
when all TNetFiles are closed only the original rootd will stay alive ready
to service future TNetFiles.

Starting rootd via inetd

If you expect to often connect via TNetFile to a remote machine, it is more
efficient to install rootd as a service of the inetd super daemon. In this
way, it is not necessary for each user to run a private rootd. However, this
requires a one-time modification of two system files (and super user
privileges to do so). Add to /etc/services the line:

rootd

1094/tcp

To /etc/inetd.conf the line:

rootd
rootd

stream tcp nowait root /usr/local/root/bin/rootd
-1

After these changes force inetd to reread, its config file with "kill -HUP
<pid inetd>".

When setup in this way it is not necessary to specify a port number in the
URL given to TNetFile. TNetFile assumes the default port to be 1094 as
specified above in the /etc/services file.

Command Line Arguments for roota

rootd support the following arguments:

-1 says we are started by inetd
-p port# specifies port number to listen on
-d level level of debug info written to syslogd
0 = no debug (default)
1 = minimum
2 = medium
3 = maximum

178

Draft, December 2000 - version 0.6.3 Input/Output

Reading ROOT Files via Apache Web Server

By adding one ROOT specific module to your Apache web server, you can
distribute ROOT files to any ROOT user. There is no longer a need to send
your files via FTP and risking (out of date) histograms or other objects. Your
latest up-to-date results are always accessible to all your colleagues.

To access ROOT files via a web server, create a TWebFile object instead of
a TFile object with a standard URL as file name. For example:

root
root

KEY:
KEY:
KEY:
KEY:
root

TWebFile** http://root.cern.ch/~rdm/hsimple.root
TWebFile* http://root.cern.ch/~rdm/hsimple.root

[] TWebFile f("http://root.cern.ch/~rdm/hsimple.root")
[] £.1s()

TH1F hpx;1 This is the px distribution
TH2F hpxpy;l py vs px

TProfile hprof;1l Profile of pz versus px
TNtuple ntuple;1 Demo ntuple

[] hpx.Draw()

Since TWebFile inherits from TFile all TFile operations work as
expected. However, due to the nature of a web server a TWebFile is a read-
only file. A TWwebFile is ideally suited to read relatively small objects (like
histograms or other data analysis results). Although possible, you don't want
to analyze large TTree's via a TWebFile.

Here follows a step-by-step recipe for making your Apache 1.1 or 1.2 web
server ROOT aware:

1. Go to your Apache source directory and add the file
ftp://root.cern.ch/root/mod _root.c or
ftp://root.cern.ch/root/mod root133.c when your Apache server is > 1.2
(rename the file mod_root.c).

2. Add to the end of the Configuration file the line:

Module root module mod root.o

Run the Configure script

Type make

Copy the new httpd to its expected place

Go to the conf directory and add at the end of the srm. conf file the

line:

AddHandler root-action root

7. Restart the httpd server

SN kW

Input/Output

Draft, December 2000 - version 0.6.3 179

ftp://root.cern.ch/root/mod_root.c
ftp://root.cern.ch/root/mod_root133.c

10

Trees

In this chapter, we discuss the TTree class and its descendent class
TNtuple. First, we go through an example and who how to analyze data in a
TNtuple using ROOT's graphical user interface, the tree viewer. Then we
explain how to build a TTree and add branches, and finally how to use a
TTree programmatically in data analysis.

Why should you Use a Tree?

In the chapter on Input/Output, we saw how objects can be saved in ROOT
files. In case you want to save large quantities of the same objects, ROOT
has designed the TTree and TNtuple classes specifically for that purpose.
The TTree class is optimized to reduce disk space and enhance access
speed. The TNtuple is a TTree that is limited to only hold floating-point
numbers; a TTree on the other hand can hold all kind of data, such as
objects or arrays in addition to all the simple types.

We can use an example to illustrate the difference in saving individual objects
vs. filling a tree and saving the tree. Let's assume we have one million events
and we write each one to a file, not using a tree. The TFile, being unaware
that an event is always an event and the header information is always the
same, will contain one million copies of the header. This header is about 60
bytes long, and contains information about the class, such as its name and
title. For one million events, we would have 60,000,000 bytes of redundant
information. For this reason, ROOT gives us the TTree class. A TTree is
smart enough not to duplicate the object header, and is able to reduce the
header information to about four bytes per object.

When using a TTree, we fill its branch buffers with data and the buffer is
written to file when it is full. Branches and buffers are explained below. It is
important to realize that not each object is written out individually, but rather
collected and written a bunch at a time. In our example, we would fill the
TTree with the million events and save the tree incrementally as we fill it.

The TTree is also used to optimize the data access. A tree uses a hierarchy
of branches, and each branch can be read independently from any other
branch. Now, assume that Px and Py are data members of the event, and we
would like to compute Px? + Py? for every event and histogram the result. If
we had saved the million events without a TTree we would have to: 1) read
each event in its entirety into memory, 2) extract the Px and py from the
event, 3) compute the sum of the squares, and 4) fill a histogram. We would
have to do that a million times! This is very time consuming, and we really do
not need to read the entire event, every time. All we need are two little data
members (Px and Py). On the other hand, if we use a tree with one branch
containing Px and another branch containing Py, we can read all values of Px
and Py by only reading the Px and Py branches. This makes the use of the
TTree very attractive.

Trees

Draft, December 2000 - version 0.6.3 181

A TNtuple Example

Here is an example, a script that builds a TNtuple from an ASCII file
containing statistics about the staff at CERN. This script, staff.cC and its
input file staff.dat are in the SROOTSYS/tutorials.

The script declares a structured called staff t, which holds several
floating-point numbers each representing the relevant attribute of a staff
member. It opens the ASCII file, creates a ROOT file and a TNtuple. The
TNtuple constructor names the columns to be filled. It then reads the data
from the ACSII file into the staff t structure and fills the ntuple by giving
it the address of the staff structure. The ASCII file is closed, and the ROOT
file is written to disk saving the ntuple. Remember, trees and histograms
are created in the current directory, which is the file in our example. Hence an
f->Write () saves the ntuple it being a child class of a tree.

gROOT->Reset () ;
struct staff t {

}i

staff t staff
FILE *fp = fopen("staff.dat","r");
char line[81];

TFile *f = new TFile("staff.root","RECREATE") ;
TNtuple *ntuple = new TNtuple ("ntuple","staff data from ascii file",
"cat:division:flag:age:service:children:grade:step:nation:hrweek:cost");

while
sscanf (&1line[0] ,"SESESE%E",

}

ntuple->Print () ;

fclose (fp);
f->Write();

sscanf (&line[17],"S$ESESE%E",
sscanf (&1ine[33],"$f%$f%f", &staff.nation, &staff.hrweek, &staff.cost);

ntuple->Fill (&staff.cat);

Float t cat;
Float t division;
Float t flag;
Float t age;
Float_t service;
Float t children;
Float_ t grade;
Float t step;
Float t nation;
Float t hrweek;
Float t cost;

(fgets (&line, 80, fp)) {
&staff.cat, &staff.division, &staff.flag, &staff.age);

&staff.service, &staff.children, &éstaff.grade, &staff.step);

182

Draft, December 2000 - version 0.6.3 Trees

The Tree Viewer

B RUOI0becllBlunzer 10l You will have a chance to read in much
Eile Miew Options Help .
= detail how to create a tree, but for now
bl IS i B g ' H
|AII Folders |Cnntents of "YROCT Files/staff rootmtuple” Iet S see What we Cando Wlth the tree
Do W W B Ron rven g viewer. Display an object browser and
ggmmwes Brorce Rhrvesk Jyration service fsten click into it until the ntuple becomes
ANYAZES .. .
CGeametrics visible. Now click on the ntuple and
ggfy‘f: select Start Viewer. This pictures shows
3Functions the ntuple created in staff.C. You can
. see a leaf for each of the floating-point
gmomerghirspanacekﬁ‘ramzs.froc n u m bers .
ROOT Files

E“?gﬁ“’°°‘ Alternatively, you can call the

THtuple:ntuple .

— TTree: :StartViewer method from

Loop the command line.

Print

Frocess
. :sz”axEmep root[] ntuple->StartViewer ()
e e

Here is what the tree viewer looks like.

Canvas Menu Leafs/Variables
@ TreeVYiewer:
Break Button— » || Biéak| [w] [_dwwm]
Input Event List Box > | [t} ———— ————
| | = T RN
Variable Boxes - » | | v T S
Histogram Box >
Output Event List Box —»| | Otist[]
Draw Option Box — » Gopt [
I |
Draw Button —»
Scan Button——» N ‘ ‘
| |
Selector Bar Recording Button Weight Box

Trees Draft, December 2000 - version 0.6.3 183

Here is an explanation of the buttons:

Boxes/
Buttons

It's purpose is ...

Draw Button

Scan Button
Break Button
OList Box
IList Box
Hist Box
Gopt Box

X Box

Y Box

Z Box

Weight-
Selection
Box

REC Button

To draw the active variable(s) that are placed in the X, Y, Z
buttons

To scan the tree rather than draw it.

To interrupt the current draw command

To create a new TEventList using the current selection
To activate a TEventList as an input selection

To define the histogram (default = htemp)

To specify graphic options

To select the X variable

To select the Y variable

To select the Z variable

To select the weight/Selection expression

To record the command in the history file

In addition, the vertical slider on the far left hand side can be used to select
the minimum and maximum of an event range.

To draw a variable, just double click on it in the viewer. The histogram below
shows the distribution of the age. To draw two variables, drag and drop one
into the X box and the other into the Y box. In our example, we plotted cost
vs. age in a scatter plot.

xxxxx i (-~
File Edit ¥iew Opfions Inspect Classes Help File Edit “iew Options Inspect Classes
aqe Hter cost:age |
Nent = 2133
wnile Mean = 48.65 20000 E
F BMS = 6.224 18000 :_
120~ 16000 —
F 14000 =
100— C
C 12000 —
80— E
C 10000 —
60— 8000 —
I 6000
40— £
F 4000 —
= H HH H 2000 }
0‘.|4._4nﬂ|-.| | LD I Hml‘ 0:-\ 1 L | I A I 1 I 1
30 33 40 43 30 33 &0 63 20 25 30 33 40 45 30 I3 [t} 65

184 Draft, December 2000 - version 0.6.3 Trees

Creating and Saving Trees

To create a TTree we use its constructor. Then we design our data layout
and add the branches.

Tree Data Structure

Collection
ol Trees

IBranches = TObjArrav of FBranch

Tree

fScanField v

- Brancry() Branch 1 Branch 2 Branch 3

TMaxVirtual Size” .

fiaxEventLoop [~

fEntries i Eh iy
7 fleaves = TOBArrav of Tleafl
o -) P
fDlmenS|9n | f
TSelectedRows : _f—’ I—eaf 0 _’ I—eaf 1 _’ I—eaf 2 """"
¢ 5 .lf S - s g
: . A 5 it S |
S , N TLen: number of fixed elements | ﬂ-vpe CDdES I
fBasketSize iy TLenType: number of hytes of data type C : a character string
fEventOffsetLen i 101rsel: relative 1o LealD- FAddress O : an @ Lit signed integer
2 THhytes|0: number of bytes use for IO . g g B
: : an & hit insigned integer
TMaxBaskets f flzMoinder: True if pointer : 2 16 bit siyned short intener
TEntres i TlzRange: True if keaf has a range) ’

2 TlzUnsinned: True if unzigned

fAddress of Leafl
*fLeafCouni: poinis to Leaf counter

1 a 32 bit signed inleger
: & 32 hit unsigned integer

: a 32 hit floaling poni

3]
8
= ! a 16 bit nnsigned zhort interger
1
i
r
D

THame: Branchnamg : THame - Leal name . : .
fTitle: leafiist ; 1Tille - Leaf iype {see Type codes) 1 a 64 hit floating poini
g T a class hame THHCH
fBasketrvent

First event of each basket

' Array of fMaxBaskets Integers

fBaskets = TObjArray of TBasked

sha L cccco 7" by |Basket 0 |Basket 1——) [Basket 2] --------

fﬂ-llytes: Bize of compressed Daskel :
TOhjLen: Size of uncompressed Daskel fEventOffset
TDatime: DatefTime when wrilten 10 siore i Lffael of crenta in fBulTer
TKeylen: Humber of bytes for the key f_" Arvay of lEventOffacilen ntegers
: fif vaviablc lenglh atmclure)
TCycle : Cycle number +
. y
'I'SeekKB_y: F"qnter 1o E!a‘sl(ei on file FBuHer
T5eekRlir: Moinler to directory on file Basket bufh
4
T0assHame: TDaskel’ ‘ 4’ asket bu .er
{Mame: Branch name ! Array of iBasketSize chars
Tille: Tree name ;; ; : EEER
S| EipBuffer e
7 H
THev Buf: Hnmber of evenls in Basket g Baaket compieaacl baffer
L
TlLasi: poinder bo last used byte in Daskel | ¢ . A{if compression) BaSKEtS
-
Stores

Trees Draft, December 2000 - version 0.6.3 185

Branches

By now, you probably guessed that the class for a branch is called TBranch.
The organization of branches allows the designer to optimize the data for the
anticipated use.

If two variables are independent, and the designer knows the variables will
not be used together, she would place them on separate branches. If,
however, the variables are related, such as the coordinates of a point, it is
most efficient to create one branch with both coordinates on it. A variable on
a TBranch is called a leaf (yes - TLeaf).

Another point to keep in mind when designing trees is the branches of the
same TTree can be written to separate files.

To add a TBranch to a TTree we call the TTree: :Branch () method. Note
that we DO NOT use the TBranch constructor.

The TTree: :Branch method has three signatures, one for each type. The
branch type differs by what is stored in them. A branch can hold an entire
object, a list of simple variables, or an array of objects. Let's see an example
of each.

To follow along you will need the shared library 1ibEvent. so. First, check if
itis in SROOTSYS/test. Ifitis, copy it to your own area. If it is not there, you
have to build it, for instructions, see the chapter The Tutorials and Tests.

Autosave

Autosave gives the option to save all branch buffers every n bytes. We
recommend using Autosave for large acquisitions. If the acquisition fails to
complete, you can recover the file and all the contents since the last
Autosave. To set the number of bytes between Autosave you can use the
TTree: :SetAutosave () method. You can also call TTree: : Autosave in
the acquisition loop every n entries.

Adding a TBranch to hold an Object

To write a branch to hold an event object, we need to load the definition of
the Event class, which is in SROOTSYS/test/libEvent.so.

root [] .L libEvent.so

First, we need to open a file and create a tree.
root [] TFile *f = new TFile ("AFile.root", "RECREATE")
root [] TTree *tree = new TTree("T","A Root Tree")

186

Draft, December 2000 - version 0.6.3 Trees

We need to create a pointer to an Event object that will be used as a
reference in the TTree: : Branch method. Then we create a branch with the
TTree: :Branch method

root []
root[]

Event *event = new Event()
tree->Branch ("EventBranch" , "Event", &event, 64000,1)

To add a branch to hold an object we use the signature above. The first
parameter is the name of the branch. The second parameter is the name of
the class of the object to be stored. The third parameter is the address of a
pointer to the object to be stored.

Note that it is an address of a pointer to the object, not just a pointer to the
object.

Keep in mind that the object needs to be a descendent of TObject to be
written on a branch correctly.

The fourth parameter is the buffer size and is by default 32000.

The last parameter is the split-level, which is the topic of the next section.

Setting the Split-level

The split-level can be either one or zero, and the default is one. With the split-
level of one, the object is split into a branch for each data member. The tree
will look like the one on the left. It has a branch for each data member. Each
branch has one leaf for the data member. The split is recursive for one level,
which means if a data member is an object, it is also be split.

If the split-level is set to zero, the whole object is written in its entirety to one
branch. The TTree will look like the one on the right, with one branch and
one leaf holding the entire event object. When viewing a non-split branch in
the tree viewer, the data members are not visible. Only the Event leaf will
show.

AFtereet N
« A P

-
Bipmalr R A

A tree that is split A tree that is not split

Rules Splitting

When splitting a branch, variables of different types are handled differently.
Here are the rules that apply:

e |f a data member is a basic type, it becomes one branch of class
TBranch.

e A data member can be an array of basic types (e.g. fTable[12]).In
this case, one single branch is created for the array.

Trees

Draft, December 2000 - version 0.6.3 187

e |f a data member is an object of a class derived from TObject, the data
members of this object are also split into branches (one level only). This
is , for example the case for the data member fEvtHdr. However
objects of the classes TArrayX are not supported.

o |f a data member is pointer to an object, a special branch of type
TBranchObject is created. This is the case in our example for the data
member £H, a pointer to a histogram. The £H branch will be filled by
calling the class St reamer function to serialize this object into the
branch buffer.

¢ In split mode, a data member cannot be a pointer to an array of basic
types. A variable size array must be encapsulated inside another object
derived from TObject. Below is an example of the syntax:

class A : public TObject

{
B *b; // include the variab le length array

}

class B : public TObject
{
Int t n; //length of the array bytes
Byte t *bytes; //[n] array with variable num. of entries

In split mode, a data member cannot be a TString or an array of chars.

In split mode, a data member cannot be a C structure.

In split mode, a data member cannot be an array of objects.

If a data member is a non-ROOT container (e.g. STL), you must

implement the St reamer function for this class. It is our intention to

modify rootcint to generate automatically the code to support STL
containers.

e |f a data member is a pointer to a TClonesArray object, one super
branch of class TBranchClones is created. In our example, this is the
case for the data member fTracks. This super branch will have a
buffer where to store the number of objects in the array. This super
branch has the name of the data member. ROOT will also automatically
generate additional branches, one branch for each data member of the
class referenced by the array (Track in the example). Note that the data
members of this class must be basic types only or arrays of basic types
(e.g. fErrors[9]). Data members of this class cannot be pointers.

e In split mode, a data member cannot be a TClonesArray. Only

pointers to TClonesArray are accepted.

Note that splitting a branch can quickly generate many branches. Each
branch has its own buffer in memory. In case of many branches (say more
than 100), you should adapt the buffer size accordingly. A recommended
buffer size is 32000 bytes if you have less than 50 branches. Around 16000
bytes if you have less than 100 branches and 4000 bytes if you have more
than 500 branches. These numbers should be OK for existing computers with
memory size ranging from 32MB to 256MB. If you have more memory, you
should specify larger buffer sizes. However, in this case, do not forget that
your file might be used on another machine with a smaller memory
configuration.

188 Draft, December 2000 - version 0.6.3 Trees

When to Split a Branch

As a designer, you need to decide what split-level to use. These are some
points to help you decide.

e A split object is useful when the data members are to be used
independently. A separate branch will allow the user of this tree to read
selective branches.

e A split object avoids a dependency on the class definition. If the object is
split, only the primitive data types are used in the tree. This allows
reading the class members without having the definition of the class.
This is especially important for the longevity of the data, since over time
the definition of the class may change or become unavailable.

e Asingle branch, i.e. not splitting the object, is useful when the tree is
used to process a subset of entries.

e When an object is not split, the data members of the object are not
visible in the browser. The data members are not accessible from the
object browser or tree viewer. To make the data members "browse-
able", the object must be split.

e ROOT does not support splitting an object that has pointers as data
members. Therefore, for objects containing pointers as data members
the split-level needs to be 0.

Adding a Branch to hold a List of Variables

Sometimes, the data we want to save is a list of simple
variables, such as integers or floats. In this case, we
use the following TTree: : Branch signature:

Al il

tree->Branch ("Ev_Branch", &event,
"temp/F:ntrack/I:nseg:nvtex:flag/i
")

The first parameter is the branch name. The second
parameter is the address of the first variable in the leaf
list, and the third parameter is the description of the
leaf list. Let's look at the second and third parameter a little closer.

The second parameter is the address from which the first variable is to be
read. In the code above, “event” is a structure with one float and three
integers and one unsigned integer.

You should not assume that the compiler would align the elements of a
structure without gaps. To avoid an alignment problem, we recommend
specifying the largest variables first. If your structure cannot be rearranged,
you will need to create one branch for each element of the structure.

The leaf name is NOT used to pick the variable out of the structure, but is
only used the name for the leaf. This means that the list of variables needs
to be in a structure in the order described in the third parameter.

This third parameter is a string describing the leaf list. Each leaf has a name
and a type separated by a "/" and it is separated from the next leaf by a ":".

<Variable>/<type>:<Variable>/<type>

The example on the next line has two leafs: a floating-point number called
temp and an integer named ntrack.

Trees Draft, December 2000 - version 0.6.3 189

" temp/F:ntrack/I: "

The type can be omitted and if no type is given, the same type as the
previous variable is assumed. This leaf list has three integers called ntrack,
nseg, and nvtex.

"ntrack/I:nseg:nvtex"

There is one more rule: when no type is given for the very first leaf, it
becomes a f1oat (F). This leaf list has three floats called temp, mass, and

PX.

"temp:mass:px"

The symbols used for the type are:

a character string terminated by the 0 character.
an 8 bit signed integer.

an 8 bit unsigned integer.

a 16 bit signed integer.

a 16 bit unsigned integer.

a 32 bit signed integer.

a 32 bit unsigned integer.

a 32 bit floating point.

a 64 bit floating point.

O™ = 20wIwo

The type is used for a byte count to decide how much space to allocate. The
variable written is simply the block of bytes starting at the starting address
given in the second parameter. It may or may not match the leaf list
depending on whether or not the programmer is being careful when choosing
the leaf address, name, and type.

By default, a variable will be copied with the number of bytes specified in the
type descriptor symbol. However, if the type consists of two characters, the
number specifies the number of bytes to be used when copying the variable
to the output buffer. The line below describes ntrack to be written as a 16-
bit integer (rather than a 32-bit integer).

"ntrack/I2"

With this Branch method, you can also add a leaf that holds an entire array of
variables. To add an array of floats use the £ [n] notation when describing
the leaf.

Float t £[10];
tree->Branch ("fBranch", &£, "€[10]/F") ;

Adding a Branch to hold an Array of Objects

In ROOT, two classes are designated to manage arrays of objects. The
TObjArray that can manage objects of different classes, and the
TClonesArray that specializes in managing objects of the same class
(hence the name Clones Array). TClonesArray takes advantage of the
constant size of each element when adding the elements to the array.
Instead of allocating memory for each new object as it is added, it reuses the
memory. Here is an example of the time a TClonesArray can save over a
TObjArray.

190

Draft, December 2000 - version 0.6.3 Trees

We have 100,000 events, and each has 10,000 tracks, which gives
1,000,000,000 tracks. If we use a TObjArray for the tracks, we implicitly
make a call to new and a corresponding call to delete for each track. The
time it takes to make a pair of new/delete calls is about 70 us (10'6). If we
multiply the number of tracks by 70 us, (1,000,000,000 * 70 * 10'6) we
calculate that the time allocating and freeing memory is about 19 hours. This
is the chunk of time saved when a TClonesArray is used rather than a
TObjArray. If you don't want to wait 19 hours for your tracks (or equivalent
objects), be sure to use a TClonesArray for same-class objects arrays.

ROOT has a Branch method that lets you put a TClonesArray (nota
TObJjArray) on a branch. The syntax is:

tree->Branch("Track B",&Track, 64000,1)

The first parameter is again the branch name. The second parameter is the
address of a pointer to the TClonesArray. Note that this is again the
address of a pointer to the array, not just a pointer to the array. The third
parameter is the branch buffer size, which defaults
to 32000.

The last parameter is the split-level. The split-level
is by default one and it will split the object into one
sub-branch for each data member. The tree will
look like the one in the cartoon. If the split-level is
set to zero, the object in the array will be written as
one leaf. This is the same principle as discussed
above when adding a branch with an object (see
setting the split level).

Branches with TClonesArrays have the following
advantages compared to the other two branch
types.

e |t minimizes the number of objects created/destroyed, which means
faster access and memory savings.

o Data members of the same type are consecutive in the buffer, which
optimizes the compression algorithm, and will result in a smaller tree.

e Array processing notation becomes possible when reading the tree data.

Note that the data members of the object in the array can only be basic
types. The object cannot be saved correctly if it contains pointer data
members.

Identical Branch Names

When a top-level object (say event), has two data members of the same
class the sub branches end up with identical names. To distinguish the sub
branch we must associate them with the master branch by including a “.”
(dot) at the end of the master branch name. This will force the name of the

sub branch to be master. sub branch instead of simply sub branch.

For example, a tree has two branches FastTrack and SlowTrack, each
containing an object of the same class (Track). To uniquely identify the sub
branches we add the dot:

Trees

Draft, December 2000 - version 0.6.3 191

tree->Branch ("FastTrack.","Track", &bl1,8000,1);
tree->Branch ("SlowTrack.","Track", &b2,8000,1) ;

If Track has three members, Px, Py, Pz, the two instructions above will

generate sub branches called:
FastTrack.Px, FastTrack.Py , FastTrack.Pz,
SlowTrack.Px, SlowTrack.Py , SlowTrack.Pz,

References

This finishes the discussion of TTrees. You should now be able to create
branches with an object, branches with a list of variables, and branches with
an array. You should also have a good understanding when to use each type
of branch, and when to split an object.

In this section, we covered the objects in the table below. To find more
information about them, follow the links to the ROOT system page.

TTree http://root.cern.ch/root/html/TTree.html
TBranch http://root.cern.ch/root/html/TBranch.html
TLeaf http://root.cern.ch/root/html/TLeaf html

TClonesArray http://root.cern.ch/root/html/TClonesArray.html

TObjArray http://root.cern.ch/root/html/TObjArray.html

A good example of building a tree with event objects is given in
SROOTSYS/test/MainEvent.cxx.

192

Draft, December 2000 - version 0.6.3 Trees

http://root.cern.ch/root/html/TTree.html
http://root.cern.ch/root/html/TBranch.html
http://root.cern.ch/root/html/TLeaf.html
http://root.cern.ch/root/html/TClonesArray.html
http://root.cern.ch/root/html/TObjArray.html

Five-Steps to Build A Tree

Now that we know what a TFile, a TTree, and a TBranch are, we can put
them to use and build a tree to save our data to a file. We use a five-step
recipe to do this:

Create the TFile for writing
Create the TTree

Add TBranches to the TTree
Fill the TTree

Write the TTree to the TFile

Lok

Adlerat N Step 1: Create the TFile for writing

We create a TFile, by using the TFile constructor with
the "RECREATE" option. The second line loads the shared
library 1ibEvent.so. We need the library, to provide the
definition of the Event class that we will be saved in our
tree (see building 1ibEvent. so).

root [] TFile *f = new TFile ("AFile.root", "RECREATE",
"Example")
root [] .L SROOTSYS/test/libEvent.so

This creates a ROOT file with the name AFile.root. The "RECREATE"
option requests the file to be overwritten if it already exists. The other options
are:

"NEW" - if the file exists this will generate an error.
"CREATE" - same as new
"UPDATE" - update or append an existing file

"READ" - open the file for read only

Step 2: Create a TTree

AFile.root l We now create an empty tree by using the TTree
o constructor. The listing of the directory (file) shows the
new object, a TTree called "T". The TTree constructor
takes up to four arguments. The first is the name of the
tree, the second the title, and the third the total size of
buffers kept in memory. This third parameter is called
maxvirtualsize.

root [] TTree *tree = new TTree("T", "A Root tree");

root

[]

£->1s()

TFile**
TFile*

OBJ: TTree T

AFile.root
AFile.root

A Root tree : O

Example
Example

Trees

Draft, December 2000 - version 0.6.3 193

N i R B

\ Step 3: Adding Branches
AFile.root

L5 In our case, we want to write a series of events to
the tree. We have an event object and we would
like to add a branch holding the event object. We
split the branch, so that we can see each leaf in
the browser.

The event object is defined in
SROOTSYS/test/Event.h. You may want to
open $ROOTSYS/test/Event.h in your editor
now and note the data members and methods. If you are not on-line, there is
a copy of Event . h in Appendix B: Event.h.

root []
root[]

Event *event = new Event():
tree->Branch ("EventBranch", "Event", &event,64000,1) ;

Step 4: Filling the TTree

To fill the tree we need to assign values to the
event object and call the Fill method. We set the
data members of the event object in a for-loop,
and fill the tree each time.

The TTree: :Fi1ll method uses the tree
structure we designed by adding branches of the
correct type. In our example, it will create a tree
with one branch per data member, and write the
value of the data member to the branch for each
Fill.

In this cartoon, the 'fruit' are the values of one event, and the lines show the
collection of 'fruit' that are added to the tree for each call to Fil1l.

}

for (Int t ev = 0; ev < 200; ev++) {
Float t sigmat, sigmas;
gRandom->Rannor (sigmat, sigmas) ;
Int t ntrack = Int t (600 +600*sigmat/120.);
Float t random = gRandom->Rndm (1) ;
event -> SetHeader (ev, 200, 960312, random);
event -> SetNseg(Int t (10*600+20*sigmas));
event -> SetNvertex(1l);
event -> SetFlag(UInt t (random+0.5));
event -> SetTemperature (random+20.) ;
for

tree->Fill () ; //fill the tree
event->GetTracks () ->Clear ()

(Int £t t = 0; t < ntrack; t++)
event->AddTrack (random) ;

Al e oo,

ROOT Step 5: Write the TFile to Disk

We have created a tree, and we see it in the file as
I] an object in memory when doing an 1s () .

194

Draft, December 2000 - version 0.6.3 Trees

root [] hfile->1s()
TFile** AFile.root An Example ROOT file
TFile* AFile.root An Example ROOT file
OBJ: TTree T A ROOT tree : O
OBJ: THI1F hstat Event Histogram : O

What would happen if we were to close the file now?

root [] hfile->Close()

The file would be saved, but it would be empty, because the objects in
memory (TTree T, and THIF hstat) were not written to the file. To save
the tree and histogram to the file we need to call TFile: :Write.

root [] hfile->Write()

Trees Draft, December 2000 - version 0.6.3 195

Using Trees in Analysis

In a collaboration only a few people will write the code that builds and saves
trees. Many more will be using existing trees and run their analysis on the
data. This section is for these people. We will show you two methods in
TTree that are good tools for analysis on an existing tree. These are the
TTree: :Draw and TTree: :MakeClass methods.

The TTree: : Draw method is a powerful yet simple way to look and draw the
trees contents. It enables you to plot a variable (a leaf) with just one line of
code. However, the Draw method falls short once you want to look at each
entry and design more sophisticated acceptance criteria for your analysis.
For these cases, you can use TTree: :MakeClass. It creates a class that
loops over the trees entries one by one. You can then expand it to do the
logic of your analysis.

Let us look at the Draw method first, with its powers and limitations. Then we
will look at MakeClass

Simple Analysis using TTree::Draw

We will be using the trees and files we created in section three "Five Steps to
Build a Tree". If you had a chance to complete these, you can now use
AFile.root.

First, open the file and lists its contents.

root [] TFile *p = new TFile("AFile.root", "READ")
root [] p->1s()
TFile** AFile.root An Example ROOT file
TFile* AFile.root An Example ROOT file
KEY: TTree T;1 A ROOT tree
KEY: THI1F hstat;1l Event Histogram
We see the tree "T" in the file. This tree we will use to learn what the Draw
method can do for us, so let’s get it:
root [] TTree *MyTree = T
CINT allows us to simply get the object by using it. Here we define a pointer
to a TTree object and assign it the value of T, the tree in the file. CINT looks
for T and returns it.
To show the different Draw options, we create a canvas with four sub-pads.
We will use one sub-pad for each Draw command.
root [] TCanvas *myCanvas = new TCanvas("c","C",
0,0,600,400)
root [] myCanvas->Divide(2,2)
We activate the first pad with the cd statement:
root [] myCanvas->cd(1)

We then draw the variable £Ntrack:

196

Draft, December 2000 - version 0.6.3 Trees

root

[] MyTree->Draw("£fNtrack") ;

As you can see this signature of Draw has only one parameter. It is a string
containing the leaf name.

When a histogram is automatically created as a result of a TTree: : Draw,
the style of the histogram is inherited from the tree attributes and the current
style (gStyle) is ignored. The tree attributes are the ones set in the current
TStyle at the time the tree was created. Currently there is no way to force
an existing tree to use the current style, but this feature will be added shortly.

We activate the second pad and use this version of Draw:

root
root

[] myCanvas->cd(2)
[] MyTree->Draw("sqrt (fNtrack) : fNtrack") ;

This signature still only has one parameter, but it now has two dimensions
separated by a colon (“x:y”). The item to be plotted can be an expression
not just a simple variable. In general, this parameter is a string that contains
up to three expressions, one for each dimension, separated by a colon
(“el:e2:e3").

Change the active pad to 3, and add a selection to the list of parameters of
the draw command.

root[] myCanvas->cd(3)
root[] MyTree->Draw ("sqrt (fNtrack) : fNtrack", "fTemperature > 20.8");

This will draw the £Ntrack for the entries with a temperature above 20.8
degrees. In the selection parameter, you can use any C++ operator, plus
some functions defined in TFormula.

The value of the selection is used as a weight when filling the histogram. If
the expression includes only Boolean operations as in the example above,
the resultis 0 or 1. If the result is 0, the histogram is not filled. In general, the
expression is:

Selection = "weight * (boolean expression)"

If the Boolean expression evaluates to true, the histogram is filled with a
weight. If the weight is not explicitly specified it is assumed to be 1.

For example, this selection will add 1 to the histogram if x is less than y and
the square root of z is less than 3.2.

"x<y && sqgrt(z)>3.2"

On the other hand, this selection will add x+v to the histogram if the square
root of z is larger than 3.2..

"(x+y) * (sqrt(z)>3.2)"

The Draw method has its own parser, and it only looks in the current tree for
variables. This means that any variable used in the selection must be defined
in the tree. You cannot use an arbitrary global variable in the TTree: : Draw
method.

Trees

Draft, December 2000 - version 0.6.3 197

The next parameter is the draw option for the histogram:

root [] myCanvas->cd(4)
root [] MyTree->Draw ("sgrt (fNtrack) :fNtrack", "fTemperature
> 20.8", "surf2”);

The draw options are the same as for TH1: : Draw, and they are listed in the
section: Draw Options in the chapter on histograms. You can combine them
in a list separated by commas. If you specify the option "gof £" no graphics
will be generated.

After typing the lines above, you should now have a canvas that looks like

this.

http://root.cern.ch/root/html/TH1.htmI#TH1:Draw
File Edit View Options Inspect Classes Help
e

==

= 248

wf

"
1"
2 f
n

0
i
TTTTrrrrrrrrrrT

]
+F
2
]

| L | | | | L L
530 S8 660 G5 @O0 &0& A%0 615 24 -0 gms &e0 EWE 400 GUE G10 &1E

Sarkkraok): M- raok {flomporaiurn * 20,81

There is a case using the draw option "same" that is worth mentioning here.
When superimposing two 2-D histograms inside a script with TTree: : Draw
and using the "same" option, you will need to update the pad between the
calls to Draw. For example"

// superimpose two 2D scatter plots

{
// Create a 2D histogram and fill it with random numbers
TH2 *h2 = new TH2D ("h2" ,"2D histo" ,40,0,4,30, 0,3);
h2->FillRandom ("gaus",10000) ;
h2->Draw () ;

// Open the example file and get the tree
TFile f("AFile.root");
TTree *myTree = (TTree*)f.Get ("T"):;

// the update is needed for the next draw command to

// work properly

gbPad->Update() ;

myTree->Draw ("fTracks.fPy:fTracks.fpPz", "","same",100,0);

There are two more optional parameters to the Draw method: one is the
number of entries and the second one is the entry to start with. We will show
an example later. You can see the draw method is convenient.

We have been using a tree where the object was split when the tree was
built, and consequentially there is one branch for each variable. If the object
was not split, and the entire event object is sitting on a branch, we can still

198

Draft, December 2000 - version 0.6.3 Trees

http://root.cern.ch/root/html/TH1.html#TH1:Draw

use the draw method to plot a variable. However, the object has to provide an
accessor method for the data member. In addition, the definition of the event
object needs to be loaded into root. The syntax to draw with an accessor
method is:

NonSplitTree->Draw ("event->GetNtrack()")

We will show you later how to load the class and use the accessor method.

Draw with TClonesArray Branches

We previously added a branch with a TClonesArray branch. In such a
branch we have created another dimension in the tree. The tree has now an
array of objects for each entry. The curious mind will wonder if the
association of the array with its entry will be preserved.

Let's take a hypothetical example (it is hypothetical because you will not be
able to follow along). We have tree with 3 events and for each event we have
a TClonesArray of tracks. Event #1 has 100 tracks, event #2 has 150
tracks, and event #3 has 200 tracks.

Each track has several data members as shown in the definition below:

class Track : public TObject {
private:
Float t £Px; //X component of the momentum
Float t fPy; //Y component of the momentum
Float t £Pz; //Z component of the momentum
Float t fRandom; //A random track quantity
Float t fMass2; //The mass square of this particle
Float t £Bx; //X intercept at the vertex
Float t fBy; //Y intercept at the vertex
Float t fMeanCharge; //Mean charge deposition of all hits
Float t fXfirst; //X coordinate of the first point
Float t fXlast; //X coordinate of the last point
Float t fYfirst; //Y coordinate of the first point
Float t fYlast; //Y coordinate of the last point
Float t fzfirst; //Z coordinate of the first point
Float t fZlast; //Z coordinate of the last point
Float t fCharge; //Charge of this track
Int_t fNpoint; //Number of points for this track
Short t fvalid; //Validity criterion
If we call the Draw method for the data member £Px, as follows:
Tree->Draw ("£Px")
We will see a plot with all £Px values, which is: 100 + 150 + 200 = 450
tracks. We can limit the selection to just the tracks of the second event by
using the conditional parameter of the Draw method.
Tree->Draw ("fpx","","",1,2)

The plot drawn by this command will contain the £Px values from the 150
tracks in Event #2. Note that the middle two parameters are empty strings.

We can conclude that the association of the array and its entry is preserved
ina TClonesArray branch.

Trees

Draft, December 2000 - version 0.6.3 199

Draw Branches with Arrays as Leaves

If you have a tree that has an array as a leaf, you can plot a specific index for

all entries in the tree. Such a leaf looks like this when you issue the
TTree: :Print method

KA KA AR AR A A A A AR AR A IR A A AR AR A IR A A A A AR AR A A A A A NI A A A A Ak A kA Ak Ak Ak kK

*Tree :MyTree : MyTree

R R S b b b I 2E S b I Sb b S b S b S Sb S SR S b S Sb Sh b 2 2 S dh b Sb b b 2b R S b Sb db b 2b b S 2b S S db 3

*Branch :CH : nch/I:chE[nch]/F:chetal[nch]/F:chphi[nch]/F

This tree, called MyTree has 1000 entries, and the first branch, the only one
shown here is called CH. It contains an integer nch, and three floating point
number arrays, chE, cheta, and chphi. Each array has nch elements. Here
are some examples of the different Draw calls:

// draws all entries of chE (1000 * nch)
root[] MyTree->Draw("chE") ;
root[] MyTree->Draw("CH.chE") ;

// draws all entries of the third element in che (1000)
root[] MyTree->Draw("chE[3]");

// draws nch for all entries (1000)
root[] MyTree->Draw("CH") ;

Creating an Event List

The TTree: :Draw method can also be used to build a list of the entries.
When the first argument is preceded by ">>" ROOT knows that this
command is not intended to draw anything, but to save the entries in a list
with the name given by the first argument. The resulting listis a
TEventList, and is added to the objects in the current directory.

For example, to create a TEventList of all entries with more than 600
tracks:

root
root

[] TFile *f = new TFile ("AFile.root")
[] T->Draw(">> myList", " £fNtrack > 600")

This list contains the entry number of all entries with more than 600 tracks.

To see the entry numbers use the Print ("all") command.

root

[] myList->Print("all")

When using the ">>" whatever was in the TEventList is overwritten. The
TEventList can be grown by using the ">>+" syntax.

For example to add the entries, with exactly 600 tracks:

root

[] T->Draw(">>+ myList", " fNtrack == 600")

If the Draw command generates duplicate entries, they are not added to the
list.

200

Draft, December 2000 - version 0.6.3 Trees

[1 =] E3
Eile Edit Miew Options Inspect Classes Help

TNTEEK | =

Hent=200
Man = GB6.B
FME = 6.66

-III|III|III|III|III|III|III|III|III|I

L

380 383 Ja0 EEE] 600 605 610 613

—
 —— |

root [] T->Draw(">>+ myList", " fNtrack > 610")

This command does not add any new entries to the list because all entries
with more than 610 tracks have already been found by the previous
command for entries with more than 600 tracks.

Using an Event List

The TEventList can be used to limit the TTree to the events in the list.
The setEventList method tells the tree to use the event list and hence
limits all subsequent TTree methods to the entries in the list. In this example,
we create a list with all entries with more than 600 tracks and then set it so
the Tree will use this list. To reset the TTree to use all events use
SetEventList (0) .

1) Let’s look at an example. First, open the file and draw the fNtrack.

root [] TFile *f = new TFile ("AFile.root")

root [T->Draw ("£Ntrack ") 2) Now, put the entries with over 600 tracks
into a TEventList called myList. We get the list from the current directory
and assign it to a variable list.

root [] T->Draw(">>myList", " £Ntrack >600")
root [] TEventList *list = (TEventList*)gDirectory->Get ("myList")

3) Instruct the tree T to use the new list and draw it again. Note that this is
exactly the same Draw command. The list limits the entries.

[l M=l
File Edit ¥iew Options Inspect Classes Help
IT' htemp

m Nent = 90

" Mean = 604.7

" RMS = 3.305

-HI|III|III|IIIIIIIIIIIIIII|III|III|I

L,

L L L
602 604 G0 &08 (311 612 B4

e
=
2

Trees Draft, December 2000 - version 0.6.3 201

root
root

[] T->SetEventList(list)
[] T->Draw("fNtrack ")

You should now see a canvas that looks like this one.

Creating a Histogram

The TTree: : Draw method can also be used to fill a specific histogram. The
syntax is:

root
root
root

TH1.Print Name= myHisto, Total sum= 200

[] TFile *f = new TFile ("AFile.root")
[] T->Draw("fNtrack >> myHisto")
[] myHisto->Print()

As we can see, this created a TH1, called myHisto. If you want to append
more entries to the histogram, you can use this syntax:

root

[] T->Draw("fNtrack >>+ myHisto")

If you would like to fill a histogram, but not draw it you can use the
TTree: :Project () method

root

[] T->Project("quietHisto","£fNtrack")

You may use an existing histogram, but it has to be in the same directory as
the tree.

Tree Information

Once we have drawn a tree, we can get information about the tree. These
are the methods used to get information from a drawn tree:

e GetSelectedRows: Returns the number of entries accepted by the
selection expression. In case where no selection was specified, it returns
the number of entries processed.

e GetV1: Returns a pointer to the float array of the first variable.

e GetV2: Returns a pointer to the float array of second variable

e GetV3: Returns a pointer to the float array of third variable.

e GetW: Returns a pointer to the float array of Weights where the weight
equals the result of the selection expression.

To read the drawn values of £Ntrack into an array, and loop through the
entries follow the lines below. First, open the file and draw the fNtrack
variable:

root
root

[] TFile *f = new TFile ("AFile.root")
[] T->Draw("fNtrack")

Then declare a pointer to a float and use the GetVv1 method to retrieve the
first dimension of the tree. In this example we only drew one dimension
(£Ntrack) if we had drawn two, we could use GetV?2 to get the second one.

202

Draft, December 2000 - version 0.6.3 Trees

root [] Float_t *a
root [] a = T->GetV1()

Loop through the first 10 entries and print the values of tNtrack:

root [] for (int i = 0; i < 10; i++) cout<<alil<< " "
root [] cout << endl // need an endl to see the values
594 597 606 595 604 610 604 602 603 596

More Complex Analysis using TTree::MakeClass

The Draw method is convenient and easy to use, however it falls short if you
need to do some programming with the variable.

For example, for plotting the masses of all oppositely changed pairs of tracks,
you would need to write a program that loops over all events, finds all pairs of
tracks, and calculates the required quantities. We have shown how to retrieve
the data arrays from the branches of the tree in the previous section, and you
could just write that program from scratch. Since this is a very common task,
ROOQOT provides a utility that generates a skeleton class designed to loop over
the entries of the tree. Thisis the TTree::MakeClass method

We will now go through the steps of using MakeClass with a simplified
example. The methods used here obviously work for much more complex
event loop calculations.

These are our assumptions:

We would like to do selective plotting and loop through each entry of the tree
and tracks. We chose a simple example: we want to plot £Px of the first 100
tracks of each entry.

We have a ROOT tree with one branch, containing the entire (un-split)
"Event" object. To build this file and tree follow the instructions on how to
build the examples in SROOTSYS/test.

Execute Event and instruct it not to split the object with this command (from
the Unix command line).

> Event 400 1 0 1

This command creates an Event . root file with 400 events, compressed,
not split, and filled. See $SROOTSYS/test/MainEvent.Cxx for more info.

The person who designed the tree makes a shared library available to you,
which defines the classes needed. In this case, the classes are Event,
EventHeader, and Track and they are defined in the shared library
libEvent.so. The designer also gives you the Event . h file to see the
definition of the classes. You can locate Event.h in SROOTSYS/test, and if
you have not yet built 1ibEvent. so, please see the instructions of how to
build it. If you have already built it, you can now use it again.

Trees Draft, December 2000 - version 0.6.3 203

Creating a Class with MakeClass

First, we load the shared library and open Event.root.

root [] .L libEvent.so

root [] TFile *f = new TFile ("Event.root"):;

root [] £->1s();

TFile** Event.root TTree benchmark ROOT file
TFile* Event.root TTree benchmark ROOT file
KEY: THI1F htime;1 Real-Time to write versus time
KEY: TTree T;1 An example of a ROOT tree
KEY: TH1F hstat;1 Event Histogram

We can see there is a tree “T”, and just to verify that we are working with the
correct one, we print the tree, which will show us the header and branches.
From this we can see that we have one branch called event.

root [] T->Print();

R R IR b b b b S Sh b 2 dh b b S Sb b dh b b dR Sh b 2 dh b b S Sh b dh b I db Sh b b db b b S dh b b db Sb b dh Sh b g db b 4
*Tree :T : An example of a ROOT tree

*Entries : 400 : Total Size = 19321594 bytes

* : : Tree compression factor = 1.51

R b b b b b S Sh b 2 dh b b S Sb b dh b b Jb Sb b 2 dh b b S Sh b dh b 2b Sh b db b b S dh b b db b b S Sh b b db b 4
*Branch :event : event

*Entries : 400 : Total Size = 19319604 bytes
*Baskets : 80 : Basket Size = 256000 bytes

Now we can use the TTree: :MakeClass method on our tree “T”.
MakeClass takes one parameter, a string containing the name of the class
to be made.

In the command below, the name of our class will be “MyClass”.

root [] T->MakeClass("MyClass")
Files: MyClass.h and MyClass.C generated from Tree: T
(Int_t)0

CINT informs us that it has created two files. MyClass . h, which contains the
class definition and MyClass.C, which contains the MyClass: : Loop
method. MyClass has more methods than just Loop. The other methods are:
a constructor, a destructor, GetEntry, LoadTree, Notify, and Show.
The implementation of these methods is in the .h file. This division of
methods was done intentionally. The .C file is kept as short as possible, and
contains only code that is intended for you to customize. The .h file contains
all the other methods.

To start with, it helps to understand both files, so lets start with MyClass.h
and the class definition:

MyClass.h

204 Draft, December 2000 - version 0.6.3 Trees

class MyClass {

public
//pointer to the analyzed TTree or Tchain
TTree *fTree;
//pointer to the current TTree
TTree *fCurrent;
//Declaration of leaves types
Event *event;
//List of branches
TBranch *b event;
//Methods
MyClass (TTree *tree=0);
~MyClass () ;
Int t GetEntry(Int t entry);
Int t LoadTree(Int t entry);
volid Init(TTree *tree);
void Loop();
void Notify();
void Show(Int t entry = -1);

We can see four data members in the generated class. The first data

member is fTree. Once this class is instantiated, fTree will point to the

original tree this class was made from. In our case, this is “T” in
“Event.root”. If the class is instantiated with a tree as a parameter to the
constructor, fTree will point to the tree named in the parameter.

Next is fCurrent, which is also a pointer to the current tree. Its role is only
relevant once we have multiple trees chained together in a TChain.

The class definition shows us that this tree has one branch and one leaf. In
MyClass, the branch name is b_event and the leaf is called event and is of
the Event class.

If we had split the event branch when creating the tree, there would be one
data member for each leaf, and one TBranch data member for each branch.

Int t
Int t
Int t
UInt t

TBranch
TBranch
TBranch
TBranch
TBranch

class SplitClass {

//Declaration of leaves types

fNtrack;
fNseg;
fNvertex;
fFlag;

//List of branches

*b event;
*b fNtrack;
*b fNseg;
*b fNvertex;
*b fFlag;

You can find the complete listing of “SplitClass” in the Appendix.

Let’s go back to the definition of MyClass, and go through the methods.

Trees

Draft, December 2000 - version 0.6.3

205

e MyClass (TTree *tree=0) : This constructor has an optional tree for
a parameter. If you pass a tree, MyClass will use it rather than the tree
from whitch it was created.

e void 1Init(TTree *tree) : Initis called by the constructor to
initialize the tree for reading. It associates each branch with the
corresponding leaf data member.

e ~MyClass () : This is the destructor, nothing special.

e Int t GetEntry(Int t entry): This loads the class with the entry
specified. Once you have executed GetEntry, the leaf data members
in MyClass are set to the values of the entry. For example,

GetEntry (12) loads the 13" event into the event data member of
MyClass (note that the first entry is 0). GetEntry returns the number of
bytes read.

e Int t LoadTree(Int t entry) and void Notify():

These two methods are related to chains. LoadTree will load the tree
containing the specified entry from a chain of trees. Notify is called by
LoadTree to adjust the branch addresses.

e void Loop () : Thisis the skeleton method that loops through each
entry of the tree. This is interesting to us, because we will need to
customize it for our analysis.

This covers Myclass.h; NOW open MyClass.cC With your editor. Here we see

the implementation of Myclass: :Loop() .

MyClass.C

MyClass: : Loop consists of a for-loop calling GetEntry for each entry. In
the skeleton, the numbers of bytes are added up, but it does nothing else. If
we were to execute it now, there would be no output.

{

void MyClass: :Loop ()

if (fTree == 0) return;
Int t nentries = Int t(fTree->GetEntries());
Int t nbytes = 0, nb = 0;
for (Int t i=0; i<nentries;i++) {
if (LoadTree (i) < 0) break;

nb = fTree->GetEntry (i) ; nbytes += nb;

At the beginning of the file are instructions about reading only selected
branches. They are not reprinted here, but please read them from your own
file. In our example, we only have one branch, so we can stick with
GetEntry and read the entire entry.

Modifying MyClass::Loop

Lets continue with the goal of going through the first 100 tracks of each entry
and plot Px. To do this we change the Loop method.

Since we will be dealing with tracks, we need two temporary variables. We
will need a pointer to a track and an integer to hold the number of tracks. We
also need to create two histograms, one to hold f£Px of the first 100 tracks
and one to hold all values of fpx.

206

Draft, December 2000 - version 0.6.3 Trees

if (fTree == 0) return;
Track *track = 0;
Int
TH1F *myHisto
TH1F *smallHisto = new TH1F("small","fPx", 100, -5,5);

t n Tracks = 0;
= new TH1F ("myHisto","fPx", 100, -5,5);

In the for-loop, we need to add another for-loop to go over all the tracks.

In the outer for-loop, we get the entry and the number of tracks.

In the inner for-loop, we fill the large histogram (myHisto) with all tracks and
the small histogram (smallHisto) with the track if it is in the first 100.

for

(Int_t i=0; i<nentries;i++) {

if (LoadTree (i) < 0) break;

GetEntry (i) ;

n_Tracks = event->GetNtrack();

for (Int t j = 0; j < n Tracks; Jj++){
track = (Track*) event->GetTracks ()->At(]);
myHisto->Fill (track->GetPx());
if (3 < 100){

smallHisto->Fill (track->GetPx());

}

}

This statement could use some explanation.

track

= (Track*) event->GetTracks ()->At(j);

Remember that the tracks in the event are in a TClonesArray. The
Event: :GetTracks method returns the clones array of tracks for that
event. The method TClonesArray: :At (n) retrieves the n™ element in the
array. However, the return of At (n) is a pointer to TObject. So, for us to be
of any use we have to cast the result to pointer to a Track object.

Outside of the for-loop, we draw both histograms on the same canvas.

myHisto->Draw () ;
smallHisto->Draw ("Same") ;

Save these changes to MyClass.C and start a fresh root session. We will
now load MyClass and experiment with its methods.
Loading MyClass

The first step is to load the library and the class file. Then we can instantiate
aMyClass object.

root
root
root

[] .L libEvent.so
[] .L MyClass.C
[] MyClass m

Now we can get a specific entry and populate the event leaf. In the code
shipped below, we get entry 0, and print the number of tracks (594). Then we
get entry 1 and print the number of tracks (597).

Trees

Draft, December 2000 - version 0.6.3 207

(int)1
(Int_t)594

(int) 48045

(Int_t)597

[] m.GetEntry (0)

[] m.event->GetNtrack()
)

[] m.GetEntry (1)

[] m.event->GetNtrack()

Now we can call the Loop method, which will build and display the two
histograms.

[] m.Loop()

You should now see a canvas that looks like this.

e BEE

Eile Edit View Options Inspect Classes Help

[_fPx | myHisto

Nent = 230996

10000 Mean =0.001169
RMS =

8000

6000

4000

2000

To conclude the discussion on MakeClass let’s lists the steps that got us
here.

e Call TTree: :MakeClass, which automatically creates a class to loop
over the tree.

e Modify the MyClass: :Loop () method in MyClass. C to fit your task.

e Load and instantiate MyClass, and run MyClass: :Loop () .

Analysis using Selectors

With a TTree we can make a selector and use it to process a limited set of
entries. This is especially important in a parallel processing configuration
where the analysis is distributed over several processors and we can specify
which entries to send to each processors. The TTree: : Process method is
used to specify the selector and the entries.

Before we can use TTree: : Process we need to make a selector. We can
call the TTree: :MakeSelector method. It creates two files similar to
TTree: :MakeClass. In the resulting files is a class that is a descendent of
TSelector and implements the following methods:

e TSelector: :Begin: This function is called every time a loop over the
tree starts. This is a convenient place to create your histograms.

e TSelector::Notify () : This function is called at the first entry of a
new tree in a chain.

e TsSelector::ProcessCut: This function is called at the beginning of
each entry to return a flag true if the entry must be analyzed.

e TSelector::ProcessFill: This function is called in the entry loop
for all entries accepted by Select.

208

Draft, December 2000 - version 0.6.3 Trees

e TSelector::Terminate: This function is called at the end of a loop
on a TTree. This is a convenient place to draw and fit your histograms.

The TSelector, unlike the resulting class from MakeClass, separates the
processing into a ProcessCut and ProcessFill, so that we can limit
reading the branches to the ones we need.

To create a selector call:

root[] T->MakeSelector ("MySelector");

Where T is the TTree and MySelector is the name of created class and the
name of the .h and .C files.

The resulting TSelector is the argumentto TTree: : Process. The
argument can be the file name or a pointer to the selector object.

root[] T->Process("MySelector.C",1000,100) ;

This call will interpret the class defined in MySelector.C and process 1000

entries beginning with entry 100. The file name can be appended with a "+"
or a "++" to use ACLiC.

root[]

T->Process ("MySelector.C+",1000,100) ;

When appending one "+", the class will be compiled and loaded. The built
binary file and shared library will be deleted at the end of the function.

root []

T->Process ("MySelector.C++",1000,100) ;

When appending a "++", the class will be compiled and loaded. The built
binary file and shared library is kept at the end of the function. When it is
called again, it rebuilds the library only if the source file has changed since it
was last compiled. If not it loads the existing library.

TTree: :Process is aware of PROOF, ROOT's parallel processing facility. If
PROOF is setup, it divides the processing amongst the slave CPUs.

Please see the chapter Example Analysis for an example of using a selector
on a large data set.

Chains

A TChain object is a list of ROOT files containing the same tree. As an
example, assume we have three files called filel.root, file2.root,
file3.root. Each file contains one tree called "T". We can create a chain
with the following statements:

TChai
chain
chain
chain

n chain("T"); // name of the tree is the argument
.Add("filel.root");
Add ("file2.root") ;
.Add("file3.root");

The class TChain is derived from the class TTree. For example, to generate
a histogram corresponding to the attribute "x" in tree "T" by processing
sequentially the three files of this chain, we can use the TChain: :Draw
method.

Trees

Draft, December 2000 - version 0.6.3 209

chain.Draw ("x") ;

The following statements illustrate how to set the address of the object to be
read and how to loop on all events of all files of the chain.

TChain chain ("T") ; // create the chain with tree "T"
chain.Add ("filel.root™); // add the files

chain.Add ("file2.root");

chain.Add ("file3.root");

TH1F *hnseg = new THLF ("hnseg", "Number of segments for
selected tracks",5000,0,5000) ;

// create an object before setting the branch address
Event *event = new Event();

// Specify the address where to read the event object
chain.SetBranchAddress ("event", &event);

// Start main loop on all events
// In case you want to read only a few branches, use
// TChain::SetBranchStatus to activate a branch.
Int t nevent = chain.GetEntries();
for (Int t i=0;i<nevent;i++) {
// read complete accepted event in memory
chain.GetEvent (1) ;
// Fill histogram with number of segments
hnseg->Fill (event->GetNseg()) ;
}

// Draw the histogram
hnseg->Draw () ;

References

In this section, we covered the objects in the table below. To find more
information about them, follow the links to the ROOT system page.

TTree http://root.cern.ch/root/html/TTree.html
TBranch http://root.cern.ch/root/html/TBranch.html
TClonesArray http://root.cern.ch/root/html/TClonesArray.html
TEventList http://root.cern.ch/root/html/TEventList.html
TFormula http://root.cern.ch/root/html/TFormula.html
TCanvas http://root.cern.ch/root/html/TCanvas.html
TChain http://root.cern.ch/root/html/TChain.html

210 Draft, December 2000 - version 0.6.3 Trees

http://root.cern.ch/root/html/TTree.html
http://root.cern.ch/root/html/TBranch.html
http://root.cern.ch/root/html/TClonesArray.html
http://root.cern.ch/root/html/TEventList.html
http://root.cern.ch/root/html/TFormula.html
http://root.cern.ch/root/html/TCanvas.html
http://root.cern.ch/root/html/TChain.html

11

Adding a Class

Motivation

If you want to integrate and use your classes with ROOT, to enjoy features
like, extensive RTTI (Run Time Type Information) and ROOT object I/O and
inspection, you have to add the following line to your class header files:

ClassDef (ClassName,ClassVersionID) //The class title

For example in TLine.h we have:

ClassDef (TLine,1l) //A line segment

The ClassVersionID is used by the ROOT I/O system. It is written on the
output stream and during reading you can check this version ID and take
appropriate action depending on the value of the ID (see the section on
Streamers in the Chapter Input/Output). Every time you change the data
members of a class, you should increase its ClassVersionID by one. The
ClassVersionID should be >=1.SetClassVersionID=0 in case you
don't need object I/O.

Similarly, in your implementation file you must add the statement:

ClassImp (ClassName)

For example in TLine.cxx:

ClassImp (TLine)

Note that you MUST provide a default constructor for your classes, i.e. a
constructor with zero parameters or with one or more parameters all with
default values in case you want to use object I/O. If not you will get a compile
time error.

The ClassDef and ClassImp macros are necessary to link your classes to
the dictionary generated by CINT.

The ClassDef and ClassImp macros are defined in the file Rtypes.h.
This file is referenced by all ROOT include files, so you will automatically get
them if you use a ROOT include file.

Adding a Class

Draft, December 2000 - version 0.6.3 211

The Default Constructor

ROOT object I/O requires every class to have a default constructor. This
default constructor is called whenever an object is being read from a ROOT
database. Be sure that you don't allocate any space for embedded pointer
objects in the default constructor. This space will be lost (memory leak) while

reading in the object. For example:

class T49Event : public TObject {
private:

Int t fId;

TCollection *fTracks;

public:
// Error space for TList pointer will be lost
T49Event () { fId = 0; fTrack = new TList; }
// Correct default initialization of pointer
T49Event () { fId = 0; fTrack = 0; }

The memory will be lost because during reading of the object the pointer will

be set to the object it was pointing to at the time the object was written.

Create the £Track list when you need it, e.g. when you start filling the list or

in a not-default constructor.

if (!fTrack) fTrack = new TList;

212

Draft, December 2000 - version 0.6.3 Adding a Class

rootcint: The CINT Dictionary Generator

In the following example we walk through the steps necessary to generate a

dictionary and I/O and inspect member functions.

Let start with a TEvent class, which contains a collection of TTracks:

#ifndef TEvent
#define TEvent

#include "TObject.h"
class TCollection;

class TTrack;

class TEvent : public TObject {

private:
Int t fId; //event sequential id
Float t fTotalMom; //total momentum
TCollection *fTracks; //collection of tracks
public:

TEvent () { fId = 0; fTracks = 0; }
TEvent (Int_t id);
~TEvent () ;

void AddTrack (TTrack *t);

Int t GetId() const { return fId; }
Int t GetNoTracks () const;

void Print (Option_ t *opt="");
Float t TotalMomentum() ;

ClassDef (TEvent,1l) //Simple event class

Adding a Class Draft, December 2000 - version 0.6.3

213

And the TTrack header:

#ifndef TTrack
#define TTrack

#include "TObject.h"

class TEvent;

class TTrack : public TObject {

private:
Int t f1d; //track sequential id
TEvent *fEvent; //event to which track belongs
Float t £Px; //x part of track momentum
Float t f£fPy; //y part of track momentum
Float t fPz; //z part of track momentum
public:

TTrack() { fId = 0; fEvent = 0; fPx = fPy = fPz = 0; }
TTrack (Int t id, Event *ev, Float t px,Float t py,Float t pz);

Float t Momentum() const;
TEvent *GetEvent () const { return fEvent; }
void Print (Option_ t *opt="");

ClassDef (TTrack,l) //Simple track class
}i

#endif

The things to notice in these header files are:

e The usage of the ClassDef macro

e The default constructors of the TEvent and TTrack classes

e Comments to describe the data members and the comment after the
ClassDef macro to describe the class

These classes are intended for you to create an event object with a certain id,
and then add tracks to it. The track objects have a pointer to their event. This
shows that the 1/0 system correctly handles circular references.

214 Draft, December 2000 - version 0.6.3 Adding a Class

Next, the implementation of these two classes. Event . cxx:

#include

#include
#include
#include

<iostream.h>

"TOrdCollection.h"
"TEvent.h"
"TTrack.h"

ClassImp (TEvent)

and Track.cxx:

#include

#include
#include
#include

<iostream.h>

"TMath.h"
"Track.h"
"Event.h"

ClassImp (TTrack)

Now using rootcint we can generate the dictionary file.

Make sure you use a unique filename, because rootcint appends it to the

name of static function (G cpp reset tabableeventdict () and
G

set cpp_ environmenteventdict ()).

rootcint

eventdict.cxx -c TEvent.h TTrack.h

Looking in the file eventdict.C we can see, besides the many member

function calling stubs (used internally by the interpreter), the Streamer ()

and ShowMembers () methods for the two classes. Streamer () is used to
stream an object to/from a TBuf fer and ShowMembers () is used by the
Dump () and Inspect () methods of TObject.

Adding a Class

Draft, December 2000 - version 0.6.3

215

Here is the TEvent: :Streamer () method:

void TEvent::Streamer (TBuffer &R_b)

{

// Stream an object of class TEvent.

if

} else {

(R__b.IsReading()) {

Version t R v = R _Db.ReadVersion();
TObject::Streamer (R_ Db);

R b >> fId;

R b >> fTotalMom;

R b >> fTracks;

R b.WriteVersion (TEvent::IsA());
TObject::Streamer (R_ b);

R b << fId;

R b << fTotalMom;

R b << fTracks;

The TBuffer class overloads the operator<< () and operator>> () for
all basic types and for pointers to objects. These operators write and read
from the buffer and take care of any needed byte swapping to make the
buffer machine independent. During writing the TBuf fer keeps track of the
objects that have been written and multiple references to the same object are
replaced by an index. In addition, the object's class information is stored.

Both these cases need manual intervention. Cut and paste the generated
Streamer () in the class' source file and modify as needed (e.g. add counter
for array of basic types) and disable the generation of the Streamer () using
the LinkDef . h file for next runs of rootcint.

To exclude a data member from the Streamer () add ! in comment field:

Int t

fTempVval; //! temp state value

To prevent generation of Streamer (), in case you don't want to do I/O (and
not to prevent the generation of a Streamer () because you already have a
customized version), do:

ClassDhef (TEvent,0)

216

Draft, December 2000 - version 0.6.3 Adding a Class

Adding a Class With the Interpreter

To add your own class to ROOT from the interpreter you write a script
containing your class. Below is the code that we save in a script called

IClass.C:

#include <iostream.h>
class IClass {

private:
float £X; //x position in centimeters
float £Y; //y position in centimeters
public:
IClass() { fX = fYy = -1; }

void Print ()

void SetX (float x) { fX = x; }
void SetY (float y) { fY = y; }
i

{cout << "fX = " << fX << ", fY = " << fY << endl;}

Now we can load the script and instantiate an IClass:

root [] .L IClass.C
root [] IClass *ic = new IClass()

And we can use it.

FILE:/var/tmp/daaa08MrC_cint LINE:1
Possible candidates are...

root [] ic->Print()
fX = -1, fy = -1
root [] ic->SetX(3)
root [] ic->SetY¥ (500)
root [] ic->Print()
fX = 3, fY = 500
But we can't save it — ouch!
root [] ic->Write()
Error: Can't call IClass::Write() in current scope

Adding a Class Draft, December 2000 - version 0.6.3

217

Adding a Class with a Shared Library

Step 1:
Define your own class in SClass.h and implementitin SClass.cxx. You
must provide a default constructor for your class.

#include <iostream.h>
#include "TObject.h"
class SClass : public TObject {

private:
float £X; //x position in centimeters
float £Y; //y position in centimeters
public:
SClass () { £X = £fY = -1; }
void Print () const;

void SetX (float x) { fX = x; }
void SetY (float y) { fY =

|
=
~
—

ClassDef (SClass, 1)

Step 2:

Add a call to the ClassDef macro to at the end of the class definition (i.e. in
the sClass.hfile). ClassDef (SClass, 1) . In case you don't need object
I/0O you could set ClassVersionID to 0.

Add a call to the C1lassImp macro in the implementation file
(SClass .cxx).ClassImp (SClass)

SClass.cxx:

}

#include "SClass.h"
ClassImp (SClass);
void SClass::Print () const {

cout << "fX = " << fX << ", fY = " << fY << endl;

You can add a class without using the ClassDef and ClassImp macros,
however you will be limited. Specifically the object I/O features of ROOT wiill
not be available to you for these classes.

The ShowMembers() and Streamer() method, as well as the >> operator
overloads are implemented only if you use ClassDef and ClassImp.

See http://root.cern.ch/root/html/Rtypes.h for the definition of C1assbef and
ClassImp.

Step 3:

The LinkDef .h file tells rootcint for which classes the method interface
stubs should be generated. A trailing - in the class name tells rootcint to
not generate the Streamer () method.

#ifdef CINT

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;
#pragma link C++ class SClass;
#endif

Step 4: Compile the class using the Makefile

218

Draft, December 2000 - version 0.6.3 Adding a Class

In the Makefile call rootcint to make the dictionary for the class. Call it
SClassDict.cxx. The rootcint utility generates the Streamer(), TBuffer
soperator>> () and ShowMembers() methods for ROOT classes.

For more information on rootcint follow this link:
http://root.cern.ch/root/RootCintMan.html

Also, see the SROOTSYS/test directory Makefile, Event.cxx, and
Event.h for an example.

gmake —-f Makefile
Load the shared library:
root [] .L SClass.so
root [] SClass *sc = new SClass()
root [] TFile *f = new TFile ("Afile.root", "UPDATE");
root [] se->Write()

Adding a Class with ACLiC

Step 1. Define your class

class
publ
Floa
ABC (

Clas
}s

// Cal
#if

Cl
#end

#include "TObject.h"
// define the ABC class and make it inherit
// from TObject so that we can write ABC to a ROOT file

// Define the class for the cint dictionary

// and full I/O capabilities.

ABC : public TObject {
ic:

t t a,b,c,p;
):a(0),b(0),c(0),p(0){};

sDef (ABC,1)

1l the ClassImp macro to give the ABC class RTTI

!defined(CINT)
assImp (ABC) ;
if

Step 2: Load the ABC class in the script.

// Che
if (!T

}

// Use
ABC *v
v->p =

ck if ABC is already loaded
ClassTable: :GetDict ("ABC")) {
gROOT->Macro ("ABCClass.C++") ;

the Class
= new ABC;
(sgrt((v->a * v->a)+ (v->b * v->b)+(v->c * v->C)));

Adding a Class

Draft, December 2000 - version 0.6.3 219

12

Collection Classes

Collections are a key feature of the ROOT system. Many, if not most, of the
applications you write will use collections. If you have used parameterized
C++ collections or polymorphic collections before, some of this material will
be review. However, much of this chapter covers aspects of collections
specific to the ROOT system. When you have read this chapter, you will
know

e How to create instances of collections

e The difference between lists, arrays, hash tables, maps, etc.

¢ How to add and remove elements of a collection

e How to search a collection for a specific element

e How to access and modify collection elements

e How to iterate over a collection to access collection elements

e How to manage memory for collections and collection elements

e How collection elements are tested for equality (IsEqual ())

e How collection elements are compared (Compare ()) in case of sorted
collections

e How collection elements are hashed (Hash ()) in hash tables

Understanding Collections

A collection is a group of related objects. You will find it easier to manage a
large number of items as a collection. For example, a diagram editor might
manage a collection of points and lines. A set of widgets for a graphical user
interface can be placed in a collection. A geometrical model can be described
by colections of shapes, materials and rotation matrices. Collections can
themselves be placed in collections. Collections act as flexible alternatives to
traditional data structures of computers science such as arrays, lists and
trees.

General

Characteristics

The ROOT collections are polymorphic containers that hold pointers to
TObjects, SO:

e They can only hold objects that inherit from TObject
e They return pointers to TObjects, that have to be cast back to the

correct subclass

Collections are dynamic, they can grow in size as required.

Collection Classes Draft, December 2000 - version 0.6.3 221

Collections themselves are descendants of TObject so can themselves be
held in collections. It is possible to nest one type of collection inside another
to any level to produce structures of arbitrary complexity.

Collections don’t own the objects they hold for the very good reason that the
same object could be a member of more than one collection. Object
ownership is important when it comes to deleting objects; if nobody owns the
object it could end up as wasted memory (i.e. a memory leak) when no
longer needed. If a collection is deleted, its objects are not. The user can
force a collection to delete its objects, but that is the user’s choice.

Determining the Class of Contained Objects

Most containers may hold heterogeneous collections of objects and then it is
left to the user to correctly cast the TObject pointer to the right class.
Casting to the wrong class will give wrong results and may well crash the
program! So the user has to be very careful. Often a container only contains
one class of objects, but if it really contains a mixture, it is possible to ask
each object about its class using the InheritsFrom () method.

For example if myObject is a TObject pointer:

if

}

(myObject->InheritsFrom("TParticle") {
printf ("myObject is a TParticle\n");

As the name suggests, this test works even if the object is a subclass of
TParticle. The member function IsA () can be used instead of
InheritsFrom() to make the test exact. The InheritsFrom () and
IsA () methods use the extensive Run Time Type Information (RTTI)
available via the ROOT meta classes.

Types of Collections

The ROOT system implements the following basic types of collections:
unordered collections, ordered collections and sorted collections. This picture
shows the inheritance hierarchy for the primary collection classes. All primary
collection classes derive from the abstract base class TCollection.

TCollection
JA\
TSeqCollection THashTable TMap
TList TOrdCollection TObjArray TBtree
TSortedList THashList TClonesArray

222

Draft, December 2000 - version 0.6.3 Collection Classes

Ordered Collections (Sequences)

Sequences are collections that are externally ordered because they maintain
internal elements according to the order in which they were added. The
following sequences are available:

e TList

e THashList

e TOrdCollection
e TObjArray

e TClonesArray

The TOrdCollection, TObjArray as well as the TClonesArray can be
sorted using their Sort () member function (if the stored items are sort able).
Ordered collections all derive from the abstract base class
TSeqgCollection.

Sorted Collection

Sorted collections are ordered by an internal (automatic) sorting mechanism.
The following sorted collections are available:

e TSortedList
(] TBtree

The stored items must be sort able.

Unordered Collections

Unordered collections don't maintain the order in which the elements were
added, i.e. when you iterate over an unordered collection, you are not likely
to retrieve elements in the same order they were added to the collection. The
following unordered collections are available:

e THashTable
e TMap

Iterators: Processing a Collection

The concept of processing all the members of a collection is generic, i.e.
independent of any specific representation of a collection. To process each
object in a collection one needs some type of cursor that is initialized and
then steps over each member of the collection in turn. Collection objects
could provide this service but there is a snag: as there is only one collection
object per collection there would only be one cursor. Instead, to permit the
use of as many cursors as required, they are made separate classes called
iterators. For each collection class there is an associated iterator class that
knows how to sequentially retrieve each member in turn. The relationship
between a collection and its iterator is very close and may require that the
iterator has full access to the collection (i.e. it is a friend). In general iterators
will be used via the TIter wrapper class.

For example:
e TList TListIter
e TMap TMapIlter

Collection Classes Draft, December 2000 - version 0.6.3 223

Foundation Classes

All collections are based on the fundamental classes: TCollection and
TIterator. They are so generic that it is not possible to create objects from
them; they are only used as base classes for other classes (i.e. they are
abstract base classes).

TCollection

The TCollection class provides the basic protocol (i.e. the minimum set of
member functions) that all collection classes have to implement. These

include:

e Add () Adds another object to the collection.

® GetSize() Returns the number of objects in the collection.

e Clear () Clears out the collection, but does not delete the
removed objects.

e Delete () Clears out the collection and deletes the removed
objects. This should only be used if the collection owns
its objects (which is not normally the case).

e FindObject () Find an object given either its name or address.

e MakeIterator () Returns an iterator associated with the collection.

e Remove () Removes an object from the collection.

Coming back to the issue of object ownership. The code example below
shows a class containing three lists, where the £Tracks list is the owning
collection and the other two lists are used to store a sub-set of the track
objects. In the destructor of the class the Delete () method is called for the
owning collection to delete correctly all its track objects.

class TEvent : public TObject {

private:
TList *fTracks; //list of all tracks
TList *fVertexl; //subset of tracks part of vertexl
TList *fVertex2; //subset of tracks part of vertex2

i

TEvent: :~TEvent ()

{
fTracks->Delete(); delete fTracks;
delete fVertexl; delete fVertex2;

Tlterator

The TIterator class defines the minimum set of member functions that all
iterators must support. These include:

e Next () return the next member of the collection or 0 if no more
members.
e Reset () reset the iterator so that Next () returns the first object.

224 Draft, December 2000 - version 0.6.3 Collection Classes

A Collectable Class

By default, all objects of TObject derived classes can be stored in ROOT
containers. However, the TObject class provides some member functions
that allow you to tune the behavior of objects in containers. For example, by
default two objects are considered equal if their pointers point to the same
address. This might be too strict for some classes where equality is already
achieved if some or all of the data members are equal. By overriding the
following TObject member functions, you can change the behavior of
objects in collections:

. IsEqual () is used by the FindObject () collection method. By
default, IsEqual () compares the two object pointers.
. Compare () returns —1, 0 or 1 depending if the object is smaller,

equal or larger than the other object. By default, a
TObject has not a valid Compare () method.

. IsSortable () returns true if the class is sort able (i.e. if it has a valid
Compare () method). By default, a TObject is not
sort able.

3 Hash () returns a hash value. It needs to be implemented if an
object has to be stored in a collection using a hashing
technique, like THashTable, THashList and TMap.
By default, Hash () returns the address of the object. It
is essential to choose a good hash function.

The example below shows how to use and override these member functions.

// TObjNum is a simple container for an integer.
class TObjNum : public TObject {
private:

int num;

public:
TObjNum(int 1 = 0) : num(i) { }
~TObjNum () { }
void SetNum(int i) { num = i; }
int GetNum() const { return num; }
void Print (Option_t *){ printf("num = %d\n", num); }

Bool_t IsEqual (TObject *obj)

Bool_t IsSortable() const { return kTRUE; }
Int_t Compare (TObject *obj)

Ulong_t Hash() { return num; }

{ return num == ((TObjNum*)obj)->num; }

{ 1f (num < ((TObjNum*)obj)->num)
return -1;

else if (num > ((TObjNum*)obj)->num)
return 1;
else

return 0; }

Collection Classes Draft, December 2000 - version 0.6.3 225

The Tlter Generic lterator

As stated above, the TIterator class is abstract; it is not possible to create
TIterator objects. However, it should be possible to write generic code to
process all members of a collection so there is a need for a generic iterator
object. A TIter object acts as generic iterator. It provides the same Next ()
and Reset () methods as TIterator although it has no idea how to
support them! It works as follows:

e Tocreate a TIter object its constructor must be passed an object that
inherits from TCollection. The TIter constructor calls the
MakeIterator () method of this collection to get the appropriate
iterator object that inherits from TIterator.

e The Next () and Reset () methods of TIter simply call the Next ()
and Reset () methods of the iterator object.

So TIter simply acts as a wrapper for an object of a concrete class
inheriting from TIterator.

To see this working in practice, consider the TObjArray collection. Its
associated iterator is TObjArrayIter. Suppose myarray is a pointer to a
TObjArray, i.e

TObjArray *myarray;
Which contains MyClass objects. To create a TIter object called myiter:

TIter myiter (myarray) ;

myarray myiter

TObjArray @4) | TObjArraylter

----------’I

(3) MakeIteraflor

2

MakeIt t
TCollection (e Tlter

(1) TIter myiter (myarray)

As shown in the diagram, this results in several methods being called:
(1) The TIter constructoris passed a TObjArray

(2) TIter asks embedded TCollection to make an iterator

(3) TCollection asks TObjArray to make an iterator
(

4) TObjArray returns a TObjArraylter.

226 Draft, December 2000 - version 0.6.3 Collection Classes

Now define a pointer for MyClass objects and set it to each member of the
TObjArray:

while

}

MyClass *myobject;

// process myobject

((myobject = (MyClass *) myiter.Next())) {

The heart of this is the myiter.Next () expression which does the

myiter

5) MyClass

4‘............... N‘IIIIIIIIIIIIII

(1) Next () I

) MyClass TObjArraylter

(3) Next ()

Tlter

IS0 Tlterator

following:

(1) The Next () method of the TIter object myiter is called

(2) The TIter forwards the call to the TIterator embedded in the
TObjArraylter

(3) TIterator forwards the call to the TObjArrayIter

(4) TobjArrayIter finds the next MyClass object and returns it

(5) Titer passes the MyClass object back to the caller

Sometimes the TIter object is called next, and then instead of writing:
next.Next ()

Which is legal, but looks rather odd, iteration is written as:

next ()

This works because the function operator () is defined for the TIter class
to be equivalent to the Next () method.

Collection Classes Draft, December 2000 - version 0.6.3 227

The TList Collection

A TList is a doubly linked list. Before being inserted into the list the object
pointer is wrapped in a TObjLink object that contains, besides the object
pointer also a previous and next pointer.

Objects are typically added using:

e Add()
e AddFirst (), AddLast()
e AddBefore (), AddAfter()

Main features of TList: very low cost of adding/removing elements
anywhere in the list.

Overhead per element: 1 TObjLink, i.e. two 4 (or 8) byte pointers + pointer
to vtable =12 (or 24) bytes.

class TList : public TSeqCollection

{
private:
TObjLink *fLast;
TODbjLink *fFirst; ¢ l
. TObjLink TObjLink TObjLink
I8
fPrev |« fPrev |« fPrev
class TObjLink { . >
friend class TList; fNext > MNext > MNext
private: fObject fObject fObject
TObjLink *fPrev;
TODbjLink *fNext; l l l
TObject *fObject;
e obj obj obj

};...

The diagram below shows the internal data structure of a TList:

228

Draft, December 2000 - version 0.6.3 Collection Classes

Iterating over a TList

There are basically four ways to iterate over a TList:

(1) Using the ForEach script:

GetListOfPrimitives () ->ForEach (TObject, Draw) () ;

(2) Using the TList iterator TListIter (via the wrapper class TIter):

TIter next (GetListOfTracks());
while ((TTrack *obj = (TTrack *)next()))
obj->Draw () ;

(3) Using the TObjLink list entries (that wrap the TObject*):

TObjLink *1nk = GetListOfPrimitives ()->FirstLink();
while (1lnk) {

Ink->GetObject () ->Draw () ;

1Ink = 1lnk->Next ();

(4) Usingthe TList's After () and Before () member functions:

TFree *idcur = this;
while (idcur) {

idcur = (TFree*)GetListOfFree ()->After (idcur);

Method 1 uses internally method 2.
Method 2 works for all collection classes. TIter overloads operator () .
Methods 3 and 4 are specific for TList.

Methods 2, 3 and 4 can also easily iterate backwards using either a
backward TIter (using argument kIterBackward) or by using
LastLink () and 1nk->Prev () or by using the Before () method.

Collection Classes Draft, December 2000 - version 0.6.3 229

The TObjArray Collection

A TObjArray is a collection which supports traditional array semantics via
the overloading of operator[]. Objects can be directly accessed via an
index. The array expands automatically when objects are added.

At creation time one specifies the default array size (default = 16) and lower
bound (default = 0). Resizing involves a re-allocation and a copy of the old
array to the new. This can be costly if done too often. If possible, set initial
size close to expected final size. Index validity is always checked (if you are
100% sure and maximum performance is needed you can use
UnCheckedAt () instead of At () or operator[]).

If the stored objects are sort able the array can be sorted using Sort ().
Once sorted, efficient searching is possible via the BinarySearch ()
method.

Iterating can be done using a TIter iterator or via a simple for loop:

for

(int 1 = 0; 1 < fArr.GetLast(); 1i++)
if ((track = (TTrack*)fArr[i])) // or fArr.At (i)
track->Draw () ;

class TObjArray : public TSeqCollection {

private:
TObject **fCont; » —— 0obj
—1—» obj
}... 5
’ —+— obj
——» obj
0
0

Main features of TObjArray: simple, well known array semantics.
Overhead per element: none, except possible over sizing of £Cont.

The diagram below shows the internal data structure of a TObjArray:

230

Draft, December 2000 - version 0.6.3 Collection Classes

TClonesArray — An Array of Identical Objects

A TClonesArray is an array of identical (clone) objects. The memory for the
objects stored in the array is allocated only once in the lifetime of the clones
array. All objects must be of the same class and the object must have a fixed
size (i.e. they may not allocate other objects). For the rest this class has the

class TClonesArray : public TObjArray {
private:
TObjArray *fKeep; ————
TClass *fClass; fCont

U

space for identical
objects of type fClass
same properties as a TObjArray.

The class is specially designed for repetitive data analysis tasks, where in a
loop many times the same objects are created and deleted.

The diagram below shows the internal data structure of a TClonesArray:

The Idea Behind TClonesArray

To reduce the very large number of new and delete calls in large loops like
this (O(100000) x O(10000) times new/delete):

TObjArray a(10000);

while (TEvent *ev (TEvent *)next ()) { // 0(100000)
for (int i = 0; i1 < ev->Ntracks; i++) { // 0(10000)
al[i] = new TTrack(x,v,2z,...);

}

a.Delete();

Collection Classes Draft, December 2000 - version 0.6.3 231

You better use a TClonesArray which reduces the number of new/delete
calls to only O(10000):

TClonesArray a("TTrack", 10000);

while (TEvent *ev = (TEvent *)next()) ({ // 0(100000)
for (int 1 = 0; i < ev->Ntracks; i++) { // 0(10000)
new(a[i]) TTrack(x,vy,z,...);

}

a.Delete();

Considering that a pair of new/delete calls on average cost about 70 pus,
O(109) new/deletes will save about 19 hours.

For the other collections see the class reference guide on the web and the
test program SROOTSYS/test/tcollex.cxx.

Template Containers and STL

Some people dislike polymorphic containers because they are not truly “type
safe”. In the end, the compiler leaves it the user to ensure that the types are
correct. This only leaves the other alternative: creating a new class each time
a new (container organization) / (contained object) combination is needed. To
say the least this could be very tedious. Most people faced with this choice
would, for each type of container:

1. Define the class leaving a dummy name for the contained object
type.

2. When a particular container was needed, copy the code and then do
a global search and replace for the contained class.

C++ has a built in template scheme that effectively does just this. For
example:

template<class T>

class ArrayContainer {
private:
T *member[10];

}s

This is an array container with a 10-element array of pointers to T, it could
hold up to 10 T objects. This array is flawed because it is static and hard-
coded, it should be dynamic. However, the important point is that the
template statement indicates that T is a template, or parameterized class. If
we need an ArrayContainer for Track objects, it can be created by:

ArrayContainer<Track> MyTrackArrayContainer;

C++ takes the parameter list, and substitutes Track for T throughout the
definition of the class ArrayContainer, then compiles the code so
generated, effectively doing the same we could do by hand, but with a lot less
effort. This produces code that is type safe, but does have different
drawbacks:

o Templates make code harder to read.

232

Draft, December 2000 - version 0.6.3 Collection Classes

At the time of writing this documentation, some compilers can be very
slow when dealing with templates.

It does not solve the problem when a container has to hold a
heterogeneous set of objects.

The system can end up generating a great deal of code; each
container/object combination has its own code, a phenomenon that is
sometimes referred to as code bloat.

The Standard Template Library (STL) is part on ANSI C++, and includes a
set of template containers.

Collection Classes

Draft, December 2000 - version 0.6.3 233

13 The Tutorials and Tests

This chapter is a guide to the examples that come with the installation of
ROOQT. They are located in two directories: SROOTSYS/tutorials and
SROOTSYS/test.

$ROOTSYS/tutorials

The tutorials directory contains many example scripts. For the examples to
work you must have write permission and you will need to execute
hsimple. C first. If you do not have write permission in the

S De... HE | $ROOTSYS/tutorials directory, copy the entire directory to your area.
Help on Demos | The script hsimple. C displays a histogram as it is being filled, and creates a
ROOT file used by the other examples. To execute it type:
browsar |
framessark | .
> cd $ROOTSYS/tutorials
first | > root
) R I b b b b b b b b b d b I b b b b b b I b ab b d b b b b b 2 b b b b I b d b a4
hgimple | N N
hsum | * WELCOME to ROOT *
* *
formulal | * Version 2.25/02 21 August 2000 *
* *
sUrfaces |
* You are welcome to visit our Web site *
fillrandom | * http://root.cern.ch *
* *
ﬂt1 I R S I I e b b b b b S S I b b b b b b S b b b b b b b b i 4 b b b b b b b i b
mutiit |
hid | CINT/ROOT C/C++ Interpreter version 5.14.47, Aug 12 2000
e Type ? for help. Commands must be C++ statements.
graph | Enclose multiple statements between { }.
gerrars | Welcome to the ROOT tutorials
tornado |
shapes | Type ".x demos.C" to get a toolbar from which to execute
the demos
feometry |
fad ay jeny | Type ".x demoshelp.C" to see the help window
file | root [] .x hsimple.C
fildir | hsimple: Real Time =5.42 seconds Cpu Time = 3.92 seconds
tree I Now execute demos . C, which brings up the button bar shown on the left.
ntupleT I You can click on any button to execute an other example. To see the source,
rootmmarks |

The Tutorials and Tests

Draft, December 2000 - version 0.6.3 235

open the corresponding source file (for example f£it1l.c). Once you are
done, and want to quit the ROOT session, you can do so by typing .q.

root []

'1_:oot [1]

.X demos.C

-q

$ROOTSYS/test

The test directory contains a set of examples that represent all areas of the
framework. When a new release is cut, the examples in this directory are
compiled and run to test the new release's backward compatibility.

We see these source files:

hsimple.cxx_ - Simple test program that creates and saves some
histograms

MainEvent.cxx - Simple test program that creates a ROOT Tree
object and fills it with some simple structures but also with complete
histograms. This program uses the files Event.cxx, EventCint.cxx
and Event . h. An example of a procedure to link this program is in
bind Event. Note that the Makefile invokes the d utility to generate
the CINT interface EventCint.cxx.

Event.cxx - Implementation for classes Event and Track
minexam.cxx - Simple test program to test data fitting.
tcollex.cxx - Example usage of the ROOT collection classes.
tcollbm.cxx - Benchmarks of ROOT collection classes
tstring.cxx - Example usage of the ROOT string class.
vmatrix.cxx - Verification program for the TMatrix class.
vvector.cxx - Verification program for the Tvector class.
vlazy.cxx - Verification program for lazy matrices. .

hworld.cxx - Small program showing basic graphics. .
guitest.cxx - Example usage of the ROOT GUI classes.
Hello.cxx - Dancing text example

Aclock.cxx - Analog clock (ala X11 xclock)

Tetris.cxx - The famous Tetris game (using ROOT basic graphics) .
stress.cxx_ - Important ROOT stress testing program.

The SROOTSYS/test directory is a gold mine of root-wisdom nuggets, and
we encourage you to explore and exploit it. These instructions will compile
all programs in SROOTSYS/test:

1.

If you do not have write permission in the SROOTSYS/test directory,
copy the entire SROOTSYS/test directory to your area.

236

Draft, December 2000 - version 0.6.3 The Tutorials and Tests

2. The Makefile is a useful example of how ROOT applications are linked
and built. Edit the Makefile to specify your architecture by changing the
ARCH variable, for example, on an SGI machine type:

ARCH = sgikcc

3. Now compile all programs:

% gmake

This will build several applications and shared libraries. We are especially
interested in Event, stress, and guitest.

Event — An Example of a ROOT Application .

Event is created by compiling MainEvent.cxx, and Event.cxx. It
creates a ROOT file with a tree and two histograms.

When running Event we have four optional arguments with defaults:

Argument Default
1 Number of Events (1 ... n) 400
2 Compression level: 1
0: no compression at all.
1: event is compressed.
2: same as 1. In addition, the branches with
floats in the TClonesArray are also
compressed.
3 Split or not Split 1 (Split)
0: only one single branch is created and the
complete event is serialized in one single
buffer
1: a branch per variable is created.
4 Fill 1 (Write, no
0: read the file fill)

1: write the file, but don't fill the histograms
2: don't write, don't fill the histograms

10: fill the histograms, don't write the file
11: fill the histograms, write the file

20: read the file sequentially

25: read the file at random

If we execute Event with the default arguments, we build a ROOT file with
400 events, with a tree "T" and one branch for each data member in the
Event object, and we fill the histograms.

The code snipped below executes Event with the default arguments and
starts a ROOT session. It opens the file Event . root created by the Event
and starts a browser with which we can explore the contents (see the figure

below).
%Event
%$root
root [] TFile f ("Event.root")
root [] TBrowser browser

The Tutorials and Tests Draft, December 2000 - version 0.6.3 237

E ROOT Object Browser [[=] B3

File Wiew Options Help

S event vl Egli, 5

g ELEE chOTS of "E“Eg::‘::’;:z": —1— Split Event - one branch for

okl ariabes D fEvthiar fevthim [fEviticr frn each data memlber of "Event”

[;ll:anvases me DfH

1 geametries [hatrizcpagia) [Measuresfio)

g ;”'ID'S [rnseq [rnatrack

- vies THwertex fTermperature .

oo e UK Split Track - one ranch for
Metwork Connections . W "

Moy Mppct Fes IO each data member of “Track

D thomeighifspanacekitoot2Siroc

L 3acvs @z ROOT Diiect Browser
- {0t fes Eile View Opbsgs Help
[LAROOT Files .
EF {Event root I'S fTracks g | _El]
[&1l Folders A Contdfits of " (Trevent/Tracks"
(O ciasses [Traks. fBits [racks.fex
() Glokal Varisbles D fTracks . fBy D fTracks.fCharge
= [:—l Canvase.s [fvacks. fhass2 [fracks fitean Charge
[1s Dh|en\13. | [_——l Geametties [fvacks. fhpaint [fracks. fPx
__'lCoIora D fTracks.fFy Dﬂ'racks.sz
L_\J Styleé D fTracks fRandom D TTracks fUnigue D
B :;::r:smmecﬁms [fvacks. Puilic [fracks fuertex(]
= U [fvacks. Fifiest [fracks Filst
emnary Mapped Files
) T p——— L R] Tracks.fvast
ROOT file L Eacvs [fvacks.f2first [iracks.f2last
- ti_files
(JROOT Files
= {:I Event.root
BT
E— {:Ievent
Di— E
[20 Obiects. [7

We see that the size of the file we created is 17MB. When we run Event
without splitting or compressing the size of the file is 23MB.

Bz ROOT Object Browser =] B3 I

Eile Miew Options Help

IrﬂT LI B E-%

| &1l Falders | Contents of "/F

([Classes A [Yevent
|1 Glokal Variables

[carvases

([Geometries

[CAcolors

[styles

(L Functions

(LA Metwork Connections

[Z Memory Mapped Files

(L homeighifspanacekiroot25,

(AROOT Files
= {_JEvent raot
-3 -
4 I I 3
[1 Obiect. | An example of 3 ROOT tree 4

238 Draft, December 2000 - version 0.6.3 The Tutorials and Tests

%ls -1 Event.root

-rw-r—--r—-- .. 17549528 Jul 12 15:37 Event.root
%$Event 400 0 0 1

%ls -1 Event.root

-rw—-r—r—-- .. 23209055 Jul 12 15:39 Event.root
%$root

root [] TFile f ("Event.root")

root [] TBrowser T

We also notice only one branch; the individual data members of the Event
object are no longer visible in the browser. They are contained in the event
object on the event branch, because we specified no splitting.

Now we can run it once more and just read the file. This variation reads 400
events and prints the time it took.

%Event 400 0 0 20

event:0, rtime=0.500000 s
event:100, rtime=0.960000 s
event:200, rtime=0.900000 s
event:300, rtime=0.910000 s

400 events and 21018404 bytes processed.
RealTime=4.020000 seconds, CpuTime=3.040000 seconds
You read 5.228459 Mbytes/Realtime seconds

You read 6.913949 Mbytes/Cputime seconds

Let's see how the reading time compares with the compressed file:

$Event 400 1 1 1

%1ls -1 Event.root

-rw-r—--r—-- 17549528 Jul 12 15:37 Event.root
%Event 400 0 0 20

event:0, rtime=0.510000 s

event:100, rtime=2.300000 s

event:200, rtime=2.390000 s

event:300, rtime=2.390000 s

400 events and 21018404 bytes processed.
RealTime=12.500000 seconds, CpuTime=10.760000 seconds
compression level=1, split=1l, argd=1

You write 1.681472 Mbytes/Realtime seconds

You write 1.953383 Mbytes/Cputime seconds

You can see that the compressed file reads much slower (4.02 seconds vs.
12.5 seconds).

stress - Test and Benchmark

The executable stress is created by compiling stress. cxx. It completes
sixteen tests covering the following capabilities of the ROOT framework.

Functions, Random Numbers, Histogram Fits

Size & compression factor of a ROOT file

Purge, Reuse of gaps in TFile

2D Histograms, Functions, 2D Fits

Graphics & PostScript

Subdirectories in a ROOT file

TNtuple, Selections, TCut, TCutG, TEventList

Nookwh=

The Tutorials and Tests Draft, December 2000 - version 0.6.3 239

8. Split and Compression modes for Trees

9. Analyze Event. root file of stress 8

10. Create 10 files starting from Event.root

11. Test chains of Trees using the 10 files

12. Compare histograms of test 9 and 11

13. Merging files of a chain

14. Check correct rebuilt of Event . root in test 13
15. Divert Tree branches to separate files

16. CINT test (3 nested loops) with LHCD trigger

The program stress takes one argument, the number of events to
process. The default is 1000 events. Be aware that executing stress with
1000 events_will create several files consuming about 100 MB of disk space;
running stress with 30 events will consume about 20 MB. The disk space is
released once stress is done.

There are two ways to run stress:

From the system prompt or from the ROOT prompt using the interpreter. Start
ROOT with the batch mode option (-b) to suppress the graphic output.

> cd $ROOTSYS/test
> stress
> stress 30

// default 1000 events
// test with 30 events

> root -b

[] .x stress.cxx // default 1000 events
[] .x stress.cxx (30) // test with 30 events

The output of stress includes a pass/fail conclusion for each test, the total
number of bytes read and written, and the elapsed real and CPU time. It also
calculates a performance index for your machine relative to a reference
machine a DELL Inspiron 7500 (Pentium Il 600 MHz) with 256 MB of
memory and 18 GBytes IDE disk in ROOTMARKS. Higher ROOTMARKS
means better performance. The reference machine has 200 ROOTMARKS,
so the sample run below with 53.7 ROOTMARKS is about four times slower
than the reference machine.

Here is a sample run:

240

Draft, December 2000 - version 0.6.3 The Tutorials and Tests

root []

Test
Test
Test
Test
Test
Test
Test
Test
Test
Test 10
Test 11
Test 12
Test 13
Test 14
Test 15
Test 16

O Joy Ul b WN

O

stress
stress
stress

$ root -b
.X stress.cxx (30)

Functions, Random Numbers, Histogram Fits............. OK
Check size & compression factor of a Root file........ OK
Purge, Reuse of gaps in TFile.... ..ot nnnnns OK
Test of 2-d histograms, functions, 2-d fits........... OK
Test graphics & POSELSCriph . .viiiiiiii ittt OK
Test subdirectories in a Root file.................... OK
TNtuple, selections, TCut, TCutG, TEventList.......... OK
Trees split and compression modes.........coveienvnenn. OK
Analyze Event.root file of stress 8..........ciiin.n OK
Create 10 files starting from Event.root.............. OK
Test chains of Trees using the 10 files............... OK
Compare histograms of test 9 and 11l.............c00... OK
Test merging files of a chain.......... OK
Check correct rebuilt of Event.root in test 13........ OK
Divert Tree branches to separate files................ OK
CINT test (3 nested loops) with LHCb trigger.......... OK

ER R b b b b b b Sk I b S b I b b b b I b I E b I E E h b b b 2 h b I I b E b b b I I I I I I I I i

* IRIX64 fnpatl 6.5 01221553 IP27

RR Rk ik kb bk b ik b b kb b b bk b b kb b b b b b b b b b b b b kb b ek ek kb b b b b b b b b b b b b b b b b b b b

Total I/0 = 75.3 Mbytes, I = 59.2, 0 = 16.1
Compr I/O = 75.7 Mbytes, I = 60.0, O = 15.7
Real Time = 307.61 seconds Cpu Time = 292.82 seconds

RR Rk kb b kb b b b kb b b bk kb bk h b b b b b b b b b b b b b b b e b e kb b b b b b b b b b b b b b b b b b ik b i

* ROOTMARKS = 53.7 * Root2.25/00 20000710/1022

The Tutorials and Tests Draft, December 2000 - version 0.6.3

241

guitest — A Graphical User Interface

The guitest example, created by compiling guitest.cxx, tests and
illustrates the use of the native GUI widgets such as cascading menus, dialog
boxes, sliders and tab panels. It is a very useful example to study when
designing a GUI. Below are some examples of the output of guitest, to run
it type guitest at the system prompt in the SROOTSYS/test directory.

We have included an entire chapter on this subject where we explore
guitest in detail and use it to explain how to build our own ROOT
application with a GUI (see Chapter Writing a Graphical User Interface).

\\‘ WinTest (&l 3
File Help
Test different features... [[0 DOn DO 4]

D Sl Test = Dialog...
- 2 r . Message Box... . - .
| ‘ Sliders...
T e Cascaded menus ID = 51 .
:f :;m ID =52
. ID =53

ID 41
»¢ Dialog | X} ID = 42
Tab1|Tab2 Tab3 |Tab4|Tan 5| D 45
Start Eilling Hists| Stop Filling Hists| e
ST 1 e
¢ Message Box Test [x] w
~Buttons —lcons m—————
here I_ ™ ves & Stop -
L ™ No C Question Close
[——— |V OK € Exclamation Q |
™ Apply € Asterisk
™ Retry
I Ignore
™ cancel
™ Close
™ Dismiss
Title: [MsgBox
Message: IThis is a test message hox.

The Tutorials and Tests

242 Draft, December 2000 - version 0.6.3

14 Example Analysis

This chapter is an example of a typical physics analysis. Large data files are
chained together and analyzed using the TSelector class.

Explanation

This script uses four large data sets from the H1 collaboration at DESY
Hamburg. One can access these data sets (277 Mbytes) from the ROOT web
site at: ftp://root.cern.ch/root/h1analysis/

The physics plots generated by this example cannot be produced using
smaller data sets.

There are several ways to analyze data stored in a ROOT Tree

e Using TTree: :Draw:
This is very convenient and efficient for small tasks. A TTree: : Draw
call produces one histogram at the time. The histogram is automatically
generated. The selection expression may be specified in the command
line.

e Usingthe TTreevViewer:
This is a graphical interface to TTree: : Draw with the same
functionality.

e Using the code generated by TTree: :MakeClass:
In this case, the user creates an instance of the analysis class. He has
the control over the event loop and he can generate an unlimited
number of histograms.

e Using the code generated by TTree: :MakeSelector:
Like for the code generated by TTree: :MakeClass, the user can do
complex analysis. However, he cannot control the event loop. The event
loop is controlled by TTree: : Process called by the user. This solution
is illustrated by the code below. The advantage of this method is that it
can be run in a parallel environment using PROOF (the Parallel Root
Facility).

A chain of four files (originally converted from PAW ntuples) is used to
illustrate the various ways to loop on ROOT data sets. Each contains a
ROOT Tree named "h42". The class definition in hlanalysis.h has been
generated automatically by the ROOT utility TTree: :MakeSelector using
one of the files with the following statement:

Example Analysis Draft, December 2000 - version 0.6.3 243

h42->MakeSelector ("hlanalysis") ;

This produces two files: hlanalysis.h and hlanalysis.C. A skeleton of
hlanalysis.C file is made for you to customize. The hlanalysis class is
derived from the ROOT class TSelector. The following members functions
of hlanalyhsis (i.e. TSelector) are called by the TTree: : Process
method.

e Begin: This function is called every time a loop over the tree starts. This
is a convenient place to create your histograms.

e Notify (): This function is called at the first entry of a new tree in a
chain.

e ProcessCut: This function is called at the beginning of each entry to
return a flag true if the entry must be analyzed.

e ProcessFill: This function is called in the entry loop for all entries
accepted by Select.

e Terminate: This function is called at the end of a loop on a TTree.
This is a convenient place to draw and fit your histograms.

To use this program, try the following session.

First, turn the timer on to show the real and CPU time per command.

root[] gROOT->Time () ;

Step A: create a TChain with the four H1 data files. The chain can be
created by executed this short script h1chain.C below. $H1 is a system
symbol pointing to the H1 data directory.

TChain chain ("h42");

chain.Add ("S$H1/dstarmb.root");
//21330730 bytes, 21920 events

chain.Add ("$H1/dstarpla.root");
//71464503 bytes, 73243 events

chain.Add ("$H1/dstarplb.root") ;
//83827959 bytes, 85597 events

chain.Add ("$H1/dstarp2.root");
//100675234 bytes, 103053 events

Run the above script from the command line:

root[] .x hlchain.C

Step B: Now we have a d containing the four data files. Since a TChain is a
descendent of TTree we can call TChain: : Process to loop on all events in
the chain. The parameter to the TChain: : Process method is the name of
the file containing the created TSelector class (hlanalysis.C).

root[] chain.Process("hlanalysis.C")

Step C: Same as step A, but in addition fill the event list with selected entries.
The event list is saved to a file "elist.root" by the
TSelector: :Terminate method. To see the list of selected events, you

244 Draft, December 2000 - version 0.6.3 Example Analysis

candoelist->Print ("all"™). The selection function has selected 7525
events out of the 283813 events in the chain of files. (2.65 per cent)

root[] chain.Process("hlanalysis.C","fillList")

Step D: Process only entries in the event list. The event list is read from the
filein elist.root generated by step C.

root[] chain.Process("hlanalysis.C","useList")

Step E: The above steps have been executed with the interpreter. You can
repeat the steps 2, 3, and 4 using ACLIC by replacing "h1analysis.C" by
"hlanalysis.C+"or"hlanalysis.C++".

Step F: If you want to see the differences between the interpreter speed and
ACLIC speed start a new session, create the chain as in step 1, then execute

root[] chain.Process("hlanalysis.C+","useList")

The commands executed with the four different methods B, C, D and E
produce two canvases shown below:

dm_d Mean = 0.1551
| Fitted value of par[1]=p1 | Mean = 0.4266 | |9
RMS = 0.997
220F
200 | J‘*
180 ‘
160 |
1401 *
120F g
100 Jr T
80
60
P 7S 5 N
00 e i L0
o}‘h{ﬁ*uuuuuuuu.f“rmlmu
3 =2 1 0 1 2 3 5 6
2fps]

Example Analysis Draft, December 2000 - version 0.6.3 245

Script

This is the hlanalsysis.C file that was generated by
TTree: :MakeSelector and then modified to perform the analysis.

#include "hlanalysis.h"
#include "TH2.h"
#include "TF1.h"
#include "TStyle.h"
#include "TCanvas.h"
#include "TLine.h"
#include "TEventList.h"

const Double t dxbin = (0.17-0.13)/40; // Bin-width
const Double t sigma = 0.0012;

TEventList *elist = 0;

Bool t uselist, fillList;

TH1F *hdmd;

TH2F *h2;

//

Double_t fdm5 (Double_t *xx, Double t *par)
{
Double t x = xx[0];
if (x <= 0.13957) return 0;
Double t xp3 = (x-par[3])*(x-par[3]);
Double t res =
dxbin* (par[0] *TMath: :Power (x-0.13957, par[l])
+ par[2] / 2.5066 / par[4]*TMath: :Exp (
xp3/2/par[4]/par(4]));
return res;

}
/7

Double_t fdm2 (Double t *xx, Double_t *par)
{
Double t x = xx[0];
if (x <= 0.13957) return 0;
Double t xp3 = (x-0.1454)* (x-0.1454);
Double t res = dxbin* (par[0]*TMath::Power (x-0.13957, 0.25)
+ par[l] / 2.5066/sigma*TMath: :Exp (
xp3/2/sigma/sigma)) ;
return res;

}
//

void hlanalysis::Begin (TTree *tree)

{

// function called before starting the event loop
// -it performs some cleanup

// -it creates histograms

// -it sets some initialization for the event list

//initialize the Tree branch addresses
Init (tree);

//print the option specified in the Process function.
TString option = GetOption();
printf ("Starting hlanalysis with process option:

246

Draft, December 2000 - version 0.6.3 Example Analysis

http://root.cern.ch/root/html/ListOfTypes.html#Double_t

Q

%sn",option.Data());

//Some cleanup in case this function had
//already been executed.

//Delete any previously generated histograms or
//functions

gDirectory->Delete ("hdmd") ;

gDirectory->Delete ("h2*");

delete gROOT->GetFunction ("£5");

delete gROOT->GetFunction ("f2");

//create histograms
hdmd = new THIF ("hdmd","dm d",40,0.13,0.17);
h2 = new TH2F
("h2","ptd0 vs dm d",30,0.135,0.165,30,-3,6);

//process cases with event list

fillList = kFALSE;

uselList = kFALSE;

fChain->SetEventList (0) ;

delete gDirectory->GetList () ->FindObject ("elist");

// case when one creates/fills the event list
if (option.Contains("fillList")) {
fillList = kTRUE;
elist = new TEventList
("elist","selection from Cut",5000);

// case when one uses the event list generated
// in a previous call

if (option.Contains ("useList")) {
useList = kTRUE;
TFile f("elist.root");
elist = (TEventList*)f.Get("elist");

if (elist) elist->SetDirectory(0Q);
//otherwise the file destructor will delete elist
fChain->SetEventList (elist) ;

}

//
Bool_t hlanalysis::ProcessCut(Int_t entry)

{
// Selection function to select D* and DO.

//in case one event list is given in input,
//the selection has already been done.
if (uselist) return kTRUE;

// Read only the necessary branches to select entries.
// return as soon as a bad entry is detected

b md0_ d->GetEntry(entry);

if (TMath::Abs(md0 _d-1.8646) >= 0.04) return kFALSE;
b ptds _d->GetEntry(entry);

if (ptds_d <= 2.5) return kFALSE;

b etads d->GetEntry(entry);

if (TMath::Abs(etads_d) >= 1.5) return kFALSE;

b ik->GetEntry(entry); ik--;

//original ik used f77 convention starting at 1

b ipi->GetEntry(entry); ipi--;

Example Analysis Draft, December 2000 - version 0.6.3 247

b ntracks->GetEntry(entry);

b nhitrp->GetEntry(entry);

if (nhitrp[ik]*nhitrp[ipi] <= 1) return kFALSE;
b rend->GetEntry (entry);

b rstart->GetEntry(entry);

if (rend[ik] -rstart[ik] <= 22) return kFALSE;
if (rend[ipi]l-rstart[ipi] <= 22) return kFALSE;
b nlhk->GetEntry(entry);

if (nlhk[ik] <= 0.1) return kFALSE;

b nlhpi->GetEntry (entry);

if (nlhpif[ipi] <= 0.1) return kFALSE;

b ipis->GetEntry(entry);

ipis--;

if (nlhpif[ipis] <= 0.1) return kFALSE;

b njets->GetEntry (entry);

if (njets < 1) return kFALSE;

// if option fillList, fill the event list
if (filllist) elist->Enter

(fChain->GetChainEntryNumber (entry)) ;
return kTRUE;

//

void hlanalysis::ProcessFill (Int_t entry)

{

// Function called for selected entries only
// read branches not processed in ProcessCut

b dm d->GetEntry(entry);
//read branch holding dm d
b rpd0_ t->GetEntry (entry) ;
//read branch holding rpd0_t
b ptd0_d->GetEntry(entry);
//read branch holding ptd0_d

//fill some histograms

hdmd->Fill (dm_d);

h2->Fill (dm d,rpd0 t/0.029979*1.8646/ptd0 d);
}

//

void hlanalysis::Terminate ()

{
// Function called at the end of the event loop

//create the canvas for the hlanalysis fit

gStyle->SetOptFit () ;
TCanvas *cl = new TCanvas

("cl","hlanalysis analysis™,10,10,800,600);
cl->SetBottomMargin (0.15) ;
hdmd->GetXaxis () ->SetTitle

("m_ {K#pi#pi} - m {K#pi}[GeV/c"{2}]1");
hdmd->GetXaxis () ->SetTitleOffset (1.4);

//fit histogram hdmd with function f5 using

248 Draft, December 2000 - version 0.6.3 Example Analysis

//the loglikelihood option

TF1 *f5 = new TF1("£5",fdm5,0.139,0.17,5);
f5->SetParameters (1000000, .25, 2000, .1454, .001);
hdmd->Fit ("£5","1r");

//create the canvas for tau d0

gStyle->SetOptFit (0) ;

gStyle->SetOptStat (1100) ;

TCanvas *c2 = new TCanvas("c2","taubO0",100,100,800,600);
c2->SetGrid () ;

c2->SetBottomMargin (0.15) ;

// Project slices of 2-d histogram h2 along X ,

// then fit each slice with function f2 and make a
// histogram for each fit parameter.

// Note that the generated histograms are added

// to the list of objects in the current directory.

TF1l *f2 = new TF1("f2",fdm2,0.139,0.17,2);
f2->SetParameters (10000, 10);
h2->FitSlicesX(f2,0,0,1,"gln");

TH1D *h2 1 = (TH1D*)gDirectory->Get("h2 1");
h2 1->GetXaxis ()->SetTitle ("#taulps]");

h2 1->SetMarkerStyle(21);

h2 1->Draw();
c2->Update () ;
TLine *line =
line->Draw() ;

new TLine (0,0,0,c2->GetUymax()) ;

// save the event list to a Root file if one was
// produced
if (£fillList) {
TFile efile("elist.root","recreate");
elist->Write () ;

Example Analysis Draft, December 2000 - version 0.6.3 249

15 Networking

In this chapter, you will learn how to send data over the network using the ROOT socket
classes.

Setting up a Connection

On the server side, we create a TServerSocket to wait for a connection
request over the network. If the request is accepted, it returns a full-duplex
socket. Once the connection is accepted, we can communicate to the client
that we are ready to go by sending the string "go", and we can close the
server socket.

{ // server
TServerSocket *ss = new TServerSocket (9090, kTRUE);
TSocket *socket = ss->Accept();
socket->Send ("go") ;
ss—=>Close() ;

On the client side, we create a socket and ask the socket to receive the string
"go" as a signal for connecting successfully.

{ // client
TSocket *socket = new TSocket ("localhost"™, 9090);
Char str[32];
Socket->Recv (str,32);

Networking Draft, December 2000 - version 0.6.3 251

http://svedaq.tsl.uu.se/~anton/rquant_technical_analysis_slide.htm

Sending Objects over the Network

We have just established a connection and you just saw how to send and
receive a string with the example "go". Now let's send a histogram.

To send an object (in our case on the client side) it has to derive from
TObject because it uses the Streamers to fill a buffer that is then sent over
the connection. On the receiving side, the Streamers are used to read the
object from the message sent via the socket. For network communication,
we have a specialized TBuf fer, a descendant of TBuffer called
TMessage. In the following example, we create a TMessage with the
intention to store an object, hence the constant kMESS OBJECT in the
constructor. We create and fill the histogram and write it into the message.
Then we call TSocket: : Send to send the message with the histogram.

// create an object to be sent

TH1F *hpx = new TH1F ("hpx","px distribution",100,-4,4);
hpx->FillRandom("gaus",1000) ;

// create a TMessage to send the object

TMessage message (KMESS OBJECT) ;

// write the histogram into the message buffer
message.WriteObject (hpx) ;

// send the message

socket->Send (message) ;

On the receiving end (in our case the server side), we write a while loop to
wait and receive a message with a histogram. Once we have a message, we
call TMessage: :ReadObject, which returns a pointer to TObject. We
have to cast it to a TH1 pointer, and now we have a histogram. At the end of
the loop, the message is deleted, and another one is created at the

beginning.

while (1) {
TMessage *message;
socket->Recv (message) ;
TH1 *h = (TH1*)mess->ReadObject (mess->GetClass());
delete mess;

252 Draft, December 2000 - version 0.6.3 Networking

Closing the Connection

Once we are done sending objects, we close the connection by closing the
sockets at both ends.

Socket->Close () ;

This diagram summarizes the steps we just covered:

Server

{
TServerSocket *ss =
new TServerSocket (9090,

TSocket *socket = ss->Accept();

kTRUE) ;

Client

TSocket *socket =

connect

new TSocket ("localhost™, 9090);

socket->Send ("go") ;

OK

ss->Close () ;

while (1) {
TMessage *message;

Char str([32];
Socket->Recv (str,32);

TH1F *hpx = new THIF ("hpx","px",100,-4,4);
hpx->FillRandom ("gaus",1000) ;

// create a TMessage to send an object
TMessage message (kKMESS OBJECT) ;

// write the histogram into the message
message.WriteObject (hpx) ;

// send the message

socket->Recv (message) ;

send

‘ socket->Send (message)

TH1 *h =
(TH1*)mess->ReadObject
(mess->GetClass ());

delete mess;

}

socket->Close () ;

}

socket->Close () ;

}

Networking

Draft, December 2000 - version 0.6.3

253

A Server with Multiple Sockets

Chances are that your server has to be able to receive data from multiple
clients. The class we need for this is TMonitor. It lets you add sockets and
the TMonitor: : Select method returns the socket with data waiting.
Sockets can be added, removed, or enabled and disabled.

Here is an example of a server that has a TMonitor to manage multiple
sockets:

TServerSocket *ss = new TServerSocket (9090, kTRUE) ;

// Accept a connection and return a full-duplex
// communication socket.

TSocket *s0 = ss->Accept();

TSocket *sl = ss->Accept();

// tell the clients to start
sO0->Send ("go 0");
sl->Send("go 1");

// Close the server socket (unless we will use it
// later to wait for another connection).
ss->Close();

TMonitor *mon = new TMonitor;

mon->Add (s0) ;
mon->Add (sl) ;

while (1) {
TMessage *mess;
TSocket *s;
s = mon->Select ()
s—>Recv (mess) ;

The full code for the example above is in
SROOTSYS/tutorials/hserver.cxx and
SROOTSYS/tutorials/hclient.cxx.

254 Draft, December 2000 - version 0.6.3 Networking

http://root.cern.ch/root/html/TServerSocket.html

16 Writing a Graphical
User Interface

The ROOT GUI classes support an extensive and rich set of widgets. The
widgets classes depend only on the X11 and Xpm libraries, eliminating the
need for any other GUI engine such as Motif or QT, and they have the
Windows look and feel. They are based on Hector Peraza's Xclass'95 widget

library.

Although powerful and quite feature rich, we are missing extensive
documentation. This will come eventually but for the time being you will have
to "program by example". We start with a short tutorial followed by few non-
trivial examples that will show how to use the different widget classes.

The New ROOT GUI Classes

Features of the new GUI classes in a nutshell:

e Originally based on Xclass'95 widget library (under a Lesser GNU Public

License)
@)
O
O
O

classes)

A rich and complete set of widgets

Uses only X11 and Xpm (no Motif, Xaw, Xt, etc.)
Small (12000 lines of C++)

Win'95 look and feel

All X11 calls abstracted using in the "abstract” ROOT TGXW class
Rewritten to use internally the ROOT container classes

Completely scriptable via the C++ interpreter (fast prototyping)

Full class documentation is generated automatically (as for all ROOT

XClass'95

Here are some highlights of the XClass'95. Hector Peraza is the original
author of the XClass'95 class library.

The Xclass'95 comes with a complete set of widgets. These include:

Simple widgets, as labels and icons
Push buttons, either with text or pix maps
Check buttons

Radio buttons

Menu bars and popup menus

Writing a Graphical User Interface Draft, December 2000 - version 0.6.3 255

Scroll bars

Scrollable canvas

List boxes

Combo boxes

Group frames

Text entry widgets

Tab widgets

General-purpose composite widgets, for building toolbars and status
bars

e Dialog classes and top-level window classes

The widgets are shown in frames:
frame, composite frame, main frame, transient frame, group frame
And arranged by layout managers:

horizontal layout, vertical layout, row layout, list layout, tile layout, matrix
layout, ...

Using a combination of layout hints:

left, center x, right, top, center y, bottom, expand x, expand y and fixed
offsets

Event handling by messaging (as opposed to callbacks): in response to
actions widgets send messages (SendMessage ()) to associated frames
(ProcessMessage ())

ROOT Integration

Replace all calls to X11 by calls to the ROOT abstract graphics base class
TGXW. Currently, implementations of TGxw exist X11 (TGX11) and Win32
(TGWin32). Thanks to this single graphics interface, porting ROOT to a new
platform (BeOS, Rhapsody, etc.) requires only the implementation of TGxXw
(and TSystem).

Abstract Graphics Base Class TGXW

TGX11 TGWin32 TGClient | Unix/Windows
h b =277
\ \ = _-
\ ==\ e
\\ - \\
Unix Windows

256

Draft, December 2000 - version 0.6.3 Writing a Graphical User Interface

Concrete implementations of TGXW are TGx11, for X Windows, TGWin32 for
Win95/NT. The TGXClient implementation provides a network interface
allowing for remote display via the rootdisp servers.

NOTE: the ROOT GUI classes are for the time being only supported on
Unix/X11 systems. Work on a Win32 port is in progress and coming shortly

Further changes:

e Changed internals to use ROOT container classes, notably hash tables
for fast lookup of frame and picture objects

e Added TObject inheritance to the few base classes to get access to the
extended ROOT RTTI (type information and object inspection) and
documentation system

e Conversion to the ROOT naming conventions to provide a
homogeneous and consistent environment for the user

Writing a Graphical User Interface Draft, December 2000 - version 0.6.3 257

A Simple Example

The code that uses the GUI classes is written in bold font.

#include <TROOT.h>

#include <TApplication.h>

#include <TGClient.h>

extern void InitGui () ;

VoidFuncPtr t initfuncs[] = { InitGui, 0 };

TROOT root ("GUI", "GUI test environement", initfuncs):;

int main(int argc, char **argv)

{
TApplication theApp ("App", &argc, argv);
MyMainFrame mainWin (gClient->GetRoot (), 200, 220);
theApp.Run () ;
return 0;

MyMainFrame

#include <TGClient.h>

#include <TGButton.h>

class MyMainFrame : public TGMainFrame ({

private:
TGTextButton *fButtonl, *fButton2;
TGPictureButton *fPicBut;
TGCheckButton *fChkBut;
TGRadioButton *fRButl, *fRBut2;
TGLayoutHints *fLayout;

public:
MyMainFrame (const TGWindow *p, UInt t w, UInt t h);
~MyMainFrame () ;
Bool t ProcessMessage (Long t msg, Long t parml, Long t
parm2) ;

}i

258 Draft, December 2000 - version 0.6.3 Writing a Graphical User Interface

Laying out the Frame

{

MyMainFrame: :MyMainFrame (const TGWindow *p, UInt_t w,
UInt_t h): TGMainFrame(p, w, h)

// Create a main frame with a number of different buttons.

fButtonl = new TGTextButton (this, "&Version", 1);
fButtonl->SetCommand ("printf

(\"This is ROOT version %s\\n\",
gROOT->GetVersion());");

fButton2 = new TGTextButton (this, "&Exit", 2);
fButton2->SetCommand (".gq");

fPicBut = new TGPictureButton (
this, gClient->GetPicture ("world.xpm"), 3);

fPicBut->SetCommand ("printf (\"hello world!\\n\");");
fChkBut = new TGCheckButton (this, "Check Button",)
fRButl = new TGRadioButton(this, "Radio Button 1", 5);
fRBut2 = new TGRadioButton(this, "Radio Button 2", 6);
fLayout = new TGLayoutHints

(kLHintsCenterX | kLHintsCenterY):;

AddFrame (fButtonl, fLayout);
AddFrame
AddFrame
AddFrame
AddFrame
AddFrame (fRBut2, fLayout):;
MapSubwindows () ;

Layout () ;

fPicBut, fLayout);
fButton2, fLayout);
fChkBut, fLayout);

(
(
(
(fRButl, fLayout):;

SetWindowName ("Button Example");
SetIconName ("Button Example");

MapWindow () ;

Writing a Graphical User Interface Draft, December 2000 - version 0.6.3

259

Adding Actions

Bool_t MyMainFrame: :ProcessMessage (Long_t msg, Long t
parml, Long_t)

// Process events generated by the buttons in the frame.

switch (GET MSG (msg)) {
case kC COMMAND:
switch (GET_ SUBMSG (msg)) {

case kCM BUTTON:
printf ("text button id %$1d pressed\n", parml);
break;

case kCM CHECKBUTTON:
printf ("check button id %1d pressed\n", parml);
break;

case kCM RADIOBUTTON:
if (parml == 5)

fRBut2->SetState (kButtonUp) ;
if (parml == 6)
fRButl->SetState (kButtonUp) ;

printf ("radio button id %$1d pressed\n", parml);
break;

default:
break;

}
default:
break;
}
return kTRUE;

The Result

Button Example M [=]ES

gersion|

Exitl
[T Check Button

" Radio Button 1

¢ Radio Button 2

The Widgets in Detail

In this section we look at an example of using the widgets. The complete
source code is in SROOTSYS/test/guitest.C. Build the test directory with
the appropriate makefile, and you will be able to run guitest. Here we present
snippets of the code and the graphical output.

260

Draft, December 2000 - version 0.6.3 Writing a Graphical User Interface

First the main program, which reveals that the functionality is in
TestMainFrame.

TROOT root ("GUI", "GUI test environement");

int main(int argc, char **argv)
{
TApplication theApp ("App", &argc, argv);
if (gROOT->IsBatch()) {
fprintf (stderr,
"$s: cannot run in batch mode\n", argv[0]);
return 1;
}
TestMainFrame mainWindow (gClient->GetRoot (), 400, 220);
theApp.Run () ;
return 0;

TestMainFrame has two subframes (TGCompositFrame), a canvas, a text
entry field, a button, a menu bar, several popup menus, and layout hints. It
has a public constructor, destructor and a ProcessMessage method to carry
out the actions.

class TestMainFrame : public TGMainFrame {

private:
TGCompositeFrame *fStatusFrame;
TGCanvas *fCanvasWindow;
TGCompositeFrame *fContainer;
TGTextEntry *fTestText;
TGButton *fTestButton;
TGMenuBar *fMenuBar;
TGPopupMenu *fMenuFile, *fMenuTest, *fMenuHelp;
TGPopupMenu *fCascadeMenu,
*fCascadelMenu, *fCascade2Menu;
TGLayoutHints *fMenuBarLayout, *fMenuBarItemLayout,
*fMenuBarHelpLayout;
public:

TestMainFrame (const TGWindow *p, UInt t w, UInt t h);
virtual ~TestMainFrame () ;

virtual void CloseWindow () ;

virtual Bool t ProcessMessage(Long t msg, Long t parml,
Long_t);
}i

Example: Widgets and the Interpreter

The script SROOTSYS/tutorials/dialogs.C shows how the widgets can
be used from the interpreter.

Writing a Graphical User Interface Draft, December 2000 - version 0.6.3 261

RQuant Example

This is an example of extensive use of the ROOT GUI classes. | include only
a picture here, for the curious the full documentation or RQuant can be found
at: http://svedaq.tsl.uu.se/~anton/rquant.htm

Suant Data Analysis Studio

File Edit Miew Project Tools Help
slglale] o|~|x|o|s| alaw 28] S =lo| 7| 2]
Project I Macros | Canvas I Editor | Browser |
-
rﬁA new project = [TBM price series, 5D |
EIE[[Data warehouse —
----- SPEO0 E
..... T 120
..... 1EM [
_____ sapL e e
..... MOk C : : : : :
CRC Ewht— S R b S .-
=2 8 : 5 : :
" BSvaco @2,] S . . e o :
- sma (32 F : 4 po / : : :
B sha 128 e) e [: : : 5 :
B e ... _
BNesu 25 i96 DecH6 Jwl97 DecS7 JWi98 Dc98 S99 Jandl
- EEL (32,50 KT E
- JEPCU (750 .45
1 &4
-IFCL (7,50] 58
{ﬂ ShMACrossi §§§
-T2 SPS00 ki
[]ng e
TR INTC [N
T 0 YT 285
4 | B

Message I Cutput | Command line

ﬁ 11:10:13 Welcomne to R-Guant Data Analysis Studio

ﬁ’ 11:10:13 R-Guant project, A new project, loaded and initislized

ﬂ 11:11:08 Simple moving variance (MY) indicator with order 5 added for asset [BM

ﬂ 11:11:23 Bollinger band upper (BEL) indicator with order 32 and spread 5.0 added for asset 1BM
BN 111156 Bolincer band uager (BELY Inwor +yith Drd_er 32 and storeacd 5.0 added for asset [BM

References

http://home.cern.ch/~chytrace/xclasstut.htmi
A basic introduction and mini tutorial on the Xclass by Hector Peraza's

ac.be/htmli-test/xclass.html
The original Xclass'95 widget library documentation and source by Hector
Peraza's.

http://svedaq.tsl.uu.se/~anton/rguant.htm
An Example of an elaborate ROOT GUI application.

262

Draft, December 2000 - version 0.6.3 Writing a Graphical User Interface

http://svedaq.tsl.uu.se/~anton/rquant.htm
http://svedaq.tsl.uu.se/~anton/rquant_technical_analysis_slide.htm
http://svedaq.tsl.uu.se/~anton/rquant_technical_analysis_slide.htm
ftp://mitac11.uia.ac.be/html-test/xclass.html
http://svedaq.tsl.uu.se/~anton/rquant.htm

17 Automatic HTML
Documentation

The class descriptions on the ROOT website have been generated
automatically by ROOT itself with the THtm1 class. With it, you can
automatically generate (and update) a reference guide for your ROOT
classes. Please read this class description and the paragraph on Coding
Conventions.

The following illustrates how to generate an html class description using the
MakeClass method. In this example class name is TBRIK.

root[] gHtml->MakeClass ("TBRIK")

How to generate html code for all classes, including an index.

root[] gHtml->MakeAll() ;

This example also shows how to convert a script to html, including the
generation of a "gif" file produced by the script. First execute the script.

root[] .x htmlex.C

Invoke the TSystem class to execute a shell script. Here we call the "xpick"
program to capture the graphics window into a gi £ file.

root[] gSystem->Exec("xpick html/gif/shapes.gif")

Convert this script into html.

root[] gHtml->Convert("htmlex.C","Auto HTML document
generation")

For more details see the documentation of the class THtm1.

Automatic HTML Documentation Draft, December 2000 - version 0.6.3 263

18 PROOF: Parallel
Processing

Building on the experience gained from the implementation and operation of
the PIAF system we have developed the parallel ROOT facility, PROOF. The
main problems with PIAF were because its proper parallel operation
depended on a cluster of homogenous equally performing and equally loaded
machines. Due to PIAF's simplistic portioning of a job in N equal parts, where
N is the number of processors, the overall performance was governed by the
slowest node. The running of a PIAF cluster was an expensive operation
since it required a cluster dedicated solely to PIAF. The cluster could not be
used for other types of jobs without destroying the PIAF performance.

In the implementation of PROOF, we made the slave servers the active
components that ask the master server for new work whenever they are
ready. In the scheme the parallel processing performance is a function of the
duration of each small job, packet, and the networking bandwidth and
latency. Since the bandwidth and latency of a networked cluster are fixed the
main tunable parameter in this scheme is the packet size. If the packet size is
too small the parallelism will be destroyed by the communication overhead
caused by the many packets sent over the network between the master and
the slave servers. If the packet size is too large, the effect of the difference in
performance of each node is not evened out sufficiently.

Another very important factor is the location of the data. In most cases, we
want to analyze a large number of data files, which are distributed over the
different nodes of the cluster. To group these files together we use a chain. A
chain provides a single logical view of the many physical files. To optimize
performance by preventing huge amounts of data being transferred over the
network via NFS or any other means when analyzing a chain, we make sure
that each slave server is assigned a packet, which is local to the node. Only
when a slave has processed all its local data will it get packets assigned that
cause remote access. A packet is a simple data structure of two numbers:
begin event and number of events. The master server generates a packet
when asked for by a slave server, taking into account t the time it took to
process the previous packet and which files in the chain are local to the lave
server. The master keeps a list of all generated packets per slave, so in case
a slave dies during processing, all its packets can be reprocessed by the left
over slaves.

PROOF: Parallel Processing Draft, December 2000 - version 0.6.3 265

19 Threads

This introduction is adapted from the AIX 4.3 Programmer's Manual.

A thread is an independent flow of control that operates within the same
address space as other independent flows of controls within a process. In
most UNIX systems, thread and process characteristics are grouped into a
single entity called a process. Sometimes, threads are called "lightweight
processes".

Threads and Processes

In traditional single-threaded process systems, a process has a set of
properties. In multi-threaded systems, these properties are divided between
processes and threads.

Process Properties

A process in a multi-threaded system is the changeable entity. It must be
considered as an execution frame. It has all traditional process attributes,
such as:

e Process ID, process group ID, user ID, and group ID
e Environment
o Working directory

A process also provides a common address space and common system

resources:
e File descriptors

e Signal actions

e Shared libraries

e Inter-process communication tools (such as message queues, pipes,

semaphores, or shared memory)

Threads Draft, December 2000 - version 0.6.3 267

Thread Properties

A thread is the schedulable entity. It has only those properties that are
required to ensure its independent flow of control. These include the following

properties:

e Stack

e Scheduling properties (such as policy or priority)
e Set of pending and blocked signals

e Some thread-specific data (TSD)

An example of thread-specific data is the error indicator, errno. In multi-
threaded systems, errno is no longer a global variable, but usually a
subroutine returning a thread-specific errno value. Some other systems may
provide other implementations of errno.

With respect to ROOT, a thread specific data is for example the gpad
pointer, which is treated in a different way, whether it is accessed from any
thread or the main thread.

Threads within a process must not be considered as a group of processes
(even though in Linux each thread receives an own process id, so that it can
be scheduled by the kernel scheduler). All threads share the same address
space. This means that two pointers having the same value in two threads
refer to the same data. Also, if any thread changes one of the shared system
resources, all threads within the process are affected. For example, if a
thread closes a file, the file is closed for all threads.

The Initial Thread

When a process is created, one thread is automatically created. This thread
is called the initial thread or the main thread. The initial thread executes the
main routine in multi-threaded programs.

Note: At the end of this chapter is a glossary of thread specific terms

Implementation of Threads in ROOT

The TThread class has been developed to provide a platform independent
interface to threads for ROOT.

Installation

For the time being, it is still necessary to compile a threaded version of
ROOT to enable some very special treatments of the canvas operations. We
hope that this will become the default later.

To compile ROOT, just do (for example on a debian Linux):

./configure linuxdeb2 --with-thread=/usr/lib/libpthread.so
gmake depend
gmake

268 Draft, December 2000 - version 0.6.3 Threads

This configures and builds ROOT using /usr/l1ib/libpthread.so as the
Pthread library, and defines R__ THREAD. This enables the thread specific
treatment of gPad, and creates SROOTSYS/1ib/1ibThread. so.

Note: The parameter 1 inuxdeb2 has to be replaced with the appropriate
ROOT keyword for your platform.

Classes

TThread

This class implements threads. The platform dependent implementation is in
the TThreadImp class and its descendant classes (e.g. TPosixThread).

TMutex

This class implements mutex locks. A mutex is a mutually exclusive lock.
The platform dependent implementation is in the TMutexImp class and its
descendant classes (e.g. TPosixMutex)

TCondition

This class implements a condition variable. Use a condition variable to signal
threads. The platform dependent implementation is in the TConditionImp
class and its descendant classes (e.g. TPosixCondition).

TSemaphore

This class implements a counting semaphore. Use a semaphore to
synchronize threads. The platform dependent implementation is in the
TMutexImp and TConditionImp classes.

TThread for Pedestrians

To run a thread in ROOT, follow these steps:

Initialization:

Add these lines to your rootlogon.C:

// The next line may be unnecessary on some platforms
gSystem->Load ("/usr/1lib/libpthread.so");
gSystem->Load ("$SROOTSYS/1lib/libThread.so") ;

This loads the library with the TThread class and the pthread specific
implementation file for Posix threads.

Coding:

Define a function (e.g. void* UserFun (void* UserArgs)) that should
run as a thread. The code for the examples is at the web site of the authors
(Jorn Adamczewski, Marc Hemberger). After downloading the code from this
site, you can follow the example below.

www-linux.gsi.de/~go4/HOWTOthreads/howtothreadsbody.html#tth sEc8

Threads

Draft, December 2000 - version 0.6.3 269

Loading:
Start an interactive ROOT session
Load the shared library:

root

[] gSystem->Load("mhs3.s0");

Or

root

[] gSystem->Load("CalcPiThread.so") ;

Creating:

Create a thread instance (see also example RunMhs3.C or RunPi.C) with:

root

[] TThread *th = new TThread (UserFun,UserArgs) ;

When called from the interpreter, this gives the name “UserFun” to the
thread. This name can be used to retrieve the thread later. However, when
called from compiled code, this method does not give any name to the
thread. So give a name to the thread in compiled use:

root

[] TThread *th = new TThread("MyThread", UserFun, UserArgs);

You can pass arguments to the thread function using the UserArgs-pointer.
When you want to start a method of a class as a thread, you have to give the
pointer to the class instance as UserArgs.

Running:

root
root

[] th->Run() ;
[] TThread::Ps(); // like UNIX ps c.ommand;

With the mhs3 example, you should be able to see a canvas with two pads

on it. Both pads keep histograms updated and filled by three different
threads.

With the CalcPi example, you should be able to see two threads calculating
Pi with the given number of intervals as precision.

270

Draft, December 2000 - version 0.6.3 Threads

TThread in More Detail

CINT is not thread safe yet, and it will block the execution of the threads until
it has finished executing.

Asynchronous Actions

Different threads can work simultaneously with the same object. Some
actions can be dangerous. For example, when two threads create a
histogram object, ROOT allocates memory and puts them to the same
collection. If it happens at the same time, the results are undetermined. To
avoid this problem, the user has to synchronize these actions with:

TThread: :Lock () // Locking the following part of code
e // Create an object, etc...
TThread: :UnLock () // Unlocking

The code between Lock () and UnLock () will be performed uninterrupted.
No other threads can perform actions or access objects/collections while it is
being executed. The TThread: :Lock () and TThread: :UnLock ()
methods internally use a global TMutex instance for locking. The user may
also define his own TMutex MyMutex instance and may locally protect his
asynchronous actions by calling MyMutex.Lock () and
MyMutex.UnLock () .

Synchronous Actions: TCondition

To synchronize the actions of different threads you can use the TCondition
class, which provides a signaling mechanism.

The TCondition instance must be accessible by all threads that need to
use it, i.e. it should be a global object (or a member of the class which owns
the threaded methods, see below). To create a TCondition object, a
TMutex instance is required for the Wait and TimedWait locking methods.
One can pass the address of an external mutex to the TCondition
constructor:

TMutex MyMutex;
TCondition MyCondition (&MyMutex) ;

If zero is passed, TCondition creates and uses its own internal mutex:

TCondition MyCondition (0) ;

Threads Draft, December 2000 - version 0.6.3 271

You can now use the following methods of synchronization:

e TCondition::Wait () waits until any thread sends a signal of the
same condition instance: MyCondition.Wait () reacts on
MyCondition.Signal () or MyCondition.Broadcast () .
MyOtherCondition.Signal () has no effect.

o If several threads wait for the signal from the same TCondition
MyCondition, at MyCondition.Signal () only one thread will react;
to activate a further thread another MyCondition.Signal () is
required, etc.

o |f several threads wait for the signal from the same TCondition
MyCondition, atMyCondition.Broadcast () all threads waiting for
MyCondition are activated at once.

In some tests of MyCondition using an internal mutex, Broadcast ()
activated only one thread (probably depending whether MyCondition had
been signaled before).

e MyCondition.TimedWait (secs,nanosecs) waits for
MyCondition until the absolute time in seconds and nanoseconds
since beginning of the epoch (January, 1st, 1970) is reached; to use
relative timeouts “"delta", it is required to calculate the absolute time at
the beginning of waiting “"now"; for example:

Ulong t now,then,delta; // seconds

TDatime myTime; // root daytime class
myTime.Set () ; // myTime set to "now"
now=myTime.Convert () ; // to seconds since 1970
then=now+delta; // absolute timeout
wait=MyCondition.TimedWait (then,0); // waiting

e Return value wait of MyCondition.TimedWait should be 0, if
MyCondition.Signal () was received, and should be nonzero, if
timeout was reached.

The conditions example shows how three threaded functions are
synchronized using TCondition: a ROOT script condstart.C starts the
threads, which are defined in a shared library (conditions.cxx,
conditions.h).

Xlib connections

Usually X11ib is not thread safe. This means that calls to the X could fail,
when it receives X-messages from different threads. The actual result
depends strongly on which version of x1ib has been installed on your
system. The only thing we can do here within ROOT is calling a special
function XInitThreads () (which is part of the x11ib), which should (!)
prepare the x11ib for the usage with threads.

To avoid further problems within ROOT some redefinition of the gpad pointer
was done (that's the main reason for the recompilation). When a thread
creates a TCanvas, this object is actually created in the main thread; this

272 Draft, December 2000 - version 0.6.3 Threads

should be transparent to the user. Actions on the canvas are controlled via a
function, which returns a pointer to either thread specific data (TSD) or the
main thread pointer. This mechanism works currently only for gPad and will
soon be implemented for other global Objects as e.g. gVirtualX,
gDirectory, gFile

Canceling a TThread

Canceling of a thread is a rather dangerous action. In TThread canceling is
forbidden by default. The user can change this default by calling
TThread: :SetCancelOn () . There are two cancellation modes:

Deferred

Setby TThread: : SetCancelDeferred () (default): When the user knows
safe places in his code where a thread can be canceled without risk for the
rest of the system, he can define these points by invoking

TThread: :CancelPoint () . Then, if a thread is canceled, the cancellation
is deferred up to the call of TThread: :CancelPoint () and then the thread
is canceled safely. There are some default cancel points for pthreads
implementation, e.g. any call of TCondition: :Wait (),

TCondition: :TimedWait (), TThread::Join() .

Asynchronous

Set by TThread: : SetCancelAsynchronous () : If the user is sure that his
application is cancel safe, he could call:

TThread: :SetCancelAsynchronous () ;
TThread: :SetCancelOn () ;
// Now cancelation in any point is allowed.

// Return to default
TThread: :SetCancelOff () ;
TThread: :SetCancelDeferred () ;

To cancel a thread TThread* th call:

Th—>Kill () ;

To cancel by thread name:

TThread: :Kill (name) ;

To cancel a thread by ID:

TThread: :Kill (tid) ;

To cancel a thread and delete th when cancel finished:

Th—>Delete () ;

Deleting of the thread instance by the operator delete is dangerous. Use
th->Delete () instead. C++ delete is safe only if thread is not running.

Threads

Draft, December 2000 - version 0.6.3 273

Often during the canceling, some clean up actions must be taken. To define
clean up functions use:

}

void UserCleanUp (void *arg) {

TThread: :CleanUpPush (&UserCleanUp, arg) ;

TThread: :CleanUpPop (1) ;

TThread: :CleanUpPop (0) ;

// here the user cleanup is done

// push user function into cleanup stack
// “last in, first out”

// pop user function out of stack
// and execute it,
// thread resumes after this call

// pop user function out of stack
// _without executing it

Note: CleanUpPush and CleanUpPop should be used as corresponding
pairs like brackets; unlike pthreads cleanup stack (which is not
implemented here), TThread does not force this usage.

Finishing thread

When a thread returns from a user function the thread is finished. It also can
be finished by TThread: :Exit () . Then, in case of pthread-detached
mode, the thread vanishes completely.

By default, on finishing TThread executes the most recent cleanup function
(CleanUpPop (1) is called automatically once).

Advanced TThread: Launching a Method in a

Thread

Consider a class Myclass with a member function void*
Myclass: :ThreadO ((void* arg) that shall be launched as a thread. To
start Thread0 as a TThread, class Myclass may provide a method:

}

Int_t Myclass::Threadstart() {
1f (!mTh) {

return 1;

mTh= new TThread ("memberfunction",
(void(*) (void *)) &ThreadoO,
(void*) this);

mTh->Run () ;

return 0;

}

Here mTh is a TThread* pointer which is member of Myclass (should be
initialized to O in the constructor). The TThread constructor is called as when
we used a plain C function (see above), except for the following two
differences.

First, the member function Thread0 requires an explicit cast to (void (*)
(void *)) (this may cause a compiler warning like:

274

Draft, December 2000 - version 0.6.3 Threads

Myclass.cxx:98: warning: converting from "void
(Myclass::*) (void *)" to "void *")

This is annoying but harmless.

Second, the pointer to the current instance of Myclass, i.e. (void*) this,
has to be passed as first argument of the threaded function Thread0 (C++
member functions internally expect the this pointer as first argument to have
access to class members of the same instance). pthreads are made for
simple C functions and do not know about Thread0 being a member function
of a class. Thus, you have to pass this information by hand, if you want to
access all members of the Myclass instance from the Thread0 function.

Note: Method Thread0 cannot be a virtual member function, since the cast
of Thread0O to void (*) inthe TThread constructor may raise problems
with C++ virtual function table. However, Thread0 may call another virtual
member function virtual void Myclass::FuncO () which then can be
overridden in a derived class of Myclass. (See example TMhs3).

Class Myclass may also provide a method to stop the running thread:

Int_t Myclass::Threadstop () {
if (mTh) {

}

return 1;

}

TThread: :Delete (mTh) ;
delete mTh;

mTh=0;

return 0;

Example TMhs3: Class TThreadframe (TThreadframe.h,
TThreadframe.cxx) is a simple example of a framework class managing
up to four threaded methods. Class TMhs3 (TMhs3.h, TMhs3.cxx)
inherits from this base class, showing the mhs3 example 8.1 (mhs3.h,
mhs3.cxx) within a class.

The Makefile of this example builds the shared libraries
libTThreadframe.so and 1ibTMhs3.so. These are either loaded or
executed by the ROOT script TMhs3demo.C, or are linked against an
executable: TMhs3run. cxx.

Known Problems

Parts of the ROOT framework, like the interpreter, are not yet thread-safe.
Therefore, you should use this package with caution. If you restrict your
threads to distinct and “simple' duties, you will able to benefit from their use.

The TThread class is available on all platforms, which provide a POSIX
compliant thread implementation. On Linux, Xavier Leroy's Linux Threads
implementation is widely used, but the TThread implementation should be
usable on all platforms that provide pthread.

Linux Xlib on SMP machines is not yet thread-safe. This may cause
crashes during threaded graphics operations; this problem is independent of
ROOT.

Object instantiation: there is no implicit locking mechanism for memory
allocation and global root lists. The user has to explicitly protect his code
when using them.

Threads

Draft, December 2000 - version 0.6.3 275

http://www-linux.gsi.de/~go4/HOWTOthreads/TMhs3/TThreadframe.h
http://www-linux.gsi.de/~go4/HOWTOthreads/TMhs3/TThreadframe.cxx
http://www-linux.gsi.de/~go4/HOWTOthreads/TMhs3/TMhs3.h
http://www-linux.gsi.de/~go4/HOWTOthreads/TMhs3/TMhs3.cxx
http://www-linux.gsi.de/~go4/HOWTOthreads/#tth_sEc8.1
http://www-linux.gsi.de/~go4/HOWTOthreads/mhs3/mhs3.h
http://www-linux.gsi.de/~go4/HOWTOthreads/mhs3/mhs3.cxx

Glossary

The following glossary is adapted from the description of the Rogue Wave
Threads.h++ package.

Process

A process is a program that is loaded into memory and prepared for
execution. Each process has a private address space. Processes begin with
a single thread.

Thread

A thread of control, or more simply, a thread, is a sequence of instructions
being executed in a program. A thread has a program counter and a private
stack to keep track of local variables and return addresses. A multithreaded
process is associated with one or more threads. Threads execute
independently. All threads in a given process share the private address
space of that process.

Concurrency

Concurrency exists when at least two threads are in progress at the same
time. A system with only a single processor can support concurrency by
switching execution contexts among multiple threads.

Parallelism

Parallelism arises when at least two threads are executing simultaneously.
This requires a system with multiple processors. Parallelism implies
concurrency, but not vice-versa.

Reentrant

A function is reentrant if it will behave correctly even if a thread of execution
enters the function while one or more threads are already executing within
the function. These could be the same thread, in the case of recursion, or
different threads, in the case of concurrency.

Thread-specific data

Thread-specific data (TSD) is also known as thread-local storage (TLS).
Normally, any data that has lifetime beyond the local variables on the thread's
private stack are shared among all threads within the process. Thread-
specific data is a form of static or global data that is maintained on a per-
thread basis. That is, each thread gets its own private copy of the data.

Synchronization

Left to their own devices, threads execute independently. Synchronization is
the work that must be done when there are, in fact, interdependencies that
require some form of communication among threads. Synchronization tools
include mutexes, semaphores, condition variables, and other variations on
locking.

276

Draft, December 2000 - version 0.6.3 Threads

Critical Section

A critical section is a section of code that accesses a non-sharable resource.
To ensure correct code, only one thread at a time may execute in a critical
section. In other words, the section is not reentrant.

Mutex

A mutex, or mutual exclusion lock, is a synchronization object with two states
locked and unlocked. A mutex is usually used to ensure that only one thread
at a time executes some critical section of code. Before entering a critical
section, a thread will attempt to lock the mutex, which guards that section. If
the mutex is already locked, the thread will block until the mutex is unlocked,
at which time it will lock the mutex, execute the critical section, and unlock
the mutex upon leaving the critical section.

Semaphore

A semaphore is a synchronization mechanism that starts out initialized to
some positive value. A thread may ask to wait on a semaphore in which case
the thread blocks until the value of the semaphore is positive. At that time the
semaphore count is decremented and the thread continues. When a thread
releases semaphore, the semaphore count is incremented. Counting
semaphores are useful for coordinating access to a limited pool of some
resource.

Readers/Writer Lock

A multiple-readers, single-writer lock is one that allows simultaneous read
access by many threads while restricting write access to only one thread at a
time. When any thread holds the lock for reading, other threads can also
acquire the lock reading. If one thread holds the lock for writing, or is waiting
to acquire the lock for writing, other threads must wait to acquire the lock for
either reading or writing.

Condition Variable

Use a condition variable in conjunction with a mutex lock to automatically
block threads until a particular condition is true.

Multithread safe levels

A possible classification scheme to describe thread-safety of libraries:

e All public and protected functions are reentrant. The library provides
protection against multiple threads trying to modify static and global data
used within a library. The developer must explicitly lock access to
objects shared between threads. No other thread can write to a locked
object unless it is unlocked. The developer needs to lock local objects.
The spirit, if not the letter of this definition requires the user of the library
only to be familiar with the semantic content of the objects in use.
Locking access to objects that are being shared due to extra-semantic
details of implementation (for example, copy-on-write) should remain the
responsibility of the library.

e All public and protected functions are reentrant. The library provides
protection against multiple threads trying to modify static and global data
used within the library. The preferred way of providing this protection is
to use mutex locks. The library also locks an object before writing to it.

Threads

Draft, December 2000 - version 0.6.3 277

The developer is not required to explicitly lock or unlock a class object

(static, global or local) to perform a single operation on the object. Note
that even multithread safe level Il hardly relieves the user of the library

from the burden of locking.

Deadlock

A thread suffers from deadlock if it is blocked waiting for a condition that will
never occur. Typically, this occurs when one thread needs to access a
resource that is already locked by another thread, and that other thread is
trying to access a resource that has already been locked by the first thread.
In this situation, neither thread is able to progress; they are deadlocked.

Multiprocessor

A multiprocessor is a hardware system with multiple processors or multiple,
simultaneous execution units.

278

Draft, December 2000 - version 0.6.3 Threads

List of Example files

Here is a list of the examples that you can find on the thread authors' web

site (Jorn Adamczewski, Marc Hemberger) at:

www-linux.gsi.de/~go4/HOW TOthreads/howtothreadsbody.html#tth sEc8

Example mhs3

Makefile.mhs3
mhs3.h
mhs3LinkDef.h
mhs3.cxx

rootlogon.C
RunMhs3.C

Example conditions

Makefile.conditions
conditions.h
conditionsLinkDef.h
conditions.cxx
condstart.C

Example TMhs3

Makefile.TMhs3
TThreadframe.h
TThreadframelLinkDef.h
TThreadframe.cxx
TMhs3.h
TMhs3LinkDef.h
TMhs3.cxx
TMhs3run.cxx
TMhs3demo.C

Example CalcPiThread

Makefile.CalcPiThread
CalcPiThread.h
CalcPiThreadLinkDef.h
CalcPiThread.cxx

rootlogon.C
RunPi.C

Draft, December 2000 - version 0.6.3

279

http://www-linux.gsi.de/~go4/HOWTOthreads/mhs3/Makefile.mhs3
http://www-linux.gsi.de/~go4/HOWTOthreads/mhs3/mhs3.h
http://www-linux.gsi.de/~go4/HOWTOthreads/mhs3/mhs3LinkDef.h
http://www-linux.gsi.de/~go4/HOWTOthreads/mhs3/mhs3.cxx
http://www-linux.gsi.de/~go4/HOWTOthreads/mhs3/rootlogon.C
http://www-linux.gsi.de/~go4/HOWTOthreads/mhs3/RunMhs3.C
http://www-linux.gsi.de/~go4/HOWTOthreads/conditions/Makefile.conditions
http://www-linux.gsi.de/~go4/HOWTOthreads/conditions/conditions.h
http://www-linux.gsi.de/~go4/HOWTOthreads/conditions/conditionsLinkDef.h
http://www-linux.gsi.de/~go4/HOWTOthreads/conditions/conditions.cxx
http://www-linux.gsi.de/~go4/HOWTOthreads/conditions/condstart.C
http://www-linux.gsi.de/~go4/HOWTOthreads/TMhs3/Makefile.TMhs3
http://www-linux.gsi.de/~go4/HOWTOthreads/TMhs3/TThreadframe.h
http://www-linux.gsi.de/~go4/HOWTOthreads/TMhs3/TThreadframeLinkDef.h
http://www-linux.gsi.de/~go4/HOWTOthreads/TMhs3/TThreadframe.cxx
http://www-linux.gsi.de/~go4/HOWTOthreads/TMhs3/TMhs3.h
http://www-linux.gsi.de/~go4/HOWTOthreads/TMhs3/TMhs3LinkDef.h
http://www-linux.gsi.de/~go4/HOWTOthreads/TMhs3/TMhs3.cxx
http://www-linux.gsi.de/~go4/HOWTOthreads/TMhs3/TMhs3run.cxx
http://www-linux.gsi.de/~go4/HOWTOthreads/TMhs3/TMhs3demo.C
http://www-linux.gsi.de/~go4/HOWTOthreads/CalcPiThread/Makefile.CalcPiThread
http://www-linux.gsi.de/~go4/HOWTOthreads/CalcPiThread/CalcPiThread.h
http://www-linux.gsi.de/~go4/HOWTOthreads/CalcPiThread/CalcPiThreadLinkDef.h
http://www-linux.gsi.de/~go4/HOWTOthreads/CalcPiThread/CalcPiThread.cxx
http://www-linux.gsi.de/~go4/HOWTOthreads/CalcPiThread/rootlogon.C
http://www-linux.gsi.de/~go4/HOWTOthreads/CalcPiThread/RunPi.C

20 Appendix A: Install and
Build ROOT

ROOT Copyright and Licensing Agreement:

This is a reprint of the copyright and licensing agreement of ROOT:

Copyright (C) 1995-2000, René Brun and Fons Rademakers.
All rights reserved.

ROOT Software Terms and Conditions

The authors hereby grant permission to use, copy, and distribute this
software and its documentation for any purpose, provided that existing
copyright notices are retained in all copies and that this notice is

included verbatim in any distributions. Additionally, the authors grant
permission to modify this software and its documentation for any purpose,
provided that such modifications are not distributed without the explicit
consent of the authors and that existing copyright notices are retained in
all copies. Users of the software are asked to feed back problems, benefits,
and/or suggestions about the software to the ROOT Development Team
(rootdev@root.cern.ch). Support for this software - fixing of bugs,
incorporation of new features - is done on a best effort basis. All bug

fixes and enhancements will be made available under the same terms and
conditions as the original software,

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO
ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS
SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF,
EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE 1S PROVIDED
ON AN "AS I1S" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

Appendix A: Install and Build ROOT Draft, December 2000 - version 0.6.3 281

mailto:rootdev@root.cern.ch

Installing ROOT

To install ROOT you will need to go to the ROOT website at:
http://root.cern.ch/root/Availability.html

You have a choice to download the binaries or the source. The source is
quicker to transfer since it is only 3.4 MB, but you will need to compile and
link it. The binaries range from 7.4 MB to 11 MB depending on the target
platform.

Choosing a Version

The ROOT developers follow the principle of "release early and release
often", however a very large portion of a user base requires a stable product
therefore generally three versions of the system is available for download —
new, old and pro:

e The new version evolves quickly, with weekly or bi-weekly releases. Use
this to get access to the latest and greatest, but it may not be stable. By
trying out the new version you can help us converge quickly to a stable
version that can then become the new pro version. If you are a new user
we would advice you to try the new version.

e The pro (production) version is a version we feel comfortable with to
exposing to a large audience for serious work. The change rate of this
version is much lower than for the new version, it is about 3 to 6 months.

e The old version is the previous pro version that people might need for
some time before switching the new pro version. The old change rate is
the same as for pro.

Supported Platforms

For each of the three versions the full source is available for these platforms.
Precompiled binaries are also provided for most of them:

e Intel x86 Linux (g++, egcs and KAI/KCC)

e TIntel Itanium Linux (g++)

e HP HP-UX 10.x (HP CC and aCC, egcsl.l C++ compilers)
e IBM AIX 4.1 (xlc compiler and egcsl.2)

e Sun Solaris for SPARC (SUN C++ compiler and egcs)
e Sun Solaris for x86 (SUN C++ compiler)

e Sun Solaris for x86 KAI/KCC

e Compaqg Alpha OSF1l (egcsl.2 and DEC/CXX)

e Compag Alpha Linux (egcsl.2)

e SGI Irix (g++, KAI/KCC and SGI C++ compiler)

e Windows NT and Windows95 (Visual C++ compiler)

e Mac MkLinux and Linux PPC (g++)

e Hitachi HI-UX (egcs)

e TLynxOS

e MacOS (CodeWarrior, no graphics)

282 Draft, December 2000 - version 0.6.3 Appendix A: Install and Build ROOT

Installing Precompiled Binaries

The binaries are available for downloading from

root.cern.ch/root/Availability.html.

Once downloaded you need to unzip and de-tar the file. For example, if you
have downloaded ROOT v2.25 for HPUX:

% gunzip root_v2.25.00.HP-UX.B.10.20.tar.gz
% tar xvf root v2.25.00.HP-UX.B.10.20.tar

This will create the directory root. Before getting started read the file
README/README. Also, read the Introduction chapter for an explanation of
the directory structure.

Installing the Source

You have a choice to download a compressed (tar ball) file containing the
source, or you can login to the source code change control (CVS) system

and check out the most recent source. The compressed file is a one time only
choice; every time you would like to upgrade you will need to download the
entire new version. Choosing the CVS option will allow you to get changes as
they are submitted by the developers and you can stay up to date.

Installing and Building the source from a compressed file

To install the ROOT source you can download the tar file containing all the
source files from the ROOT website. The first thing you should do is to get
the latest version as a tar file. Unpack the source tar file, this creates
directory ‘root”:

o\°

tar zxvf root_v2.25.xx.source.tar.gz

Set ROOTSYS to the directory where you want root to be located:

oo

export ROOTSYS=<path>/root

Now type the build commands:

./configure --help
./configure <target>
gmake

gmake install

d° o0 o° o

Add SROOTSYS/bin to PATH and $ROOTSYS/1ib to LD LIBRARY PATH:

% export PATH=$ROOTSYS/bin:$PATH
% export LD_LIBRARY PATH=$ROOTSYS/lib:$LD_LIBRARY PATH

Try running root:

$ root

It is also possible to setup and build ROOT in a fixed location. Please check
README/INSTALL for more a detailed description of this procedure.

Appendix A: Install and Build ROOT Draft, December 2000 - version 0.6.3 283

Target directory

By default, ROOT will be built in the $ROOTSYS directory. In that case the
whole system (binaries, sources, tutorials, etc.) will be located under the
$ROOTSYS directory.

Makefile targets

The Makefile is documented in details in the README/BUILDSYSTEM file.
It explains the build options and targets.

More Build Options

To build the library providing thread support you need to define either the
environment variable ‘ THREAD=-1pthread ’ orthe configure flag *--
with-thread=-1lpthread’ (it is the default for the 1inuxegcs
architecture). [Note: this is only tested on Linux for the time being.]

To build the library providing CERN RFIO (remote 1/O) support you need to
define either the environment variable * RFIO=<path>/libshift.a’ or
the configure flag ‘--with-rfio=<path>/libshift.a’. For pre-built
version of 1ibshift.a see ftp://root.cern.ch/root/shift/)

To build the PAW and Geant3 conversion programs h2root and g2root
you need to define either the environment variable
‘CERNLIB=<cernlibpath> orthe configure flag ‘--with-cern-
libdir=<cernlibpath>’.

To build the MySQL interface library you need to install MySQL first. Visit
http://www.mysql.com/ for the latest versions.

To build the strong authentication module used by rootd, you first have to
install the SRP (Secure Remote Password) system. Visit
http://jafar.stanford.edu/srp/index.html.

To use the library you have to define either the environment variable
SRP=<srpdir> ’orthe configure flag ‘--with-srp=<srpdir>’.

To build the event generator interfaces for Pythia and Pythia6, you first have
to get the pythia libraries available from ftp: ftp://root.cern.ch/root/pythia/.

To use the libraries you have to define either * PYTHIA=<pythiadir> ’or
the configure flag ‘--with-pythia=<pythiadir>". The same applies
for Pythia6.

Installing the Source from CVS

This paragraph describes how to checkout and build ROOT from CVS for
Unix systems. For description of a checkout for other platforms, please see
ROOQOT installation web page (http://root.cern.ch/root/CVS.html).

(Note: The syntax is for ba (sh), if you use a t (csh) then you have to
substitute export with setenv.)

284 Draft, December 2000 - version 0.6.3 Appendix A: Install and Build ROOT

export CVSROOT=:pserver:cvs@root.cern.ch:/user/cvs
cvs login

(Logging in to cvs@root.cern.ch)

CVS password: cvs

cvs -z3 checkout root

root/..

d° oe

cd root

./configure —--help
./configure <platform>
gmake

90 d° o o0 & & d° d° o°

If you are a part of a collaboration, you may need to use setup procedures
specific to the particular development environment prior to running gmake.

You only need to run cvs login once. It will remember anonymous password
in your SHOME/ . cvspass file.

For more install instructions and options, see the file README/INSTALL.

CVS for Windows

Although there exists a native version of CVS for Windows, we only support
the build process under the Cygwin environment. You must have CVS
version 1.10 or newer.

The checkout and build procedure is similar to that for Unix.
For detailed install instructions, see the file REAMDE/INSTALL.

Converting a tar ball to a working CVS sandbox

You may want to consider downloading the source as a tar ball and
converting it to CVS because it is faster to download the tar ball than
checking out the entire source with CVS. Our source tar ball contains CVS
information. If your tar ball is dated June 1, 2000 or later, it is already set up
to talk to our public server (root.cern.ch). You just need to download and
unpack the tar ball and then run following commands:

% cd root
% cvs -z3 update -d -P
% ./configure <platform>

Staying up-to-date

To keep your local ROOT source up-to-date with the CVS repository you
should regularly run the command:

% cvs -z3 update -d -P

Setting the Environment Variables

Before you can run ROOT you need to set the environment variable
ROOTSYS and change your path to include root/bin and library path
variables to include root/11ib. Please note: The syntax is for ba (sh), if you
are running t (csh) you will have to use setenv and set instead of
export.

1. Define the variable $ROOTSYS to the directory where you unpacked the
ROOT:

Appendix A: Install and Build ROOT Draft, December 2000 - version 0.6.3 285

% export ROOTSYS=/root

2. Add ROOTSYS/bin to your PATH:

% export PATH=$PATH:$ROOTSYS/bin

3. Set the Library Path

On HP-UX, before executing the interactive module, you must set the library
path:

% export SHLIB_PATH=$SHLIB_PATH:$ROOTSYS/lib

On AlX, before executing the interactive module, you must set the library
path:

% [-z "SLIBPATH"] && export LIBPATH=/1lib:/usr/lib
% export LIBPATH=$LIBPATH:$ROOTSYS/1lib

On Linux, Solaris, Alpha OSF and SGl, before executing the interactive
module, you must set the library path:

% export LD_LIBRARY PATH=$LD_ LIBRARY PATH:$ROOTSYS/lib

On Solaris, in case your LD_LIBRARY_PATH is empty, you should set it like
this:

% export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTSYS/lib:/usr/dt/lib

ROOTSYS is an environment variable pointing to the ROOT directory. For
example, if you use the HPUX-10 AFS version you should set:

% export
ROOTSYS=/afs/cern.ch/na49/library.4/R0O0T/v2.23/hp700 ux102/
root

To run the program just type: root

Documentation to Download

PostScript Documentation

The following PostScript files have been generated by automatically scanning
the ROOT HMTL files. This documentation includes page numbers, table of
contents and an index.

e ROOT Overview: Overview of the ROOT system (365 KB, 81 pages)
(ftp://root.cern.ch/root/ROOTMain.ps.gz)

e ROOT Tutorials: The ROOT tutorials with graphics examples (320 KB,
81 pages) (ftp://root.cern.ch/root/ROOT Tutorials.ps.gz)

e ROOT Classes: Description of all the ROOT classes (1.47 MB, 661
pages) (ftp://root.cern.ch/root/ROOTClasses.ps.qgz)

286 Draft, December 2000 - version 0.6.3 Appendix A: Install and Build ROOT

HTML Documentation

In case you only have access to a low-speed connection to CERN, you can
get a copy of the complete ROOT html tree (24 MB):

ftp://root.cern.ch/root/ROOTHtmIDoc.ps.gz.

Appendix A: Install and Build ROOT Draft, December 2000 - version 0.6.3 287

ftp://root.cern.ch/root/ROOTHtmlDoc.ps.gz

21 Appendix B: Event.h

class EventHeader ({

private:
Int t fEvtNum;
Int t fRun;
Int t fDate;
Int t fN;
public:
EventHeader () : fEvtNum(0), fRun(0), fDate(0) { }
virtual ~EventHeader () { }

void Set(Int t i, Int t r, Int t d) { fEvtNum = i;
fRun = r; fDate = d; }

Int t GetEvtNum() const { return fEvtNum; }

Int t GetRun() const { return fRun; }

Int t GetDate() const { return fDate; }

ClassDef (EventHeader,1l) //Event Header
}i

class Event : public TObject {

private:
Int t fNtrack;
Int t fNseg;
Int t fNvertex;
UInt t fFlag;
Float t fTemperature;
EventHeader fEvtHdr;
TClonesArray *fTracks;
TH1F *fH;
static TClonesArray *fgTracks;
static THIF *fgHist;
public:
Event () ;
virtual ~Event();
void Clear (Option_t *option ="");
static void Reset (Option_t *option ="");
void ResetHistogramPointer () {fH=0;}
void SetNseg (Int_t n) { fNseg = n; }
void SetNtrack(Int t n) { fNtrack = n; }
void SetNvertex (Int t n) { fNvertex = n; }
void SetFlag (UInt t f) { fFlag = f; }
void SetTemperature (Float t t) { fTemperature = t;
void SetHeader(Int _t i, Int t run, Int t date,
Float t random) ;
void AddTrack (Float t random);
Int t GetNtrack () const { return fNtrack; }
Int t GetNseg () const { return fNseg; }

}

Appendix B: Event.h Draft, December 2000 - version 0.6.3

289

Int t GetNvertex () const { return. fNvertex; }

UInt t GetFlag () const { return fFlag;

Float t GetTemperature () const { return fTemperature; }
EventHeader *GetHeader () { return &fEvtHdr; }

TClonesArray *GetTracks ()

THI1F

ClassDef
}i

class Track

private:
Float t £Px; //X component of the momentum
Float t fPy; //Y component of the momentum
Float t fPz; //Z component of the momentum
Float t fRandom; //A random track quantity
Float t fMass2; //The mass square of this particle
Float t £Bx; //X intercept at the vertex
Float t fBy; //Y intercept at the vertex
Float t fMeanCharge; //Mean charge deposition of all hits
Float t fXfirst; //X coordinate of the first point
Float t fXlast; //X coordinate of the last point
Float t fyfirst; //Y coordinate of the first point
Float t fYlast; //Y coordinate of the last point
Float t fzfirst; //%Z coordinate of the first point
Float t fzlast; //Z coordinate of the last point
Float t fCharge; //Charge of this track
Int t fNpoint; //Number of points for this track
Short t fvalid; //Validity criterion

public:
Track () { }
Track (Float t random);
virtual ~Track() { }
Float t GetPx () const { return fPx; }
Float t GetPy () const { return fPy; }
Float t GetPz () const { return fPz; }
Float t GetPt () const { return

TMath::Sqgrt (£Px*fPx+ fPy*fPy); }

Float t GetRandom() const { return fRandom; }
Float t GetBx () const { return fBx; }
Float t GetBy () const { return fBy; }
Float t GetMass2 () const { return fMass2; }
Float t GetMeanCharge () const { return fMeanCharge; }
Float t GetXfirst () const { return fXfirst; }
Float t GetXlast () const { return fXlast; }
Float t GetYfirst () const { return fYfirst; }
Float t GetYlast () const { return fYlast; }
Float t Getzfirst () const { return fZfirst; }
Float t GetZlast () const { return fZlast; }
Float t GetCharge () const { return fCharge; }
Int t GetNpoint () const { return fNpoint; }
Short t GetValid() const { return fValid; }

virtual void

(Event, 1)

*GetHistogram/()

public TObject {

//Event structure

const { return fTracks; }
const { return fH; }

{ fVvalid valid; }

Setvalid(Int_t valid=1)

ClassDef
}i

(Track,1l) //A track segment

class HistogramManager {

private:

TH1F *fNtrack;

290

Draft, December 2000 - version 0.6.3

Appendix B: Event.h

THIFE
THIF

TH1F
TH1F
TH1F
THI1F
THI1F
THI1F
TH1F
TH1F
TH1F
THI1F
THI1F
THI1F
THI1F
TH1F
TH1F
TH1F
THI1F

public:
HistogramManager (TDirectory *dir);
virtual ~HistogramManager () ;

void Hfill (Event *event);

}i

ClassDef (HistogramManager,l) //Manages all histograms

#endif

*fNseg;
*fTemperature;

*fPx;
*fPy;
*fPz;
*fRandom;
*fMass2;
*fBx;
*fBy;
*fMeanCharge;
*fXfirst;
*fXlast;
*fyfirst;
*fYlast;
*fzfirst;
*fZlast;
*fCharge;
*fNpoint;
*fvalid;

Appendix B: Event.h

Draft, December 2000 - version 0.6.3

291

22 Appendix C: SplitClass

[1777777777777777777777777777777//7/7/777/7/7/7/7/7/77/7/7777777777
// This class has been automatically generated
// (Wed Apr 12 12:04:05 2000 by ROOT version 2.24/02)
// from TTree T/An example of a ROOT tree
// found on file: Event.root
L177
#ifndef SplitClass_h
#define SplitClass h
#if !defined(CINT) || defined(MAKECINT)
#include <TTree.h>
#include <TFile.h>
fendif

const Int t kMaxfTracks = 1000;
class SplitClass {

public

TTree *fTree; //pointer to the analyzed TTree or TChain

TTree *fCurrent; //pointer to the current TTree
//Declaration of leaves types

Int t fNtrack;

Int t fNseg;

Int t fNvertex;

UInt t fFlag;

Float t fTemperature;

Int t fEvtHdr fEvtNum;

Int t fEvtHdr fRun;

Int t fEvtHdr fDate;

Int t fTracks ;

Float t fTracks fPx[kMaxfTracks];

Float t fTracks fPy[kMaxfTracks];

Float t fTracks fPz[kMaxfTracks];

Float t fTracks fRandom[kMaxfTracks];

Float t fTracks fMass2[kMaxfTracks];

Float t fTracks fBx[kMaxfTracks];

Float t fTracks fBy[kMaxfTracks];

Float t fTracks fMeanCharge[kMaxfTracks];

Float t fTracks fXfirst[kMaxfTracks];

Float t fTracks fXlast[kMaxfTracks];

Float t fTracks fYfirst[kMaxfTracks];

Float t fTracks fYlast[kMaxfTracks];

Float t fTracks fzfirst[kMaxfTracks];

Float t fTracks fzlast[kMaxfTracks];

Float t fTracks fCharge[kMaxfTracks];

Int t fTracks fNpoint[kMaxfTracks];

Short t fTracks fValid[kMaxfTracks];

UInt t fTracks fUniqueID[kMaxfTracks];

UInt t fTracks fBits[kMaxfTracks];

Appendix C: SplitClass Draft, December 2000 - version 0.6.3 293

TH1F
UInt

UInt

*fH;
t fUniquelD;
t fBits;

//List of branches

i

TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran
TBran

Split
~Spli
Int t
Int t
void
void
void
void

#endif

ch *b event;

ch *b_ fNtrack;

ch *b fNseg;

ch *b fNvertex;

ch *b fFlag;

ch *b fTemperature;

ch *b fEvtHdr fEvtNum;
ch *b fEvtHdr fRun;

ch *b fEvtHdr fDate;
ch *b fTracks ;

ch *b fTracks fPx;

ch *b fTracks fPy;

ch *b fTracks fPz;

ch *b fTracks fRandom;
ch *b fTracks fMass2;
ch *b fTracks fBx;

ch *b fTracks fBy;

ch *b fTracks fMeanCharge;
ch *b fTracks fXfirst;
ch *b fTracks fXlast;
ch *b fTracks fYfirst;
ch *b fTracks fYlast;
ch *b fTracks fZfirst;
ch *b fTracks fZlast;
ch *b fTracks fCharge;
ch *b fTracks fNpoint;
ch *b fTracks fValid;
ch *b fTracks fUniquelID;
ch *b fTracks fBits;
ch *b fH;

ch *b fUniquelID;

ch *b fBits;

Class (TTree *tree=0);

tClass () ;

GetEntry (Int t entry);
LoadTree (Int_t entry);
Init (TTree *tree);
Loop () ;

Notify ()

Show (Int t entry = -1);

#ifdef SplitClass_ cxx
SplitClass::SplitClass (TTree *tree)

{

// if parameter tree is not specified (or zero),connect the
// file used to generate this class and read the Tree.

}

if (t
TFi
if

tr

}
Init(

ree == 0) {

le *f = (TFile*)gROOT->GetListOfFiles ()->FindObject ("Event.root");

(rf) A

f = new TFile ("Event.root");

ee = (TTree*)gDirectory->Get ("T");

tree);

SplitClass::~SplitClass()

{

294

Draft, December 2000 - version 0.6.3

Appendix C: SplitClass

£fT eturn;
éelet %Tree >SGetChrrentFile () ;

Int_t SplitClass::GetEntry(Int_t entry)
{
// Read contents of entry.
if (!fTree) return 0;
return fTree->GetEntry(entry);
}

Int_t SplitClass::LoadTree(Int_t entry)

{

// Set the environment to read one entry
if (!fTree) return -5;
Int t centry = fTree->LoadTree (entry);
if (centry < 0) return centry;

if (fTree->GetTree() != fCurrent) {
fCurrent = fTree->GetTree ()
Notify ()

}

return centry;

}

void SplitClass::Init(TTree *tree)

{
// Set branch addresses

if (tree == 0) return;
fTree = tree;
fCurrent = 0;

fTree->SetBranchAddress
fTree->SetBranchAddress
fTree->SetBranchAddress ("fNseg", &§fNseq) ;
fTree->SetBranchAddress ("fNvertex", &§fNvertex) ;
fTree->SetBranchAddress ("fFlag", &fFlag) ;
fTree->SetBranchAddress ("fTemperature", &fTemperature) ;
fTree->SetBranchAddress

("event", (void*)-1);

(

(

(

(

(

(
fTree->SetBranchAddress ("fEvtHdr.fRun", &fEvtHdr fRun);

(

(

(

(

(

(

(

(

"fNtrack", &fNtrack) ;

fTree->SetBranchAddress ("fEvtHdr.fDate", &fEvtHdr fDate);
fTree->SetBranchAddress ("fTracks ", &fTracks);
fTree->SetBranchAddress ("fTracks.fPx", fTracks fPx);
fTree->SetBranchAddress ("fTracks.fPy", fTracks fPy);
fTree->SetBranchAddress ("fTracks.fPz", fTracks fPz);
fTree->SetBranchAddress
fTree->SetBranchAddress ("fTracks.fMass2", fTracks fMass2);
fTree->SetBranchAddress ("fTracks.fBx", fTracks fo)
fTree->SetBranchAddress ("fTracks.fBy", fTracks fBy);

fTree->SetBranchAddress ("fTracks.fMeanCharge", fTracks fMeanCharge) ;
fTree->SetBranchAddress ("fTracks.fXfirst", fTracks fXfirst);

fTree->SetBranchAddress
fTree->SetBranchAddress
fTree->SetBranchAddress
fTree->SetBranchAddress
fTree->SetBranchAddress
fTree->SetBranchAddress

"fTracks.fXlast", fTracks fXlast);
"fTracks.fYlast", fTracks fYlast);

"fTracks.fZlast", fTracks fZlast);

fTree->SetBranchAddress
fTree->SetBranchAddress
fTree->SetBranchAddress ("fTracks.fBits", fTracks fBits);
fTree->SetBranchAddress ("fH", &fH) ;
fTree->SetBranchAddress ("fUniqueID", &fUniquelD) ;
"fBits", &fBits);

"fTracks.fVvalid", fTracks fVvalid);

fTree->SetBranchAddress
}

void SplitClass: :Notify()
{

"fEvtHdr.fEvtNum", &fEvtHdr fEvtNum) ;
"fTracks.fRandom", fTracks fRandom) ;

fTracks.fYfirst", fTracks fYfirst);
"fTracks.fZfirst", fTracks fZfirst);

(

("

(

(

(

("fTracks.fCharge", fTracks fCharge);
fTree->SetBranchAddress ("fTracks.fNpoint", fTracks fNpoint);

(

(

(

(

(

(

"fTracks.fUniqueID", fTracks fUniquelD);

Appendix C: SplitClass Draft, December 2000 - version 0.6.3

295

called by LoadTree when loading a new file
;; get bran}c’h pointers g

b event = fTree->GetBranch ("event");
b fNtrack = fTree->GetBranch ("fNtrack");
b fNseg = fTree->GetBranch ("fNseg");
b fNvertex = fTree->GetBranch ("fNvertex");
b fFlag = fTree->GetBranch ("fFlag");
b fTemperature = fTree->GetBranch ("fTemperature");
b fEvtHdr fEvtNum = fTree->GetBranch ("fEvtHdr.fEvtNum");
b fEvtHdr fRun = fTree->GetBranch ("fEvtHdr.fRun");
b fEvtHdr fDate = fTree->GetBranch ("fEvtHdr.fDate");
b fTracks = fTree->GetBranch ("fTracks ");
b fTracks fPx = fTree->GetBranch ("fTracks.fPx");
b fTracks fPy = fTree->GetBranch ("fTracks.fPy");
b fTracks fPz = fTree->GetBranch ("fTracks.fPz");
b fTracks fRandom = fTree->GetBranch ("fTracks.fRandom") ;
b fTracks fMass2 = fTree->GetBranch ("fTracks.fMass2");
b fTracks fBx = fTree->GetBranch ("fTracks.fBx");
b fTracks fBy = fTree->GetBranch ("fTracks.fBy");
b fTracks fMeanCharge = fTree->GetBranch ("fTracks.fMeanCharge");
b fTracks fXfirst = fTree->GetBranch ("fTracks.fXfirst");
b fTracks fXlast = fTree->GetBranch ("fTracks.fXlast");
b fTracks fYfirst = fTree->GetBranch ("fTracks.fYfirst");
b fTracks fYlast = fTree->GetBranch ("fTracks.fYlast");
b fTracks fZfirst = fTree->GetBranch ("fTracks.fzfirst");
b fTracks fZlast = fTree->GetBranch ("fTracks.fzZlast");
b fTracks fCharge = fTree->GetBranch ("fTracks.fCharge");
bifTracksiproint = fTree->GetBranch ("fTracks.fNpoint") ;
b fTracks fVvalid = fTree->GetBranch ("fTracks.fvalid");
b fTracks fUniquelID = fTree->GetBranch ("fTracks.fUniqueID");
b fTracks fBits = fTree->GetBranch ("fTracks.fBits");
b fH = fTree->GetBranch ("fH");
b fUniqueID = fTree->GetBranch ("fUniquelID");
b fBits = fTree->GetBranch ("fBits");
}

void SplitClass::Show(Int_t entry)

{

// Print contents of entry.

// If entry is not specified, print current entry
if (!fTree) return;
fTree->Show (entry) ;

}

#endif // #ifdef SplitClass c

296

Draft, December 2000 - version 0.6.3 Appendix C: SplitClass

23

Quizzes and Answers

Quiz on Root Files

1.What is the value of gDirectory->pwd () after this code is executed?

root [1] TFile *fl=new TFile("AFilel.root","RECREATE")
root [2] TFile *f2=new TFile ("AFile2.root","RECREATE")
root [3] TFile *f3=new TFile ("AFile3.root","RECREATE")
root [4] f2->cd()
a)Rint
b) AFilel.root
C)AFile2.root
d) AFile3.root
2. The hsimple. root file contains four histograms: hpx, hprof,
ntuple, and hpxpy. After executing these lines what objects are named
when the command gDirectory->GetList () ->Print () is executed?
Hint: the GetList command builds a list of "in-memory" objects of the
directory.
root [0] TFile *fl = new TFile("hsimple.root","UPDATE") ;
root [1] gDirectory->GetList ()->Print ()

a) hpx, hprof, ntuple, hpxpy
b) None

C) hpx

d) £1

Quizzes and Answers Draft, December 2000 - version 0.6.3 297

3. We now add a call to the Draw method as below. What objects are listed
by gDirectory->GetList () ->Print () after the Draw command?

root
root

[2] hpx->Draw() ;
[3] gDirectory->GetList () ->Print ()

a) hpx, hprof, ntuple, hpxpy
b) None

C) hpx

d) £1

4. Now, we add another Draw command and a Write command. After
executing this code, what would you expect the on-disk contents of £1 to be?

root
root

[3] hprof->Draw();
[4] hprof->Write();

a) hpx;1, hpxpy;1l, hprof;1, ntuple;1,

b) hpx;2, hpx;1, hpxpy;1l, hprof;2, hprof;1, ntuple;1,
hpx;1, hprof;1l, ntuple;1l, cl;1

C) hpx;1, hpxpy;1l, hprof;2, hprof;1, ntuple;1

d) hpx;2, hpx;1, hpxpy;2, hpxpy;1l, hprof;2, hprof;1,
ntuple;2, ntuple;1,

e) hpx;1, hpxpy;1l, hprof;2, hprof;1l, ntuple;1,cl;1

f) None of the above

5. After executing this line after the lines in the previous question, what would
you expect £1->1s () to list?

root

[5] fl->Write();

a) hpx;1, hpxpy;1l, hprof;1, ntuple;1,

b) hpx;2, hpx;1, hpxpy;1l, hprof;3, hprof;2, hprof;1,
ntuple;1l, hpx;1l, hprof;1l, ntuple;l, cl;1

C) hpx;2, hpx;1, hpxpy:;2, hpxpy;1l hprof;2, hprof;1,
ntuple;2, ntuple;1

d) hpx;2, hpx;1, hpxpy;1l, hprof;3, hprof;2, hprof;1,
ntuple; 1

e) hpx;2, hpx;1, hpxpy;1l, hprof;3, hprof;2, hprof;1,
ntuple;1l

f) None of the above

298

Draft, December 2000 - version 0.6.3 Quizzes and Answers

6. After this line, what would you expect gDirectory->1s () to list?

root [6] fl->Close():;

a) hpx;1, hprof;1, ntuple;1l, hpxpy;l

b) hpx;1, hpx;2, hprof;1, hprof;2, ntuple;1l, hpxpy;l

C) hpx;1, hprof;1, ntuple;1, hpxpy;1l, cl;1

d) hpx;1,

hpx;

2, hprof;1, hprof;2, ntuple;l1,

hpxpy; 1, hpxpy; 2

€) hpx;1, hpx;2, hprof;1, hprof;2, ntuple;1l, ntuple;2,

hpxpy; 1, hpxpy;2,cl;1

f) None of the above

ntuple; 2,

Quiz on Streamers

Note that in this quiz more than one answer may be correct. Choose all the

choices that apply.

1. A streamers job is to:

a) Write an object to a file

b) Decompose an object into simple data types and write them to a buffer

c) Decompose an object into simple data types and write them to a file

2. A streamer is:

a) Responsible for calling the streamers of all its parents

b) Responsible for calling the streamers of all its object data members

c¢) Streaming simple data members

d) Responsible for checking the byte count

3. What class contains the TBuf fer with the streamed object when the
object is written to a file in the TObject: :Write method?

a) The Object's class (i.e. Event)

b) TKe

y

C) TObject

4. How would you modify the EventLinkDef.h file to let rootcint know

NOT to generate a streamer for the EventHeader class?

a) #pragma
b) f#pragma
c) #pragma
d) #pragma

link C++
link C++
link C++
link C++

class EventHeader*;
class EventHeader-;
class EventHeader+;
class EventHeader;

Quizzes and Answers

Draft, December 2000 - version 0.6.3

299

5. How would you modify the EventLinkDef .h file to tell rootcint to
include the byte count check in the automatically generated streamer?

#pragma link C++ class EventHeader*;
fpragma link C++ class EventHeader-;
fpragma link C++ class EventHeader+;
#pragma link C++ class EventHeader;

0O Q0w

6. Assuming the EventLinkDef . h file contains this line:

#pragma link C++ class EventHeader+;

What statements below apply when this call to ClassDef is made?

ClassDef (Event,0)

a) Writes the class version number 0 in the streamer
b) Generates an empty streamer
c) No streamer is generated

d) A streamer with a byte count check is generated

7. Why would you write your own streamer?
a) Because you need to read/write multiple versions of your class

b) Because you have an array of integers data member and an older version
of root

c) Because the streamer generated by rootcint does not stream the parent
classes and your class inherits from multiple classes.

8. How does ROOT react when reading objects without streamers?
a) Using a default streamer
b) Skipping the object by using the byte count

c¢) Stop reading and print an error message

9. What does the StreamerInfo string tell us about the class?
|

"TNamed; TAttLine; TAttFill; TAttMarker;Int t fScanField;Int t
fUpdate;Int t fMaxEntryLoop;Int t fMaxVirtualSize"

a) It inherits from TObject
b) It inherits from TNamed, TAttLine, and TattFill

c) It has an array of integers.

10. Why do you need to write your own StreamerInfo when you have a
customized streamer?

a) Because ROOT will give a segmentation fault if you don't
b) Because ROOT will otherwise generate an empty string

c) Because the string needs to match the order and contents of what is
streamed out in the streamer method.

300 Draft, December 2000 - version 0.6.3 Quizzes and Answers

Quiz on Trees

1. We have a class called Event with these data members:

class Event : public TObject {

Int t fNtrack;

Int t fNseg;

Float t fTemperature;
EventHeader fEvtHdr;

TClonesArray *fTracks;

class Track : public TObject {

Int t Px;
Int t Py;
Float t Pz;

Creating a branch with this call, how many branches will be crated?

Event *event = new Event();
tree->Branch ("EventBranch", "Event", &event);

a) 1
b) 5
c)6
d)7

e) Error

2. With this command, how many branches will be created?

Event *event = new Event();
tree->Branch ("EventBranch", "Event", &event, 64000,0);

a)0
b) 1
c)4
d)5
e)6
f) Error

3. With this command, how many branches will be created?

Event *event = new Event();
tree->Branch ("EventBranch", "Event", event, 64000,1);

a)0
b) 1
c)4

d) error

Quizzes and Answers Draft, December 2000 - version 0.6.3 301

4. How many branches will this tree have?

tree->Branch ("Ev_Branch", &event,
"ntrack/I2:nseg:nvtex:flag/i:temp/F");

a) One branch, with five leaves

b) Five branches with one leaf each
¢) No branch, no leaves

d) Error

5. What type of leaves is on the branch of the tree above?

a) 3- 32 bit signed integer, 1- 32 bit unsigned integer, 1- 32 bit floating point
number.

b) 1- 16 bit signed integer, 3- 32 bit unsigned integer, 1- 32 bit floating point
number.

c¢) 1- 32 bit signed integer, 3- 32 bit unsigned integer, 1- 32 bit floating point
number.

d) 3 - 16 bit signed integer, 1- 32 bit unsigned integer, 1 - 32 bit floating point
number.

6. Assuming we have a structure defined below:

typedef struct {
Int t a,b,c;
Float t p;

} MyStructure;

MyStructure mst;

How many branches and what type of leaves will this call to Branch create?

tree->Branch ("ABranch", &mst,"b/i:c:p/F");

a) One Branch with three leaves: two integers and one float.
b) Three branches with one leaf each. One integer, and two floats.
¢) One branch with three leaves: one integer and two floats.

7. In the question above, what variable in the structure will be in the leaf
called "b"?

a)mst.a
b) mst.b
C)mst.c

d)mst.p

8. Which of the cases below are candidates for a branch of
TClonesArrays:

a) An array of events
b) An array of tracks for one event

¢) An array of hits for one event

302 Draft, December 2000 - version 0.6.3 Quizzes and Answers

Answers to Quiz on ROOT Files

C - is correct. The last command sets the current directory to 2, which is
AFile2.root.

B - is correct. At this time, there are no objects in memory. The list that
gDirectory->GetList () returns is empty.

C - is correct. The call to the Draw method brought the object hpx into
memory.

C -is correct. The call hprof->Write () added another version of hprof to
the file. It did not add anything else.

E - is correct. The f1->Write () command added yet another hprof object
and a hpx object to the file.

F- is correct. After the file is closed, gDirectory no longer points to it.

Quizzes and Answers Draft, December 2000 - version 0.6.3 303

Answers to Quiz on Streamers

B is correct. The streamer does not write the buffer or the object to a file. It
only streams the object into the buffer.

A, B, C, and D are correct.

B is correct. TObject: :Write creates a TKey, which has a buffer
B is correct

C is correct

B is correct. The zero in the version parameter is a special case and instructs
CINT to generate an empty streamer.

A and B are correct.
B is correct
B is correct

C is correct

304 Draft, December 2000 - version 0.6.3 Quizzes and Answers

Answers to Quiz on Root Trees:

1. E - is correct. The branch is split by default to one branch for each member
function. The split is recursive, so the track in the clones array is also split
into one branch per data member of the track class. This adds up to 7

2. B - is correct. The split-level is 0 and there is only one branch with one leaf
of type Event created.

3. D - is correct. The third parameter is not a pointer to an Event object, not
the address of a pointer.

4. A- is correct. The second parameter is the description of the leaf list in the
branch.

5. D - is correct. The type qualifier "I2" means a signed integer that is 2 bytes
(i.e. 16 bits" long. When no type is given as in nseg and nvtex the type of
the previous leaf is assumed.

6. A - is correct.

7. A - is correct. The second parameter is the address of the first leaf. The
address in this statement is of the first variable in the structure which is "a".
The leaf list string names the first leaf b. Hence the value a will be in the leaf
b.

8. B and C. Both of these cases are an array per entry.

Quizzes and Answers Draft, December 2000 - version 0.6.3 305

24 Index

A
accent SYmMbOIS.......ceeveveeeiieiiieeie e 122
ACLIC....cooovvvinienne. 92,93, 94, 218, 230, 255

active pad. 19, 23, 97, 103, 107, 109, 111, 112,
114, 148, 149, 207

adding a class.......cocevverieniieciieeeeeee 221
ACLIC..c..iiiiiiiiiiientseeeeeee e 230
1181151401 (<1 1<) USRS 227
shared libraryccccceeveeevieeieeeieeeene 228

ANALYSIS tovvieeiieeiieeie e 206

arc 146

AITAYS evveevreerereerireesreenreenseensseessseennns 183, 200

AITOW .eeeieeiieeiieeeeeeeeeeeeeieeeee e e e e e eenanaees 115, 146
ANGIC ..ottt 116
COLOT .ttt 116
o) 078 10} 1 - 116

asymmetric errors in graphs...........ccccceeeenee. 55

automatic class descriptions..............ceeue.. 273

automatic schema evolution........................ 185

AULOSAVE ..ot 196

axis 130
DINNING ..ovveeiiieieeieeceeeee e e 132
label.....ooiiieiieeee e 130, 132
(0] 0131073 TSRS 130
tick marks............coe.... 33,135,131, 132,133
time format..........occvevveciieieieieeeeee, 132
LI e 35,36, 101, 131

B

bar graph.......ccocoveeieiieieeeeee e 51

benchmark.........cccocoevieiieiiiieeeeee, 249

branchccoeeeevievieieeee 196

browser .78, 158, 174, 193, 199, 204, 247, 249

byte count.................... 179, 180, 183, 185, 200

C
CANVAS eevvvveeieeeeeeeeieeeeeeeeeeeeenareeeeeees 16,97, 106
automatically created............cceeverreennnen. 168
COPY/PASLE v 148
dividing......c.oevvevienieieieeeeeeeen 18,112
list 0f Cavases.......ccoueevveeeiieirieeree e, 168
TANSPATENL ..ot 114
UPAAtING ..vvveeiiieiieeie e 99
chain...215, 218, 219, 250, 251, 253, 254, 255,
275
change directoryccevvvveecieeviieeciie e, 171
check buttons..........ccccvveeeeciieciiiieceeee e 265
CINT e 77
COMMANAS......occvrieeeiieiiiieeiieiie e e e 19
debugger.......cccovvvenieiieiecieeeeen 7,78, 88
dictionary........ccoceevveneeenerennen. 92,93,94,223
dICtONATY ..o 225
EXLENSIONS ...eoeeveeeeeieeeeeereeeeeeee e e 20, 90
J110) 1 TS 8
CITCIES .o 117
class 69
class INAEXoeeeeeriiieeiiiec e 11
class Versioningccceeceeeeveereveeeiveesnvneennns 178
ClassDef102, 181, 184, 221, 224, 228, 310
ClassVersionIDccccveeevieiiiieecieeereeenee. 221
ClENT..cociiiiiieeiee e 261
coding CONVeNtions...........eecveerveeveruernennenne 21
COLIECHIONS ...eoevieciiieeiee e, 231
ordered.......cooveviieeiiiiieeeeeee e, 233
SOTTEA .eeevviieiieeiie et 233
unordered.........ooveeeeeiiiiieiee e 233
color 143
COlor PALELtES ...eeeevieieeeieeeiee e 143
column-wise Ntuples........eecvverereeecreerrieenneenns 26
€combOo DOXES....cccuviiiiiiiiiiec e, 266
command lin€cccceeevvvvvivevieeeieiiinnns 19, 79
RIStOTY ..veeeieieeee e 24

Index Draft, December 2000 - version 0.6.3 307

QUIL ettt 14

ShOTT CULS ..., 20
command OPtiONS.......c.eevereeereeerieeierreenenns 14
CONSIIUCTOL «.vvvvveieeeeeeeiiireeeeeeeeeirreeeee e 15,72
contact

COMIMENLSevveeeiiieeeeerieeeeereeeeeireeeeereeeeeneas 2

Mailing listccoovereieiieieeieeeeeeee e 2

context menu 17, 101, 102, 108, 127, 136, 141,
142, 146, 148

AddINg.....eeeiieeiieeieee e 102
tOZEIE woieieeie e 102
CONLOULneverieeeeeeeeecinieeeeeeeeeenns 33, 34, 40, 43
COPY/PASEE .eeeveeeerieerieeieeeieeeireesereeseveeneneens 148
COTE lIDTATY .. 8
(110 A 120, 146
Curly lines......coovevveveenienieieceeenenn 119, 146
current directory.....22, 83, 165, 170, 171, 172,
174,175, 192, 210, 211, 313
CUITENt SEYIE .oovveeniieiieiieieeeeee e 155
CUTSOT «eenirenieenieenteenteenreeerenaeenieenteereenneenneennes 98
cut 207
CVS 294
cycle NUMDETcooovveiiiieieeieee e 166
D
data encapsulation...........cccceevveeecieencreenciennnns 71
debuggingccccecveeienienirieeeeeee 88
default constructor 221,222,228
dESEIUCTOT ...t 74
diamondoceoevinininee 146
documentation............cceeeerveerieerieninesneeeenne 296
draw options for graphsccccecveeeennnnen. 49
draw options for histograms...........cc.ccceeeenee. 33
draw panel
SHACT ..o 17
DrawClonePad..........ccocevieniiniiniiiiniees 148
drawing ObDJECtSccvveerurierieeriiecieeeiee e 97
E
ClLIPSE ..vve et 146
CILIPSES weeenvieeiieeiieeee et 117
environment SEttingsccceevveerveerveenereenne 24
errors in graphsoocvevvevvenienieieeeeeeee, 54
EVENL LISt .eeiiieiieiieii et 210
1 C:1 111 0] [T 9, 245, 246
ANALYSIS...eevieiieieeie et 253
AXIS 1o 134, 135
bar graphccceeeviviiieiieeee e 51
basic graphics......ccccvveeeveercrieeneeenieeeieeenne 246
collection classes........c.cceveereeneenieeieennene 246
COPY/PASEE evveerreenreeeireeieeeieeeieeeereenaneens 148
creating a file.......cccoeeveeeieiiiecieeeeeee 157
CIeating @ tre€....ccvvveervreerereeieeeieeeereeeeeens 246
creating histogram............ccoecvevvenvenieennen. 246
FIENG e 64, 246
fitting SUbranges.........cocevverevecveevenienneenne. 63
fitting with user defined function............... 62

EEAPN ...oiiiieie e 49
graph with contineour line.............cccceue... 50
GUI aCtionscoveeveeerieeieeienieniiesieeneeene 270
GUI applicationccceceeeeereeenieerveenennn. 252
GUI ClasSes......cevveervieiieieeieeie e 268
GUI frame layout.........cccevvevveneeneeienen. 269
GUI WIdEELS .ovvveeeeeieieeeieeeeee e 270
JATEX e 124, 125
lazy application..........cceceeevervenienvenneenne. 247
lazy GUI ClasSesc.ccoveerveerieeniienieennen. 246
lazy MatriX...c.ocoveeevveeiiieeiee e 246
mathematical eXperssioncceeeeveennns 123
TNALTIX ¢ttt 246
NEUPLE...veieieeiieeee e 192
PoStSCIIpt oo, 153, 154
remote access to a file......ccocvevvevreciennns 187
SITEAIMNET ..ottt 177
StriNgG ClasSes.....c.eecvveververierierieieeieeenenn 246
1151510 USRS 246
threadsSooooveeieeieeeeeeeeeee e 285,289
tree with an event list..........ccocceevvrennnns 211
VECTOTS 1evenveentientienieenieeteeite st sieesiee e ene 246
exit 14
eXponentialcccveeeveeiiiieniie e 60
F
Feynman........ccoccoooiniiniiniiiiiiceee, 119
file 157
ClOSE. .ttt 173
COMPIESSION....veeeereereenreeereeereneeenerenseenseenees 162
current dir€Ctoryoevvveeveeveevenrerieneeenes 166
cycle nUMbErS........c.oocvvvierieieiieeeeee. 166
free BIoCK.....oovieieieieeeeee e 160
headercoceovevinininiiicccee 159
list Of ODJECES .oovvveeereeiieeeiee e, 171
logicalcueeeieeiiieeiiecieecee e 162
logical VIEWcceeevvieviieeiieciieeieeeie e 164
NAVIZALING ..eevevieeiieeiieerreeireesveeereesaee s 174
objects N MEMOTYccveerveerveeereeeereennen. 167
objects on disK.....cccveeveveeeiieriiieeiieeireene, 167
OUL OF SCOPE v 173
physical [ayout........cceceeeeevieiiirieeieee 157
read MOdeooovveiieiieiieeee e 167
TECOTA. ettt 160
TECOVETY c.uvieuiieeiieeieeenireenieeesireenaeeesneenane 161
retrieving objectSoevveveereeerieee e 173
saving collectionscccveevveerveenveennenns 172
saving histograms..........ccceeeveevveerveennnenn. 169
SAVING ODJECES c.vverveeeiieeiieeire e 172
SUDAITECOTIeS. ..o 174
subdirectory
TEMOVING.eeuvieeereeirierreeeieesveenseesseenens 176
WITEC. c.veveierieeiteeere et 169, 173, 205
files
ACCESS VIa WED SCIVET ..ocevvevveieeereiieieenee 189
fill attributesoovveeeveieeeee e, 142
Fit Panelcccoovieiiiiieeeeeeeee e 59
fIttING eeeeieeiieeee e See histogram fitting
draw OPLIONS ..cevveeeeieeiiieeieecieeeree e 61

308 Draft, December 2000 - version 0.6.3 Index

exXponential.........ccceeeveeerieeiieenieeie e 60

FUNCHON .o 60
GAUSSIAN ...enieiiieieeiieiceieee e 60
hiStogramccoecvevveniienieeee e 59
initial parameters.........ccceevveveeererveneennnnn, 62
landau........coevieiieieeee 60
o) 074 o) 1TSS 60
polynomialccccceviiiienieieeeeeee 60
predefined functionccoeevveeeieiennenns 61
QUICE weveentieeiie et eere et e sre e e aeesreeebee e 60
TANIZE .vveeereeeereesreeereeereeeseeesreenseeesaeensneens 60
VETDOSE ...ttt 60
fonts 138
fraCtions ..coveeeeeiiiiieieee e 120
frAME .o 266
framework........ocvveeivienieieeee e 3
AdVANtAZES...c.veevieieeie e 4
COMPONECILS ...veveeirieiiieeiieeiieerieeeieeenereenaeees 4
OTZANIZAION ..veevveeveeiieeeiesiieie e eeeeeieeeeeeneens 6
function
derivativececvevierieeee e 15
1011574 -1 KU PR 15
G
AUSSIAN.....eeeeieieeniennenn 31, 46, 59, 60, 61, 157

gDirectory3, 22, 23, 83, 165, 166, 167, 169,
171, 174, 175, 176, 211, 257, 283, 304,
307, 308, 309, 313

gEnv21, 24, 25, 140

gFile23, 175, 283

GHtML ..o 273

global variables.........cccceeveeeerceiieeieeee, 22

gPad 23, 35, 45, 104, 107, 108, 109, 111, 112,
114, 115, 147, 149, 278, 279, 282

gRanNdom......cccovvvieeiieiecieeeeee e 24,45
EIAPN oot 49
ASYMMELTIC ETTOTS...eevveeeereerereerreenreenveenens 55
AXIS 1ttt ettt 50
AXIS tIlES .evveeiiiiieiee 57
bar graphcceecveeecieeiiieeie e 51
COllECHION. ... 56
draw Options........ccevvereeriieciieieeieeieeene 49
FIHNG e 51
FIENZ e 56
MATKETS. c..eveieeiicieiciercecee e 52
ZOOML..cnveenreenreenreeerenieenieenteesreeneennesasesanene 57
graphical CUt........cceecvvevieeniieieeie e See
graphical editor........c.coccveevvienieeniienieeen, 146
graphical objects
adding eventscccccceeveeeiieenieeieeeene 103
coordinate SySteM.......ccccueerevreerrrerrereennneens 110
CONVETSION ..enieniieiieeiieriie e 112
global setting..........ccoeevvevervennnnnne. 109, 110
110
pixel coordinatesccceeeueennnn. 109, 110
110
MOVING ..ottt eeee e eee e snee e 98, 99
TESIZING ...eveeeerieereeeieeeireeieeertreenereeseeeenaneens 98
SEIECHING ..ot 99

graph
CITOTS. c.eeneeenteeneeeeeeeieenteete et eeteseteseee e eneeenee 54
SUPETIMPOSING ..eeevreeerieereeeireeieeeireeereenens 53
greek fontcoooveeieiiii 122, 152
gROOT....... 22,23, 33,40, 75, 84, 85, 93, 123,

124, 125, 134, 143, 144, 155, 156, 167,
168, 192, 230, 254, 257, 269, 271, 304

SROOT->ReESEt ...oeevviieieeiiieieeiieeeene 75, 84
(€10 B o7 o) s U 270
GUI Application.......c.ccccvveeeveercieeniienieeneen. 252
H
R2T00t ... 26,294
HBOOK ..ottt 26
heap 72, 83, 84, 173
histogram.........ccceevveeeieeniierieecieeeee e 27
1-D hiStogramsccccveeeueeeirreereeeniveennens 27
2-D hiStogramsccceceevvereeneenierireenenns 27
3-D hiStogramsccceceeveereeneeniesieennenns 27
AddITION. ... 31
AXIS HILLE v 35
change default directory 171,172
ClONE ..o 46
color paletteccueevveereienieeriieeieeeas 44, 145
CONTOUL ...ttt 40
c00rdinate SYStEMScccveereveerveerveeaneenns 41
AIVISION ..ottt 31
draw OPLIONS ..ccvveeeeieeriieeieecreeevee e 33
AraWINg.....coeeveeiiieeieecieeeee e eiee e 32
draw OptioNSecveveeerieereieee e 33
refreshing.........occveeveecieeienieeeeeeeee, 32
SUPCTIMPOSEC ..c.vvenvrenvrenreenreenrearesresnesenanes 32
CITOT DATS ..ottt 31
FIING e 30
with random numberscccceeeernenee. 31
FIrSt DN o 29
Fit Panel........ccoconiiniiiiiiees 59
TN v 59, 60
combining functionsccceeeveerveeeneens 64
CITOTS . .euveeteeiiestienteeieeteeteeieeseeesaeeneeenaeens 68
FUNCHION ...t 60
function List.......ceoveeeeeienieieeeeeeis 63
initial parameterscoceeereeerereeeenne. 62
0] 018 Te) 1 TR 60
parameter bounds...........cccceeveerienienienne. 67
PATAMELETS ...eevveerniieeieeeiieeiee e 67, 68
TANEE .vveeuvreeereerereesereesreesreesseeeseesseeensens 63
SEALISEICS wouveeneeeiieeiieeiieeeee e 68
user defined functioncccuveeee... 61, 62
1aSt DIN oo 29
legendccoeveeiiieeiieieee e 150
1820 PIOt..eiiieiieiiieeee e 41
list of fuNCtions........cecvvvevieneecierierreee, 61
1og SCale...coouieeieiieeeiee e 114
MUultiplicationceceevvevvenenenenencneneenee 31
profile histograms...........ccccecvevenencrcnennen. 27
PIOJECLION..c..eviuieniiieniiieniceieeeereeeneenie e 32
TEAAING ..eeevvveeiieeie et eve e 46
TE-DINNING ..eovevveeiiieeiie e 30

Index Draft, December 2000 - version 0.6.3 309

automatic re-binningcccceeeeeveenneenn 30

remove from directoryccceeeveerveennnen. 171
saving to file.......coocevviiienininieee 169
SCALLEr PlOt..eoeieiieiieieeieeeeeee e 36
$eCONd DIN ..oovvveiieiieieeieee e 29
second to lastf bincceoevevverienieiee, 29
SEYIC e 32
SUPCTIMPOSE ..eenvvenveenveenreenreenreeneeneeenseenseennes 45
SUrface plot.......cceveevierienieieeeeee e 43
variable bin SiZeS........ccceeeveervieeecrieiiieeeieens 29
W ceeeveeeiiieeieeeiee e eiee e e evaeenaeeens 46
history file.....cccoevveeevieeieeieee e, 24,194
home directorycocveevveeeciieeiieeiie e, 167
|
T/0 1edireCtion.......cccveeeveeeiieciieeiee e 80
icons265
IN MEMOTY ODJECES....eovvieierieieeieeie e 169
include path.........ccoocvevieiiniieeeeee, 94
INheritancecoecveveerieenieeieee e 70
INPUL/OULPUL ...t 157
INSPECHING ..evvreieiieiieie et 89
install ROOT ..o, 292
110115401 (51 1) GRS 77
TEeratOr....c e 236
TEETALOTS 1t eiee et 233
K
key 160, 163,170, 172, 181, 231
KEY 165
KOVEIWIILE ..oevveeiieeiie et 171
L
label 146
1abELSeeeieiieieee e 126
landau........oooeeeierieee e 60
latex 120, 146
layout Managersccoecveeveerieeneeneenieennenne 266
1€ZENAS ..o 150
1820 POt .eeiieeiieiiee e 41
1100 21 4 1< USRS 8
CINT e 8
COTC..uveeerieenrreeteeeteeetreessaeetreensseensseesssaennsens 8
dependencies........cceevverieeniiienieeie e 8
JICENS ..ttt 291
line 115,146
line attributescccveeveeverienieriee e 141
LinkDef.......cccvevvrrennen. 10, 182, 183, 226, 229
LSt DOXES ..vovvveneeeniieie et 266
logarithmic scale.........ceoveveveciieciieireienne 114
M
macro Pathccoecveveerieiee e 25
Mailing liStooverieniiniii e 2
MATKET ..vveeiiiiieeeeeeee e 118, 147
MATKETS .oeoviieiiecieeeiee et 52

mathematical eXpressions.........ccceeevveeveennee. 120
mathematical Symbols.........c.cccceevevveeneennne. 121
MENU DATS ..o 265
method overridingccoccveveervenieniieieeene 70
MEthOdS ..oviiiieriieieiceeccee e 70
mouse
left BUttonc.oovveviininirccicceece 98
multi-line commandcccoeeveriiecieeiennnnns 20
multi-pad canvascceeeveeeeriecirecieeieeeenns 18
multiple SOCKETS....cceevevieeiieiiieeieeeieeeieeee 264
MUEEX ..o, 279, 281
N
NDC109, 110
NEEWOTKING....eeevieiieeeiie e 261
normalized coordinate system..................... 109
111101 0] (=T RUUSUUSRPSRRRUSNt 191
19:€:11110) [T USSR 192
o
OBJ 165, 168
objects IN MEMOTYeeevveeereerireereeeereennees 167
objects on disk........ccceevereiiriiiieieeeen 167
ordered collectionsc.ccceeveereerererieennen. 233
P
pad 146. See canvas
coordinate system...........ccceevvvenennne. 108, 110
COPY/PASEE ..o 148
AIVIdING....eeiieiieeeeeeee e 112
find an object......cccccevveiieeciieiieee e, 107
hide an object.......ccevvvevveeriieiieeiieeiees 108
TTANSPATENL ...evveeevieeeiieeieeeiee e eieeeeee e 114
PAlELE oot 143
pave 146
PAW oo 1,26, 253, 294
pixel coordinate............ccoeevreveenennnnnne. 109, 110
pixel coordinate System............ceccverveennennne. 109
point118
POLY-1INE ..o 117, 146
poly-marker..........ccovveviveviieiieieeeee e 119
polynomial........cccccveeviienieeniienieeeiee e 60
POPUP MENUS ...veeereeerieenveeerreenereenveenveenens 265
POStSCIIPL ..o 151
PIIVALC..ccutiieiieeiie et 71
PROOF ..ottt 275
PUDLIC. ettt 71
R
1adio BUttOnS....cc.eevvieniieiiiieceeeee 265
ramdom NUMDETS........cccverveerieeieeieeie e 24
rectangles.......ccovveveeniieniieieeeee e 117
reset 75, 84
Rint 166
100talias.Cooveiiiiiiniinieerceeccee e 25

310 Draft, December 2000 - version 0.6.3 Index

rootcint7, 93, 94, 102, 181, 182, 183, 185, 225,

226,229

rootd7, 186, 187, 294

command line arguments 188
ro0tlogoff.C ..o 25
rootlogon.C......oovveiieiieieeie e 25,155
TOOLICorrrrrereeeeeeeccirreeeeeeeeenn, 14, 24, 25, 82, 140
FOW-WiISE NEUPIES ...oovvieeieiieiecie e, 26
RTTT e 4,78,221,232,267
REypes.h.coeieiiiiieee e, 221
S
saving collections to disk........ccccocceverneine 172
SCALtET PlOt..ieeiieiiieeieeciieeeeeee e 36
schema evolutioncccceeeeveeneeenveennnenne 184
SCOPE -eeevenee 81, 83, 84, 85,171, 173, 181, 227
o1 41 0] AR SRUSURUSRPSIN 81

COMPILING .o 92

debUugger......cooveiiiieieee e 88

named..........oooeeeeeeiieeeeiieeeenn, 82, 83, 84,92

UN-NamMedcccveveevveeeeeneeeeenennn, 81, 82, 84
script compilercoevveveveieriennens See ACLiC
SCIIPt PAth..ceeeieieieeeeeee e 25
SCIOIl DATS...ccvieiiieciieciiecee e 266
SEIECLOTS .evieerieeiieeiie ettt 218
IS0 o) 110 (PRSI 279
SEIVET .eveeeveeeueeerreesseesteeessreessreessneensseenseeens 261
ShowMembETs()......cevvveerveerrrerreerireereeeenees 225
SIHACTS ..o 128
SOCKET ..t 261
sorted collectionscceevereerieenierieenenne 233
special characters.........coocvevveciveciieireieeeans 152
split-leveloooveiiiiieeeee 197
square root SYmMbol.........coecveveerieriierieenae 121

stack 72, 83, 84, 85, 128, 173, 284, 286
statistics

TN e 68
STL 242
STTEAIMETccoevieeeeeeeee e eeeeeieeees 176, 262
AITAYS e eveeeveeerreenreeetreeseeeentreenseeessreessseens 183
exclude a data member.............cccveernneen. 226
generated by rootcint..........coeceevveriiennnenee. 181
turn off automatic creation....................... 182
WIItING ODJECtS....vviveeeiieieeieeieee e 180
style 155
SUDAITECLOTICS ..ot 174
SUPErimposing graphscoeceeevveerveenveennns 53
SUPCTSCIIPLS .vveeerieereeeieeeieeeireesereeseveeneneens 120
supported platformscccceveeeieerieens 5,292
SUrfacce plot......ccvveeeeeeieerieeieeee e 43
T
tab completioncceeeeeecieiiiieeiie e 20
TBrowser 20, 21, 26, 158, 247, 249
TChainccooeveeieieeeeeeceee e See chain
TCIONESAITAY ...oovvveeveeeieeiieeee e 241
TCoNdition.......ceevverviereeieeie e 279
template CONtainerscceoevevvereverereneeennnns 242

test 249

teXt attribDULES ..uvveeveeeie e 136
TGraphcccceeeevveeciieeieeieeeeee 49. See graph
TGraphAsymmEITors.ccoeevveeveieieniennne 55
TGraphELrorsc.oeevveveeieeieeieeie e, 54
THILFit e 60
thread.......oooeveieeiecieeeee e 277
threadsoeveeieeieeeee e 286
asynchronous actionc.cceeveeveneennee. 281
cancellingcoocvveevieivieeie e, 283
CONCUITENCY +vveenvvreereernreeanreesreenseesseesnees 286
condition variable...........cccceevveeriienireenen. 287
deadlockccveevieeniieieeee e, 288
19.€:11110) [T ISR 289
LOCK ettt 287
TNULEX .veeenvieeeiieeiee ettt esiteesteeeseeeesaeeesaree e 287
reentrant Codeoovereereenieerieeie e 286
SemMAapPhore.......cccvvviieiiciecieee e 287
Synchronizationcceeeeevvevveereneennnns 286
THEML .o 273
TIETAOT ... eeeeieeiieeee e 234
TLASE 1ttt 238
TIMESSAZE ..vveeveerireeereeeieeereeeieeeveeereeeneees 262
TMUltiGraphcceeeveevieeieecieecee e 56
TODBJAITAY ..o 240
TODJECE..eeeiieeiie ettt 22
WIILC ..veeetteeieeeieeiie ettt 181
TPAVES c..eeeiiieiierieeeee e 126
treads
INIAlIZAtION. ..o, 279
installationcceevevveeiecieeeceeee, 278
T0CE VIEWET .o eeiesieeeieieenee e eeve e e 193
trees 191
ANALYSIS 1ovvvieiiecieeeie e 206
AULOSAVEeeeeiieeeieeiie e eiee et 196
branches........cccoeveevciieeneeeciieeee e 196
AddiNg ...coeeveeiieieceeee e 204
array of ObJectS .ocvvvvveerieeiiieeiie e, 200
array of variablesccoccvvevvecveniennnne. 200
identical namescccoceveververierieennnne, 201
list of variablescccccveveveciirieeieenne, 199
0] o] <1 £ 196
split-levelcooverieiineeieceeeeee e, 197
CIEALING .ovvveeiieeireeire e eve e 195, 203
creating histograms..........ccceeevveeevveerereennen. 211
cut 207
AIAW et 206
draw OPtiONS ..ccevveeveeeireeie e eve e 208
EVENL LISt cuveeeiieiiieeiie e 210
FIING e, 204
INfOrmationcceeveeveieeieeie e 212
MakeClass......... 206,212,214,217, 218, 253
SAVINEZ weeveevrenriienienienieeie et sbe e eieenees 195
SCIECHION. ..ot 207
13 511101 PR 218
TCloNes AITaYeeeveevreeereerrieereeeieeennes 209
TTEC VIEWET .eeveeeeeieeeireeiee e eieeevee e 193
true type fonts.......cceeeveevieeniienieeeieeeieeee 140
TULOTIALS ..ttt 9
types21

Index Draft, December 2000 - version 0.6.3 311

U X

unordered collections..............cccevveeeeenennnn. 233 X11 265

user coordinate SyStem........cceeevveereveenveenne 109 XlaSS'95 et 265
W Z

WED SEIVET ..eiiiiiiiiiieeeeeeeee e 189 4010 1 4 DRSS 16, 17,57
WED STt ..vviiieiiiic e, 11

WIAZELS ..vveeeieecieeeiie et 265,270

312 Draft, December 2000 - version 0.6.3 Index

	Preface
	Table of Contents
	Introduction
	The ROOT Mailing List
	Contact Information
	Conventions Used in This Book
	The Framework
	Installing ROOT
	The Organization of the ROOT Framework
	How to Find More Information

	Getting Started
	Start and Quit a ROOT Session
	First Example: Using the GUI
	Second Example: Building a Multi-pad Canvas
	The ROOT Command Line
	Conventions
	Global Variables
	History File
	Environment Setup
	Logon and Logoff Scripts
	Converting HBOOK/PAW files

	Histograms
	The Histogram Classes
	Creating Histograms
	Fixed or Variable Bin Size
	Filling Histograms
	Random Numbers and Histograms
	Adding, Dividing, and Multiplying
	Projections
	Drawing Histograms
	When a histogram is automatically created as a result of a TTree::Draw, the style of the histogram is inherited from the tree attributes and the current style is ignored. The tree attributes are the ones set in the current TStyle at the time the tree was
	Statistics Display
	Setting Line, Fill, Marker, and Text Attributes
	Setting Tick Marks on the Axis
	Giving Titles to the X, Y and Z Axis
	The SCATter Plot Option
	The ARRow Option
	The BOX Option
	The ERRor Bars Options
	The COLor Option
	The TEXT Option
	The CONTour Options
	The LEGO Options
	The SURFace Options
	The Z Option: Display the Color Palette on the Pad
	Drawing Options for 3-D Histograms
	Superimposing Histograms with Different Scales
	Making a Copy of an Histogram
	Normalizing Histograms
	Saving/Reading Histograms to/from a file
	Miscellaneous Operations

	Graphs
	TGraph
	Superimposing two Graph
	TGraphErrors
	TGraphAsymmErrors
	TMultiGraph
	Fitting a Graph
	Setting the Graph's Axis Title
	Zooming a Graph

	Fitting Histograms
	The Fit Panel
	The Fit Method
	Fit with a Predefined Function
	Fit with a User- Defined Function
	Fitting Sub Ranges
	Adding Functions to The List
	Combining Functions
	Access to the Fit Parameters and Results
	Fitting Between Parameter Bounds
	Associated Errors
	Associated Function
	Fit Parameters
	Fit Statistics

	A Little C++
	Classes, Methods and Constructors
	Inheritance and Data Encapsulation
	Creating Objects on the Stack and Heap

	CINT the C++ Interpreter
	What is CINT?
	The ROOT Command Line Interface
	The ROOT Script Processor
	Resetting the Interpreter Environment
	A Script Containing a Class Definition
	Debugging Scripts
	Inspecting Objects
	ROOT/CINT Extensions to C++
	Interpreting and Compiling a Script
	ACLiC - The Automatic Compiler of Libraries for CINT

	Graphics and the Graphical User Interface
	Drawing Objects
	Interacting with Graphical Objects
	Graphical Containers: Canvas and Pad
	Graphical Objects
	Axis
	Graphical Objects Attributes
	The Graphical Editor
	Copy/Paste With DrawClone
	Legends
	The PostScript Interface
	Create or Modify a Style

	Input/Output
	The Physical Layout of ROOT Files
	The Logical ROOT File: TFile and TKey
	Streamers
	Accessing ROOT Files Remotely via a rootd
	Reading ROOT Files via Apache Web Server

	Trees
	Why should you Use a Tree?
	A TNtuple Example
	The Tree Viewer
	Creating and Saving Trees
	Branches
	Five-Steps to Build A Tree
	Using Trees in Analysis
	Chains

	Adding a Class
	Motivation
	The Default Constructor
	rootcint: The CINT Dictionary Generator
	Adding a Class With the Interpreter
	Adding a Class with a Shared Library
	Adding a Class with ACLiC

	Collection Classes
	Understanding Collections
	General Characteristics
	Determining the Class of Contained Objects
	Types of Collections
	Iterators: Processing a Collection
	Foundation Classes
	A Collectable Class
	The TIter Generic Iterator
	The TList Collection
	Iterating over a TList
	The TObjArray Collection
	TClonesArray – An Array of Identical Objects
	Template Containers and STL

	The Tutorials and Tests
	$ROOTSYS/tutorials
	$ROOTSYS/test

	Example Analysis
	Explanation
	Script

	Networking
	Setting up a Connection
	Sending Objects over the Network
	Closing the Connection
	A Server with Multiple Sockets

	Writing a Graphical User Interface
	The New ROOT GUI Classes
	XClass'95
	ROOT Integration
	A Simple Example
	The Widgets in Detail
	Example: Widgets and the Interpreter
	RQuant Example
	References

	Automatic HTML Documentation
	PROOF: Parallel Processing
	Threads
	Threads and Processes
	Implementation of Threads in ROOT
	Classes
	TThread for Pedestrians
	TThread in More Detail
	Advanced TThread: Launching a Method in a Thread
	Known Problems
	Glossary
	List of Example files

	Appendix A: Install and Build ROOT
	ROOT Copyright and Licensing Agreement:
	Installing ROOT
	Choosing a Version
	Installing Precompiled Binaries
	Installing the Source
	Setting the Environment Variables
	Documentation to Download

	Appendix B: Event.h
	Appendix C: SplitClass
	Quizzes and Answers
	Quiz on Root Files
	Quiz on Streamers
	Quiz on Trees
	Answers to Quiz on ROOT Files
	Answers to Quiz on Streamers
	Answers to Quiz on Root Trees:

	Index

