A novel strong coupling expansion of the QCD Hamiltonian

H.-P. Pavel ${ }^{1,2,{ }^{*}}$
${ }^{1}$ Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
${ }^{2}$ Bogoliubov Laboratory of Theoretical Physics, JINR Dubna, Dubna, Russia

Introducing an infinite spatial lattice with box length a, a systematic expansion of the physical QCD Hamiltonian in $\lambda=g^{-2 / 3}$ can be obtained, with the free part being the sum of the Hamiltonians of the quantum mechanics of spatially constant fields for each box, and interaction terms proportional to λ^{n} with n spatial derivatives connecting different boxes. As an example, the energy of the vacuum and the lowest scalar glueball is calculated up to order λ^{2} for the case of $S U(2)$ Yang-Mills theory.

1. INTRODUCTION

The quantum Hamiltonian of $S U(2)$ Yang-Mills theory, to which we limit ourselves here for simplicity, can be obtained [1] by exploiting the time-dependence of the gauge transformations to put $A_{a 0}(x)=0, a=1,2,3$, and quantizing the spatial fields in the Schrödinger representation, $\Pi_{a i}(\mathbf{x})=-E_{a i}(\mathbf{x})=-i \delta / \delta A_{a i}(\mathbf{x})$. The physical states Ψ have to satisfy the Schrödinger eq. and the three non-Abelian Gauss law constraints

$$
\begin{align*}
& H \Psi=E \Psi, \quad H=\int d^{3} \mathbf{x} \frac{1}{2} \sum_{a, i}\left[\left(\frac{\delta}{\delta A_{a i}(\mathbf{x})}\right)^{2}+B_{a i}^{2}(A(\mathbf{x}))\right] \tag{1}\\
& G_{a}(\mathbf{x}) \Psi=0, \quad G_{a}(\mathbf{x})=-i\left(\delta_{a c} \partial_{i}+g \epsilon_{a b c} A_{b i}(\mathbf{x})\right) \frac{\delta}{\delta A_{c i}(\mathbf{x})} \tag{2}
\end{align*}
$$

with the chromo-magnetic fields $B_{a i}(A)=\epsilon_{i j k}\left(\partial_{j} A_{a k}+\frac{1}{2} g \epsilon_{a b c} A_{b j} A_{c k}\right)$ and the generators $G_{a}(\mathbf{x})$ of the residual time-independent gauge transformations, satisfying $\left[G_{a}(\mathbf{x}), H\right]=0$, and $\left[G_{a}(\mathbf{x}), G_{b}(\mathbf{y})\right]=i g \delta^{3}(\mathbf{x}-\mathbf{y}) \epsilon_{a b c} G_{c}(\mathbf{x}$. The matrix elements have Cartesian measure

$$
\begin{equation*}
\left\langle\Phi_{1}\right| \mathcal{O}\left|\Phi_{2}\right\rangle=\int \prod_{\mathbf{x}} \prod_{i k} d A_{i k}(\mathbf{x}) \Phi_{1}^{*} \mathcal{O} \Phi_{2} \tag{3}
\end{equation*}
$$

In order to implement the Gauss laws (2) into (1) to obtain the physical Hamiltonian, it is very useful to Abelianise them by a suitable point transformation of the gauge fields.

[^0]
2. THE PHYSICAL HAMILTONIAN OF SU(2) YANG-MILLS THEORY AND ITS STRONG COUPLING EXPANSION

Point transformation to the new set of adapted coordinates [2], the $3 q_{j}(j=1,2,3)$ and the 6 elements $S_{i k}=S_{k i} \quad(i, k=1,2,3)$ of the positive definite symmetric 3×3 matrix S,

$$
\begin{equation*}
A_{a i}(q, S)=O_{a k}(q) S_{k i}-\frac{1}{2 g} \epsilon_{a b c}\left(O(q) \partial_{i} O^{T}(q)\right)_{b c} \tag{4}
\end{equation*}
$$

where $O(q)$ is an orthogonal 3×3 matrix parametrised by the q_{i}, leads to an Abelianisation of the Gauss law constraints

$$
G_{a} \Phi=0 \quad \Leftrightarrow \quad \frac{\delta}{\delta q_{i}} \Phi=0 \quad \text { (Abelianisation). }
$$

Eq. (4) corresponds to the symmetric gauge $\chi_{i}(A)=\epsilon_{i j k} A_{j k}=0$. It has been proven in [3] that, at least for strong coupling, the symmetric gauge exists, i.e. any time-independent gauge field can be carried over uniquely into the symmetric gauge, and in [2] that both indices of the tensor field S are spatial indices, leaving S a colorless local field.

According to the general scheme of [1], the correctly ordered physical quantum Hamiltonian in the symmetric gauge in terms of the colorless physical variables $S_{i k}(\mathbf{x})$ and the corresponding canonically conjugate momenta $P_{i k}(\mathbf{x}) \equiv-i \delta / \delta S_{i k}(\mathbf{x})$ reads [4]

$$
\begin{aligned}
H(S, P)= & \frac{1}{2} \mathcal{J}^{-1} \int d^{3} \mathbf{x} P_{a i} \mathcal{J} P_{a i}+\frac{1}{2} \int d^{3} \mathbf{x}\left(B_{a i}(S)\right)^{2} \\
& -\mathcal{J}^{-1} \int d^{3} \mathbf{x} \int d^{3} \mathbf{y}\left\{\left(D_{i}(S)_{m a} P_{i m}\right)(\mathbf{x}) \mathcal{J}\left\langle\left.\mathbf{x} a\right|^{*} D^{-2}(S) \mid \mathbf{y} b\right\rangle\left(D_{j}(S)_{b n} P_{n j}\right)(\mathbf{y})\right\}(5)
\end{aligned}
$$

with the covariant derivative $D_{i}(S)_{k l} \equiv \delta_{k l} \partial_{i}-g \epsilon_{k l m} S_{m i}$, the Faddeev-Popov (FP) operator

$$
\begin{equation*}
{ }^{*} D_{k l}(S) \equiv \epsilon_{k m i} D_{i}(S)_{m l}=\epsilon_{k l i} \partial_{i}-g \gamma_{k l}(S), \quad \gamma_{k l}(S) \equiv S_{k l}-\delta_{k l} \operatorname{tr} S, \tag{6}
\end{equation*}
$$

and the Jacobian $\left.\mathcal{J} \equiv \operatorname{det}\right|^{*} D \mid$. The matrix element of a physical operator O is given by

$$
\begin{equation*}
\left\langle\Psi^{\prime}\right| O|\Psi\rangle \propto \int \prod_{\mathbf{x}}[d S(\mathbf{x})] \mathcal{J} \Psi^{\prime *}[S] O \Psi[S] . \tag{7}
\end{equation*}
$$

The inverse of the FP operator can be expanded in the number of spatial derivatives

$$
\begin{align*}
\left\langle\left.\mathbf{x} k\right|^{*} D^{-1}(S) \mid \mathbf{y} l\right\rangle= & -\frac{1}{g} \gamma_{k l}^{-1}(\mathbf{x}) \delta(\mathbf{x}-\mathbf{y})+\frac{1}{g^{2}} \gamma_{k a}^{-1}(\mathbf{x}) \epsilon_{a b c} \partial_{c}^{(\mathbf{x})}\left[\gamma_{b l}^{-1}(\mathbf{x}) \delta(\mathbf{x}-\mathbf{y})\right] \\
& -\frac{1}{g^{3}} \gamma_{k a}^{-1}(\mathbf{x}) \epsilon_{a b c} \partial_{c}^{(\mathbf{x})}\left[\gamma_{b i}^{-1}(\mathbf{x}) \epsilon_{i j k} \partial_{k}^{(\mathbf{x})}\left[\gamma_{j l}^{-1}(\mathbf{x}) \delta(\mathbf{x}-\mathbf{y})\right]\right]+\ldots . \tag{8}
\end{align*}
$$

In order to perform a consistent expansion, also the non-locality in the Jacobian \mathcal{J} has to be taken into account [4]. The Jacobian \mathcal{J} factorizes $\mathcal{J}=\mathcal{J}_{0} \widetilde{\mathcal{J}}$ with the local

$$
\begin{equation*}
\mathcal{J}_{0} \equiv \operatorname{det}|\gamma|=\prod_{\mathbf{x}} \prod_{i<j}\left(\phi_{i}(\mathbf{x})+\phi_{j}(\mathbf{x})\right) \quad\left(\phi_{i}=\text { eigenvalues of } S\right) \tag{9}
\end{equation*}
$$

and the non-local $\widetilde{\mathcal{J}}$, which can be included into the wave functional $\widetilde{\Psi}(S):=\widetilde{\mathcal{J}}^{-1 / 2} \Psi(S)$ leading to the corresponding transformed Hamiltonian

$$
\begin{equation*}
\widetilde{H}(S, P):=\widetilde{\mathcal{J}}^{1 / 2} H(S, P) \widetilde{\mathcal{J}}^{-1 / 2}=\left.H(S, P)\right|_{J \rightarrow J_{0}}+V_{\text {measure }}(S) \tag{10}
\end{equation*}
$$

It is Hermitean with respect to the local measure \mathcal{J}_{0} on the cost of extra terms $V_{\text {measure }}$ and can be expanded in the number of spatial derivatives using (8).

Next, an ultraviolet cutoff a is put by introducing an infinite spatial lattice of granulas $G(\mathbf{n}, a)$, here cubes of length a, situated at sites $\mathbf{x}=a \mathbf{n}\left(\mathbf{n} \in Z^{3}\right)$, and considering the averaged variables

$$
S(\mathbf{n}):=\frac{1}{a^{3}} \int_{G(\mathbf{n}, a)} d \mathbf{x} S(\mathbf{x})
$$

and discretised spatial derivatives relating the $S(\mathbf{n})$ of different granulas (see [4] for details).
After an appropriate rescaling of the dynamical fields a novel strong coupling expansion of the Hamiltonian in $\lambda=g^{-2 / 3}$ can be obtained [4]

$$
\begin{equation*}
\widetilde{H}=\frac{g^{2 / 3}}{a}\left[\mathcal{H}_{0}+\lambda \sum_{\alpha} \mathcal{V}_{\alpha}^{(\partial)}+\lambda^{2}\left(\sum_{\beta} \mathcal{V}_{\beta}^{(\Delta)}+\sum_{\gamma} \mathcal{V}_{\gamma}^{(\partial \partial \nexists \Delta)}\right)+\mathcal{O}\left(\lambda^{3}\right)\right] \tag{11}
\end{equation*}
$$

as an alternative to existing strong coupling expansions [5] and [6] based on Wilsonian lattice QCD. The "free part" in (11) is just the sum of Hamiltonians $\mathcal{H}_{0}=\sum_{\mathbf{n}} \mathcal{H}_{0}^{Q M}(\mathbf{n})$ of YangMills quantum mechanics of spatially constant fields [7-10] at each site, and the $\mathcal{V}_{\alpha}^{(\partial)}$ and $\mathcal{V}_{\beta}^{(\Delta)}$ are interaction parts, relating different sites. The local measure $\mathcal{J}_{0}=\prod_{\mathbf{n}} \mathcal{J}_{0}^{Q M}(\mathbf{n})$ is correspondingly the product of the quantum mechanical measures at each site. In terms of the principal-axes variables of the positive definite symmetric 3×3 matrix field S

$$
\begin{equation*}
S=R^{T}(\alpha, \beta, \gamma) \operatorname{diag}\left(\phi_{1}, \phi_{2}, \phi_{3}\right) R(\alpha, \beta, \gamma) \tag{12}
\end{equation*}
$$

with the $S O(3)$ matrix R parametrized by the three Euler angles $\chi=(\alpha, \beta, \gamma)$, we find

$$
\begin{equation*}
\mathcal{J}_{0}^{Q M} \rightarrow \sin \beta \prod_{i<j}\left(\phi_{i}^{2}-\phi_{j}^{2}\right) \quad \rightarrow \quad 0<\phi_{1}<\phi_{2}<\phi_{3} \quad \text { (principle orbits) } \tag{13}
\end{equation*}
$$

and (with the intrinsic spin angular momenta ξ_{i})

$$
\begin{equation*}
\mathcal{H}_{0}^{Q M}=\frac{1}{2} \sum_{i j k}^{\text {cyclic }}\left[\pi_{i}^{2}-\frac{2 i}{\phi_{j}^{2}-\phi_{k}^{2}}\left(\phi_{j} \pi_{j}-\phi_{k} \pi_{k}\right)+\xi_{i}^{2} \frac{\phi_{j}^{2}+\phi_{k}^{2}}{\left(\phi_{j}^{2}-\phi_{k}^{2}\right)^{2}}+\phi_{j}^{2} \phi_{k}^{2}\right] . \tag{14}
\end{equation*}
$$

Its low energy spectrum and eigenstates at any site \mathbf{n}

$$
\begin{equation*}
\mathcal{H}_{0}^{Q M}(\mathbf{n})\left|\Phi_{i, M}^{(S) \pm}\right\rangle_{\mathbf{n}}=\epsilon_{i}^{(S) \pm}(\mathbf{n})\left|\Phi_{i, M}^{(S) \pm}\right\rangle_{\mathbf{n}}, \tag{15}
\end{equation*}
$$

characterised by the quantum numbers of spin S, M, and parity P , are known with high accuracy [10]. Hence the eigenstates of \mathcal{H}_{0} in (11) are free glueball excitations of the lattice. The interactions \mathcal{V} (11) can be included using perturbation theory in λ.

3. CALCULATION OF THE GLUEBALL SPECTRUM UP TO ORDER λ^{2}

Using 1st and 2nd order perturbation theory in λ give the results [4]

$$
\begin{equation*}
E_{\mathrm{vac}}^{+}=\mathcal{N} \frac{g^{2 / 3}}{a}\left[4.1167+29.894 \lambda^{2}+\mathcal{O}\left(\lambda^{3}\right)\right] \tag{16}
\end{equation*}
$$

for the energy of the interacting glueball vacuum and

$$
\begin{equation*}
E_{1}^{(0)+}(k)-E_{\mathrm{vac}}^{+}=\left[2.270+13.511 \lambda^{2}+\mathcal{O}\left(\lambda^{3}\right)\right] \frac{g^{2 / 3}}{a}+0.488 \frac{a}{g^{2 / 3}} k^{2}+\mathcal{O}\left(\left(a^{2} k^{2}\right)^{2}\right) \tag{17}
\end{equation*}
$$

for the energy spectrum of the interacting spin- 0 glueball, up to λ^{2} for the (+) b.c. and similar results for the (-) b.c. The first, zeroth order numbers, correspond to the result of YangMills quantum mechanics. Note that Lorentz invariance asks for energy momentum relation $E=\sqrt{M^{2}+k^{2}} \simeq M+(2 M)^{-1} k^{2}$. The result, shown here for the scalar glueball, which limits itself to the terms in the Hamiltonian containing the Laplace-operator Δ as a first step, violates this condition by about a factor of two. Including all spin-orbit coupling terms in the Hamiltonian dropped in this first approach and considering all possible $J=L+S=0$ states is expected restore Lorentz invariance.

To study the coupling constant renormalisation in the IR, consider the physical glueball mass

$$
\begin{equation*}
M=\frac{g_{0}^{2 / 3}}{a}\left[\mu+c g_{0}^{-4 / 3}\right] . \tag{18}
\end{equation*}
$$

Independence of the box size a is given for the two cases, $g_{0}=0$ or $g_{0}^{4 / 3}=-c / \mu$. The first solution corresponds to the perturbative fixed point, and the second, if it exists $(c<0)$, to
an infrared fixed point. My result for the lowest spin-0 glueball $c_{1}^{(0)} / \mu_{1}^{(0)}=5.95$ suggests, that no infrared fixed points exist, in accordance with the corresponding result of Wilsonian lattice QCD [11]. Solving the above equation (18) for positive ($c>0$) one obtains

$$
\begin{equation*}
g_{0}^{2 / 3}(M a)=\frac{M a}{2 \mu}+\sqrt{\left(\frac{M a}{2 \mu}\right)^{2}-\frac{c}{\mu}}, \quad a>a_{c}:=2 \sqrt{c \mu} / M \tag{19}
\end{equation*}
$$

with the physical glueball mass M. For a typical $M \sim 1.6 \mathrm{GeV}[12]$ we find $a_{c} \sim 1.4 \mathrm{fm}$. Comparing the behaviour of the bare coupling constant (19), obtained for boxes of large size a, with those obtained for small boxes in $[7,8]$, should lead to information about the intermediate region, including the possibility of the existence of phase transitions.

ACKNOWLEDGMENTS

I would like to thank A. Dorokhov and J. Wambach for their interest and support. Financial support by the LOEWE-Program HIC for FAIR is gratefully acknowledged.

1. N. H. Christ and T. D. Lee, Phys. Rev. D 22, 939 (1980).
2. A. M. Khvedelidze and H.-P. Pavel, Phys. Rev. D 59, 105017 (1999).
3. A. M. Khvedelidze, D. M. Mladenov, H.-P. Pavel, and G. Röpke, Phys. Rev. D 67, 105013 (2003).
4. H.-P. Pavel, Phys. Lett. B 685, 353 (2010).
5. J. Kogut, D. K. Sinclair, L. Susskind, Nucl. Phys. B 114, 199 (1976).
6. G. Münster, Nucl. Phys. B 190, 439 (1981); 200, 536 (1982); 205, 648 (1982).
7. M. Lüscher, Nucl. Phys. B 219, 233 (1983).
8. M. Lüscher and G. Münster, Nucl. Phys. B 232, 445 (1984).
9. J. Koller and P. van Baal, Nucl. Phys. B 273, 387 (1986); 302, 1 (1988); P. van Baal and J. Koller, Ann. of Phys. (N.Y.) 174, 299 (1987).
10. H.-P. Pavel, Phys. Lett. B 648, 97 (2007).
11. M. Creutz, Quarks, Gluons and Lattices, Cambridge Univ. Press, Cambridge, 1983.
12. B. Lucini, M. Teper, and U. Wenger, JHEP 0406, 012 (2004).

[^0]: * Electronic address: hans-peter.pavel@physik.tu-darmstadt.de

