JOURNAL OF CHEMICAL PHYSICS VOLUME 108, NUMBER 13 1 APRIL 1998

Electron transfer driven by conformational variations
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In this paper is given a general formulation of electron trangfef) in the system where the
conformational transitions are present. The conformation changes of the system were described as
a classical telegraphic noise. In the work was assumed that electron transfer reaction can be
completely interrupted by the fluctuation of the electronic coupling. A functional-integral approach

to the dynamics of a two-state system was used. We have got exact analytical nonperturbative
expression for the probability to find electron on donor at ttmé/e derived two limiting cases for

the electron transfer—the nonadiabatic limit and the conformational-controlled adiabatic ET case.
© 1998 American Institute of Physid$0021-960808)02211-9

I. INTRODUCTION cally fluctuating tunneling coupling on a long-range electron
transfer was studied by Goychet al>*

Electron transitions are an important class of chemical In the present work a simple model of the conforma-
and biological reactions. The theory of electron tranF)  tional variations of the system was used to formulate an elec-
reaction is the subject of persistent interest in chemical aneton transfer. We assume that there are only two conforma-
biological physics:™* Environmental effects on these reac- tional states possible, which we denotefaandB, and the
tions in complex dynamic systems, such as biomoleculegocalization of electron does not act on the dynamics of con-
have drawn much interest in the recent yedrs? It is by  formational variations. It means that we suppose that transfer
now well established that proteins at room temperature flucef electrons does not change significantly the force field in
tuate around their average structure, and that these fluctuahich the system executes its conformational dynamics. The
tions have an important role in their functidhlt has been ET is possible only in staté, and in the conformational
suggested that protein fluctuations open the pathways for state B the electron transfer reaction is completely inter-
molecular motion, which are not available in rigid proteins,rupted. The conformational changes of the system are de-
by removing a steric hindrance or opening a détMore-  scribed as a classical telegraphic noise. A similar model was
over, molecular dynamics simulations and the temperaturdiscussed previousfr—2’
dependentH NMR spectra show that in porphyrin-quinone Our final aim is to get an analytical expression for the
cyclophanes the conformational interconversions occur irprobability to find an electron on the donor at timén the
solution?” Porphyrin serves as an electron donor and one ofystem where conformational variations are present. The
several substituted quinones serves as an electron acceptoffimctional-integral techniques were used in the present paper
these system¥ Temperature and the detection-wavelengthto investigate how the electron transport from donor to ac-
dependence of the rates of the primary electron transfer receptor can be controlled by the conformational variations of
action can reflect a distribution of reaction centers having thgystem. The technical manipulations are similar to those ad-
differences in factors such as the distances or the orientationginced in Refs. 28—33. For simplicity, we consider the Hil-
between cofactor¥. For the elucidation of the mechanisms bert space of the electron to consist of just those two states
of electron transfer reactions in biological systems, the coninvolved in the transfer. It is convenient to use the Pauli
formational variations must be incorporated into the model.matrices for the operators in this space.

At present there are several published papers dealing
with the problem of the ET driven by conformational varia-

tions. For example, the gating of electron transfer by confor!l- THEORY

mational transitions was introduced by Cartlffighe gating The Hamiltonian of the system that we shall study is
is supposed to take place in cytochrome oxiddsie, the 1 1

electron transfer between cytochromeand the special pair H(t)= . A(c(t)) ot > (eo+€e(c(1)) oy, 1)

of bacteriochlorophylls in the reaction center of several pho-
tosynthetic bacteri® Matyusho?® presented a dynamic whereA(c(t)) is the electronic coupling parameter, ag

theory for the rate constant of electron transfer reaction, e(c(t)) is the bias(the reaction heatbetween two equi-
where the role of donor—acceptor vibrations was displayed iy ium positions. Here,e, is the static bias energy and

the dependence of the nonadiabatic electron transfer prog(c(t)) is a part of the reaction heat which depends on the
ability on the medium friction. The influence of dichotomi- n¢ormational state of the system. This time dependence
could arise, for example, from the interaction of an electron
dElectronic mail: pudlak@linux1.saske.sk with the molecules of medium. Further, tlog , are Pauli
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spin matrices ana(t) is representing random function of
time. The electronic coupling parameter depends on the mu- F= > > exp{
tual orientation of the donor—acceptor pHirwe suppose == g==1
that this orientation is sensitive to the conformational ¢
gl
t

>

j=1

n
2 €o(tyj—1tp-1)

a
h

changes of the system.

The electronic state associated with thel) eigenstate
of o, (with eigenvalue+1) shall be designated as the donor Now we sum over the possible values of the (i
electronic state. The other electronic base state is the accep-1 2 ... n—1) and take the average over all realization of
tor state. We examine the dynamics of an electron which is &(t). we get
timet=0 localized on the donor. Then, at a later tilpahe
system is found again on the donor with probabilitit)

|+1>|2>

4 E(T)dT” . (7h)

2j-1

© J 2n t
W(t)=l+n§=:1 (—1)“(%) 2”’1f0dt2n---

- i t
W(t)=<|<<+1|T ex;{—;i— fOH(T)dT .
md XJ dt; K {tm}Ko{tm}, (8a)

2 0

T is a time ordering operator ordering later times to the left\yhere it was assumed similarly as in Ref. 36 taqa)
The bracke{ )mq is the ensemble average over all possible— 3 A(b)=0. It was considered that the electron transfer
realizations ofc(t). Now we define the molecular dynamics eaction can be completely interrupted by the fluctuations of
of the system. We assume that there exist two conformagjectronic coupling. It results in the so-called gated reaction
tional statesA andB, with the free energie§, andE,. The  gince the electronic coupling fluctuates betweefgéte is

transfer between these two states is characterized by the raginsed and J (gate is opep and thus drives the electron
dom functionc(t) that takes on any of two values which we {gnsfer:

denotea,b. This process is defined by the differential equa-

tion for conditional probabilities: " €
Koftmt= > exp{ 2 i§ 7 (tyj—ty-1)
dP(a,tly,tg)=—AP(a,tly,tg) + uP(b,tly,ty), (33 {g} =1

n

AP (btly,to)=—uP(btly,t) +\P(a,tly,ty)  (3b)
Xjﬂl ng(a:t21|ayt2j—1): (8b)

with the normalization condition

P(a,t|x,to) + P(b,t|x,tg)=1 n-1
and initial conditions Kz{tm}:xg,b P(X’t|a’t2”)j1:[1 Pty alaty)
P(X,to]y,to) =y -
Here,\ is the transition rate from state to stateB and u is
Ihese two parameters do not depend o the looalzaton of (141ere We invodce

xygb P(a,ty]y,0)P(y), (80

electrons. The stationary solutions of E(R). are & (ta
K (a,tyjla,ty—1) =1 ex - J e(r)dr . 9
P(@)=u/(\+u), P(D)=N(\+p). @ J t2j-1
The Stationary SO|Uti0nS must fulﬁ” Boltzmann Condition Th|s is the expectation Of emgj /ﬁ)f:zl E(T)dT] under the
2j—1
P(a)/P(b)=exd — B(E,—Ep)]=u/X, (5) condition that the system is at tintg _]1 in conformational

stateA and finds itself in conformational stateat timet; .

where 8=1/kgT. From Eqgs.(4) and(5) we get By using the relations

e_BEa e_IBEb
P@)=ererers PO= g g © 3 P@ulyOPy)=P@), 3 P(xtan=1,
y=a,b x=a,b
Now we write the general expression fdf(t) as a power )
series inA(c(t)):® we obtain
o n—-1
t At ton
W(t): < 1+ 2 (_1)nf dt2n (Z—ﬁzn) ? dt2n71 KZ{tm}: P(a) 1;[1 P(alt2j+l|a't2j)! (10)
n=1 0 0 J
6
Aty 1) wheré
2h P(a,tla,7)=P(a)+P(b)e” * W=7, (12)
b A(ty) Generally the expression for tll@j(a,ﬂa,r) is cumbersome
Xfo dt, 2% F(ta.tz, ... tan) ' (78 and so we present some limited cases. In these cases we
md assume without loss of generalization tlegt)=e(b) and
where A=pu.
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Ill. HIGH-MODULATION LIMIT

We first examine the high-modulation limit. In this limit

we assume thah +u>[e(a)—e(b)]/%. In this case we
have®

ng(a,t2j|a,tzj _)=eéTlzm -0
x{P(b)e” MWtz t5j-1)
+P(a)e 9t tj-1)},

wherew =[¢€(a) + €(b)]/24 and

[e(@)—eb)?
S RN tp)

12

P(a)P(b).

After summing over the possible valuesl of the &; (j
=1,2,...n) in Eq. (8b) we get

n

Ko{tm} =TT 2 cogQ(ty—ty_1)]{P(a)e Otz t2-0)
=1

+P(b)e” Mtz ~tyj-1)1 (13

where() = ¢y /h +w. Now we apply the Laplace transforma-

tion to W(t). Defining

\7V(p)=fwe‘ptW(t)dt, (14)
0
we get
~ 1 P(a) — J2\"1 1
W(p)==+—= > (—1>“(—z) —f(p)"g(p)"t =
p 2 > e p
(15
1 P(a) J2 f(p) 1
p 2 &% p? | P '
P P 1+pf(p)g(p)
where
f(p)= fwe*pt cosQt{P(a)e” '+ P(b)e * T4 dt
0
B p+0 p+N+u
=P(a) mﬂa(b) (p+ A+ p)2+ 02 (16
_[Tant Sty PTR
a(p) fo e PYP(a)+P(b)e whdt (P r i)’
17

In this section we calculat&/(t) for the case of zero bias

(2=0) and assume that(a)=e€(b). In this limit f(p)
=g(p) and we have

o) = P(a) 3 (p+u)(p+A+p)
_p 2p hZ 2
AP+ A+ u)?+ o (Pt p)?

(18
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P(a) J? ‘
W(t)zl—(—)—2 ’ao+2 ajepjt] (19
2 h =1
with the amplitudeda;,a,,as,a, cycl.
o (Pt m)(PrtAtR) L
L pi(Pi— P (P1—Pa)(Pi—Ps) " 0 P(a)d®’

(20)

where

1 i
Pi=—5 (\tp—u)—5 Jlh-v),
1 [
p2=—§()\+u+u)—§(J/ﬁ+V),
1 i
p3:—§()\+,u+u)+§(\]/ﬁ+v),

1 i
pa=—5 (At p—u)+ 5 (=),

2

AWV 112
()\+M)2—p) +452(K—M)2J> :

1 , I
V= E —()\+,u) +ﬁ

In the nonadiabatic approximation we assume thHat<<\
+ . From Eq.(19) we get

2

2

2 JZ
+4ﬁ(>\—u)2

(A +p)?-

5+5 e~ [(FPIE3P@P(b)/(\+ )t 21)

11 J
Wt=5+5 co{% P(a)t

This describes damped coherent oscillations at a frequency

w=P(a)Jd/4 and the ET ratek=J2P(a)P(b)/A%(A+ u).

The frequency of oscillations depends on the probability to
find the system in stat& from which the electron transfer is
possible. This probability is defined by the free energies of
the conformational state& and B and does not depend on

the transition rateg, u.
In the adiabatic approximation we assume thét>\
+u. We get

W(t)= 1 {1+ P(a)cos(i t)e“
2 7

+ P(b)cos(kJLﬁ t)e“‘]. (22)

The expressions for the kinetics of the electron transfer ar&his describes damped coherent oscillations with a fast fre-
given by the inverse Laplace transformation of E). The  quencyw,=J/% and electron transfer rate =\ and slow
inverse Laplace transformation is represented by a set dfequency of oscillations, =7\ u/J with electron transfer
simple poles ofW(p). Evaluating it we obtain ratek,= u. We have an adiabatic regime of electron transfer
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where the electron transfer rates are independent on the eleferred only from the state which we denote AsAn exact

tronic coupling, but they are controlled by the conforma-

tional variations of the system. In this limit the slow fre-

analytical nonperturbative solution was found for an unbi-
ased case in the high-modulation limit. This allows us to get

guency depends onu and through this parameter on both the exact way by which the electron reaches its steady state
the viscosity of the medium and the potential barrier betweein contrast to the workd=?®where only the rate constant was

the conformational states.

IV. SLOW-MODULATION LIMIT

Now we examine the slow-modulation limit. In this limit
we assume thah +u<[e(a)—e(b)]/A. In this case we
have®

ng(a,t2j|a,tzj_l)=eifi‘”a(tzj*tzi—l)e*”“zi*t21—1), (23
wherew,=(eg+ €(a))/h andf(p) have the form

f(p)= p+A

(P = ornZr el

Substituting the quantity(p) defined in Eq.(24) into Eq.
(15) we getW(p) in the form

(29)

J2
_ 1 pray 52 PEVHPEN G
L TR aws w M C22

Ptz
h2 (p+N)2+ws P+HA+u

In this case we derive only the long time behavioMeft).
We have

1 1 2
W(t)= 5 + > e—[Jzﬁx/ﬁz(ﬁﬂ)(ﬁ/ﬁzﬂhwa)]t, (26)

which results in the following expression for the ET rate

constant:
K= J2uNlth?
2N+ ) (RPN wl)

(27)

derived. The rate constant describes only the velocity by
which the electron reaches its steady state and does not relate
anything about its oscillatory motion.

We can see that conformational changes of the system
destroy the oscillatory behavior &¥(t) and cause a shift in
the frequency of oscillations. The frequencies are influenced
by the parameters, u which characterize the dynamics of
conformational changes. The damped coherent oscillations
of population of donor state are obtained in the high-
modulation limit. In the long-time limit— o there exists an
equal probability of finding the electron on the donor or ac-
ceptor. This is due to the parametarg which are not de-
pendent on the localization of the electremhich is an as-
sumption of our mode¢land so neither of two electronic
states is favored from the side of the bath. The temperature
changes, viscosity of the medium, and potential barrier be-
tween the conformational states have an influence on the
frequency of oscillations through the parameterg.. In the
unbiased case of high-modulation limit when the condition
JIi>N+p is fulfilled or when J%/42>\2+ w2 is in the
slow-modulation limit, the electron transitions are limited by
the dynamics of conformational transitions and do not de-
pend on the electronic coupling. Such dependence is a
classification of the adiabatic limit. In this paper we also
attempt to discuss the question: What is the influence of
conformational variations of the system on the quantum tun-
neling of electrons in the biological systems. In the special
case of conformational variations used in present paper the
ET rate increases with increasiigu in the adiabatic limit,
but the ET rate decreases in the nonadiabatic regime. From
this follows that there must exist optimal dynamics of con-
formational variations with the maximum value of ET rate.

i i 2 2> 2 2 i i . . . . .
In the I'm'th‘] It ;)‘ +w; we have the gdlljaba:]lc eIe”ctro_n This optimal dynamics can be easily found in the case when
transfer where the ET rate constant yields the fo OW'ng)\=,u. In the high-modulation limit the ET rate gets the maxi-

form:
1 wpA

In the nonadiabatic limit)?/#?<\?+ w? the ET rate con-
stant has the form

I

a

J 2
2l
This result is similar to that obtained previouSlyor the
short correlation time, of the solvent. In the absence of the
molecular dynamics whera=0, =0, P(a)=1 quantity
W(t) shows oscillatory behavior:
N L
W(t)=1— ———— Sirf{ t = w5+ JI%h?;. (30)
wit+JIh 2

V. DISCUSSION

mum when A =J/%. The probability to find electron on the
donor can be expressed in the form

% t % (31

W(t)= 1 + 1 e(J"Zh)cos( ) 1+ 2 t) .
2 2
In this regime the ET rate has the same value as the fre-
quency of the quantum oscillation. The maximum value of
the ET rate is)/24. In the long-range electron transfer which
is of primary importance in biological systems characteristic
value J/2~10° s™! and typical value o\ is of the same
order. The optimal dynamics of conformational variations
for electron transfer can be achieved in the biological objects
at some temperature which is the most proper for the reaction
rate.

For the sake of clarity we do not incorporate the inter-
action of tunneling electron with the bath of harmonic oscil-
lator into our model. Such a model can be realized in the
systems where conformational transitions are present and the

We have studied the electron transfer in systems wittcoupling of tunneling electron to vibrational modes of the
two conformational states where the electron can be trangnvironment is weak.
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