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Abstract

The in-uence of the conformational changes in the system on the electron transfer (ET) is
considered. In the present work it was assumed that the electron interacts with two baths. The
in-uence of one bath is through the stochastic function c(t) that characterizes the conformational
changes of the system, and the other is a set of harmonic oscillators. The rate of ET was derived
in the master equation approach. The solution of the generalized master equation for the gating
processes was obtained. It was shown that the contribution to the temperature dependence of
the rate constant that comes from electronic coupling could be dominant. The presented theory
was used to provide an alternative elucidation of the cytochrome c oxidation in Chromatium
vinosum photosynthetic bacteria.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Electron transfer (ET) and atom or molecular transfer reactions play a central role
in a variety of biological reactions. Understanding the mechanism of these reactions is
of continuous interest [1–6]. It is by now well established that the proteins at room
temperatures -uctuate around their average structure, and that these -uctuations have
an important role in the protein function [7]. It has been suggested that protein -uctu-
ations open pathways for molecular motion that are not available in the rigid proteins,
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by removing a steric hindrance or opening a gate [8]. It was shown in the works
[9,10] that the biological ET reactions could be controlled by conformational transi-
tions in ET complexes. The photosynthetic reaction centers are examples of systems,
where ET may be in-uenced by the orientation of the reactants. In the bacterial reac-
tion center the initial charge separation is not entirely vibrationally relaxed (rate of a
picosecond or less), and the later states are not conformationally (pigments/proteins)
relaxed prior to subsequent ET. A natural question that arises concerning the ET is
the degree to which it can be in-uenced by the conformational changes of the protein.
The temperature and detection-wavelength dependence of the rates of the primary ET
reaction that was measured in Ref. [11] can re-ect a distribution of reaction centers
having di�erences in factors such as the distances or orientations between cofactors.
The nonspherical structure of many biological redox components, as the molecules of
bacteriochlorophyll and bacteriopheophytin in bacterial reaction centers, leads one to
expect that the mutual orientation of the redox partners can signiCcantly a�ect the rate
of ET. It was shown in the works [12–14] that the electronic matrix elements that cou-
ple donor and acceptor states strongly depend on the mutual orientation between the
cofactors. Thus, the transfer of electrons can be in-uenced by the transitions between
the conformational states with di�erent mutual donor–acceptor orientation [15].
A widely used approach describes the dissipative quantum system in terms of a

stochastic Liouville equation [16–18]. The elimination of the bath degrees of freedom
is performed by projection operator methods [19,20] or generalized cumulant expan-
sions [21,22]. In this paper, we apply the projection operator methods and assume that
the electron interacts with two baths. One acts through the stochastic function c(t)
that characterizes the conformational changes of the system, and the other is a set of
harmonic oscillators. We assume that the vibrational modes have a suGcient time to
relax to the equilibrium after each ET step. We consider the conformational changes
independent on the electron localization. It means that we assume that the ET has a
partially hot character.

2. Model

We start with a consideration of an ET system in which the electron has two acces-
sible sites, embedded in a medium. We denote by |j〉 the state with electron localized
at the jth site and j = 1; 2. The interaction of the solvent with the system depends on
the electronic state |j〉 and we denote the medium Hamiltonian in the state |j〉 by Hj.
The total model Hamiltonian for the system and medium is

H = H0 + V ; (1)

where

H0 =
2∑

j=1

|j〉[Ej + �j(c(t)) + Hj]〈j| ; (2)

V = J (c(t))[|1〉〈2| + |1〉〈2|] ; (3)
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where E1(E2) is the site energy of the isolated donor (acceptor) molecule, and �1(c(t))
× (�2(c(t))) is a diagonal matrix element of the interaction Hamiltonian between the
donor and acceptor molecules when the electron is localized on the donor (acceptor)
and the system is in the conformational state c(t). In the parameter �1(c(t))(�2(c(t))),
the electron interaction with the molecules of medium is also included when the electron
is localized on donor (acceptor) molecule and the system is in the conformational state
c(t). J (c(t)) is the electronic coupling parameter and the Hamiltonian describing the
reservoir consisting of harmonic oscillators is

Hj =
∑



{
p2



2m

+

1
2
m
!2


(x
 − dj
)2
}

; (4)

where, m
 and !
 are the frequency and the mass of the 
th oscillator, and dj
 is
the equilibrium conCguration of the 
th oscillator when the system is in the electronic
state |j〉.
Using the standard projection operator techniques [23–25], we can derive a general-

ized master equation for the populations

9tP1(t) = −
∫ t

0
W12(t; �)P1(�) d�+

∫ t

0
W21(t; �)P2(�) d� ; (5a)

9tP2(t) = −
∫ t

0
W21(t; �)P2(�) d�+

∫ t

0
W12(t; �)P1(�) d� ; (5b)

where

W12(t; �) =
2
˝2 Re

{
〈Q(t; �)〉md exp

[
i(E1 − E2)

˝ (t − �)
]

× exp

{∑



E

12

˝!

[( Jn
 + 1)e−i!
(t−�) + Jn
ei!
(t−�) − (2 Jn
 + 1)]

}}
;

(6a)

W21(t; �) =
2
˝2 Re

{
〈Q(t; �)〉md exp

[
i(E1 − E2)

˝ (t − �)
]

× exp

{∑



E

12

˝!

[( Jn
 + 1)ei!
(t−�) + Jn
e−i!
(t−�) − (2 Jn
 + 1)]

}}
;

(6b)

where, Jn
 = [exp(˝!
=kBT ) − 1]−1 is the thermal population of the 
th mode,

E

12 =

1
2m
!2


(d1
 − d2
)2 (7)

is the reorganization energy of the 
th mode when the system transfers from state |1〉
to state |2〉, and

Q(t; �) = J (c(t)) exp
[
i
˝

∫ t

�
K(c(t1)) dt1

]
J (c(�)) ; (8)
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where K(c(t)) = �1(c(t))− �2(c(t)). In the derivation of Eq. (5) the projector operator
D was used in the form

DB=
2∑

j=1

〈Tr(|j〉〈j|B)〉md�j|j〉〈j| ; (9)

where �j is the equilibrium medium density matrix in the state |j〉,
�j = exp(−Hj=kBT )=TrQ{exp(−Hj=kBT )} :

The bracket 〈 〉md is the ensemble average over all possible realizations of c(t). By
deCnition, Tr ≡ TreTrQ where Tre, TrQ are the partial traces over the ET system and
the medium, respectively.

3. Conformational transitions

Now, we deCne the transitions between conformational states of the system. We
assume that there exist two conformational states A and B with the free energies Ea

and Eb. The transfer between these two states is characterized by the random function
c(t) that takes on any of two values which we denote by a, b. This process is deCned
by the di�erential equation for conditional probabilities,

9tP(a; t|y; t0) = −"P(a; t|y; t0) + #P(b; t|y; t0) ; (10a)

9tP(b; t|y; t0) = "P(a; t|y; t0) − #P(b; t|y; t0) (10b)

and the initial conditions

P(x; t0|y; t0) = $x;y :

Here, " is the transition rate from the state A to the state B and # is the transition rate
from B to A. We suppose that these two parameters do not depend on the localization
of the electron. Using the Kramers model of the description of protein conformational
dynamics, we have [26,27]

"=
%a

2&
exp

[
− U
kbT

]
; (11a)

# =
%b

2&
exp

[
−U + Ea − Eb

kbT

]
; (11b)

where %a(%b) is the well frequency of the conformational state A(B), and U is an
activation energy. The stationary solutions of Eq. (10) are

P(a) =
#

"+ #
; P(b) =

"
"+ #

: (12)
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The solution of Eq. (10) that characterizes the conformational transitions will be used
below in the derivation of the rate constants.

4. One-mode approximation

For the sake of simplicity, we assume that the bath can be described by one-
vibrational mode. In this approximation we have

W12(t; �) =
2
˝2 Re

{
〈Q(t; �)〉mde−S(2 Jn+1)

∞∑
q=−∞

(
Jn+ 1
Jn

)q=2

Iq(2S
√

Jn( Jn+ 1))

× exp
[
i
˝ (�0 − q!)(t − �)

]}
; (13a)

W21(t; �) =
2
˝2 Re

{
〈Q(t; �)〉mde−S(2 Jn+1)

∞∑
q=−∞

(
Jn+ 1
Jn

)q=2

Iq(2S
√

Jn( Jn+ 1))

× exp
[
i
˝ (�0 + q!)(t − �)

]}
; (13b)

where �0 =E1 −E2, S =m!(d1 −d2)2=2˝ and Iq is the modiCed Bessel function. Gen-
erally, the expression for 〈Q(t; �)〉md is cumbersome so that we present some limiting
cases. We assume without loss of generality that K(a)¿K(b) and "¿ #.

4.1. Slow-modulation limit

We Crst examine the slow-modulation limit. In this limit, we assume that the condi-
tion ˝(" + #)�K(a) − K(b) is fulClled. Using the solution of Eq. (10) we
get [28]

〈Q(t; �)〉md = P(a)J (a)2 exp
[
i
˝ K(a)(t − �) − "(t − �)

]

+P(b)J (b)2 exp
[
i
˝ K(b)(t − �) − #(t − �)

]
: (14)

Assuming that the Markovian approximation can be used the integro-di�erential equa-
tions (5) can be changed to the master equations

9tP1(t) = −+1→2P1(t) + +2→1P2(t) ; (15a)

9tP2(t) = −+2→1P2(t) + +1→2P1(t) (15b)

with the rate constants

+i→j =
∫ ∞

0
Wij(t) dt :
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Assuming that at the initial time the electron is localized at site 1, Eq. (15) can be
easily solved to give

P1(t) =
+2→1

+1→2 + +2→1
+

+1→2

+1→2 + +2→1
exp{−[+1→2 + +2→1]t} ; (16a)

P2(t) = 1 − P1(t) : (16b)

In the slow-modulation limit we have

+ 1→2
(2→1)

= P(a)J (a)2e−S(2 Jn+1)
∞∑

q=−∞

(
Jn+ 1
Jn

)q=2

Iq(2S
√

Jn( Jn+ 1))

× 2"=˝2
(!a ∓ q!)2 + "2

+P(b)J (b)2e−S(2 Jn+1)
∞∑

q=−∞

(
Jn+ 1
Jn

)q=2

Iq(2S
√

Jn( Jn+ 1))

× 2#=˝2
(!b ∓ q!)2 + #2 ; (17)

where ˝!a=�0+K(a) and ˝!b=�0+K(b). In the high-frequency mode approximation
where we assume that the condition !�", # is fulClled, we get

+ 1→2
(2→1)

=
2&
˝2! e−S(2 Jn+1)

[
P(a)J (a)2

(
Jn+ 1
Jn

)±qa=2

Iqa(2S
√

Jn( Jn+ 1))

+P(b)J (b)2
(

Jn+ 1
Jn

)±qb=2

Iqb(2S
√

Jn( Jn+ 1))

]
; (18)

where qa =!a=! and qb =!b=!. In the derivation of (18) from (17) it was used that

2
=˝2
(!b ∓ q!)2 + 
2

=
2
˝2!


=!
(!b=! ∓ q)2 + (
=!)2

→ 2&
˝2! $

(!b

!
∓ q

)
(19)

for 
=!�1. When we also assume that ˝!�kBT we have

+1→2 = P(a)
2&J (a)2

˝2! e−SSqa 1
qa!

+ P(b)
2&J (b)2

˝2! e−SSqb 1
qb!

; (20a)

+2→1 = P(a) exp
[
−˝!a

kBT

]
2&J (a)2

˝2! e−SSqa 1
qa!

+P(b) exp
[
−˝!b

kBT

]
2&J (b)2

˝2! e−SSqb 1
qb!

: (20b)

In this approximation the temperature dependence of the rate constant is fully deter-
mined by the conformational transitions.
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4.2. High-modulation limit

Now, we examine the high-modulation limit where we assume that the condition
˝("+ #)�K(a) − K(b) is fulClled. We have [28]

〈Q(t; �)〉md = [P(a)J (a) + P(b)J (b)]2 exp[i$(t − �) − .(t − �)]

+P(a)P(b)[J (a) − J (b)]2 exp[i$(t − �) − ("+ #)(t − �)] ; (21)

where $ = (K(a) + K(b))=2˝ and

.=
[K(a) − K(b)]2

4˝2("+ #)

[
1 −

(
" − #
"+ #

)2
]

: (22)

In the Markovian approximation we get the rate constants in the form

+ 1→2
(2→1)

= [P(a)J (a) + P(b)J (b)]2e−S(2 Jn+1)
∞∑

q=−∞

(
Jn+ 1
Jn

)q=2

× Iq(2S
√

Jn( Jn+ 1))
2.=˝2

(% ∓ q!)2 +.2

+P(a)P(b)[J (a) − J (b)]2e−S(2 Jn+1)
∞∑

q=−∞

(
Jn+ 1
Jn

)q=2

× Iq(2S
√

Jn( Jn+ 1))
2("+ #)=˝2

(% ∓ q!)2 + ("+ #)2
; (23)

where % = �0=˝+ $. Assuming that !�"+ # we get

+ 1→2
(2→1)

=
2&
˝2! [P(a)J (a)2 + P(b)J (b)2]e−S(2 Jn+1)

(
Jn+ 1
Jn

)±p=2

× Ip(2S
√

Jn( Jn+ 1)) ; (24)

where p= %=!. If J (a) = J (b) = J we get

+ 1→2
(2→1)

=
2&J 2

˝2! e−S(2 Jn+1)
(

Jn+ 1
Jn

)±p=2

Ip(2S
√

Jn( Jn+ 1)) : (25)

This form of the rate constant was used to elucidate the cytochrome c oxidation
in Chromatium vinosum photosynthetic bacteria in earlier works [29,30] and can be
directly derived using Eqs. (13) and (21) in the case when J (a)=J (b) and K(a)=K(b).
In this case, the electron does not feel the transitions between conformational states.

5. Application to reaction centers

Several mechanisms have been advanced to elucidate the ET from cytochrome c
to the special pair of bacteriochlorophylls in the reaction center of the Chromatium
vinosum photosynthetic bacteria [31]. The dominant interpretation has been given in
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terms of vibronic coupling [29]. In the works [30] it has been proposed that the tem-
perature dependence of the cytochrome c oxidation is due to two parallel ET processes
from two distinct hemes of the cytochrome c. In this paper we consider, similarly as
in the work [10], an alternative mechanism based on the conformational control of the
ET. To elucidate the ET from cytochrome c to special pair we used the formula (20a)
that can be expressed in the form

k(T ) =
exp[ − F=kBT ]

1 + exp[ − F=kBT ]
kA +

1
1 + exp[ − F=kBT ]

kB ; (26)

where F = Ea − Eb is the free energy di�erence between the conformational states A
and B. It was assumed that %a = %b and

kA =
2&J (a)2

˝2! exp[ − S]Sqa 1
qa!

; (27a)

kA =
2&J (b)2

˝2! exp[ − S]Sqb 1
qb!

: (27b)

Using the parameters F=1210 cm−1 (0:15 eV), ˝!=1000 cm−1, Er=S˝!=2500 cm−1,
J (a) = 0:9 cm−1, J (b) = 1:1 × 10−3 cm−1, ˝!a = 2000 cm−1, and ˝!b = 1000 cm−1,
we get kA=2:46×108 s−1 and kB=2:94×102 s−1. It was shown in the work [10] that
k(T ) with such kA, kB and F Cts very well the observed dependence of the ET rate
constant on the temperature in the reaction center of Chromatium vinosum bacteria.
Because of the nonspherical structure of hemes and chlorophylls the mutual orienta-

tion of redox partners can signiCcantly a�ect the rate of the ET. In the works [12,13]
it was shown that relatively small changes in the mutual orientation of the planar
molecules have a strong e�ect on the electronic coupling parameters and can practi-
cally stop the ET. It was assumed in the present article that the ET from cytochrome c
to the special pair belongs to the so-called gated reactions. Because of -uctuations in
the conformational states we assume that there is a small probability of ET in the case
when the gate is closed. Thus, in the computations small values of J (b) in comparison
to J (a) have been used.

6. Discussion

We have chosen a simple model to interpret the cytochrome c oxidation. The pre-
sented theory gives several possibilities how to explain this experiment. For instance,
the incorporation of conformational changes to the theories previously used to elu-
cidate this problem. To do this it must be Crst solved the problem related to the
Markovian approximation. Up to now, it was assumed that the Markovian approxi-
mation can be used and the generalized master equations deCned by Eq. (5) can be
changed to the ordinary rate equation (15) where the dynamics of the system is deter-
mined by the rate constants. To justify this change it has to be shown that the memory
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kernels Wij(t; �) in Eq. (5) fulCll certain conditions. SpeciCcally, it has to be shown that
the memory kernels damp very quickly in comparison with the relaxation of the system
to the steady state [32,33]. It means for example that in the slow modulation limit
roughly saying the conditions "; #�

√
P(a)J (a)=˝ and

√
P(b)J (b)=˝ must be fulClled.

Here " and # characterize the loss of memory and
√
P(a)J (a)=˝ and

√
P(b)J (b)=˝

characterize the “coherent propagation”. It can be true in the high-temperature regime
but generally at low temperature it is not fulClled. In the case of Chromatium vinosum
bacteria where we assume a strong decrease of coherent propagation with the decrease
of the temperature, the Markovian approximation can be used also at relatively low
temperatures (", # can decrease 3 orders of magnitude with decreasing the temperature
and Markovian approximation still can be used). We now come to the other problem:
whether the Markovian approximation can be used in the case when the one mode
approximation is used to describe the bath. In the case when it is impossible, Eq. (5)
cannot be changed to the ordinary rate equation (15) and generally the relaxation of
the system to the steady state has a nonexponential character. It is not easy to Cnd the
analytical solution of Eq. (5). In the relatively simple case when we assume that the
ET has a gating character with J (a) = J , J (b) = 0, E


12 = 0, and when the conditions
!2

a�J 2=˝2; "2 are fulClled, the solution of the generalized master equation (5) at the
slow modulation limit has the form

P1(t) =
1
2
+

˝2!2
a

2(˝2!2
a + 4P(a)J 2)

exp
[
−4P(a)

J 2"
˝2!2

a
t
]

+
4P(a)J 2

2(˝2!2
a + 4P(a)J 2)

exp[ − "t] cos[!at] (28)

and P2(t)=1−P1(t). This equation describes the occupation probability which dominant
part is damped with the slow rate k1 = 4P(a) J 2"=˝2!2

a. The minor part is damping
with the rate k2 = " and oscillates with the frequency !a. The result is similar to that
obtained in the earlier study [34].

7. Conclusions

We have studied the ET in the system with two conformational states. The contri-
bution to the temperature dependence of the rate constant from the electronic factor
due to conformational transitions was Crst analytically computed in the works [35,36].
Usually this contribution is not taken into account explicitly when the temperature
dependence of the ET rate is elucidated in the biological systems. The main purpose
of the application of the present theory to the cytochrome c oxidation is to show that
the conformational dynamics can play important role and the contribution to the tem-
perature dependence of the rate constant that comes from the electronic couplings could
be dominant at some speciCc condition.
It was assumed in the present work that the electron interacts with two baths. The

Crst bath is a set of harmonic oscillators. The in-uence of another bath is through
the stochastic function c(t). In regard to this bath the ET has the hot character. The
set of harmonic oscillator causes that the Gibbs–Boltzmann equilibrium is obtained
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at long times and P1(∞)=P2(∞) = +2→1=+1→2 = exp[ − KE=kBT ], where KE is the
reaction heat. The second bath determines P1(∞)=P2(∞) = 1. Except these two lim-
iting cases the behavior of Pi(t) depends on parameters that determine the intensity
of the interaction of the electron with these two baths. The equilibrium distribution
between reactants and products is also a result of the coupling of the electron with
both baths and generally is shifted from the Gibbs–Boltzmann equilibrium in the pres-
ence of conformational changes of the system.
It was shown that the presented theory could provide an alternative elucidation of the

ET between cytochrome c and the special pair of bacteriochlorophylls in the reaction
center of Chromatium vinosum bacteria. To get the more realistic description of charge
transfer processes at low temperature in the system with conformational transitions, we
need to Cnd the solution of the generalized master equation (5) at the more general
case, as is described by the expression (28). In this case, similarly to (28), the ET
cannot be described by the single rate constant.
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