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We study the Gaussian �uctuations of the two-�avor, meson-diquark bosonized NJL

model for two and three colors at the color superconducting phase transition. The

analysis is based on analytical properties of the polarisation matrix. Pionic �uctua-

tions are shown to be stabilised in the 2SC phase compared to the two-color result

where they are right on threshold.

1. INTRODUCTION

QCD is a quantum �eld theory de�ned in terms of non-observable constituents. Connecting

QCD and the observed properties of hadrons is one of the key problems in physics nowadays.

With future experiments (FAIR and NICA), devoted to the study of the high density region

of the QCD phase diagram, both hadron properties and the in�uence of predicted color

superconducting phases on them come to focus again.

One key property of QCD is the spontaneously broken (approximate) chiral symmetry, giving

rise to the observed hadron mass spectrum. The pion, being the Goldstone boson of the

broken chiral symmetry, is the lightest known particle composed of quarks and plays a key

role for the understanding of hadronic matter, e.g., within chiral perturbation theory and

chiral e�ective �eld theories of nuclear structure and nuclear matter.

The application of these �eld theories, however, becomes questionable at high densities

when hadrons can no longer be regarded as pointlike degrees of freedom and their quark

substructure becomes important. An important step in the program to reconstruct chiral

e�ective �eld theories formulated in terms of nucleons and mesons on the basis of chiral quark

models is to introduce as an intermediate step an e�ective bosonized chiral quark model with
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low-lying mesons (π and σ) and (anti-) diquarks. In a nonperturbative resummation of loop

diagrams involving diquarks one shall then obtain in a systematic way the nucleon degrees

of freedom and their modi�cations by quark substructure (quark exchange) e�ects.

In this contribution we summarize analytic results for meson- und diquark spectra at �nite

T and µ obtained in a Gaussian truncation of the meson-diquark bosonized NJL model with

special emphasis on the two-�avor color superconducting (2SC) phase, for quarks with two

and three colors.

2. MODEL LAGRANGIAN

As a generic model system for the description of hot, dense Fermi-systems with strong,

short-range interactions we consider quark matter described in [1]. The Lagrangian has the

following form

L = q̄(i∂µγµ −m0 + µγ0)q + Lqq + Lqq̄ , (1)

where the interaction in meson and diquark channels is given by

Lqq̄ = GS

[
(q̄q)2 + (q̄iγ5τq)

2 ] , (2)

Lqq = GD

∑
A=2,5,7

[
q̄iγ5Cτ2λAq̄

T
][
qT iCγ5τ2λAq

]
, (3)

with GS and GD being the coupling strengths. For three �avors one would also have to

include a pseudoscalar diquark term in the Lagrangian for symmetry reasons. This term

would be important to describe Goldstone boson condensation in the Color-Flavor-Locked

(CFL) phase [2, 3]. However, the works [4, 5] have shown that there is a signi�cant window

before the third �avor is populated and three-�avor pairing sets in. Thus our model analysis

restricts to this window where only two active �avors are present. For the numerical analysis

we adopt parameters given in [6] and keep ηD = GD/GS as free parameter. Although Fierz

transformation of a color-current interaction suggests a value of ηD = 3/4, there is no reason

to take this value in an e�ective model. Rather one could try to �x it by data coming from

compact star observations [7].

For the case of the two color theory, the antisymmetric Gell-Mann matrices reduce to the

τ2 Pauli matrix and the couplings have to be rescaled by a factor 2/3. The Pauli-G�ursey

symmetry �xes the coupling, ηD = 1.
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3. POLARISATION MATRIX

The mean �eld approximation is employed, for details see e.g. [8].

Expanding the thermodynamical potential up to Gaussian order in the �elds gives rise to

the polarisation matrix [9] and thus includes quark-(anti)quark correlations. Solving the

Bethe-Salpeter equation for the mass spectrum of two-quark states (mi = mπ,mD,mD̄) is

then equivalent to solving to solving detΠ(k0,k = 0)|k0=mi
= 0, where

detΠ = Πππ ·

∣∣∣∣∣∣∣∣∣
Πσσ Πδ∗σ Πδσ

Πσδ Πδ∗δ Πδδ

Πσδ∗ Πδ∗δ∗ Πδδ∗

∣∣∣∣∣∣∣∣∣ · Π
2
δ5δ

∗
5
, (4)

and the elements can be written (see Ref. [10] for the zero temperature limit) as

Πππ(k0) = − 1

2GS

− 8Iπ ,

Πσσ(k0) = − 1

2GS

− 8Iσ − 16m2∆2I4 ,

Πδδ(k0) = 4∆2I0 = Πδ∗δ∗(k0) ,

Πδ∗δ(k0) = − 1

2GD

− 4I∆ + 2k0I1 +
(
4∆2 − 2k2

0

)
I0 ,

Πδδ∗(k0) = Πδ∗δ(−k0) ,

Πσδ(k0) = 4m∆(k0I2 + 2I3) ,

Πδσ(k0) = Πσδ(−k0) = Πσδ∗(k0) = Πδ∗σ(−k0) . (5)

The matrix elements in the ungapped diquark channels are degenerate (Πδ5δ
∗
5
= Πδ7δ

∗
7
) and

correspond to lengthy expressions which will be given elsewhere [11]. The integrals are

de�ned as

I0 ≡
∑

a=+,−

⟨
1

Ea
p

⟩
a

, I2 ≡
∑

a=+,−

⟨
1

Ep

1

Ea
p

⟩
a

,

I1 ≡
∑

a=+,−

⟨
ξap
Ea

p

⟩
a

, I3 ≡
∑

a=+,−

⟨
1

Ep

ξap
Ea

p

⟩
a

,

I∆ ≡
∑

a=+,−

⟨
k2
0 − 4

(
Ea

p

)2
Ea

p

⟩
a

, I4 ≡
∑

a=+,−

⟨
1

E2
p

1

Ea
p

⟩
a

,

where Ep =
√
p2 +m2, ξ±p = Ep ± µ, E±

p =
√
(ξ±p )

2 +∆2 and the brackets de�ne the

following integrals ⟨
F (p)

⟩
±
=

∫
d3p

(2π)3
F (p)

1− 2nF

(
E±

p

)
k2
0 − 4

(
E±

p

)2 .
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The Fermi distribution is denoted by nF (x) ≡ (1 + ex/T )−1, and the two remaining integrals

Iπ, Iσ are

Iπ,σ ≡
∫

d3p

(2π)3
Aπ,σ

{[
1− nF

(
E+

p

)
− nF

(
E−

p

)] E+
pE

−
p + ξ+p ξ

−
p + |∆|2

E+
pE

−
p

E+
p + E−

p

k2
0 −

(
E+

p + E−
p

)2
+
[
nF

(
E−

p

)
− nF

(
E+

p

)] E+
pE

−
p − ξ+p ξ

−
p − |∆|2

E+
pE

−
p

E+
p − E−

p

k2
0 −

(
E+

p − E−
p

)2+[
1− nF

(
ξ+p

)
− nF

(
ξ−p

)] 2Ep

k2
0 − 4E2

p

}
,

with Aπ = 1 and Aσ = p2/E2
p. The pairing gap in the 2SC phase is determined by the gap

equation 8I∆ = G−1
D . We have chosen the diquark condensate in the λ2 direction only (which

can always be achieved by a global color rotation) so that the diquarks in the ungapped color

directions are degenerate (δ5 = δ7). For small couplings ηD the set of equations (5) simpli�es

due to negligible mixing terms. For three colors and �nite chemical potential, we have in

the χSB phase a mass splitting between the color antitriplet diquarks and the color triplet

antidiquarks. The latter become massless (type-I) Nambu-Goldstone (NG) bosons in the

2SC phase where the triplet diquarks split into a doublet of light type-II NG bosons and a

heavy diquark in accordance with the Nielsen-Chadha theorem [12] for symmetry breaking

with broken Lorentz covariance, see also [13] for a recent discussion. With the expressions

derived here, we generalize this result of earlier studies [10, 14] to �nite temperatures. The

massive mode arises from the solution of k0 = 2∆
√

1 + (I1/(∆ · I0))2, which is above the

threshold 2∆ and thus unstable with respect to the decay into two quarks (the absence of

con�ning properties in our model manifests itself here).

Some numerical results are shown in Fig. 1 and show all of the features summarized in Tab. 1.

The constant 0 < C(ηD) < 2 in Tab. 1 depends on ηD and takes its extrema for the ηD values

given in [1].

4. SUMMARY

Analysing the properties of the polarisation matrix yields several results for the two and

three color model, which are summarised in Tab. 1. This table represents an extension of

results already found numerically in [10, 14�16] and shows that all of them are also valid

for �nite T . Having studied the behaviour of the light meson and the (anti-)diquark sector

in the χSB and the 2SC phase in the NJL model, a straightforward extensions concerns
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Table 1. Two-color (left) and three-color (right) results for the pion and the (anti-)diquark masses valid

also at �nite temperatures T , with mπ = mπ(T, µ), mπ,vac = mπ(0, 0), m = m(T, µ), mvac = m(0, 0),

∆ = ∆(T, µ) and X =
√
1 + 3(m2

π/2µ)
4.

χSB 2SC χSB 2SC

mπ mπ,0 2µ mπ,0 < 2µ

mD mπ − 2µ 0 C(ηD)m− 2µ 0

mD mπ + 2µ 2µX C(ηD)m+ 2µ > 2∆

mD,5/7 � � mD light

mD,5/7 � � mD heavy

the investigation of the e�ects of coupling the NJL model to the Polyakov-loop potential

in order to suppress unphysical quark excitations at low temperatures . Another important

aspect concerns the incorporation of Ward-Takahashi identities [17] in the further extension

of these studies.
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Figure 1. Top: µ-dependence of the meson and diquark masses for zero temperature for �xed (small)

coupling ηD = 3/4 in the three-color theory. Dotted (dash-dotted) lines are light stable (heavy unstable)

modes in the ungapped λ5 and λ7 color directions. The degeneracy of the modes is also indicated. Bottom:

Same as above for the two-color theory (ηD = 1).



8

FIGURE CAPTIONS

1. Top: µ-dependence of the meson and diquark masses for zero temperature for �xed

(small) coupling ηD = 3/4 in the three-color theory. Dotted (dash-dotted) lines are

light stable (heavy unstable) modes in the ungapped λ5 and λ7 color directions. The

degeneracy of the modes is also indicated.

Bottom: Same as above for the two-color theory (ηD = 1).


