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We investigate inhomogeneous chiral symmetry breaking phases in the phase di-

agram of the two-�avor Nambu-Jona-Lasinio model, concentrating on phases with

one-dimensional modulations. It is found that the �rst-order transition line in the

phase diagram of homogeneous phases gets completely covered by an inhomogeneous

phase which is bordered by second-order transition lines. The inhomogeneous phase

turns out to be remarkably stable when vector interactions are included.

1. INTRODUCTION

A better understanding of the phase diagram of quantum chromodynamics still poses one

of the biggest challenges in modern nuclear physics [1]. In the most common picture, chiral

symmetry, which is spontaneously broken in vacuum, gets restored at low temperature and

high chemical potential in a �rst-order phase transition, whereas at high temperature and

low chemical potential there is only a rapid crossover. As a consequence, the �rst-order phase

boundary ends at a critical point (CP), which is presently the focus of intensive experimental

and theoretical e�orts. While the existence of a crossover at zero chemical potential has been

con�rmed by ab-initio lattice gauge calculations [2], the other features of the above picture

are so far mainly based on model calculations. In this context a pioneering role was played by

the Nambu-Jona-Lasinio (NJL) model [3], within which the critical endpoint was predicted

already in 1989 [4]. Similar results have also been obtained in the quark-meson model [5, 6].

However, in most of these investigations it was tacitly assumed that the chiral condensate,

i.e. the order parameter of chiral symmetry breaking is homogeneous in space. On the other

hand the importance of chiral crystalline phases being characterized by an inhomogeneous
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order parameter has been pointed out long ago. Well known examples are the Skyrme

crystal [7] and the chiral density wave [8]. Recently, they have also been discussed in the

context of quarkyonic matter [9]. In these proceedings, we brie�y discuss some results of

Refs. [10�12], where phases with one-dimensional modulations of the chiral condensate have

been investigated in the NJL model. It is shown that the consideration of inhomogeneous

phases changes the phase diagram drastically. In particular the critical endpoint disappears.

2. MODEL

The Lagrangian of our model is given by

L = ψ̄ (iγµ∂µ −m)ψ +GS

((
ψ̄ψ

)2
+
(
ψ̄iγ5τaψ

)2)−GV

(
ψ̄γµψ

)2
, (1)

where ψ is a 4NfNc-dimensional quark spinor for Nf = 2 �avors and Nc = 3 colors, γµ and

τa are Dirac and Pauli matrices, respectively, m is the degenerate current quark mass, and

Gs and GV are dimensionful coupling constants. In mean-�eld approximation we linearize

the interaction terms around the expectation values S(x) ≡ ⟨ψ̄(x)ψ(x)⟩ (scalar condensate),

P3(x) ≡ ⟨ψ̄(x) iγ5τ 3ψ(x)⟩ (pseudo-scalar condensate) and n(x) ≡ ⟨ψ†(x)ψ(x)⟩ (density),

which we allow to be spatially dependent. In the case of a periodic condensate with Wigner-

Seitz cell V and using the imaginary-time formalism, the mean-�eld thermodynamic potential

per volume is then given by

Ω = −T
V

∑
n

TrD,c,f,V ln

(
1

T
(iωn +H − µ)

)
+

1

V

∫
dx

(
|M(x)−m|2

4GS

− (µ̃(x)− µ)2

4GV

)
,(2)

with the spatially dependent �constituent quark� mass M(x) = m − 2Gs(S(x) + iP (x)),

the renormalized quark chemical potential µ̃(x) = µ − 2GV n(x), and the quasi-particle

Hamiltonian

H − µ = −iγ0γi∂i +
γ0

2

(
M(x) +M(x)∗ + γ5τ 3M(x)− γ5τ 3M(x)∗

)
− µ̃(x) . (3)

The functional trace in Eq. (2) acts on Dirac, color, �avor, and coordinate space, and the

sum is over fermionic Matsubara frequencies ωn = (2n+ 1)πT .

At �xed temperature and chemical potential, the ground state is given by the minimum

of Ω with respect to the various mean �elds. For general spatially dependent mean �elds this

corresponds to a highly nontrivial variational problem. However, as shown in Ref. [10], for
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GV = 0 one can exploit the the analytically known solutions [13�15] of the 1+1-dimensional

Gross-Neveu model to construct stationary solutions of the 3 + 1-dimensional NJL model

with one-dimensional mass modulations. These solutions can be generalized to the case

GV > 0 if the density n(x) is approximated by its spatial average ⟨n(x)⟩ = const. As a

consequence, µ̃ = µ− 2GV n becomes constant as well, and the problem reduces to the case

GV = 0 at a shifted value of the chemical potential. For further details, see Ref. [12].

3. PHASE DIAGRAM

In the following we restrict ourselves to the chiral limit (m = 0) and �x the model

parameters by requiring for the pion decay constant fπ = 88 MeV and for the constituent

mass in the vacuum M0 = 300 MeV. The value of the vector coupling GV is treated as a free

parameter, which will be varied in order to study its e�ect on the phase diagram.

In Fig. 1 we present the resulting µ−T phase diagrams, focusing on the region where the

inhomogeneous phase is preferred [12]. For comparison we have also indicated the transition

lines one obtains when the analysis is limited to homogeneous phases. In this case there

is a CP for small values of GV (square) below which the transition from the broken to the

restored phase is �rst order (solid line). Upon increasing GV the CP is shifted to smaller

temperatures (and higher chemical potentials) and eventually hits the zero temperature axis,

so that the �rst-order phase transition is absent for larger values of GV . This behavior is

well known and has recently attracted new interest in the discussion of the critical surface.

However, the picture changes considerably, when we allow for inhomogeneous solutions.

We then always �nd a regime where the domain-wall solitons are preferred (shaded region),

so that we can distinguish three di�erent phases: the homogeneous chirally broken phase, the

restored phase and the inhomogeneous phase. The corresponding three phase boundaries are

all of second order. Their conjunction de�nes a so-called Lifshitz point (dot), above which the

phase boundary coincides with that found when limiting to homogeneous phases. Moreover,

for GV = 0 the Lifshitz point precisely agrees with the CP of the purely homogeneous

analysis [10]. This can be understood analytically within a Ginzburg-Landau analysis [11].

It turns out, however, that this is no longer true for GV > 0: Whereas with increasing

vector coupling the CP moves downwards in temperature and eventually disappears from

the phase diagram, we observe that the Lifshitz point is only shifted in the µ-direction, while
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remaining at the same temperature. Consequently, unlike the �rst-order boundary in the

purely homogeneous case, the existence of the inhomogeneous phase is not inhibited by the

vector interaction. At vanishing temperature the transition from the homogeneous broken to

the inhomogeneous phase is only slightly varying with GV , whereas the transition from the

inhomogeneous to the restored phase signi�cantly shifts, thus enhancing the domain where

inhomogeneous phases are favored. As discussed in Ref. [12], it can be shown that in the

µ̃− T plane the inhomogeneous region is independent of GV . The GV dependence observed

in Fig. 1 is thus simply a result of the mapping µ̃→ µ = µ̃+ 2GV ⟨n⟩.

Our results show that for GV > 0 the CP has disappeared from the phase diagram.

Even if present in a purely homogeneous analysis, it is covered by the inhomogeneous phase,

when the latter is taken into account. An important consequence is that the quark number

susceptibility, which diverges at the CP, remains �nite in the entire phase diagram.

The results presented here should be considered as �rst steps towards a more complete pic-

ture of the phase diagram with inhomogeneous phases. In particular, we should relax the re-

striction to inhomogeneities with one-dimensional modulations and study higher-dimensional

modulations as well. Although technically much more demanding, this should be possible in

a more numerical approach as outlined in Ref. [16] in the context of inhomogeneous color-

superconducting phases. Eventually, one would like to study the transition from a single

nucleon to nuclear matter and �nally to color-superconducting quark matter.
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Figure 1. The phase diagram in the chiral limit for di�erent values of the vector coupling constant GV .

The dashed lines represent the second-order transition lines joining at the Lifshitz point (dot), the shaded

region represents the inhomogeneous phase. The solid lines represent the �rst-order phase transition

obtained when limiting to homogeneous order parameters, which turns to second order (dash-dotted lines)

at the critical point (square). From Ref. [12].
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FIGURE CAPTIONS

Fig.1: The phase diagram in the chiral limit for di�erent values of the vector coupling con-

stant GV . The dashed lines represent the second-order transition lines joining at the

Lifshitz point (dot), the shaded region represents the inhomogeneous phase. The solid

lines represent the �rst-order phase transition obtained when limiting to homogeneous

order parameters, which turns to second order (dash-dotted lines) at the critical point

(square). From Ref. [12].


