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Abstract

The residual resistivity ρ in metals caused by wedge disclination dipoles

is studied in the framework of the Drude formula. It is shown that ρ ∼ L−p

with p = 3 for biaxial and p = 2 for uniaxial dipoles (L is a size of dipole

arm).
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The effect of dislocations on electric transport in metals has been studied for

many decades [1,2,3]. Dislocations serve as effective scattering centers for conducting

electrons primarily due to their elastic strain fields. This scattering is essential in

the region of the residual resistivity at low temperatures when all other scattering

mechanisms are suppressed. However, the problem of disclination-induced charge

scattering is not yet investigated in details, despite the fact that these linear defects

can play an important role in nanocrystalline [4] and highly deformed metals [5].

Such defects, combined in dipole configurations, have been proposed as primary

carries of the rotational plastic deformation in granular materials (see e.g. [6] and

references therein) and observed recently in nanocrystalline Fe [7] using the high-

resolution transmission electron microscopy. For metallic glasses the concept of

disclinations has been worked out in [8] and much earlier for complex alloys in [9].

Theoretically, for the first time, the behaviour of the residual resistivity as a func-

tion of the density of defects in simple metals caused by isolated wedge disclinations

has been studied in [10]. The analysis has been carried out with the assumption

that there exist two mechanisms of scattering: due to deformation fields of wedge

disclinations and Aharonov-Bohm-like scattering generated by topological nature

of disclinations [11]. The deviation from the linear law of the disclination-induced

residual resistivity on the concentration of the defects was found.
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In this Letter we study the behaviour of the residual resistivity in metals con-

taining wedge disclination dipoles (WDD). Our goal is to find the dependence of the

residual resistivity on the value of the dipole arm L. In fact, keeping in mind the

models where disclinations are settled in the triple junctions of inter grain boundaries

[12,13] or form borders of misorientation band area [14,15], we study how residual

resistivity depends on a grain size or a width of misorientation band.

On the other hand, it was found (see e.g. [16,17]) that strain fields caused by

WDD are the same as for a finite wall of edge dislocations at large distances from

the wall. Hence, the obtained here results can be considered in application to the

materials containing dislocation arrays and small-angle grain boundaries. In our

picture the dipoles in equilibrium with a mean dipole arm L and strength ±ω are

placed in xy-plane (disclination lines are oriented along the z-axis). Notice that

a disordered distribution of disclination lines only modify the absolute value of a

electron mean free path in our calculations. The axes of the rotations can be shifted

relative to their lines by arbitrary distances l1 and l2. When l1 − l2 = L or l1 = −l2

one gets the uniaxial and symmetrical uniaxial WDD, respectively. In the case when

l1 6= l2 6= 0, we have biaxial WDD with shifted axes of rotation (see, e.g., [17,18]).

The effective perturbation energy of electron due to the WDD deformations EAB
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is [18]

U(x, y) = −GdSpEAB(r) =

−Gd(1− 2σ)ω

(1− σ)4π

(
ln

(x + L/2)2 + y2

(x− L/2)2 + y2
− l1

x + L/2

(x + L/2)2 + y2
+ l2

x− L/2

(x− L/2)2 + y2

)
,

(1)

where Gd is the deformation-potential constant, σ is the Poisson ratio. For simplicity,

in Eq.(1) we have considered only isotropic component of the deformation-potential

constant, which is related to the Fermi energy as (2/3)EF [2]. In this context, in

further calculations we use the typical meaning of Gd = 3.7eV. It is seen from the

Eq.(1) that the WDD strain fields are located in xy-plane. It means that only normal

to disclination line component of electron wave vector k⊥ are involved in scattering

process. As a result, the problem reduces to the two-dimensional scattering where

the matrix element which determines the transition of electron from Fermi state

with wave vector kF = k⊥ + kz to state k
′
can be written as [2,18]

〈kF |U(ρ, φ)|k′〉 =
1

S

∫
d2ρ exp[i(kF − k

′
)ρ cos(φ− α)]U(ρ, φ). (2)

Here, S is the projected area, U(ρ, φ) is perturbation energy given by Eq.(1) in polar

coordinates (ρ, φ), α is the angle between q = kF − k
′
and x-axis.

Using Eqs.(1) and (2) with the general formula for the two-dimensional mean
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free path

l−1 =
ndkF S2

2πh̄2v2
F

∫ 2π

0
(1− cos θ) |〈kF |U(x, y)|k′〉|2dθ, (3)

after integration over scattering angle θ, we find the explicit expression for the mean

free path as

l−1 =
B2L2ndπ

2

4kF h̄2v2
F

{
z2

(
1

2
+ J2

0 (kF L)
)

+

(
8− z(z + 8)

2

)
(J2

0 (kF L)

+ J2
1 (kF L))− 8

kF L
J0(kF L)J1(kF L)

}
, (4)

where z = 2(l1 − l2)/L, B = Gdω(1− 2σ)/(1− σ)2π, vF is the Fermi velocity, Jn(t)

are the Bessel functions. In Eqs.(3) and (4) nd is the areal density of the dipoles,

and the bar in Eq.(3) denotes the averaging over α.

Evidently, nd is a function of the dipole arm L. To determine the relation

between nd and L, notice, that for two dimensional elastically isotropic medium nd

is inversely proportional to the square of the mean distance d between dipoles. In

the framework of the dislocation-disclination model of misorientation band [15] the

dependence of d on L at the state of equilibrium can be found from the relation

qb = ωd ln

(
L2

d2
+ 1

)
, (5)

where b is the absolute value of a misorientation band Burgers vector, q ≥ 1 is a

dimensionless parameter which account the presence of ”statistically-stored” dislo-

cations. For the case when d > L we have d ≈ ωL2/qb, and nd ≈ 1/d2=(qb/ωL2)
2
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Our analysis shows that for the mean free path given by Eq.(4) the condition

kF l À 1 is valid and the classical Drude formula to estimate the residual resistivity

can be applied

ρ =
(

mvF

ne2

)
l−1, (6)

where m and n denote mass and electron density, respectively, e is the electron

charge.

Thus, the L-dependence of the residual resistivity ρ can be defined numerically

on the basis of the Eqs.(4)-(6). The results of the calculations are shown in Fig.1

for all types of WDD with strength ω = 36◦.

As is seen from the plot the least contribution to ρ is caused by WDD with z = 0,

(i.e. l1 = l2 that corresponds to the symmetrical biaxial dipole), and ρ increases

with z increasing. For z = 2 (uniaxial WDD) the contribution to ρ is the largest.

This noticeable increase of ρ(z = 2) relative to ρ(z = 0) is due to the specific nature

of the uniaxial WDD deformation fields. Uniaxial WDD can be simulated by a

finite wall of edge dislocations complemented by two additional edge dislocations at

both ends of the wall [17]. These two dislocations are represented in Eq.(1) by the

second and third terms. Obviously, the residual resistivity due to a uniaxial WDD

has a larger value due to the presence of this dislocation part which is absent for
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Figure 1: The residual resistivity as a function of the dipole arm of size L for

symmetrical biaxial disclination dipole (z = 0); biaxial dipole with shifted axes

of rotation (z = 1/2, z = 1); uniaxial dipole (z = 2). The curves have been

plotted according to Eq.(4) and Eq.(6) with the set of the parameters: B = 0.1eV,

vF ≈ 1.2× 108cm c−1, n = 5× 1022cm−3, m = 0.5× 106eV

biaxial WDD. It should be noted that the functional L-dependence of ρ is different

for biaxial and uniaxial dipoles. Indeed, l−1 ∼ Lnd for Eq.(4) in the limit kF l À 1

when z = 0. Taking into account the relation nd ∼ L−4, we find for biaxial dipole

ρ(z = 0) ∼ l−1 ∼ L−3. In the case of the uniaxial dipoles l−1 ∼ L2nd, and, hence

ρ(z = 2) ∼ l−1 ∼ L−2.
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The important result of our consideration here is that the residual resistivity

increases when L (or,equivalently, granular size) decreases. It is easily understood,

because in our approach the L-dependence of nd has been considered correctly in

the framework of the misorientation band model [15]. In [19] the increase of ρ with

grain-size decreasing has been found experimentally for nanocrystalline Pd. These

results are in qualitative agreement with our calculations.

Fig.2 demonstrates the nd-dependence of ρ for uniaxial WDD with different

strengths of defects ω. This dependence is nonlinear (ρ(z = 2) ∼ n
1/2
d ) as one

can conclude from the previous reasonings. The nonlinear dependence of ρ has

been found in [10] for isolated wedge disclinations as well. Similar result should

be expected for edge dislocation walls as we have discussed in the beginning of

this paper. Let us note that linear nd-dependence of ρ had been observed only for

isolated dislocations (See [3], and references therein). In addition, one can see from

Fig.2 that ρ increases substantially with increasing ω reaching quite large values.

For example, for the curve number one ρ ≈ 6× 10−7 Ω cm when nd ≈ 3× 1013 cm−2

(that correspond to the dipole arm L equal to few nanometers).

In conclusion, we would like to mention, that the resistivity due to oriented in

some direction disclination dipoles should be anisotropic (as in the case of disloca-

tions [2]). For example, for edge dislocations with glide direction along the x-axis,
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Figure 2: The residual resistivity as a function of the arial density of uniaxial dipoles

nd at different defect strengths ω.

the ratio ρx/ρy has been found to be equal to 1
3

[20,21]. Calculations of ρ in different

plane directions for disclination dipoles (dislocation walls) will be performed in the

near future.
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Figure Captions

Fig.1.The residual resistivity as a function of the dipole arm of size L for symmetrical

biaxial disclination dipole (z = 0); biaxial dipole with shifted axes of rotation (z =

1/2, z = 1); uniaxial dipole (z = 2). The curves have been plotted according to

Eq.(4) and Eq.(6) with the set of the parameters: B = 0.1eV, vF ≈ 1.2 × 108cm

c−1, n = 5× 1022cm−3, m = 0.5× 106eV .

Fig.2.The residual resistivity as a function of the arial density of uniaxial dipoles nd

at different defect strengths ω .

12


