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Abstract 

We developed a theory of nonadiabatic electron transfer reactions in the systems where conformational variations are 
present. This is done with the use of the stochastic Liouville equation approach. The conformational changes of the system 
are described as a two-state jump Markov process. Limiting regime analytic results for rate constants are presented for high 
and slow Markovian modulation. 

1. Introduction 

In a previous Letter [1] we developed a simple theory for electron transport in a fluctuating medium. In this 
Letter we treat the problem from a somewhat different point of view. The stochastic Liouville equation approach 
will be used [2,3]. A correct expression for the electron transfer rate will be derived. 

Electron transfer in porphyrin-quinone cyclophanes has been treated [4]. Porphyrin serves as electron donor 
and one of several substituted quinones serves as electron acceptor in these systems. Temperature-dependent 1H 
NMR spectra show that conformational interconversions occur in solution. Molecular dynamics simulations also 
show that there exist two conformational states of the system, where the mutual donor-acceptor orientation is 
different [5]. The electronic interaction matrix elements between initial and final electronic states depend on the 
mutual orientation of the donor-acceptor pair [6-8]. X-ray analysis of the photosynthetic reaction center 
revealed an arrangement of prosthetic groups that act as electron donors and acceptors in the sequence of 
primary charge separation reactions [9-11]. These studies provided a static structure for the molecules, but 
conformational variations are always present. The temperature and detection-wavelength dependence of the rates 
of the primary electron transfer reaction that was measured in Ref. [12] can reflect a distribution of reaction 
centers having differences in factors such as distances or orientations between cofactors. It was showed [13] that 
biological electron transfer reaction may be controlled by conformational transitions in electron transfer 
complexes. Molecular dynamics effects on electron transfer are important and deserve our attention in the 
context of electron transfer theory. 
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2. Theory 

Generally, the development of the density matrix of any statistical system is believed to be determined by the 
Liouville equation 

0 1 
i~ttP(t ) = ~[H(c( t ) ) ,  p], (1) 

with H being the Hamiltonian operator and c(t) representing a random function of time. Our system is 
characterized by the Hamiltonian H which is divided into two parts 

H = H o + V, (2) 

where 

H o = [Hi(R ) -+-E i + Vi(c(t))]a~a i + [ H f ( R )  + E l +  Vf(c(t))]a~-af, (3) 

V=J( c( t)) [a+ af + a~-ai]. (4) 

We assume that the total statistical system described by the density matrix p consists of a system of interest 
(electrons) and a bath (molecules of the environment). J(c(t)) is the nondiagonal part of a perturbation causing 

+ 
a transition between the eigenstates of H o. Vn(c(t)) are diagonal elements of the perturbation. The E n and a n 
(a n) are the site energy and the creation (annihilation) operator of the electron at site n (n = i, 0, respectively. 
We denote the solvent Hamiltonian when the electron is at site n by Hn(R). R denotes the coordinates of the 
position and orientation of the solvent molecules. We assume that 

Hi(R ) - H f ( R )  = A+ W(t). (5) 

W(t) is taken to be a Gaussian-Markovian process with zero mean, and correlation function 

(W(tl)W(t2)) = ( ~2)slv e x p ( -  [ t I - t 2 I / re) .  (6) 

We start from the stochastic Liouville equation and designate 

p,(c(t), t )=[ f f  exP(hfotHo(~')d~')]p(c(t))[Texp(-hfo'Ho("r)dr)], (7a) 

Vw(c(t), t )=[Texp(~foHo(~' )d~) lV(c( t ) )[Texp(-  ~ (7b) 
~0 ] J  

1 
L(t) = ~[Vl(C(t), t) . . . .  ]. (8) 

(T) is a time ordering operator ordering later times to the left (right). The stochastic Liouville equation for the 
density matrix in the interaction picture reads 

Otp,( c( t), t) = - iL(  t)p,( c( t), t), (9) 

and using standard projection techniques [14] we get 

O, Dpi(c(t), t) = -iDL(t)Dpi(c(t  ), t) - iDL( t ) (1 -D)p l ( c ( t ) ,  t), (10) 

O r ( 1 - D ) p , ( c ( t ) ,  t) = - i ( 1 - O ) L ( t ) ( 1 - O ) p , ( c ( t ) ,  t) 
- i ( 1 - D ) L ( t ) D p , ( c ( t ) ,  t), (11) 

Here D is a projection operator. Solving the last equation and introducing the result into (10) yields 

OtDp,(c(t), t) = -iDL(t)Dp,(c(t) ,  t) 
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where it is assumed that the initial condition is 

(1 -D)p , (q(O) ,  O) = O. (13) 

We will work to second order of perturbation theory. In this approximation we have 

3tDp,(c(t ), t )=  - iDL( t )Dp , (c ( t ) ,  t) -DL( t )  f o t (1 -D)L( r )Dp , ( c ( r ) ,  r )  dr. (14) 

Now we will use the projector in the form 

( DA )m . = 6,,,,( amm)B. (15) 

The bracket ( )B is the ensemble average over the solvent and conformational motion. We use the identity 

DL(t)D = 0 (16) 

and from (14) we get 

OtOpl(c(t), t) = -DL( t )  fotL(T)Dpl(c(r ), ~') dr. (17) 

For Eq. (17) we take the matrix elements (ml ...  Im), I m = i, f) are the eigenstates of H 0. We get 

aPi(t) 

fo fo c3t Wif ( t  , r ) P i ( r  ) d r +  w f i ( t  , r ) P f ( r )  d , ,  ( 1 8 a )  

oFf(t) 
fo fo' 0t = wif(t , r ) P i ( r  ) d ' r -  wfi(t , " r )Pf(r )  dr. (18b) 

Here Pro(t) = ( pm,,(t))B and 

2 ( i ) 
wif(t , T) = ~ R e  exp - ~ -e 'o ( t -  r )  (Q+(t, r))md sC(t-  r ) ,  (19a) 

2 ( i  ) 
wfi(t , r )  = ~ R e  exp ~ e o ( t -  "c) (Q+(t, Y))md~(t-- T), (19b) 

where e o = E i - Ef + A and so(t) = exp( - F~{t - r~[1 - exp( - t/re)]}). Here F~ -- ( ~ 2 )slvre/h 2. The bracket 
( )rod is the ensemble average over all possible realisations of c(t) and 

Q+(t, r ) = J ( c ( t ) ) e x p ( _ + i  t drl)  , (20) -hfT~(c(~l)) S (c ( r ) )  

where e(c(t)) = Vi(c(t)) - Vf(c(t)). 

3. Molecular dynamics 

Let us assume a system with two conformational states A and B, with free energies E~ and E b. The 
stochastic function c(t) can take on any of two values, which we denote a, b. This process is defined by the 
differential equation for conditional probabilities 

OtP(a, t[ y, to) = - h P ( a ,  t[ y, to) + txP(b, t[ y, to) , (211) 

0tP(b,  t[ y, t o ) =  hP(a, t l y, t o ) -  IzP(b, t[ y, to) , (21b) 

with the normalization condition 

P(a, tl x, to) + P(b , tl x, t o ) = 1 .  (22) 
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The conditional probabilities reduce for t - t o = 0 to 

e(y,  tl x, to) = 8,,,x. (23) 

Here IX is the transition rate from state B to state A and A is the transition rate from state A to state B. We can 
see that the stationary solutions of Eqs. (21) with conditions (22) and (23) are 

P(a) = exp( -Ea/kBT)/[exp( -Eo/kBT ) + exp( -Eb/kBr)] = U / (  P + A), (24a) 

e ( b )  = exp( --Eb/kBT)/[exp(-Ea/kBT) + exp( -eb/k~T)] = A/(  IX + A). (24b) 

Now we compute the quantity (Q (t, "r))ma for the stochastic process c(t), which was described above. 

(Q-(t, r))m~ = ~ ~ J(x)g-(x, tly, r)J(y)P(y), (25) 
x=a,b y=a,b 

where we introduce 

( e ( ' ) )  K-(x,  t[y, z) = xp -~fe(~-l) dr1 (26) 
x,y" 

This is the expectation of exp[-(i/h)f, t ~(~'1)drl] under the condition that the system is at time z in 
conformational state y and finds itself in conformational state x at time t. This satisfies the equation [15] 

K-(x , t+h[y ,  t l ) = K - ( x , t + h l a ,  t)K-(a, tly, t l ) + K - ( x , t + h [ b , t ) K - ( b ,  tly, tl). (27) 

Now we have from (21) for small h 

K ( a , t + h ] a , t ) = l - i e ( a ) h - A h ,  K- (a , t+h[b , t )=ixh ,  (28a) 

K-(b, t+hlb,  t ) = l - i ~ ( b ) h - i x h ,  K-(b, t+h[a, t)=Ah. (28b) 

From relations (27) and (28) one obtains 

( i  ) 
otg-(a, tly, t l ) = -  ~ 6 ( a ) + A  g-(a,  tly, t l)+ixg-(b,  tly, t,), (29a) 

(i ) 
OtK-(b,t[y, t l ) = -  -~e(b)+lx K (b, t[y, t l)+AK-(a, tly, tl), (29b) 

with initial conditions 

K-(x, tj l y, tl) = 6x.y. (30) 

From Eqs. (29) and (30) we get 

IxA 0 2 
K-(a, t[ a, tl) = 02 + I x A e x p [ - i ~ o l ( t - t l )  ] + 02 + I x A e x p [ - i m E ( t - t l ) ] ,  (31a) 

AO 
K-(b, tla, ti) 02 + IxA { -exp[- iwl ( t - t l ) ]  +exp[-i~°2(t-tl)]}' (31b) 

IXO 
K - ( a ,  t[ b, tl) - 02 + I x A { - e x p [ - i t o l ( t - t , ) ]  + e x p [ - i t o 2 ( t - t l ) ] } ,  (32a) 

02 IxA 
K-(b, tl b, tl) = 02 + IxA e x p [ - i ~ o l ( t -  fi)] + 02 + Ix--------~exp[-i~o2(t- q ) ] ,  (32b) 
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where 

0.)1, 2 = "£D'-- ½i( A +/x)  + 1[~£o2 - 2i~to( A - / x )  - ( A +/.£)2] 1/2, 

x211/2 
0 = -½i~oJ+ ½ ( / z -  A) + ½i[~w z -  2 i~oJ(A- /x)  - ( A  +/x)  ] , 

1 1 
w =  -~-~- [ s ( a )  + s ( b ) ] ,  ~to = ~ - [ s ( a )  - e ( b ) ] .  

By using expressions (31) and (32) in (25) we get 

(Q-( t ,  Z))md =A1 e x p [ - i t o l ( t -  ~-)] +A 2 e x p [ - i o J 2 ( t -  r ) ] .  (33) 

Here 

1 
AI = 0 2 + r[ tzM(a)2P(a ) _ /zOJ(a)J(b)P(b)  - ;tOJ(a)J(b)P(a) + 02j(b)ZP(b)]," 

/xA 

1 
A2 = 0 2 + txA [ 02j(  a)2 p(  a) + ~OJ( a)J( b)e(  b) + aOJ( a)J( b)P( a) + ~;tJ( b)2 p(  b)] 

4. Computation of the rate constant 

In this section we compute the rate constant. According to our aim, we perform the Markovian approxima- 
tion 

0Pi(t) 
0t = -- kif Pi ( t )  + kfi Pf ( t ) ,  (34) 

0Pf(t) 
0t = kifPi(t) - kfiPf(t) ,  (35) 

where we introduce the rate constants kif and kfi in the form 

kif = f0~wif(y)  d'r , k i f = f o  wif(T)  dT. (36) 

Generally the expressions for the rate constant are cumbersome and so we present some limited cases. In these 
cases we assume without loss of generalisation that E(a) >t 8(b) and A >//x. 

4.1. Slow-modulation limit 

In this limit we assume that A +/.t  << ~ ~o. In this case we have 

(Q-(~'))md = P(  a )J (  a) 2 exp[(i /h) ,(  a ) r -  A~-] + P( b)J( b) 2 exp[(i/h)e( b)1"- tx~']. 

If F~% << 1, we get the rate constant in the form 

2 J ( a )  ~ 5 + '~ 2 J ( b )  ~ r~ + 
kie = P ( a )  h 2 o) a 2 + ( F~ + A) 2 + P ( b )  h ~ 02 + ( Fe + p,)2, (37) 
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where  o) a = [60 q- ~(a)]/h and w b = [G 0 + e(b)]/h. When Fez e >> 1 we have 

( P(a)J(a)eA/rr P(b)J(b)2~/'rr 
kif = 0_+:~ doJ f + . . . . . .  exp(-h2w2/2(~2)slv), (38) 

. _ ~  ( % - ~o) 2 + t, 2 

where 0 = ( 2 w / (  s¢ 2 )~lv h2) 1/2. 

4.2. High-modulation limit 

In this limit we assume that )t + / z  >> 8 to. In this case we have 

( Q - ( r ) } m d  = [P(a)J(a)+P(b)J(b)] 2 e x p ( - i ~ r - , O r )  

+ e(a)P(b)[J(a) - J ( b ) ]  2 e x p [ - i ~ r -  ( X + ~ , ) r ] ,  

where 

a =  4 ( A + / ~ )  1 -  ~A+/z ]  J" 

In this limit when Fer e << 1 we get 

2 F ¢ + , O  
k~,= ~ [  e( a)JC a) + t'( t,)J( b)] ~ 

( E.O//h + ,/~0,) 2 qt_ ( 5  "+" ,O)2 

2 Fe + a + p~ 
+ -~P(a)e(b)[J(a)  - J ( b ) ]  (so/h + m )  2 + (Fe + h. + / x )  2" (39) 

When Fer e >> 1 we get 

[ P( a)J( a) + P( b)J( b)]2 ,O/~r 
kif 0 +2 = f_~ doJ 

( ~'0//h 4- "l~o" - o)) 2 q- ,O2 

+ P(a)P(b)[J(a) -J(b)]Z(A +/z)/w ] e x p ( - h 2 w 2 / 2 (  ~:2)slv). (4O) 
( . o / h  + ~ -  o,)  ~ + ( A + i , )  2 J 

5. Conclusion 

We have derived a formula for the electron transfer rate kif. We obtained formally similar results as in the 
theory of dynamic nuclear magnetic resonance spectroscopy [16]. In the slow-modulation limit we expressed the 
rate constant as a sum of the rates in the conformation states A and B multiplied by the corresponding 
Boltzmann factors of  these states. In the high-modulated limit we obtained the rate constant as in the case where 
the energy gap between donor and acceptor is G 0 + hm and the Hamiltonian causing the transition is 
P(a)J(a) +P(b)J(b). We have the same results as in Ref. [1] for the case where ~ ( a ) =  8(b).  When 
e ( a )  v~ e(b) ,  the results of  Ref. [1] are incorrect. This is caused by the incorrect derivation of equations for the 
quantity K(x, t[ y, r) in Ref. [1]. The derivation that was used in Ref. [1] cannot be applied for stochastic 
processes with discrete state space. We estimated also the parameter a = ~ r  e. ot >> 1 for electron transfer 
reaction in polar liquids. In the case of  non-polar and non-viscous solvents, where the reorganisation energy is 
small [4,17] and the correlation time r e is also small [18], the parameter a can be smaller than 1. 
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