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The spinodal ampli�cation of density �uctuations is treated perturbatively within

dissipative �uid dynamics including not only shear and bulk viscosity but also heat

conduction, as well as a gradient term in the local pressure. The degree of spinodal

ampli�cation is calculated along speci�c dynamical phase trajectories and the results

suggest that the e�ect can be greatly enhanced by tuning the collision energy so that

maximum compression occurs inside the region of spinodal instability.

1. INTRODUCTION

It is expected that the con�ned and decon�ned phases of strongly interacting matter may

coexist at net baryon densities above a certain critical value and signi�cant experimental

e�orts are underway to search for evidence of the associated �rst-order phase transition and

its critical end point: a systematic beam-energy scan is currently being performed at RHIC

(BNL) to look for the critical point [1]; the CBM experiment at FAIR (GSI) will study

baryon-dense matter and search for the phase transition [2]; and the proposed NICA (JINR)

aims at exploring the mixed phase [3].

We focus here on the possibility that the mechanism of spinodal phase decomposition may

have e�ects that could be exploited as signals of the phase transition. Spinodal decomposition

is a well-known generic phenomenon associated with �rst-order phase transitions that has

been studied in a variety of substances and also found industrial application [4]. Furthermore,

nuclear spinodal fragmentation [5] was observed in nuclear collisions at intermediate energies

[6] several years ago. The present discussion is merely a brief summary of recent work [7]

and a fuller exposition can be found in the literature.
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2. ANALYSIS FRAMEWORK

The key parts of the framework for the analysis are described below.

2.1. Thermodynamic phase structure

The present study requires an equation of state of strongly interacting matter that displays

the expected phase structure. Although signi�cant progress has been made in understanding

the thermodynamical properties of each of the phases separately, our current understanding

of the phase coexistence region is not yet on �rm ground. We have therefore employed a

conceptually simple approximate equation of state which su�ces for our present explorations.

For this purpose, we approximate the con�ned phase by an ideal gas of nucleons and pions

augmented by a density-dependent interaction energy, while the decon�ned phase is taken

as an ideal gas of quarks and gluons with their interactions described by a bag constant.

Fig. 1 illustrates how such two di�erent phases may coexist thermodynamically.

The desired phase structure is then generated by suitable interpolation between those two

pure phases [7] and the resulting phase diagram is shown in Fig. 2.

2.2. Transport coe�cients

It is convenient to employ dissipative �uid dynamics for our dynamical studies because

the speci�c miscroscopic structure of the matter under consideration enters only via the

equation of state and a few transport coe�cients.

The deviation of the dynamical evolution from that of an ideal �uid is governed by three

transport coe�cients: the shear viscosity η and the bulk viscosity ζ (which here enter only

through the e�ective viscosity ξ ≡ 4
3
η + ζ) as well as the heat conductivity κ. Neither

their magnitudes nor their dependencies on the environment (through ρ and T ) are very

well known. We shall therefore employ simple parametrizations of their functional form

and introduce one adjustable overall strength parameter for each one, thus enabling us to

conveniently explore a range of physical scenarios. Thus, following Ref. [7], we ignore ζ and

write

η(ρ, T )
.
= η0

c0
c
d(ρ, T )h(ρ, T ) , (1)

κ(ρ, T )
.
= κ0 c0 c d(ρ, T ) cv(ρ, T ) , (2)
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where d ≡ 1/n1/3 is the interparticle spacing [8], h is the enthalpy density, and cv is the

speci�c heat; the conversion constant c0 is given by

c0 ≡ 1

4π

[
(gg +

4
3
gq)

ζ(3)

π2

] 1
3

≈ 0.12779 . (3)

The adjustable parameters η0 and κ0 govern the overall magnitudes and they are expected

to be at least unity.

While these approximate expressions for the transport coe�cients are likely not quan-

titatively accurate, they are expected to approximately re�ect the dependence on density

and temperature. They will therefore serve well for exploring the e�ect of the dissipative

mechanisms on the spinodal decomposition.

2.3. Dissipative �uid dynamics

We consider the early evolution of small deviations from uniformity and assume that these

are planar and harmonic, ρ(r, t) = ρ0+ρk exp(ikx− iωt) with δ ≡ |ρk|/ρ0 ≪ 1, and similarly

for the other quantities. We may then ignore terms of order O(δ2) and higher. It follows

that the associated �ow velocities are small, v ≪ 1 since O(v) = O(δ), and thus we have

γ ≡ [1− v2]−1/2 = 1 +O(δ2) ≈ 1.

It is convenient to work in the Eckart frame, where the energy-momentum tensor is

T µν = εuµuν − p∆µν + πµν − Π∆µν . (4)

Here ε = uµT
µνuν is the energy density in the local �ow frame and p+Π = −1

3
∆µνT

µν is the

sum of the local isotropic pressure p and the pressure induced by the bulk viscosity which

enters through the bulk pressure,

Π = −ζ∇µu
µ ≈ −ζ∇iv

i = −ζ∂iv
i = −ζ∇v . (5)

Furthermore, the heat �ow is qµ = uνT
νλ∆µ

λ, while the shear viscosity enters via the stress

tensor πµν . In the present scenario, only the 3× 3 spatial part π is non-vanishing,

πij ≈ −η[∂iv
j + ∂jv

i − 1
3
δij∂kv

k] . (6)

Consequently, for small deviations from uniformity, we then have

∇T ≈ ∇p− η∆v − [1
3
η + ζ]∇(∇v) . (7)
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It is interesting to note that the above result implies that isotropic expansions in N

dimensions are sensitive only to the e�ective viscosity ξ ≡ 4
3
η + ζ. To see this, assume that

ρ(r) = ρ(r) and v(r) = v(r)r̂ and evaluate the viscous term in the Euler equation by use of

spherical coordinates,

η∆v + [1
3
η + ζ]∇(∇v) = [4

3
η + ζ] r̂ ∂r

1

rN−1
∂rr

N−1v . (8)

It follows that a Hubble-type expansion, v(r) ∼ r, is dissipation free in any dimension.

Furthermore, one may expect that any expansion will seek to approach a Hubble form in

order to eliminate the dissipation, so the Hubble expansion is a dynamical attractor.

The �uid-dynamic equations of motion re�ect the conservation of (baryon) charge, mo-

mentum, and energy. We are interested in the dynamics of small deviations from uniformity

in a semi-in�nite con�guration and we focus on harmonic disturbances.

The conservation of charge is ensured by the continuity equation, ∂µN
µ .
= 0, which here

becomes

C : ∂tρ
.
= −ρ0∂xv ⇒ ωρk

.
= ρ0kvk . (9)

It serves to eliminate the �ow velocity, vk = ωρk/(ρ0k). The momentum equation simpli�es

considerably for the present scenario of small disturbances,

M : h0∂tv
.
= −∂x[p− ζ∂xv]− ∂xπxx − ∂tq , (10)

where h0 = p0 + ε0 is the enthalpy density of the uniform system and the heat �ow is

q = (q, 0, 0) (see below). The equation for energy conservation is similarly simpli�ed,

E : ∂tε
.
= −h0∂xv − ∂xq . (11)

By combining these latter two equations, (10) and (11), one obtains the sound equation,

∂tE − ∂xM : ∂2
t ε

.
= ∂2

x∆[p− ζ∂xv] + ∂2
xπxx , (12)

which amounts to ω2εk
.
= k2pk − iξ(ω/ρ0)k

2ρk, where we recall that ξ ≡ 4
3
η + ζ.

It is essential to take account of �nite-range e�ects, without which the spinodal growth

rate would become ever larger as the wave number is increased [9]. Following Ref. [10], we

introduce a gradient correction in the equation of state. To leading order in the disturbance

amplitudes, the e�ect of the gradient term on the local pressure is given by

p(r) ≈ p0(ε(r), ρ(r))− Cρ0∇2ρ(r) , (13)
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where p0(ε, ρ) is the microcanonical equation of state, i.e. the pressure in uniform matter

having the speci�ed energy and charge densities. The pressure amplitude is then modi�ed

accordingly, pk → pk + Cρ0k
2ρk.

With the above preparations, it is then possible to derive the dispersion equation for the

collective frequency, with viscosity, heat conductivity, and �nite-range e�ects included,

ω2 .
= v2Tk

2 + C
ρ20
h0

k4 − iξ
ω

h0

k2 +
v2s − v2T

1 + iκk2/ωcv
k2 . (14)

Apart from the addition of the �nite-range term, it agrees with the one used in Ref. [11].

3. RESULTS

We now brie�y discuss the main results of the analysis.

3.1. Dispersion relation

Fig. 3 illustrates this dispersion relation for thermodynamic scenarios relevant to the

present study. Selecting a phase point in the central region of the phase coexistence region

where both the isothermal and the isentropic sound velocities are imaginary, we consider the

growth rate γ as a function of the wave number k of the density undulation being ampli�ed.

The non-dissipative treatment with ideal �nite-range �uid dynamics provides a convenient

reference result.

Relative to this reference, the inclusion of viscosity slows the growth but does not change

the domain of instability which is still delineated by the vanishing of the isentropic sound

speed vs. We see that the inclusion of a minimal amount of viscosity (η0 = 1) leads to a

signi�cant reduction in γ and also shifts the optimal length scale towards larger values.

On the other hand, relative to the ideal scenario, the inclusion of heat conductivity

enlarges the domain of instability, the boundary being now determined by the vanishing of

the isothermal sound speed vT . Thus, generally, the inclusion of heat conductivity increases

the growth rates, particularly at the high end of the unstable k range.

While the inclusion of both minimal viscosity and minimal heat conduction necessarily

enlarges the unstable k range, it does somewhat reduce the fastest growth rates. However, it

hardly a�ects the scale of the fastest-growing modes, kmax. As the strengths of the dissipative
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terms are further increased, the growth rate γk decreases steadily and, at the same time, the

maximum in the dispersion relation moves gradually downwards in k.

3.2. Dynamical evolution

It is possible to obtain semi-quantitative estimates of the dynamical phase trajectories,

(ρ(t), T (t)), on the basis of the results presented in Ref. [12] which used a number of di�erent

dynamical models to extract the time evolution of the net baryon density, ρ(t), and the energy

density, ε(t), in the center of a head-on gold-gold collision for the range of collision energies

anticipated at FAIR. Here we employ phase trajectories extracted from calculations with the

3-�uid model [13] and UrQMD [14] at beam kinetic energies of 5 AGeV, shown in Fig. 4.

Once ρ(t) and T (t) have been speci�ed, the time evolution of the collective frequency can

be obtained by use of the dispersion equation (14) and it is then possible to calculate the

degree of ampli�cation experienced by the mode, as illustrated in Fig. 5. The evolution of

the amplitude of a mode ν having the complex frequency ων = ϵν + iγν is governed by the

equation
d

dt
Aν(t) = −iωνAν(t) +Bν(t) , (15)

where the last term represents the dissipative coupling to the environment which is assumed

to be Markovian, ≺ Bν(t)Bµ(t
′)∗ ≻ = 2Dνµδ(t−t′) [15]. The equal-time correlation function,

σνµ(t) = ≺ Aν(t)Aµ(t)
∗ ≻ then evolves according to the Lalime equation [15],

d

dt
σνµ(t) = 2Dνµ(t)− i[ων(t)− ωµ(t)

∗]σνµ(t) . (16)

We are particularly interested in the time evolution of the diagonal components of the

covariance matrix, σνν=σ2
ν , which are given by

σ2
ν(t) =

[
σ2
ν(ti) +

∫ t

ti

2Dνν(t
′) e−2Γν(t′)dt′

]
e2Γν(t) . (17)

The degree of ampli�cation achieved is thus governed by the ampli�cation coe�cient,

Γν(t) ≡
∫ t

ti

Im[ων(t
′)] dt′ =

∫ t

ti

γν(t
′) dt′ , (18)

which depends strongly on the length of time spent in the phase region of spinodal instability.

This is illustrated in Fig. 6 which shows Gk ≡ exp(Γk), the degree of amplitude growth

obtained for the entire range of wave numbers, as obtained with various degrees of dissipation.
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While we concentrate on the phase trajectory that reaches its maximum compression inside

the spinodal region (the one based on the 3-�uid model results for 5 AGeV), we also show

the result of a more penetrating trajectory to bring out the importance of adjusting the

collision energy for optimal e�ect.

In addition to the result of ideal �uid dynamics, we show results for various degrees

of dissipation, ranging from minimal, i.e. (η0, κ0) = (1, 1), to �ve times that. While vis-

cosity generally slows the evolution, thus also supressing the growth of instabilities, heat

conductivity generally increases the growth rate. The combined e�ect of introducing small

amounts of dissipation then tends to enhance the ampli�cation. Thus the resulting degree

of non-uniformity is fairly robust against moderate changes in the dissipation strength and,

consequently, our conclusions do not appear to be sensitive to the speci�c parametrizations

of the transport coe�cients.

The results displayed in Fig. 6 bring out the characteristic feature of spinodal instability,

namely that the ampli�cation mechanism favors certain length scales. We note that the two-

point correlation coe�cient σ2
k is proportional to G2

k and thus exhibits a stronger peaking.

More generally, since the N -point correlation is proportional to GN
k , the spinodal e�ect

manifests itself progressively stronger in the higher-order correlations.

The nuclear liquid-gas phase transition could be revealed by the unique signal of equal-size

intermediate-mass fragments in each event [6]. The studies summarized above suggest that if

the equation of state has a form that admits spinodal instability, then the conditions during

a nuclear collision at suitably adjusted energies may allow the development of signi�cant

clumping which in turn might lead to visible signals. Of course, the con�nement transition

is inherently more di�cult to investigate experimentally because any plasma drops that may

have been formed will ultimately hadronize and are thus harder to identify. Nevertheless,

the transient existence of spatially separated blobs of decon�ned matter might be revealed

by careful examination of suitable multi-particle correlations [17�19].

Finally, it should be stressed that the above analysis rests on the assumption that the

phase structure is of the familiar Van-der-Waals form characterizing the liquid-gas transition,

for which spinodal decomposition is an accompanying phenomenon. However, as pointed out

by Iosilevskiy [20], the T�p representation of the plasma-hadron coexistence looks qualita-

tively di�erent from that of a liquid-gas system and the phase transformation may therefore

proceed di�erently. This important possibility awaits further exploration.
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Figure 1. Phase crossing: The pressures in the two idealized phases are shown as functions of the

chemical potential µ for T = 0 (solid) and T = 100 MeV (dashed); the systems are in mutual

thermodynamic equilibrium at the µ value for which the two curves cross. The crossing points obtained by

this procedure for various T are connected by the solid curve that terminates at Tmax ≈ 156.4MeV; above

this T the plasma is thermodynamically favorable at all µ.
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Figure 2. Phase diagram: The crossing points for the two idealized phases (see Fig. 1) in the ρ�T phase

plane (dot-dashed curves) and the phase coexistence boundary (outer solid) obtained by interpolating

between those two idealized phases. Also shown are the isothermal spinodal where vT = 0 (dashed), and

the isentropic spinodal where vs = 0 (inner solid), together with the critical point. The dispersion relation

shown in Fig. 3 was calculated at the square.
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Figure 3. The growth rate γk(ρ, T ), as a function of the wave number k, calculated with �nite-range �uid

dynamics at ρ = 6.5 ρs and T = 70MeV for four di�erent combinations of dissipation: no dissipation

(η0=0, κ0=0); minimal viscosity but no heat conduction (η0 =1, κ0 =0); no viscosity but minimal heat

conduction (η0 =0, κ0 =1); both minimal viscosity and minimal heat conduction (η0=1, κ0 =1).
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Figure 4. Dynamical phase trajectories based on the 3-�uid and UrQMD density evolutions obtained for

5 AGeV in Ref. [12]; the associated time-dependent growth rates γk(t) are illustrated in Fig. 5. The

symbols along the trajectories are equidistant in time with ∆t = 1 fm/c, while the open dots on the left

indicate the freezeout locations for bombarding energies of E = 1, . . . , 10 AGeV obtained from �ts to

experimental data as discussed in Ref. [16].
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Figure 5. The spinodal growth rate γk(t) = Re[ωk(t)] for modes with k = 2 fm−1, calculated with

minimal dissipation along the two dynamical (ρ, T ) phase trajectories shown in Fig. 4.
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Figure 6. As a function of the wave number k is shown the ampli�cation factor Gk = exp(Γk) resulting

from motion along the 3-�uid phase trajectory displayed in Fig. 4 for various degrees of dissipation

(indicated by the values of η0 and κ0). Also shown is the result for the UrQMD trajectory in Fig. 4 using

minimal dissipation, i.e. (η0, κ0) = (1, 1).
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FIGURE CAPTIONS

Fig. 1: Phase crossing: The pressures in the two idealized phases are shown as functions of

the chemical potential µ for T = 0 (solid) and T = 100 MeV (dashed); the systems

are in mutual thermodynamic equilibrium at the µ value for which the two curves

cross. The crossing points obtained by this procedure for various T are connected

by the solid curve that terminates at Tmax ≈ 156.4MeV; above this T the plasma is

thermodynamically favorable at all µ.

Fig. 2: Phase diagram: The crossing points for the two idealized phases (see Fig. 1) in the ρ�

T phase plane (dot-dashed curves) and the phase coexistence boundary (outer solid)

obtained by interpolating between those two idealized phases. Also shown are the

isothermal spinodal where vT = 0 (dashed), and the isentropic spinodal where vs = 0

(inner solid), together with the critical point. The dispersion relation shown in Fig. 3

was calculated at the square.

Fig. 3: The growth rate γk(ρ, T ), as a function of the wave number k, calculated with �nite-

range �uid dynamics at ρ = 6.5 ρs and T = 70MeV for four di�erent combinations of

dissipation: no dissipation (η0 =0, κ0 =0); minimal viscosity but no heat conduction

(η0 = 1, κ0 = 0); no viscosity but minimal heat conduction (η0 = 0, κ0 = 1); both

minimal viscosity and minimal heat conduction (η0=1, κ0 =1).

Fig. 4: Dynamical phase trajectories based on the 3-�uid and UrQMD density evolutions

obtained for 5 AGeV in Ref. [12]; the associated time-dependent growth rates γk(t)

are illustrated in Fig. 5. The symbols along the trajectories are equidistant in time

with ∆t = 1 fm/c, while the open dots on the left indicate the freezeout locations for

bombarding energies of E = 1, . . . , 10 AGeV obtained from �ts to experimental data

as discussed in Ref. [16].

Fig. 5: The spinodal growth rate γk(t) = Re[ωk(t)] for modes with k = 2 fm−1, calculated

with minimal dissipation along the two dynamical (ρ, T ) phase trajectories shown in

Fig. 4.

Fig. 6: As a function of the wave number k is shown the ampli�cation factor Gk = exp(Γk)

resulting from motion along the 3-�uid phase trajectory displayed in Fig. 4 for various
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degrees of dissipation (indicated by the values of η0 and κ0). Also shown is the result

for the UrQMD trajectory in Fig. 4 using minimal dissipation, i.e. (η0, κ0) = (1, 1).


