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The equation of state is calculated for temperatures less than 30 MeV and densities

less than four times the saturation density of nuclear matter using a combined analysis

of Auxiliarly Fields Di�usion Monte Carlo and Fermi Hypernetted Change methods.

1. INTRODUCTION

In order to understand the properties of matter at intermediate densities and tempera-

tures, it is important to gather knowledge about the regime de�ned by densities of the order

0.5n0 < n < 3�4 n0, and temperatures between 0 and 10�20 MeV. This regime is particu-

larly challenging. At such densities it is completely not obvious that the knowledge on the

nucleon-nucleon and many-nucleon interactions, that has been developed essentially �tting

properties of small nuclei, is still applicable. On the other hand, this regime is at present

completely unaccesible to QCD.

The constraints coming from astrophysical observations (in particular on the properties

of neutron stars) have been partly suplemented with information coming from heavy-ion
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collisions. However, the present situation does not allow for a de�nitive discrimination

among the variety of proposed models that have been developed in the last two decades.

Recent methodological developments allowed for a more systematic approach to the study

of the properties of high density nucleonic matter. In particular, by means of the Auxiliary

Field Di�usion Monte Carlo (AFDMC) method [1], it is possible to solve with high accuracy

the Schr�odinger equation with realistic potentials for a number of nucleons A which might

be of order 100 to make realistic predictions on the properties of nuclear [2] and neutron [3]

matter.

This is a big step forward, because the limits on number of nucleons that can be treated

e�ciently has been moved forward by at least one order of magnitude. It is therefore possible

to start discussing with no ambiguity the portability of current interactions (like Argonne-

Urbana AV18+UIX or Illinois ILX potentials) to the high density regime, and to possibly

develop alternatives that might at least give phenomenological input for attacking important

problems.

In this context, for instance, we have recently developed a density dependent interaction

(DDI) following the initial intuition of Lagaris and Pandharipande [4] which, after �tting

three parameters on basic properties of symmetrical nuclear matter (saturation density,

energy and compressibility at saturation density), yields an equation of state (EOS) which

is by far softer than the celebrated Akmal, Pandharipande and Ravenhall [5] EOS, both for

symmetrical nuclear matter and pure neutron matter, and consequently gives estimates of

Neutron Star properties (such as mass/radius ratio, momentum of inertia, and others) that

are much better reconciled with observations, and closer to extrapolated constraints.

The second issue concerns the temperature e�ects on the equation of state. From the

point of view of microscopic calculations the neater approach would be the development of a

code capable to compute the expectation of operators in the Quantum Canonical Ensemble

(always neglecting relativistic e�ects) by means of Path Integral Monte Carlo techniques. In

principle this would allow for a rigorous study of nuclear/neutron matter up to temperatures

and densities very close to the phase transitions. However, approximate approaches based on

the extrapolation of the temperature behavior from Fermi Hypernetted Chain calculations

[6] can be used in order to include temperature dependence up to 20-30 MeV. This fact

is important because it provides a guide to the corrections necessary to have a sensible

comparison with T = 0 results yielded by AFDMC calculations.
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In this Contribution we present a preliminary results of such combine analysis.

2. THE HAMILTONIAN

Recently we developed a realistic nuclear Hamiltonian which �ts the available scattering

data in S, P, D and F waves, and reproduces the ground state energy, density and compress-

ibility of nuclear matter via Monte Carlo calculations [7]. This model contains two-nucleon

and many-nucleon interactions.

For the two-body interaction, we take the Argonne AV6′ potential [8], which includes the

four central spin-isospin components and the two tensor ones. The six components of the long

range OPEP potential are fully included, whereas the �rst six of the 18 components vpI (rij) of

the intermediate range part and vpS(rij) of the short range part of the AV18 interaction [9] are

the only ones kept. The corresponding amplitudes Ip and Sp are re-�tted so as to correctly

reproduce the deuteron binding energy and to give the best �t to NN scattering data. Those

in S and 1P1 waves are �tted equally as well as by AV18.

The many-body interactions are represented by density-dependent factors of the structural

form given by the LP model [4]. The resulting potential, denoted as DD6′, is given by the

following six two-body components

vp
DD6′

= vpOPEP + vpIe
−γ1ρ + vpS + TNA(ρ) ,

TNA(ρ) = 3γ2ρ
2e−γ3ρ

(
1− 2

3

(
ρn − ρp
ρn + ρp

)2
)

(1)

with γ1, γ2 and γ3 being �xed by means of AFDMC method [7] so as to reproduce the

experimental values of the saturation density ρ0 = 0.16 fm−3, the binding energy per particle

E0 = −16 MeV and the compressibility K = 9ρ20 (∂
2E(ρ)/∂ρ2)ρ0 ≈ 240 MeV.

The γ1ρ term of the exp(−γ1ρ) simulates the e�ect of the three-body repulsion. At neutron

star densities (∼ 1 fm−3) the ρ2 term in the exp(−γ1ρ), which corresponds to four-nucleon

interaction gives small, but non-zero contribution. The four and more nucleon intereactions

implied by the exp(−γ1ρ) are theoretically plausible.

TNA(ρ) simulates an attractive many-body contribution via correlations. At its maximum

TNA is∼ −6MeV and∼ −2MeV in nuclear and neutron matter, respectively. Moreover, the

magnitudes of the many-body contributions appear to be reasonable from the point of view

of microscopic calculations of multiple pion exchange, and pion rescattering in matter [10].
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3. RESULTS

The constraned variational free energy Fcon(ρ, T ), de�ned as

Fcon(ρ, T )

A
=

F (ρ, T )

A
+ ρΛ

[
(Ic − 1)2 + (Iτ/3 + 1)2

]
, (2)

where Ic and Iτ are sum rules on the conservation of mass and charge, is minimized by

varying both the single particle spectrum ϵ(k, ρ, T ) and the correlation operator Fij.

3.1. Equation of state of nuclear matter at �nite temperature

It is well known that FHNC/0 overbinds symmetrical nuclear matter. The AFDMC

density-dependent terms give more attraction than in FHNC/0. The TNA term is ∼ 30%

larger at ρ0 and more than the double at 5ρ0, giving more attraction, and exp(γ1ρ) − 1 is

∼ 30% smaller over the whole range (ρ0, 5ρ0), giving less repulsion.

ESNM(ρ)/A = E0 + a(ρ− ρ0)
2 + b(ρ− ρ0)

3eγ(ρ−ρ0) , (3)

where E0 = −16.0 MeV, ρ0 = 0.16 fm−3, a = 517 ± 1 MeV fm6, b = −1270 ± 12 MeV fm9

and γ = −2.19 ± 0.02 fm3. This parametrisation was chosen to represent the EOS of nuclear

matter, reproducing properties constrained by terrestrial experiments on nuclei [11].

The DD6′ Hamiltonian was then used to compute the EOS of pure neutron matter. The

EOS for nuclear matter as a function of the proton fraction x = ρp/ρ is then parametrized

as

E(ρ, x)/A = ESNM(ρ)/A+ Cs

(
ρ

ρ0

)γs

(1− 2x)2 . (4)

The two extra parameters of the symmetry energy term, Cs and γs, were obtained by �tting

E(ρ, x = 0)/A to the AFDMC result for pure neutron matter. This gives Cs = 31.97 ±

0.01 MeV and γs = 0.6131 ± 0.0003. It should be noted that usually the symmetry energy

is constrained over the range of densities typical of nuclei, whereas here it were �tted over

a very wide density range well above ρ0. This means that the parametrization of Eq. (4) is

build to be accurate up to very high densities.

The FHNC/SOC and AFDMC results are compared in Fig. 1. At highest density (ρ =

0.56 fm−3) the energy di�erences are 5.8 MeV and 4 MeV for PNM and SNM, respectivelly.
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We �nd that the following functional forms provide excelent parametrizations of the new

numerical results in the required ranges of density and temperature

F (ρ, x, T )/A = E(ρ, x)/A+∆F0(ρ, T )/A+ (1− 2x)2∆FS(ρ, T )/A

− α

(
ρ0
ρ

)β [
x1/3 + (1− x)1/3

]
T 2 . (5)

α and β are expected to be almost independent on isospin x. The �t is inspired by the

Sommerfeld expansion, and resembles the hot non-interacting excitation energy, which comes

from the kinetic energy term

(F − F0) /A = − 3π2

8µF

(kBT )
2
[
x1/3 + (1− x)1/3

]
+O(T 4)

≈ −α0

(
ρ0
ρ

)2/3 [
x1/3 + (1− x)1/3

]
T 2 . (6)

At normal density α0 = ae = 3π2/(8µF ) = 0.03315 MeV−1.

Other functions, entering in de�ntition of (5), are the following:

∆F0(ρ, T )/A =

[
a log ρ+ b

(
ρ0
ρ

)]
T +

[
c log2 ρ+ d

(
ρ0
ρ

)]
T 2 ,

∆FS(ρ, T )/A = e

(
ρ0
ρ

)
T 2 . (7)

All parameters are �xed by means of the FHNC method: a = −0.15 ± 0.02, b = −0.38 ±

0.04, c = −0.008 ± 0.0013, d = 0.06 ± 0.03, e = −0.016 ± 0.013, α = 0.047 ± 0.023,

β = 0.72 ± 0.14 with χ2/n.d.f = 0.54.

The free energy is shown in Figs. 2 and 3 for symmetric nuclear matter and pure neutron

matter, respectively, for temperatures up to T = 30 MeV.

We notice that the free energy of symmetric matter shows a typical Van der Waals be-

havior and is monotonically decreasing function of the temperature.

It turns out that the dependence of the free energy on the proton fraction is not a usual

quadratic, as at zero temperature, but exhibits a more comlex behavior, which could be

important in the treatment of the case of neutron stars at beta-equilibrium.
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Figure 1. The variational equation of state for pure neutron matter (PNM, x = 0, dashed line) and

symmetric nuclear matter (SNM, x = 1/2, dot-dashed line). The points show the AFDMC results for PNM

(circles) and SNM (squares).
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Figure 2. The free energy di�erence per nucleon, (F (ρ, 1/2, T )− F (ρ, 1/2, 0))/A, as a function of density

in symmetric nuclear matter for di�erent temperatures.
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Figure 3. The free energy di�erence per nucleon, (F (ρ, 0, T )− F (ρ, 0, 0))/A, as a function of density in

pure neutron matter for di�erent temperatures.
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FIGURE CAPTIONS

Fig.1: The variational equation of state for pure neutron matter (PNM, x = 0, dashed line)

and symmetric nuclear matter (SNM, x = 1/2, dot-dashed line). The points show the

AFDMC results for PNM (circles) and SNM (squares).

Fig.2: The free energy di�erence per nucleon, (F (ρ, 1/2, T ) − F (ρ, 1/2, 0))/A, as a function

of density in symmetric nuclear matter for di�erent temperatures.

Fig.3: The free energy di�erence per nucleon, (F (ρ, 0, T ) − F (ρ, 0, 0))/A, as a function of

density in pure neutron matter for di�erent temperatures.


