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In this paper we summarize the properties of νdyn and discuss brie�y how the

results can be interpreted in terms of a simple pair production model. The ideas

are then illustrated in detail with a PYTHIA simulation study of forward-backward

correlations in pp collisions.

1. INTRODUCTION

In physics one often encounters observables that are positively correlated because of a

common origin rather than direct dynamical e�ects. An example of this is the charged

particle multiplicities at forward, Nfwd, and backward, Nbck, rapidities in high energy heavy

ion collisions which depends primarily on the number of interacting (wounded) nucleons.

To study the �uctuations of dynamic origin the �rst challenge is to separate out the trivial

�uctuations due to the variation in the number of interacting nucleons. In these conditions

it is advantageous to use νdyn which was proposed in [1, 2], since with this observable the

trivial �uctuations cancels out.

The second challenge is to interpret the physics of the dynamical correlations. In a recent

paper we have shown how one can interpret νdyn in term of a simple pair production model [3].

Here, in Section 2 we summarize these and previous results before we in Section 3 applies

it to the study of simulated forward-backward correlations in pp.

2. THE BASIC PROPERTIES OF νDYN

Derivations of the results presented here and other details can be found in [3].

For each event we measure two numbers m and n. If we consider the expression:

m

⟨m⟩
− n

⟨n⟩
, (1)
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it is easy to see that it has the average value 0.

We de�ne ν as the variance of Eq. (1) so that:

ν = V

[
m

⟨m⟩
− n

⟨n⟩

]
=

⟨(
m

⟨m⟩
− n

⟨n⟩

)2
⟩

(2)

=
⟨m2⟩
⟨m⟩2

− 2
⟨mn⟩
⟨m⟩⟨n⟩

+
⟨n2⟩
⟨n⟩2

. (3)

For purely statistical �uctuations this expression is reduced to

νstat =
1

⟨m⟩
+

1

⟨n⟩
, (4)

and thus we have

νdyn = ν − νstat =
⟨m(m− 1)⟩

⟨m⟩2
− 2

⟨mn⟩
⟨m⟩⟨n⟩

+
⟨n(n− 1)⟩

⟨n⟩2
. (5)

The important properties of νdyn are:

• Easy statistical behavior (νstat). No need for event mixing.

• Independent of detection e�ciency (NB! the interpretation is not).

• The three terms together cancels trivial correlations such as e.g. centrality variation.

If we consider single particle probabilities p, q = 1 − p and pair probabilities PM(m,m),

PM(m,n) 1, PM(n, n) then we can rewrite νdyn as:

νdyn =
⟨M(M − 1)⟩

⟨M⟩2

(
PM(m,m)

p2
− PM(m,n)

pq
+

PM(n, n)

q2

)
, (6)

where M = m+ n.

For uncorrelated pairs we have that PM(m,m) = p2, PM(m,n) = 2pq, and PM(n, n) = q2,

respectively. Inserting in Eq. (6) we �nd that in this case νdyn = 0. This shows that νdyn

measures the correlated part of the pair probabilities.

Now to see what we mean with correlated pair probabilities we consider a particular model

of pair production. We assume that events consists of M/2 correlated pairs, where each pair

(2 particles) have the production probabilities: P2(m,m) = p2+ ε, P2(m,n) = 2pq− 2ε, and

P2(n, n) = q2 + ε 2. It turns out that νdyn is then [3]:

1 PM (m,n) is the probability to pick, independent of order, 1 m and 1 n from a sample of M particles.
2 This is the only parameterization that ensures that the one particle probabilities come out correctly. Note

that P2(m,m) is for two particles while PM (m,m) is for ⟨M⟩ particles. In the presentation at CPOD2010

there was a mistake about this in the more intuitive derivation of Eq. (7).
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νdyn =
1

⟨M⟩

(
ε

p2q2

)
. (7)

This is a very simple model for νdyn, but as we shall see in the next section quite powerful

for understanding data. Note that when ε < 0 (ε > 0) identical pairs are less (more) likely

to be produced and νdyn < 0 (νdyn > 0), i.e. the variance of Eq. (1) is smaller (larger) than

for pure statistical variation. Finally we see that it is natural for the interpretation of νdyn

to study it as a function of ⟨M⟩ = ⟨m+ n⟩.

Another important result for interpreting νdyn is the sum rule which we shall return to in

the next section.

3. EXAMPLE: FORWARD-BACKWARD CORRELATIONS IN PP

The correlation between forward and backward multiplicity correlations have been studied

in both pp and AA collisions by, e.g. UA5 and STAR [4, 5], but νdyn has to our knowledge

not been used before. The idea is to relate for each event the multiplicity measured in one

pseudorapidity interval to the multiplicity in another pseudorapidity interval to study the

correlation. Such correlations are an indication of collective e�ects in pp collisions supposedly

due to multi parton interactions. With νdyn we will be insensitive to the direct correlation

but instead study whether or not the �uctuations between the multiplicities are statistical

or not, i.e are there in addition to the variation in the number of interaction partons also

dynamical e�ects that drives the correlations.

To show an example of what one can expect to learn from real data using νdyn we use

the pp Monte Carlo simulation program PYTHIA [6, 7]. We have chosen to study collisions

at
√
s = 200 GeV, where experimental data from STAR is available, but the arguments are

relevant also for other energies and heavy ion collisions. To have a large average multiplicity

in each pp collision we use broad pseudo-rapidity intervals (1 unit wide).

Fig. 1 shows the dynamic �uctuations νdyn(Nfwd, Nbck) as a functions ofNtot = Nfwd+Nbck,

where Nfwd (Nbck) is the charged particle multiplicity in the pseudorapidity intervals

0 < η < 1 (0 > η > −1). As we use charged particles it is clear we have Nfwd = N+
fwd +N−

fwd

and Nbck = N+
bck +N−

bck so that we in fact have νdyn(Nfwd, Nbck) = νdyn(N
+
fwd +N−

fwd, N
−
bck +

N+
bck). In [3] we have derived a sum rule which relates νdyn(N

+
fwd + N−

fwd, N
−
bck + N+

bck)

to the 6 �underlying terms� one can construct by calculating νdyn for two subterms, e.g.,
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νdyn(N
+
fwd, N

−
bck). Because we have forward-backward symmetry and almost charge symme-

try we expect that νdyn(N
+
fwd, N

+
bck) ∼ νdyn(N

−
fwd, N

−
bck), νdyn(N

+
fwd, N

−
bck) ∼ νdyn(N

−
fwd, N

+
bck),

and νdyn(N
+
fwd, N

−
fwd) ∼ νdyn(N

+
bck, N

−
bck). Therefore it is enough to measure three terms in

this case, e.g., the terms before the ∼ sign. These three terms are also shown in Fig. 1. Note

that the last term is the dynamical �uctuations of charged particles in the same pseudora-

pidity interval (�auto-�uctuations�) which plays a crucial role in understanding the results.

Now we will try to use our pair production model to understand the physics in Fig. 1.

By symmetry of the forward and backward pseudo-rapidity intervals we have p = q = 0.5.

So that:

νdyn =
16ε

⟨M⟩
, (8)

where ⟨M⟩ = Ntot for νdyn(Nfwd, Nbck), and ⟨M⟩ ∼ Ntot/2 for the underlying terms.

The minimum is when ε = −p2 = −1/4, where νdyn = −4/⟨M⟩. This curve is also

shown in Fig. 1. We observe that νdyn(N
+
fwd, N

−
bck), and νdyn(N

+
fwd, N

−
fwd) seem to follow a

similar trend which is easy to understand since this must be due to charge conservation,

i.e, the number of positive and negative charges are both for neighboring pseudorapidity

intervals (νdyn(N
+
fwd, N

−
bck)) and in the same pseudorapidity interval (νdyn(N

+
fwd, N

−
fwd)) nearly

the same. Note that actually the conservation is weaker than it seems because in Fig. 1 all

νdyn are shown as a function of Ntot for later comparison. This is a factor 2 di�erence in

⟨M⟩ as previously mentioned, so minimum νdyn for the underlying terms in Fig. 1 is really

νdyn ∼ −8/(⟨Ntot⟩).

One also observes that νdyn(N
+
fwd, N

+
bck) ∼ 0 which is maybe not so surprising since if we

in general produces pairs of 1 positive and 1 negative particles, this term goes as dynamical

�uctuations of pairs of pairs. However, given that the other two underlying terms are dom-

inated by charge conservation, this term is where one would expect to be more sensitive to

interesting dynamical e�ects for real data.

The �nal strange observation in Fig. 1 is that νdyn(Nfwd, Nbck) is positive while all the

underlying distributions are negative. To understand this we use the sum rule (Eq. (12)

in [3]) to write up νdyn(Nfwd, Nbck) as a sum of the 3 independent terms:

νdyn(Nfwd, Nbck) =
1

2
[νdyn(N

+
fwd, N

+
bck) + νdyn(N

+
fwd, N

−
bck)− νdyn(N

+
fwd, N

−
fwd)]. (9)

So we see that the negative �auto-�uctuations� gives a positive contribution to

νdyn(Nfwd, Nbck). At �rst this might look surprising, but if we recall that νdyn is related
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to pair probabilities Eq. (6) it should be quite clear why that is so.

So in summary without looking into the simulation code we have already a quite good

understanding � qualitative and quantitative � for the dynamical �uctuations we observe in

Fig. 1.

Fig. 2 shows what happens to νdyn(Nfwd, Nbck) and the underlying distributions when

we move the pseudorapidity intervals apart. At �rst it is surprising that νdyn(Nfwd, Nbck)

increases, but from the previous discussion it should be clear what happens. The �auto-

�uctuations� are essentially the same, but now both the other terms in Eq. (9) are close

to 0 because the real dynamic long range �uctuations are small and so as a very rough

approximation νdyn(Nfwd, Nbck) ∼ −1/2νdyn(N
+
fwd, N

−
fwd).

We hope that the results in this section has demonstrated the potential of νdyn and also

the caveats. Note that we have shown in detail in the paper [3], how if one makes a very

simple model for π − K �uctuations requiring that pions and kaons are only produced in

pairs, π+π− or K+K−, one obtains from auto-�uctuations alone 3:

νdyn(N(K), N(π)) =
1

⟨N(π)⟩
+

1

⟨N(K)⟩
, (10)

where N(π) = N(π+) +N(π−) and N(K) = N(K+) +N(K−).

4. CONCLUSIONS

In this paper we have used simulated forward-backward multiplicity �uctuations to illus-

trate how νdyn works. It is essential for understanding the physics content of νdyn to use some

model, e.g., pair production and be aware that strong dynamical �uctuations are introduced

by e.g. charge, strangeness, and baryon number conservation. One will have similar prob-

lems for other �uctuation observables because of the quadratic terms (e.g. ⟨m2⟩) as they are

sensitive to the pair probabilities. For νdyn the sum rule can help separate out these trivial

�uctuations from �uctuations related to phase transitions.

3 This can be derived using the sum rule, but is actually also covered by our pair production model with

ε = pq (P2(m,n) = 0) and Eq. (7) can be directly used.
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Figure 1. Dynamical �uctuations, νdyn(Nfwd, Nbck), as a function of Ntot = Nfwd +Nbck for |η| < 1, and

the underlying contributions (see text). The dashed line shows the minimum value of νdyn corresponding to

Nfwd = Nbck for all events.
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Figure 2. Same as Fig. 1 but for dynamical �uctuations in the pseudorapidity intervals 1 < η < 2 and

−1 > η > −2.
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FIGURE CAPTIONS

Fig. 1: Dynamical �uctuations, νdyn(Nfwd, Nbck), as a function ofNtot = Nfwd+Nbck for |η| < 1,

and the underlying contributions (see text). The dashed line shows the minimum value

of νdyn corresponding to Nfwd = Nbck for all events.

Fig. 2: Same as Fig. 1 but for dynamical �uctuations in the pseudorapidity intervals 1 < η < 2

and −1 > η > −2.


