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A strongly coupled quark-gluon plasma (QGP) of heavy constituent quasiparticles

is studied by a path-integral Monte-Carlo method. This approach is a quantum

generalization of the classical molecular dynamics by Gelman, Shuryak, and Zahed.

It is shown that this method is able to reproduce the QCD lattice equation of state.

The results indicate that the QGP reveals liquid-like rather than gas-like properties.

Quantum e�ects turned out to be of prime importance in these simulations.

1. INTRODUCTION

Investigation of properties of the QGP is one of the main challenges of strong-interaction

physics, both theoretically and experimentally. Many features of this matter were experi-

mentally discovered at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven. The most

striking result, obtained from analysis of these experimental data [1], is that the decon�ned

quark-gluon matter behaves as an almost perfect �uid rather than a perfect gas, as it could

be expected from the asymptotic freedom.

There are various approaches to studying QGP. Each approach has its advantages and

disadvantages. The most fundamental way to compute properties of the strongly interact-

ing matter is provided by the lattice QCD [2�4]. Interpretation of these very complicated

computations requires application of various QCD motivated, albeit schematic, models sim-

ulating various aspects of the full theory. Moreover, such models are needed in cases when
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the lattice QCD fails, e.g. at large baryon chemical potentials and out of equilibrium. While

some progress has been achieved in the recent years, we are still far away from having a

satisfactory understanding of the QGP dynamics.

A semi-classical approximation, based on a point like quasi-particle picture has been

introduced in [5]. It is expected that the main features of non-Abelian plasmas can be un-

derstood in simple semi-classical terms without the di�culties inherent to a full quantum

�eld theoretical analysis. Independently the same ideas were implemented in terms of molec-

ular dynamics (MD) [6]. Recently this MD approach was further developed in a series of

works [7, 8]. The MD allowed one to treat soft processes in the QGP which are not accessible

by perturbative means.

A strongly correlated behavior of the QGP is expected to show up in long-ranged spatial

correlations of quarks and gluons which, in fact, may give rise to liquid-like and, possibly,

solid-like structures. This expectation is based on a very similar behavior observed in electro-

dynamic plasmas [7, 9]. This similarity was exploited to formulate a classical non-relativistic

model of a color Coulomb interacting QGP [7] which was numerically analyzed by classical

MD simulations. Quantum e�ects were either neglected or included phenomenologically via

a short-range repulsive correction to the pair potential. Such a rough model may become a

critical issue at high densities, where quantum e�ects strongly a�ects properties of the QGP.

Similar models have been used in electrodynamic plasmas and showed poor behavior in the

region of strong wave function overlap, in particular at the Mott density. For temperatures

and densities of the QGP considered in Ref. [7] these e�ects are very important as the

quasiparticle thermal wave length is of order the average interparticle distance.

In this paper we extend previous classical nonrelativistic simulations [7] based on a color

Coulomb interaction to the quantum regime. We develop an approach based on path integral

Monte Carlo (PIMC) simulations of the strongly coupled QGP which self-consistently takes

into account the Fermi (Bose) statistics of quarks (gluons). Following an idea of Kelbg [11],

quantum corrections to the pair potential are rigorously derived [12]. To extend the method

of quantum potentials to a stronger coupling, an �improved Kelbg potential� was derived,

which contains a single free parameter, being �tted to the exact solution of the quantum-

mechanical two-body problem. Thus, the method of the improved Kelbg potential is able to

describe thermodynamic properties up to moderate couplings [13]. However, this approach

may fail, if bound states of more than two particles are formed in the system. This re-
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sults in a break-down of the pair approximation for the density matrix, as demonstrated

in Ref. [13]. A superior approach, which does not have this limitation, consists in use the

original Kelbg potential in the PIMC simulations which e�ectively map the problem onto a

high-temperature weakly coupled and weakly degenerate one. This allows one to rigorously

extend the analysis to strong couplings and is, therefore, a relevant choice for the present

purpose.

This method has been successfully applied to strongly coupled electrodynamic plas-

mas [14, 15]. Examples are partially-ionized dense hydrogen plasmas, where liquid-like and

crystalline behavior was observed [16, 17]. Moreover, also partial ionization e�ects and pres-

sure ionization could be studied from �rst principles [18]. The same methods have been also

applied to electron-hole plasmas in semiconductors [19, 20], including excitonic bound states,

which have many similarities to the QGP due to smaller mass di�erences as compared to

electron-ion plasmas.

The main goal of this article is to test the developed approach for ability to reproduce

known lattice data [2, 3] and to predict other properties of the QGP, which are still unavail-

able for the lattice calculations. To this end we use a simple model [7] of the QGP consisting

of quarks, antiquarks and gluons interacting via a color Coulomb potential. First results

of applications of the PIMC method to study of thermodynamic properties of the nonideal

QGP have already been brie�y reported in [21, 22]. In this paper we present a comprehensive

report on the thermodynamic properties.

2. THERMODYNAMICS OF QGP

2.1. Basics of the model

Our model is based on a resummation technique and lattice simulations for dressed quarks,

antiquarks and gluons interacting via the color Coulomb potential. The assumptions of the

model are similar to those of Ref. [7]:

I. All color quasi-particles are heavy, i.e. their mass (m) is higher than the mean kinetic

energy per particle. For instance, at zero net-baryon density it amounts to m > T ,

where T is a temperature. Therefore these particles move non-relativistically. This

assumption is based on the analysis of lattice data [23, 24].
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II. Since the particles are non-relativistic, interparticle interaction is dominated by a color-

electric Coulomb potential. Magnetic e�ects are neglected as sub-leading ones.

III. Relying on the fact that the color representations are large, the color operators are

substituted by their average values, i.e. by classical color vectors, the time evolution

of which is described by Wong's dynamics [25].

The quality of these approximations and their limitations were discussed in Ref. [7]. Thus,

this model requires the following quantities as an input:

1. the quasiparticle mass, m, and

2. the coupling constant g2.

All the input quantities should be deduced from the lattice data or from an appropriate

model simulating these data.

3. SIMULATIONS OF QGP

To test the developed approach we consider the QGP only at zero baryon density and

further simplify the model by additional approximations, similarly to Ref. [7]:

IV We replace the grand canonical ensemble by a canonical one. The thermodynamic

properties in the canonical ensemble with given temperature T and �xed volume V

are fully described by the density operator ρ̂ = e−βĤ with the partition function de�ned

as follows

Z(Nq, Nq̄, Ng, V ; β) =
1

Nq!Nq̄!Ng!

∑
σ

∫
V

drdQρ(r,Q, σ; β), (1)

with Nq = Nq̄ and hence NB = 0. The density matrix ρ in this expression is calculated

using the path integral Monte Carlo approach [21, 22, 27, 28]. In order to preserve the

thermodynamical consistency of this formulation, thermodynamic quantities should be

calculated through respective derivatives of the logarithm of the partition function (1)

in which Na are indepenent variables.

V Since the masses of quarks of di�erent �avors extracted from lattice data are very sim-

ilar, we do not distinguish between quark �avors. Moreover, we take the quark and
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gluon quasi-particle masses being equal because their values deduced from the lattice

data [23, 24] are very close.

VI Because of the equality of masses and approximate equality of number of degrees of

freedom of quarks, antiquarks and gluons, we assume that these species are equally

represented in the system: Nq = Nq̄ = Ng.

VII For the sake of technical simplicity, the SU(3) color group is replaced by SU(2).

Thus, this simpli�ed model requires an additional quantity as an input:

3. the density of quasi-particles (Nq+Nq̄+Ng)/V = n(T ) as a function of the temperature.

Although this density is unknown from the QCD lattice calculations and we use it as a �t

parameter, it is very important to partially overcome constrains of the above simpli�cations.

First, it concerns the use of the SU(2) color group, which �rst of all reduces the degeneracy

factors of the quark and gluon states, as compared to the SU(3) case, and thereby reduces

pressure and all other thermodynamic quantities. A proper �t of the density allows us

to remedy this de�ciency of the normalization. Second, in fact we consider the system of

single quark �avor, i.e. all quarks are identical, which also reduces the normalization of all

thermodynamic quantities. The density �t cures the de�ciency of this normalization, though

the excessive anticorrelation of quarks remains.

Ideally the parameters of the model should be deduced from the QCD lattice data. How-

ever, presently this task is still quite ambiguous. Therefore, in the present simulations we

take a possible (maybe, not the most reliable) set of parameters. Following Refs. [7, 24], the

parametrization of the quasi-particle mass is taken in the form

m(T )/Tc = 0.9/(T/Tc − 1) + 3.45 + 0.4T/Tc (2)

where Tc = 175 MeV is the critical temperature. This parametrization �ts the quark mass

at two values of temperature obtained in the lattice calculations [23]. According to [23] the

masses are quite large: mq/T ≃ 4 and mg/T ≃ 3.5. These are essentially larger than masses

required for quasi-particle �ts [29, 30] of the lattice thermodynamic properties of the QGP:

mq/T ≃ 1�2 and mg/T ≃ 1.5�3. Moreover, the pole quark mass mq/T ≃ 0.8 was reported in

recent work [31], as deduced from lattice calculations. Nevertheless, in spite of the fact that

it obviously produces too high masses, we use parametrization (2) in order to be compatible
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with the input of classical MD of Ref. [7]. The T -dependence of this mass is illustrated in

Fig. 1a.

The coupling constant, i.e. αs = g2/(4π), used in the simulations is displayed in Fig. 1a

as well. As seen, αs well complies with phenomenologic QCD estimations [32] of its values.

Notice that in previous publications [21, 22] the factor (N2
c − 1), where Nc is the number

of colors in the SU(Nc) color group, was accidentally included in g2, when displaying it

corresponding �gures. In fact, this factor is a part of Casimirs de�ning the normalization of

the color vectors in the color group.

The density of quasi-particles, which is additionally required within the canonical-

ensemble approach, was chosen on the condition of the best agreement of the calculated

pressure with the corresponding lattice result, see Fig. 1b. It was taken to be n(T ) = 0.24T 3.

From the �rst glance, it is a very low density. For example, in the classical simulations of

Ref. [7] it was taken as n(T )/T 3 = 6.3, which corresponds to the density of an ideal gas

of massless quarks, antiquarks and gluons. Since the quasi-particles are very heavy in the

present model (as well as in that of Ref. [7]), the latter density looks unrealistically high.

Even in quasi-particle models [29, 30], where the masses are lower, the density turns out to

be n(T )/T 3 ≈ 1.4. Since Eq. (2) gives even larger masses than those in Refs. [29, 30] and in

view of the adopted large coupling, the chosen value of n(T ) does not look too unrealistic.

Thus, although the chosen set of parameters is still debatable, it is somehow self-

consistent. In the future we are going to get rid of the n(T ) parameter, by applying the

grand-canonical approach, and by using more moderate (and maybe realistic) sets of param-

eters.

Calculation of the equation of state (Fig. 1b) was used to optimize the parameters of the

model in order to proceed to predictions of other properties concerning the internal structure

and in the future also non-equilibrium dynamics of the QGP. The plasma coupling parameter

is de�ned as

Γ =
q2g

2

4πrsT
, (3)

where rs is the the Wigner-Seitz radius, de�ned such that 4πr3s/3 = n, and q2 the quadratic

Casimir value averaged over quarks, antiquarks and gluons, q2 = N2
c − 1 is a good estimate

for this quantity. The plasma parameter is a measure of ratio of the average potential to

the average kinetic energy. It is also presented in Fig. 1a. It turns out to be of the order of
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unity which indicates that the QGP is a strongly coupled Coulomb liquid rather than a gas.

In the studied temperature range, 1 < T/Tc < 3, the QGP is, in fact, quantum degenerate,

since the degeneracy parameter χa = naλ
3
a (where the thermal wave length, λ, is de�ned in

the previous section) varies from 0.1 to 1.7, see Fig. 1a.

Fig. 2 additionally presents the entropy (S) and trace anomaly (ε − 3P ) of the QGP

computed in the PIMC method. In order to avoid the numeric noise, the derivative of a

smooth interpolation between the PIMC points (see Fig. 1b) was taken. These results are

compared to lattice data of Refs. [2, 4]. It is not surprising that agreement with the lattice

data is also good, since it is a direct consequence of the good reproduction of the pressure.

Details of our path integral Monte-Carlo simulations have been discussed elsewhere in a

variety of papers and review articles, see, e.g. [33] and references therein. The main idea

of the simulations consists in constructing a Markov process of con�gurations which di�er

by the particle coordinates. Additionally to the case of electrodynamic plasmas, here we

randomly sample, according to the group measure, the color variables Q of all particles until

convergence is achieved. We use a cubic simulation box with periodic boundary conditions.

The number of particles was taken as N = Nq + Nq̄ + Ng = 40 + 40 + 40 = 120, and the

number of beads, n = 20. Calculation of the equation of state (Fig. 1b) was used to optimize

the parameters of the model in order to proceed to predictions of other properties concerning

the internal structure and in the future also non-equilibrium dynamics of the QGP.

4. CONCLUSION

Quantum Monte Carlo simulations based on the quasiparticle picture of the QGP are able

to reproduce the lattice equation of state (even near the critical temperature) and also yield

valuable insight into the internal structure of the QGP. Our results indicate that the QGP

reveals liquid-like (rather than gas-like) properties even at the highest considered tempera-

ture of 3Tc. At temperatures just above Tc we have found that bound quark-antiquark states

still survive. Quantum e�ects turned out to be of prime importance in these simulations.

Our analysis is still too simpli�ed and incomplete. It is still con�ned only to the case of

zero baryon chemical potential. The input of the model also requires re�nement. Work on

these problems is in progress. We have also performed �rst simulations of dynamic properties

of the QGP based on quantum Wigner dynamics. In particular, these allow us to deduce the
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viscosity of the QGP. However, the brief format of the present contribution does not allow

us to report on the respective results.
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Figure 1. (a) Temperature dependence of the model input quantities, coupling constant g2 and

mass-to-temperature ratio (scaled by 1/2), the plasma coupling parameter Γ [see Eq. (3)] and the

degeneracy parameter χ. The χ parameters for di�erent species are equal, since their masses and densities

are assumed to be equal. (b) Equation of state (pressure versus temperature) of the QGP from PIMC

simulations (open squares) compared to lattice data of Refs. [2, 4]. The solid line is a smooth interpolation

between the PIMC points. Results of the HotQCD Collaboration [2] are presented by �lled circles, while

results of the Budapest group [4], open circles. Di�erent kinds of circles (�lled and open) correspond to

di�erent dicretization schemes of the QCD action (p4 and asqtad, see [2] for detailes).
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Figure 2. Entropy (a) and trace anomaly (b) of the QGP from PIMC simulations (solid line) compared

to lattice data of Refs. [2, 4]. Notation is the same as in the right panel of Fig. 1.
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FIGURE CAPTIONS

Fig. 1: (a) Temperature dependence of the model input quantities, coupling constant g2 and

mass-to-temperature ratio (scaled by 1/2), the plasma coupling parameter Γ [see Eq.

(3)] and the degeneracy parameter χ. The χ parameters for di�erent species are

equal, since their masses and densities are assumed to be equal. (b) Equation of state

(pressure versus temperature) of the QGP from PIMC simulations (open squares)

compared to lattice data of Refs. [2, 4]. The solid line is a smooth interpolation

between the PIMC points. Results of the HotQCD Collaboration [2] are presented

by �lled circles, while results of the Budapest group [4], open circles. Di�erent kinds

of circles (�lled and open) correspond to di�erent dicretization schemes of the QCD

action (p4 and asqtad, see [2] for detailes).

Fig. 2: Entropy (a) and trace anomaly (b) of the QGP from PIMC simulations (solid line) com-

pared to lattice data of Refs. [2, 4]. Notation is the same as in the right panel of Fig. 1.


