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In this work a formula for charmonium suppression obtained by Matsui in 1989

is analytically generalized for the case of complex cc̄ potential described by a 3-

dimensional and isotropic time-dependent harmonic oscillator (THO). It is suggested

that under certain conditions the formula can be applied to describe J/ψ suppres-

sion in heavy-ion collisions at CERN-SPS, RHIC, and LHC with the advantage of

analytical tractability.

1. INTRODUCTION

The modi�cation of the charmonium production cross section has been studied using a

schematic 3-dimensional harmonic oscillator for the intermediate and �nal cc pair in [1].

In that reference the distorted wave Born approximation was used for the two-gluon fu-

sion model and suppression ratios were calculated. In the present paper, we consider a

3-dimensional THO with a complex and continuous time dependent frequency. For such a

generalization, we derive the suppression ratio for charmonia states and present a formula

for J/ψ suppression including feed-down contributions.

2. QUANTUM MECHANICAL EVOLUTION OF THE CC̄ STATE

The Charmonium suppression ratio was de�ned as a ratio of two cross sections by the

expression Sψ(t) =
σ(2g→ψ)
σ0(2g→ψ)

and was calculated explicitly in Ref. [1]. From Eqs. (2.22) and

(4.17) of that paper the survival probability for the s-wave can be written in the following

form
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Sψ(t) =

∣∣∣∣∣
∫∞
0 dr r2 ψ(r) Ucc̄(r, t)

lim
t→0

∫∞
0 dr r2 ψ(r) Ucc̄(r, t)

∣∣∣∣∣
2

. (1)

3. TIME EVOLUTION OPERATOR FOR THE THO MODEL

We make use of the standard path integral approach in order to calculate the time evolu-

tion operator Ucc̄(r, t). We start by considering a 3-dimensional isotropic THO model with

the Hamiltonian H = p2

2µ + µ
2 ω2(τ) r2(τ) , where r is the cc̄ separation and the complex

function of time ω(τ) enters in the classical equation of motion for the heavy pair as

r̈(τ) + ω2(τ) r(τ) = 0 . (2)

The general solution of equation (2) is a linear combination given by r(τ) =

ρ(τ)
(
A cos γ(τ) + B sin γ(τ)

)
, where γ(τ) =

∫ τ
0 dt′ 1

ρ2(t′) . Replacing these de�nitions into

(2), clearly leads to the following Ermakov equation [2]

ρ̈(τ) + ω2(τ) ρ(τ)− 1

ρ3(τ)
= 0 . (3)

If τ ∈ [0 , t] then A and B can be easily obtained from the initial conditions as

A =
r(0)

ρ(0)
, B =

1

sin γ(t)

[
r(t)

ρ(t)
− r(0)

ρ(0)
cos γ(t)

]
. (4)

Where we have used that γ(0) = 0. By replacing A and B in the general solution, we

obtain r(τ) and ṙ(τ). For a THO the classical action scl and the �uctuation factor F (t) in

the 3-dimensional isotropic space are de�ned in Ref. [3]. We calculate here their relationship

with Ermakov function as1

scl =
µ

2

(
r(t) ṙ(t)− r(0) ṙ(0)

)
=

µ

2

1

sin γ(t)
×

[
r(t)2

(
γ̇(t) cos γ(t) +

ρ̇(t)

ρ(t)
sin γ(t)

)
+r(0)2

(
γ̇(0) cos γ(t)− ρ̇(0)

ρ(0)
sin γ(t)

)
−r(t) r(0)

( ρ(t)
ρ(0)

γ̇(t) +
ρ(0)

ρ(t)
γ̇(0)

)]
, (5)

F (t) =

[
µ

2πi

(
− ∂ṙ(t)

∂r(0)

)]3/2
=

[
µ

2πi

ρ(t) γ̇(t)

ρ(0) sin γ(t)

]3/2
. (6)

1 We use the notation ṙ(t) = dr(τ)
dτ |τ=t for all functions of time.
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The time evolution operator for THO is given exactly by U(r, t) = F (t) exp(i scl). In

the present context, it will represent the quantum mechanical evolution of a cc̄ state for a

medium-modi�ed (distorted) interaction up to the time t when it gets projected onto the

asymptotic bound state spectrum. Thus we de�ne Ucc(r, t) = U(r, t). In fact formula (1) is

independent of the initial condition which may be taken as r(0) = 0.

4. THE THO FORMULA FOR CHARMONIUM SUPPRESSION

The ground state of charmonium J/ψ can be identi�ed with the 1s-wave of the harmonic

oscillator given by ψ(r) = ψ(0) exp
(

−r2
2 r2ψ

)
with rψ =

√
1

µ ωψ
[4]. Thus we integrate the

gaussian shape over r appearing in (1) which leads to the following suppression

SJ/ψ(t) =
∣∣∣ ρ(t)
ρ(0)

∣∣∣3×∣∣∣cos γ(t) + ( ρ̇(t)ρ(t)−1

γ̇(t)
+ i

ωψ
γ̇(t)

)
sin γ(t)

∣∣∣−3

. (7)

The formula (7) depends on γ(t), the frequency ωψ and the Ermakov function

ρ(t). For the case of the charmonium state ψ′ we take the 2s-wave given by φ(r) =

2
3 φ(0)

(
3
2 − r2

r2ψ

)
exp

(
−r2
2 r2ψ

)
. Applying the formula (1) we obtain

Sψ′(t) = SJ/ψ(t)

∣∣∣∣∣ 1 − 2 i ωψ sin γ(t)(
i ωψ + ρ̇(t)

ρ(t)

)
sin γ(t) + γ̇(t) cos γ(t)

∣∣∣∣∣
2

. (8)

For the Charmonium state χc we take the 2p-wave given by χ(r) = χ′(0) r exp
(

−r2
2 r2ψ

)
.

However, in this case there is a contribution of the angular momentum and it was shown in

Ref. [1] that for such waves the formula (1) vanishes and the next-to-leading order term in

momentum O(p/m) must be considered leading to the expression

Sχ(t) =

∣∣∣∣∣
∫∞
0

dr r2 χ(r) U ′
cc̄(r, t)

lim
t→0

∫∞
0

dr r2 χ(r) U ′
cc̄(r, t)

∣∣∣∣∣
2

= S
5
3

J/ψ(t) , (9)

with U ′
cc̄ = − µ r

2 sin γ(t)

(
ρ(t) γ̇(t) ρ(0)−1+ρ(0) γ̇(0) ρ(t)−1

)
Ucc̄ . The observable J/ψ suppression

ratio is in�uenced by feed-down from the higher charmonia states and we shall assume the

following composition of the total contribution

S(t) = 0.6 SJ/ψ(t) + 0.3 Sχ(t) + 0.1 Sψ′(t) . (10)

The case of no feed-down is described by the expression Sno(t) = SJ/ψ(t) . Since we

have already shown that Sχ(t) < SJ/ψ(t) and Sψ′(t) < SJ/ψ(t) for SJ/ψ(t) < 1 it is clear that

S(t) < Sno(t).
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5. SUMMARY

We have generalized Matsui's harmonic oscillator model for charmonium suppression to

the case of time-dependent complex oscillator strengths and included the e�ects of feed-down

on the J/ψ suppression ratio. Preliminary results for the comparison with experimental

results from CERN SPS and RHIC can be found in [5].
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