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It is shown the analysis [1] for QED in 2+1 dimensions with N four-component

fermions in the leading and next-to-leading orders of the 1/N expansion. As it

was demonstrated in [1] the range of the admissible values N , where the dynamical

fermion mass exist, decreases strongly with the increasing of the gauge charge. So, in

Landau gauge the dynamical chiral symmetry breaking appears for N < 3.78, that is

very close to the results of the leading order and in Feynman gauge dynamical mass

is completely absent.

Quantum Electrodynamics in 2+1 dimensions (QED3) has acquired increasing attention

[1�7] because of its similarities to (3+1) dimensional QCD. Moreover, last years a new strong

interest comes to QED3 in the relation with graphene properties (see [8] and discussions and

references therein). Graphene, a one-atom-thick layer of graphite, is a remarkable system

with many unusual properties that was fabricated for the �rst �ve years ago [9]. Theoretically

it was shown long time ago [10] that quasiparticle excitations in graphene are described by

the massless Dirac equation in (2+1) dimension. This explains why the bilayer graphene in

external �elds is a subject of intensive recent study [11].

A number of investigations have been performed for the study of dynamical chiral sym-

metry breaking in QED3 and very di�erent results have been obtained. Using the leading

order (LO) in the 1/N expansion of the Schwinger-Dyson (SD) equation, Appelquist et al. [2]

showed that the theory exhibits a critical behavior as the number N of fermion �avors ap-

proaches Nc = 32/π2; that is, a fermion mass is dynamically generated only for N < Nc. On

the contrary, Pennington and collaborators [3], adopting a more general non-perturbative

approach to the SD equations, found that the dynamically generated fermion mass decreases

exponentially with N , vanishing only as N → ∞. This conclusion was supported also by Pis-

arski [4] by the use of the other methods. On the other hand, an alternative non-perturbative

study by Atkinson et al. [5] suggested that chiral symmetry is unbroken at su�ciently large
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N . The theory has also been simulated on the lattice [6, 7]. Remarkably, the conclusions of

Ref. [6] are in the agreement with the existence of a critical N as predicted in the analysis

of Ref. [2] while the second paper [7] contains the opposite results.

Because the critical value Nc is not large, the contribution of the higher orders in the

1/N expansion can be essential and may lead to better understanding of the problem. The

purpose of this work is to consider the 1/N correction [1, 12] to LO result [2].

1. The Lagrangian of massless QED3 with N �avors is

L = Ψ(i∂̂ − eÂ)Ψ− 1

4
F 2
µν ,

where Ψ is taken to be a four component complex spinor. In massless case, which we are

considering, the model contains infrared divergences, which can be canceled when the model

is analyzed in a 1/N expansion [13]. Since the theory is massless, the mass scale is the

dimensional coupling constant a = Ne2/8 which is kept �xed as N → ∞.

Following [2] we study the solution of the SD equation. The inverse fermion propagator

has the form

S−1(p) = −[1 + A(p)] [p̂+ Σ(p)] ,

where A(p) is the wave-function renormalizable coe�cient and Σ(p) is a dynamical, parity-

conserving mass taken to be the same for all the fermions.

The SD equation is

Σ(p) =
2a

N
Tr

∫
d3k

(2π)3
γµDµν(p− k) [1 + A(k)]

(
k̂ + Σ(k)

)
Γν(p, k)

[1 + A(k)]2 (k2 + Σ2(k))
, (1)

where1

Dµν(p) =
gµν − (1− ξ)pµpν/p

2

p2 [1 + Π(p)]

is the photon propagator and Γν(p, k) is the vertex function.

2. The LO approximations in the 1/N expansion are

A(p) = 0, Π(p) = a/ | p |, Γν(p, k) = γν ,

1 Following [12] we introduce a nonlocal gauge-�xing term. The detailed analysis of this possibility has been

given in Ref. [14].
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where we neglect the fermion mass in the calculation of Π(p). The gap equation is

Σ(p) =
8a(2 + ξ)

N
Tr

∫
d3k

(2π)3
Σ(k)

k2
[
(p− k)2 + a | p− k |

] , (2)

where we ignore the term Σ2(k) in the denominator of r.h.s.

Following [2], we set

Σ(k) = (k2)α . (3)

One can see, that for large a the r.h.s. of (2) together with condition (3) (and the contribu-

tions of higher orders) can be calculated by the standard rules for massless diagrams of the

perturbation theory (see, for example, [15]). Thus, we have for large a

1 =
2 + ξ

βL
(4)

with β = (−α)(α+ 1/2) and L ≡ π2N , or

α± =
(
−1± [1− 16(2 + ξ)/L]1/2

)
/4 . (5)

We reproduce the solution given in Ref. [2]. That analysis yields a critical number of

fermionsNc = 16(2+ξ)/π2 ≈ 1.62(2+ξ) (i.e. Lc = 16(2+ξ)), such that forN > Nc Σ(p) = 0

and

Σ(0) ≃ exp
[
−2π/(N/Nc − 1)1/2

]
for N < Nc. Thus, chiral-symmetry breaks when α becomes complex, that is for N < Nc.

3. The next-to-leading order (NLO) approximation has been included in [1, 16] using the

di�erential equation method [17]. The results have a cumbersome form [16], which is similar

to results for complicated massless diagrams obtained using Gegenbauer polynomials [18]. In

[1] we have analyzed simpli�ed form, which contains only the terms ∼ (−α)−k and ∼ (α+

1/2)−k (k = 1, 2, 3) from the series given in [16]. These terms are most important in the

neighborhood of the critical point Nc. The Eq. (4) is replaced now by

1 =
(2 + ξ)

βL
+
[
f(ξ) + βφ(ξ)

] 1

(βL)2
, (6)

where f(ξ) = 4(1− ξ)/3− ξ2, φ(ξ) = 176/9− 4π2 − (16/3)ξ + 4ξ2.

Let us get the exact critical value Nc from Eq. (6). Supposing α = αc ≡ −1/4 we obtain

the critical values in the following form

Nc,± =
8

π2

[
(2 + ξ)±

(
(2 + ξ)2 + 4f(ξ) + φ(ξ)/4

)1/2]
, (7)
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i.e.

Nc,+(ξ) = (3.31, 3.35, 3.09, 2.81), Nc,−(ξ) = (−0.07, 0.38, 1.29, 1.88)

for ξ = (0.0, 0.3, 0.7, 0.9), respectively.

Notice the intriguing fact that follows from (7). The addition of 1/N correction leads to

the occurrence of the second critical point (for 0.05 ≤ ξ ≤ 0.95) such that for N < Nc,−

the chiral symmetry does not break. The dynamical mass generation exists in the interval

between the critical points Nc,− and Nc,+. For ξ ≥ 0.95 this interval disappears and the

chiral symmetry breaking is absent. For small values of gauge parameter ξ (ξ ≤ 0.05) new

critical point does not occur.

The solution of the Eq. (6) is

β± =
1

2L

[
2 + ξ +

φ(ξ)

L
±
(
(2 + ξ)2 + 4f(ξ) + 2(2 + ξ)

φ(ξ)

L
+

φ2(ξ)

L2

)1/2]
has the simple form in Landau gauge

β±(ξ = 0) =
1

L

[
1 +

φ(0)

2L
±

√
7/3

(
1 +

3

14

φ(0)

L

)(
1 +

3
49
φ2(0)/L2(

1 + 3
14

φ(0)
L

)2

)1/2]
, (8)

where the last term in r.h.s. of Eq. (8) is very small for L ∼ Lc. Leaving it out we get the

following equation for β+

β+(ξ = 0) ≈ 1 +
√
7/3

1

L
+
(
1 +

√
3/7φ(0)

) 1

2L2
≈ 2.52

L

(
1− 6.52

L

)
,

which has coe�cients are close to those from the paper [12].

Resume. We reviewed the results of [1], where the O(1/N2) terms have been in-

cluded into SD equation and the strong gauge dependence of the result has been found.

Hence, the addition of 1/N correction does not lead to the essential improvement in the

understanding of dynamical chiral symmetry breaking. However, as it was shown in [1],

in the Landau gauge the inclusion of O(1/N2) terms slightly changes only quantitative

(but not qualitative) properties of the LO results. Thus, in the Landau gauge the analy-

sis in [1] gives further evidence in favor of the solution has been given by Appelquist et al. [2].
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