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INTRODUCTION

The topics of main focus in the theme were:

• Supersymmetry and Superstrings;

• Quantum Groups and Integrable Systems;

• Quantum Gravity and Cosmology.

In the gravitation theory new solutions were constructed which describe extremal
multicenter black holes. An important impact of vacuum Yang-Mills condensates on
both the inflationary and the hot universe regimes was demonstrated. In the framework
of the Galilean cosmology the new scaling solutions were discovered and investigated.
An important problem of observational astronomy is the experimental detection of the
black hole parameters. To this end, the interesting technique based ot the mechanism
of shadows arising in the vicinity of super-massive black holes was proposed. The geo-
metrical and topological properties of the full symmetric Toda systems were analyzed,
and its equivalence to the Morse-Smale system was demonstrated. The development of
the is proposed in the framework of the quantum field theory. On the basis of spectral
summation method a rigorous derivation of the Lifshitz formula for the vacuum forces
between material bodies was carried out. The quantum-mechanical systems of particles
with extended worldline supersymmetry were studied. These investigations are relevant
to a number of hot topics in modern theoretical physics, such as the AdS/CFT correspon-
dence in diverse dimensions, the structure of supersymmetric integrable systems and their
multiple relationships with N=4 super Yang-Mills theory and superstring theory. New
one-dimensional systems with extended N=4 supersymmetry were constructed, including
those containing couplings with external gauge fields. One of the most important results
in this direction became the discovery of the fact that the necessary and sufficient condi-
tions of the existence of N=4 supersymmetry in a wide class of models are equivalent to
the famous Nahm equations.

Several results as well as full list of publications are presented below.
A.P. Isaev
A.S. Sorin
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PSEUDOTORIC STRUCTURES AND NONSTANDARD

LAGRANGIAN TORI

N.A. Tyurin

BLTP JINR

Abstract

We present a generalization of toric structures on compact symplectic manifolds
called pseudotoric structure. We show that every toric manifold admits pseudotoric
structures and then the construction of exotic Chekanov tori can be peformed in
terms of pseudotoric structures.

Let (X,ω) be a symplectic manifold of real dimension 2n so it can be understood as
the phase space of a classical mechanical system. Lagrangian geometry of X is focused on
the questions about lagrangian submanifolds of X namely: which homology classes from
Hn(X,Z) can be realized by smooth lagrangian submanifolds; what are the topological
types of these lagrangian submanifolds; classification up to lagrangian deformations of
lagrangian submanifolds of the same topological type and homology class; classification
up to Hamiltonian isotopy of lagrangian submanifolds of the same deformation type;
unification of all lagrangian submanifolds in an appropriate category.

Recall that S ⊂ X is lagrangian if the restriction ω|S vanishes identically and real
dimension of S is maximal, equal to n. Thus at least the homology class of S must be
perpendicular to the cohomology class [ω]. Two lagrangian submanifolds S0, S1 ⊂ X are
of the same deformation type if there is a family of lagrangina submanifolds St, t ∈ [0, 1]
which ends at S0 and S1. Hamiltonian isotopy of lagrangian submanifold S0 ⊂ X is given
by a time dependent Hamiltonian function H(x, t) : X ×R→ R which generates the flow
φtH , and St = φtH(S0) is the corresponding isotopy.

Toy example: dim = 2. Let Σ be a Riemann surface equipped with a symplectic
form. Then since every loop is lagrangian (dimensional reason): every primitive homol-
ogy class from H1(Σ,Z) is realizable by a smooth lagrangian submanifold; every smooth
lagrangian submanifold is isomorphic to S1; two loops from the same homology class are
deformation equivalent; two loops are Hamiltonian isotopic if the symplectic area of the
oriented film bounded by the loops is zero; the Fukaya category for a curve of any genus
exists. Thus for this case the problem is completely solved!

But making one new step we face already highly nontrivial situation. Consider “the
simplest and basic” 4- dimensional compact symplectic manifold — the projective plane
CP2. Fot the projective plane we have that: since the cohomology group H2(CP2,Z) = Z,
any lagrangian submanifold must present trivial homology class; there are no lagrangian 2
- spheres (M. Gromov), Riemannian surfaces of genus g > 1 (M. Audin), Klein bottles (S.
Nemirovsky and V. Shevchishin) — all these types are not realized by smooth lagrangian
submanifolds of the projective plane; it was believed that well known Clifford tori are
unique examples of lagrangian tori in CP2 since in 1996 Yu. Chekanov proposed a con-
struction of lagrangian torus which is not Hamiltonian isotopic to a Clifford torus — and
nobody knows are there other types of lagrangian tori; nevertheless certain constructions
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of appropriate categories exist (K. Fukaya, P. Seidel). Thus even for this basic case in
dimension 4 the problem is not solved yet.

Why we are interested in lagrangian geometry? Lagrangian geometry is very im-
portant in Mathematical physics; f.e. several approaches to Geometric Quantization are
based on Lagrangian geometry. In these approaches lagrangian submanifolds represent
quantum states so an old idea of P.M. Dirac, stated that the phase space of classical
mechanical system should contain the ingredients of a natural quantization procedure, is
realized. Thus it is natural to study all possible states so it is reasonable to find all types
of lagrangian submanifolds (see, f.e. [1]).

F.e. in ALAG - programme (abelian algebraic lagrangian geometry, see [2]) the
Chekanov result ensures that the moduli space of half weighted Bohr - Sommerfeld la-
grangian cycles of level 3, Bhw,rS,3 , has at least two disjoint components, and may be in
a future one will find certain connecting space with a tunneling effect between these
components.

As well in a popular modern subject of Mathematical physics — Homological Mirror
symmetry — one should try to describe all objects in the Fukaya category, so all types of
nonisotopic lagrangian tori.

Well known Clifford tori in CP2 comes from the toric geometry: the projective
plane carries two real Morse functions in involution with respect to the Poisson brackets
induced by the Kahler form of the standard Fubini - Study metric. These functions can
be explicitly expressed as:

f1 =
|z1|2 − |z2|2∑2

i=0 |zi|2
, f2 =

|z0|2 − |z1|2∑2
i=0 |zi|2

, {f1, f2}ω = 0

in homogeneous coordinates [z0 : z1 : z2]; the degeneration set (where the algebraic
independence is destroyed)

∆(f1, f2) = {df1 ∧ df2 = 0} ⊂ CP2

is formed by three lines li, li = {zi = 0}; the action map F = (f1, f2) : CP2 → PCP2 ⊂ R2

sends ∆(f1, f2) to the boundary component ∂PCP2 of the convex polytop PCP2 (in this case
- a triangle), and the preimage of any inner point p ∈ PCP2 is a smooth lagrangian torus,
labeled by values of f1, f2. Thus the Clifford tori are just Liouville tori for this completely
integrable system. And it is the standard picture for any toric manifold.

In 1996 Yu. Chekanov in [3] proposed the construction of exotic lagrangian tori by
the first version to R4. The construction looks rather simple: fix a complex structure, so
we have C2 with a coordinate system (z1, z2); choose a smooth contractible loop γ ⊂ C∗
which lies in a half plane so Reγ > 0; consider two - dimensional subset given in the
coordinates by the explicit formula (z1, z2) = (eiφγ, e−iφγ) — and it is a lagrangian torus!
Note however that if the loop γ is not contractible, we get a torus which is equivalent to
the standard one. Furthemore, since the projective plane without projective line CP2\l is
symplectomorphic to an open ball in R4 one implements the construction to the projective
plane. Using certain special Hofer’s capacity technique, Chekanov proved this torus is not
equivalent to the standard one.

This exotic torus was called the Chekanov torus; the forthcoming paper by Yu.
Chekanov and F. Schlenk contains the details how to construct these nonstandard tori in
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the projective space CPn for certain n, the products S1 × ...× S1, and some other cases,
see [4].

An alternative description of the Chekanov tori based on the notion of pseudotoric
structure. We can produce the torus taking the pencil {Qw} such that Qw = {z1z2 =
w} ⊂ C2 — one dimensional complex family of quadratic surfaces given in the coordinate
system (z1, z2) by the quadratic equation which depends on complex parameter w ∈ C.
Then one takes real Morse function F = |z1|2 − |z2|2 and observes that the Hamiltonian
vector field XF of this function F preserves each quadric Qw from the family. Then
one fixes a smooth contractible loop γ′ ⊂ C∗w where Cw parameterizes our family {Qw}.
The choice of the value for our function F marks the level set on each quadratic surface
which is a loop, so taking smooth loops Sw = {F = 0} ∩ Qw on every quadratic surface
Qw, w ∈ γ′ and collecting all these loops along γ′ one gets a torus:

T (γ′) =
⋃
w∈γ′

Sw;

it is not hard to see, that we again get the Chekanov torus from the previous construction,
if we put γ =

√
γ′.

Let’s repeat the construction for the projective plane. To do this consider pencil of
quadrics {Qp}, p 7→ [α : β] ⊂ CP1

α,β where Qp = {αz1z2 = βz2
0} ⊂ CP2. Take real Morse

function F explicitly given by the formula

F =
|z1|2 − |z2|2∑2

i=0 |zi|2

in homogenoues coordinates [z0 : z1 : z2]. It can be checked directly that its Hamiltonian
vector field XF preserves each element of the pencil, so we can proceed as in the previous
noncompact case. Let’s choose a smooth contractible loop γ ⊂ CP1

α,β\{[1 : 0], [0 : 1]} since
the last points are covered by singular quadrics; then on each quadric Qp, p ∈ γ we can
take the level set Sp = {F = 0}∩Qp, and this level set is a smooth loop. Then we collect
the level sets Sp along the loop γ getting again a lagrangian torus T (γ) =

⋃
p∈γ Sp. The

point is that the resulting torus is exactly the Chekanov torus, given by the identification
of symplectic ball in R4 and CP2\line. On the other hand if γ ⊂ CP1

α,β was taken non
contractible then the resulting torus should be equivalent to a Clifford torus.

Therefore we get certain correspondence between the equivalence classes of la-
grangian tori and the fundamental group of the punctured projective line π1(CP1

α,β\{[0 :
1], [1 : 0]}) without the north and the south poles.

The construction scheme we’ve used above appears in the framework of pseudotoric
geometry — certain generalization of the toric geometry. What is the difference between
toric and pseudo toric considerations? We illustrate it on the ideal level by the following
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diagramme:

R | C
real Morse function f | Lefschetz pencil {Qp}

‖ | ‖
f : X → R | ψ : X\B → CP1, Qp = ψ−1(p)

↓ | ↓
toric case | pseudtoric case

(f1, f2) on CP2 | (f, {Qp}) on CP2

such that {f1, f2}ω = 0 | such that Xf ‖ Qp

↑ | ↑
standard commutation rel. | new commutation rel.

A complex analog of a real Morse function is a Lefschetz pencil (this idea was discussed
by V. Arnold, S. Donaldson¡ and many others), roughly speaking it is just a complex (or
symplectic) map to the compactified complex space (classically – to the Riemann sphere).
The question is how to relate the real data and new complex data, so what does it mean
that a real function and a Lefschetz pencil commute? We propose the following new
commutation relation: pencil {Qp} commutes with real function f if the Hamiltonian
vector field Xf is parallel to each element Qp of the pencil at each point. Geometrically
(or dynamically) this means that the Hamiltonian flow generated by f preserves the “level
sets” of the Lefschetz pencil — but it is exactly the same as for the real functions!

Leaving aside other speculative arguments, we summurize with the following
Definition ([5]): Pseudotoric structure on a compact symplectic manifold (X,ωX)

consists of
· (real data) {f1, ..., fk}— algebraically independent almost everywhere real Morse func-
tions in involution, {fi, fj}ω = 0;
· (complex data) family of compact symplectic 2k -dimensional submanifolds {Qp}, Qp ⊂
X, parameterized by a compact toric symplectic manifold (Y, ωY ) 3 p (or, equivalently, a
map with symplectic fibers

ψ : X\B → Y, Qp = ψ−1(p), B = base set

such that the following commutation relations hold:
· the Hamiltonian vector field Xfi of each Morse function fi from (real data) is parallel to
each Qp at each point (or, equivalently, each fi preserves the fibers of ψ by the Hamiltonian
action);
· for each smooth function h ∈ C∞(Y,R) bi- vector field
Xψ∗h ∧∇ψXh ≡ 0 — identically vanishes on X\B.

In the last expression Xψ∗h ∧ ∇ψXh we take two vector fields for a function h ∈
C∞(Y,R) taken on the base manifold Y , namely for the lifted function ψ∗h ∈ C∞(X\B,R)
on X\B one takes the Hamiltonian vector field with respect to the symplectic form ωX ;
on the other hand one takes the lift ∇ψXh of the Hamiltonian vector field Xh defined by
the symplectic form ωY on Y , and ∇ψ is the symplectic connection defined by ψ since
this map has symplectic fibers:

∇ψ : Γ(TY )→ Γ(T (X\B)).
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The last condition looks too horrible but in practice one avoids all the difficulties, taking
in mind the following remark: if X and Y are complex, k = n− 1, and ψ is complex then
the last commutation relation is automatically satisfied.

It’s easy to see that the base set B of the family {Qp} must be contained by the
degeneration locus ∆(f1, ..., fk) = {df1 ∧ ... ∧ dfk = 0}; the singular points of any fiber
Qp must be contained by the degeneration locus ∆(f1, ..., fk) as well; any fiber Qp =
ψ−1(p)∪B endowed with restrictions (f1|Qp , ...fk|Qp) — is a completely integrable system
(= toric (perhaps non smooth) symplectic manifold). Therefore pseudotoric structures
supply us with the solutions of the following problem: for non completely integrable
Hamiltonian system with the integrals (f1, ..., fk) find toric leaves of the Hamiltonian
action. And the point is that this would give a solution for thennon completely integrable
system since for each initial point we can take the corresponding toric leave which contains
this initial point and then using the “action - angle” coordinates on this leave we can write
the corresponding solution.

The simplest (and the trivial) example of pseudotoric structure arises if one takes
the direct product of two toric manifolds Y1 × Y2. This structure is topologically trivial,
as the product vector bundle. In analogy with the theory of vector bundles we introduce
the following

Definition ([5]): the number n − k = 1
2
dimY is called the rank of pseudotoric

structure (f1, ..., fk, ψ, Y ).
Clearly it is parallel to the notion of the rank of vector bundle.
If singular points of fiber Qp lies in the base set B we say that the fiber Qp is regular;

if generic fiber Qp is regular then we say that pseudotoric structure is regular; it’s not
hard to see that in the regular case the image ψ(∆(f1, ..., fk)\B) = Dsing ⊂ Y is a proper
compact symplectic submanifold. This submanifold measures topological non triviality of
the pseudotoric structure; this subset is empty if and only if the peudotoric structure is
topologically trivial so it is the product of toric manifolds.

The main reason for the introduction of this new structure is the possibility to
construct lagrangian fibrations on whole X starting with lagrangian fibrations on the
base toric manifolds and using the toric nature of the fibers. If we choose a system
(h1, ..., hn−k) of commuting moment maps on Y (since Y by the definition is toric) we get
a lagrangian fibration on the base Y but at the same time we have the following

Theorem ([6]): Choice of moment maps (h1, ..., hn−k) on the base Y of a regular
pseudotoric structure (f1, ..., fk, ψ, Y ) on a given X defines a lagrangian foliation on X
whose generic fiber is a smooth lagrangian torus.

The dimensional reduction which happens on ∆(h1, ..., hn−k) ⊂ Y is reflected by the
fact that the collection of fibers over ∆(h1, ..., hn−k) must be cutted from X, and then the
resting part X\(

⋃
p∈∆(h1,...,hn−k) Qp) carries lagrangian fibration. This lagrangian fibration

is only generically smooth (so generic fiber is a smooth lagrangian torus), but the singular
fibers have singularities which are not of generic type. The type of the singularities is
controlled and can be described as follows. A Liouville torus in a completely integrable
system carries periodic orbits and unbounded real lines (if we consider irrational motion
along the torus). Our singular tori admit additionally trajectories of the separatrix type:
take a periodic loop on a torus and contract it to a point — then the torus turns to
be singular and instead of periodic loop one gets a stable point. This is the type of
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singularities which appear in our lagrangian fibration.
General scheme can be summarized by the following diagramme

(f1, ..., fk) : B −→ ∂PQp −boundary component
∩ ∩

(f1, ..., fk) : X −→ PQp −moment pol.for gen.fib.
ψ ↓ ×

(h1, ..., hn−k) : Y −→ PY −moment pol.for base
∪ ∪

(h1, ..., hn−k) : Dsing −→ N −hypersurface inPY

— here singular lagrangian tori in the fibration are parameterized by certain “inci-
dence cycle” appears from irregular singular fibers of the pseudotoric structure. Note that
certain incidences exist: if we first consider our ambient manifold X with non complete
set of integrals (f1, ..., fk) then without any references to the complex data coming to the
definition of the pseudotoric structure one can see the following. As it was shown by M.
Atiyah, the image under the action map in Rk of whole X is a convex polytop P , but then
every regular toric leave Qp must have P as its convex polytop under the restricted action
map (f1|Qp , ..., fk|Qp). Thus the type of the toric leave is visible under the action map on
whole X. Furthemore, the base set B is contained by any leave thus it must be mapped to
the boundary ∂PQp . The boundary of any convex polytop is formed by the union of con-
vex polytops so the base set itself is a union of toric submanifolds of smaller dimensions.
For a singular leave Qp| p ∈ DSing the polytop contains certain hypersurface which is

the image of the singular set in the singular fiber. This hypersurface in PQp is stable with
respect to the contineous deformations, and summarizing under all p ∈ DSing we get as

subset N0 ⊂ PQp of codimension at least 1. On the other hand the toric base Y one his its
own action map which sends the divisor DSing ⊂ Y to a hypersurface N ⊂ PY . As a big

space which parameterizes our lagrangian fibration we has the direct product PQp × PY ;
and the singular lagrangian tori in our fibration correspond to certain subset of the direct
product N0 ×N ⊂ PQp × PY . This subset is our “incidence cycle”.

Now we slightly generalize the discussion concerning not lagrangian fibrations but
lagrangian tori. For this case we can say about possible lifting of lagrangian tori from the
base manifold the of pseudotoric structure, namely

Theorem ([7])Let (f1, ..., fk, ψ, Y ) be a regular pseudotoric structure on a compact
symplectic manifold X. Let S ⊂ Y be a smooth lagrangian torus which doesn’t intersect
Dsing ⊂ Y . Then the choice of non critical values (c1, ...ck) of f1, ..., fk defines a smooth

lagrangian torus T (S, c1, ..., ck) ⊂ X.
Shortly, the proof of the theorem based on the same procedure we’ve applied above

to construct the Chekanov tori. Taking a lagrangian torus on the base, we collect la-
grangian tori from the toric fiber — it can be done simulteneously thanks to the global
functions f1, ..., fk — and the commutation relations from the very definition of pseudo-
toric structure ensure that the resulting figure is a lagrangian torus in X.

The last theorem shows that lagrangian tori from the base manifold after lifting
could give different types of lagrangian tori in whole X. We can take the homology
group Hn−k(Y \Dsing,Z) of the “punctured” base manifold and then attach to smooth
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lagrangian tori in the punctured base manifold different classes from the group. Conjec-
turelly the different classes from Hn−k(Y \Dsing,Z) can give different types of lagrangian
tori in X. For example, it is true for the projective plane – as we’ve seen for Clifford and
Chekanov tori in CP2 the following alternative appears:

Clifford type = primitive elem.
↗

H1(CP1\([1 : 0], [0 : 1]),Z)
↘

Chekanov type = trivial elem.

But is it possible to construct such exotic lagrangian tori for any compact toric
variety? The answer is an affirmative in view of the following

Theorem ([8]): Any smooth compact toric symplectic manifold admits regular pseu-
dotoric structure (f1, ..., fn−1, ψ,CP1) of rank one. For this structure the singular divisor
Dsing ⊂ CP1 consists of exactly two distinct points, pN , pS ⊂ CP1. The primitive and the

trivial elements of H1(CP1\(pN ∪ pS),Z) generates lagrangian tori of the standard type
and of the Chekanov type respectively.

The Theorem above which states the existence of pseudotoric structures on toric
symplectic manifolds can be proved as follows ([8]). Let’s take for a given toric X the
set of commuting Morse moment maps (f1, ...fn), which give the action map by “action
coordinates” F = (f1, ..., fn) : X → PX to convex moment polytop PX ⊂ Rn; then
for the components Di of the boundary divisor D = F−1(∂PX) one can find an integer
combination

∑
λiDi equals to zero. This sum can be rearranged to the form∑

λi>0

λiDi =
∑
λj<0

|λj|Dj, Di 6= Dj;

therefore we have two divisors from the same linear system

D+ =
∑
λi>0

λiDi, D− =
∑
λj<0

|λj|Dj ∈ |
∑
λi>0

λiDi|.

Then one takes the pencil < D+, D− > spanned by two divisors D± with the base set
B = D+ ∩D−, and it would be our pencil ψ from the definition of pseudotoric structure,
and for generic point p ∈ CP1, p 6= [1 : 0]( 7→ D+), [0 : 1]( 7→ D−), the divisor ψ−1(p) ⊂ X
is smooth outside the base set B. The same linear combination

∑
λiDi after substitution

of linear forms li which correspond to Di in Rn gives a linear relation on xi — and this
relation derive our real data f ′1, ...f

′
n−1 from f1, ..., fn just implying the corresponding

linear condition.
In the original Chekanov paper not each lagrangian tori of different types are non

isotopic but only the ones which admit an additional property. This property to be
monotone is extremely important in both Geometric Qunatization and Mirror Sym-
metry investigations; it is stable with respect to the Hamiltonian deformations (and in
Geometric Quantization it is well known as the Bohr – Sommerfeld condition). To im-
pose this condition over the space of lagrangian tori first one should suppose additionaly
that our given toric (X,ωX) is monotone, this means that the cohomology class of the
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symplectic form is proportional to the canonical class of the associated almost complex
structure on X: KX = k[ωX ] ⊂ H2(X,Z); so f.e. Fano varieties in algebraic geometry are
monotone (but the simplest possible example is given by a simplectic vector space since
the anticanonical bundle of this one is trivial). But non trivial case is rather wide and
interesting: the projective spaces, the Grassmanians, the flag varieties — all are in this
class.

Now, if the anticanonical class is proportional to the cohomology class of the sym-
plectic form then it means that one can take an abelian connection a on the complex
linear determinant bundle detTX whose curvature form Fa would be proportional to the
symplectic form (and if our X is simply connected then this connection is unique up to
gauge transformations). For any lagrangian submanifold S ⊂ X the restriction of a to
S gives a flat connection, and S is Bohr – Sommerfeld w.r.t. anticanonical class iff this
restriction admits a covariantly constant section. The monotonicity condition is more
special — certain homology class (which was called the universal Maslov class — it is
defined to Bohr - Sommerfeld lagrangian submanifolds only) must be trivial.

Then the main conjecture we would like to propose in this circumstances is based on
the following remark: if there is a standard monotone lagrangian torus then there exists
a monotone lagrangian torus of the Chekanov type. And for the future work we have as
the major aim the following

Main conjecture.These monotone tori are not Hamiltonian isotopic.
Remark, that for the projective plane the Conjecture is true.
At the end I would like to mention several applications of this generalized notion,

pseudotoric structure.
Lots of methods in Mathematical Physics are invented and realized with great suc-

cess in the case of toric varities. In Geometric Quantization (see, f.e., [9]) we know what
one should do in the case when the phase space of classical mechanical system carries a
real polarization, namely one takes the Bohr - Sommerfeld fibers and spann the Hilbert
space. In Homological Mirror Symmetry (see, f.e., [10]) one takes the canonical fibration
on lagrangian tori, counts the fibers with non trivial Floer cohomologies — and then
builds on these fibers the corresponding Fukaya category. But all these methods can not
be applied in non toric case since if one takes a non toric variety — nobody knows in
general how to slice it on lagrangian fibers.

Pseudotoric structure on a symplectic manifold X gives way to apply these methods
in more general setup. Indeed, the theorems above ensure that we can construct aslmost
canonically certain lagrangian fibrations in the presence of pseudotoric structures. What
is the difference with the “regular” toric case? It is in the appearence of singular la-
grangian fibers. But as we’ve seen the types of singularities which appear in the fibers are
very special: for example the notion of Bohr - Sommerfeld lagrangian cycle is still valid
for these singular lagrangian tori without any modification. One hopes that the definition
of the Floer cohomology can be modified as well. Then we can use the powerfull methods
not only in toric geometry but in much more wider context — since there are compact
symplectic manifolds which are not toric but nevertheless which admit pseudotoric struc-
tures. It is natural to call such a manifold pseudotoric: the examples are complex
quadrics and certain complete intersections in CPn, the flag variety F 3 and conjecturelly
certain complex Grasmmanians. And coming back to the main subject of the present talk
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we shoud say that in all these cases it is possible to construct lagrangian tori of different
type using the pseudtoric structure.

Thus the natural problem arises: which symplectic manifolds are pseudotoric?
Toric geometry itself concerns this question since in the framework of toric geometry one
meets the problem with induced objects. F.e. if one takes the projectivization of the
(co)tangent bundle of a toric variety – it is not longer toric (F 3 — the flag variety —
is the projectivization of the tangent bundle of the “most toric” one — the projective
plane) but it admits the Hamitonian action of an incomplete set of integrals lifted from
the toric base. As well it could happen for certain moduli spaces over toric varieties. The
construction of a pseudotoric structure is a solution of the toric leaves problem in general;
and if this solution exists we can adopt the strong methods from toric geometry to this
case.

As a byproduct we’ve touched a classical problem from mechanics — the study of
non completely integrable systems. Again as we’ve seen the problem could be solved in
the case when the phase space admits a psuodotoric structure. Then the solutions can
be described in terms of the “action - angle” variables of the base manifold and the toric
fibers. The difference with the completely integrable case is in the appearance of singular
lagrangian tori of the Liouville type – and it is not problematic since it just means that
some additional types of trajectories – separatrices – are presented in the story.
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HIDDEN SUPERSYMMETRY IN THE SUPER LANDAU

MODELS

E.A. Ivanov and S.S. Sidorov

The name Landau model is of common use for any quantum-mechanical problem in which
a charged particle moves over some manifold in the background of an external gauge field.
Besides the original planar 2D Landau model [1], with the particle moving on a plane
under the influence of uniform magnetic field orthogonal to the plane, much attention was
paid to some its curved generalizations (see, e.g., [2, 3, 4, 5, 6]). The Landau problem
and its generalizations constitute a theoretical basis of quantum Hall effect. Their most
characteristic feature is the presence of Landau Levels (LL) in the energy spectrum, such
that the gap between the Lowest Landau Level (LLL), and the excited LLs rapidly grows
with intensification of the external gauge field. In the limit of strong external field only
the LLL is relevant. In the lagrangian language, such a system is described by d=1 Wess-
Zumino (or Chern-Simons) action, with the phase space being a non-commutative version
of the original configuration space.

The Landau problems on the (2|2)-dimensional supersphere SU(2|1)/U(1|1) and
the (2|4)-dimensional superflag SU(2|1)/[U(1)×U(1)] as the simplest superextensions of
the S2 Haldane model [2] were considered in [7, 8, 9]. In order to better understand the
common features of the super Landau models, the planar limits of these models (with
the curved target supermanifolds becoming the (2|2)- and (2|4)-dimensional superplanes)
were also studied [10, 11, 12, 13]. They are superextensions of the original Landau model
and exhibit some surprising features.

First, the space of quantum states in these models involves ghosts, i.e. the states
with negative norms, which seemingly leads to violation of unitarity. The planar super
Landau models suggest a simple mechanism of evading the ghost problem. It was shown
in [12] that all norms of states in the superplane models can be made non-negative at
cost of introducing a proper metric operator in Hilbert space and so redefining the inner
product.

The second feature closely related to the one just mentioned is that the passing
to the new inner product makes manifest the hidden worldline N=2 supersymmetry of
the superplanar models, which so supply examples of N=2 supersymmetric quantum
mechanics. In the case of the curved SU(2|1)/U(1|1) and SU(2|1)/[U(1)×U(1)] models,
the hidden supersymmetry is associated with the non-abelian supergroup SU(2|2).

In order to understand how general this phenomenon is, we recently constructed
super Landau-type models associated with the pure fermionic cosets SU(n|1)/U(n) and
studied in detail the quantum theory for n = 2 [14]. This study was a natural continuation
of that performed in [15] where, as the corresponding Lagrangians, only Wess-Zumino
terms on these supermanifolds were considered.

The Lagrangian we started with in [14] is the fermionic analog of the standard CP n
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sigma model Lagrangian

L =
˙̄ξ · ξ̇

1− ξ · ξ̄
+

( ˙̄ξ · ξ)(ξ̇ · ξ̄)(
1− ξ · ξ̄

)2 − iκ
ξ̄ · ξ̇ − ˙̄ξ · ξ

1− ξ · ξ̄
, (1)

where ξi(t), (i = 1 , . . . , n), are fermionic fields parametrizing the supermanifold
SU(n|1)/U(n). This Lagrangian is invariant under the transformations

δξi = εi + (ε̄ · ξ) ξi , and c.c. , (2)

which, together with the linearly realized subgroup U(n), form the supergroup SU(n|1).
After quantization, because of the non-standard kinetic term for fermions in (1), both ξi

and ξ̄i become the coordinates of the wave functions. In the SU(n)-singlet sector of the
full Hilbert space the number of independent wave functions is finite and equal to n+ 1;
there is present the same finite number of the LLs. The wave functions admit holomorphic
or antiholomorphic representations, in which they depend on either ξi or ξ̄i . Due to the
presence of the non-standard kinetic term for the fermions there are states with negative
norms. However, for the n = 2 example we showed that, by introducing the appropriate
metric operator, all norms can be made positive-definite, like in the SU(2|1)/U(1|1) and
SU(2|1)/[U(1) × U(1)] cases. We also found that at each LL the sets of wave functions
belonging to some irrep of SU(2|1) are also closed under an extended SU(2|2) symmetry
with respect to which they form the so called “short multiplets”. This dynamical SU(2|2)
has the following structure relations

{Sai , S̄
j
b} = δabJ

j
i − δ

j
iJ a

b + δab δ
j
i

(
2κ+

`

2
− 1

2

)
,

{Sai , Sbj} = εijε
ab
√
C2 , {S̄ia, S̄

j
b} = εijεab

√
C2 ,

[Sai ,J c
b ] = δabS

c
i −

1

2
δcbS

a
i ,

[
Sai , J

j
k

]
= δjiS

a
k −

1

2
δjkS

a
i . (3)

Here, ` is the LL number, C2 = C2(`) is the value of the quadratic Casimir of SU(2|1)
for the wave function at the given level and J c

b are generators of some extra SU(2) which
is not a symmetry of the Lagrangian L. The generators (S1

i , S̄
j
1, J

j
i ) form the original

SU(2|1) symmetry. All generators are realized, e.g. in the holomorphic representation,
by some differential operators acting on the set ξi. Thus the hidden symmetry at each
LL is generated by the superalgebra su(2|2) with the level-dependent central charges
2κ+ `

2
− 1

2
and

√
C2(`).

We also considered in [14] the planar limit of our quantum SU(n|1)/U(n) model
and found that at n = 2 the states are closed under some dynamical su(2|2) which does
not coincide with the hidden su(2|2) of the SU(2|1)/U(2) model. In particular, its central
charges do not depend on the level `.

So we have shown that the appearance of the hidden dynamical SU(2|2) symmetry in
the previously considered SU(2|1)/U(1|1) and SU(2|1)/[U(1)×U(1)] quantum examples
was not accidental; the extreme purely fermionic SU(2|1)/U(2) model also exhibits the
same hidden symmetry, though differently realized. It is interesting to study the issue
of hidden supersymmetries in the super Landau models associated with the cosets of the
higher-dimensional supergroups SU(n|m) and in their appropriately defined planar limits.
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In fact, in [16] we considered some new planar Landau model which is expected to
be the planar limit of the super Landau model on the (2+2) dimensional projective super-
space SU(3|2)/U(2|2) ∼ CP (2|2). We started from the manifestly N = 4 supersymmetric
worldline superfield formalism and finally, after passing to components and eliminating
the relevant auxiliary fields, arrived at the following simple Lagrangian

L = |ż|2 + |u̇|2 − iκ(żz̄ − ˙̄zz + u̇ū− ˙̄uu) + ζ̇ ˙̄ζ + ξ̇ ˙̄ξ − iκ(ζ̇ ζ̄ + ˙̄ζζ + ξ̇ξ̄ + ˙̄ξξ), (4)

where (z, u) are two complex bosonic fields and (ζ, ξ) are two complex fermionic ones. In
the SU(2) covariant notation, the same set of fields is represented by the real bosonic and
fermionic quartets (f iA, χaA) , where i, a = 1, 2 are doublet indices of the two mutually
commuting SU(2) automorphism groups of the N = 4, d = 1 Poincaré superalgebra, and
A is the doublet index of an extra SU(2) commuting with supersymmetry (the so called
Pauli-Gürsey group SU(2)PG). Despite the fact that the Lagrangian (4) looks like the
sum of Lagrangians of two planar N = 2 models, it possesses a wide set of symmetries.

• First, it possesses the inhomogeneous target space supersymmetry

(PiA,ΠaA) o SU(2|2) = ISU(2|2), (5)

where the generators PiA,ΠaA generate the so called “magnetic” super-translations
acting as shifts of the involved bosonic and fermionic fields, while the SU(2|2) part
acts as the homogeneous rotations of the latter (mixing, in general, bosonic fields
with the fermionic ones). So the full manifold of these fields (f iA, χaA) can be
identified with the supercoset ISU(2|2)/SU(2|2) .

• The worldline supersymmetry includes the default N = 4 supersymmetry, with the
supercurrent

Sia = − i√
κ
CABχ̇aAḟiB , (6)

where CAB = CBA is a constant triplet breaking SU(2)PG down to U(1)PG.

• Surprisingly, the Lagrangian (4) reveals one more, hidden, worldline N = 4 super-
symmetry generated by the supercurrent

Ŝia =
i√
κ
χ̇aAḟ

A
i . (7)

• The anticommutator of these two different N=4 supercharges is non-vanishing. In
the quantum case:

{Sia, Ŝjb} = 8iκ
(
εabT̂ ij − εijT̂ ab

)
, (8)

where T̂ ij, T̂ ab are SU(2) generators related to those of two SU(2) automorphism
groups. Together with the standard anticommutators

{Sia, Sjb} = 2εijεabHq , {Ŝia, Ŝjb} = 2εijεabHq , (9)

they form the worldline supergroup SU(2|2)dyn, in which the quantum hamiltonian
Hq plays the role of the central charge.
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The target space supergroup (5) and the worldline supergroup SU(2|2)dyn fully
decouple in the appropriate basis. The quantum states are nicely distributed over the
multiplets of the target space and the worldvolume supersymmetries. At each level N ,
the set of wave functions consists of the irreducible tensors of one SU(2) automorphism
group with the spins s1 = N

2
, s2 = N−1

2
(entering twice) and s3 = N−2

2
, respectively.

They form an irreducible representation of the worldline supersymmetry. Every such
tensor also involves four independent components forming a multiplet of the target space
supersymmetry. So the degeneracy of the N -th level is equal to

4[(2s1 + 1) + 2(2s2 + 1) + (2s3 + 1)] = 16N . (10)

The LLL states are singlets of the worldline SU(2|2)dyn supersymmetry, so the latter
is not broken. Like in other planar super Landau models, there are states with the
negative norms, but, once again, all norms can be made non-negative by introducing
the appropriate metric operator in the full Hilbert space, with preserving the symmetry
structure of the model.

The presence of hidden supersymmetries of the type SU(m|n) (and proper con-
tractions of the latter) in various Landau-type models with the target superspaces is an
indication of the intimate relations of these models with integrable super spin-chain mod-
els, including those inspired by the quantum N = 4, d = 4 super Yang-Mills theory, where
the similar supergroup structures naturally appear (see, e.g., [17, 18, 19]). It is of interest
to make these conjectured relationships manifest. There are also many other interesting
directions for the future work along which the results of [14] and [16] could be further
extended.
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SUPERSYMMETRIC COMPONENT ACTIONS VIA
COSET APPROACH

S. Krivonos and A. Sutulin

It is a well known fact that a domain wall spontaneously breaks the Poincaré invari-
ance of the target space down to the symmetry group of the world volume subspace.
This breaking results in the appearing of the Goldstone bosons associated with spon-
taneously broken symmetries. When we are dealing with the purely bosonic p-branes
this information is enough to construct the corresponding action. In the case of the
bosonic D-branes, which necessarily contain the gauge fields, is less clear, despite
the knowledge of the explicit actions, etc. Fortunately, in the supersymmetric cases,
where the supersymmetry is also partially spontaneously broken, the bosonic sector,
which is the combination of Nambu-Goto and Born-Infeld actions, appears automat-
ically.

¿From the mathematical point of view, the most appropriate approach to describe a
partial breaking of Poincaré symmetry is the nonlinear realization (or coset) method
[1] suitably modified for the cases of (supersymmetric) space-time symmetries in [2].
Schematically the coset approach works as follows. Splitting the generators of the
target space D-dimensional Poincaré group, which is supposed to be spontaneously
broken on the world volume down to the d-dimensional Poincaré subgroup, into
the generators of unbroken {P,M} and spontaneously broken {Z,K} symmetries
(the generators P and Z form D-dimensional translations, M generators span the
so(1, d − 1) - Lorentz algebra on the world volume, while generators K belong to
the coset so(1, D − 1)/so(1, d − 1)), one may realize all the transformations of D-
dimensional Poincaré group by the left action on the coset element

g = exP eq(x)ZeΛ(x)K . (1)

The spontaneous breaking of Z and K symmetries is reflected in the character of
corresponding coset coordinates which are Goldstone fields q(x) and Λ(x) in the
present case. All information about geometric properties is contained in the Cartan
forms

g−1dq = ΩPP + ΩMM + ΩZZ + ΩKK, (2)

which are transformed, except for ΩM , homogeneously under an action of the sym-
metry group. Due to the general theorem [3] not all of the above Goldstone fields
have to be treated as independent. In a given case the fields Λ(x) can be covariantly
expressed through x-derivatives of q(x) by imposing the constraint

ΩZ = 0. (3)

Thus, the model contains only the fields q(x) as physical fields. The Cartan form ΩP

defines the vielbein E, which are d-bein in the present case, connecting the covariant
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world volume coordinate differentials ΩP and the world volume coordinate differential
dx as

ΩP = E · dx. (4)

Taking into account all these properties, it is possible immediately to write the in-
variant action

S = −
∫
ddx+

∫
ddx det(E) (5)

The trivial first term presented in (5) is needed to fulfill the condition Sq=0 = 0.
So, one concludes that the action (5) is just the static gauge form of the actions of
p = (D − d)-branes.

The supersymmetric generalization of the coset approach involves new spinor gener-
ators Q and S which extend the D-dimensional Poicaré group to the supersymmetric
one

{Q,Q} ∼ P, {S, S} ∼ P, {Q,S} ∼ Z. (6)

The most interesting cases are those when the Q supersymmetry is kept unbroken,
while the S supersymmetry is supposed to be spontaneously broken. When all super-
symmetries are considered as spontaneously broken, the corresponding action can be
constructed similarly to the bosonic case, resulting in the some synthesis of Volkov-
Akulov [4] and Nambu -Goto actions.

Another possibility is realized when a number of unbroken #Q and #S broken su-
persymmetries are equal to each other. In that case, so-called Partial Breaking of
Global Supersymmetry takes place.

In the supersymmetric case all symmetries can be realized by group elements acting
on the coset element

g = exP eθQeq(x,θ)Zeψ(x,θ)SeΛ(x,θ)K . (7)

The main novel feature of the supersymmetric coset (7) is the appearance of the
Goldstone superfields

q(x, θ), ψ(x, θ), Λ(x, θ)

which depend on the coordinates of the world volume superspace {x, θ}. The rest
of the coset approach machinery works in the same manner: one may construct the
Cartan forms (2) for the coset (7) (which will contain the new forms ΩQ and ΩS),
one may find the supersymmetric d-bein and corresponding bosonic ∇P and spinor
∇Q covariant derivatives, etc. One may even write the proper generalizations of the
covariant constraints (3) as

ΩZ = 0, ΩS| = 0, (8)

where | means the dθ-projection of the form (see e.g. [5] and references therein).

Unfortunately, this similarity between purely bosonic and supersymmetric cases is
not complete due to the existence of the following important new features of theories
with partial breaking of global supersymmetry:

• In contrast with the bosonic case, not all of the physical fields appear among
the parameters of the coset. Nevertheless, it is true that the all physical bosonic
components can be found in the quantity ∇Qψ|.
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• The supersymmetric generalization (8) of the bosonic kinematic constraints (3)
in most cases contains not only kinematic conditions, but also dynamic super-
field equations of motion. Moreover, in many cases it is unknown how to split
these constraints into kinematical and dynamical ones.

• But the most unpleasant feature of the supersymmetric cases is that the stan-
dard methods of nonlinear realizations fail to construct the superfield action!
The main reason for this is simple: all that we have at hands are the covariant
Cartan forms, which we can construct the superfield invariants from, while the
superspace Lagrangian is not invariant. Instead it is shifted by the full spinor
derivatives under unbroken and/or broken supersymmetries.

Therefore, all that we can do until now, within the supersymmetric coset approach,
is

• to find the transformation properties of the superfields and construct the co-
variant derivatives

• to find the superfield equations of motion and/or covariant variants of irre-
ducibility constraints.

That is why during recent years some new methods to construct the actions (in
terms of superfield or in terms of physical components) have been proposed. Among
them one should mention the construction of the linear realization of partially broken
supersymmetry [6], [7], [8], [9] and reduction from higher dimensional supersymmetric
D-brane action [10] to lower dimensions [11].

In a recent work we did one further step in the application of the supersymmetric
coset approach, by demonstrating how on-shell component actions can be constructed
within it. This construction is so simple that it can be schematically formulated just
here.

The main idea is to start with the Ansatz for the action manifestly invariant with
respect to spontaneously broken supersymmetry. Funny enough, it is rather easy to
do, due to the following properties:

• in the parametrization of the coset element (7) the superspace coordinates θ do
not transform under broken supersymmetry. Thus, all components of superfields
transform independently,

• the covariant derivatives∇P and∇Q are invariant under broken supersymmetry.
Therefore, the bosonic physical components which are contained in ∇Qψ| can
be treated as “matter fields” with respect to broken supersymmetry,

• all physical fermionic components are just θ = 0 projections of the superfield
ψ(x, θ) and these components transform as the fermions of the Volkov-Akulov
model [4] with respect to broken supersymmetry.

The immediate consequence of these facts is the conclusion that the physical fermionic
components can enter the component on-shell action through the determinant of the
d-bein E constructed with the help of the Cartan form ΩP in the limit θ = 0, or
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through the space-time ∇P derivatives of the “matter fields”, only. Thus, the most
general Ansatz for the on-shell component action, which is invariant with respect to
spontaneously broken supersymmetry, has the form

S =

∫
ddx−

∫
ddx det(E)F(∇Qψ|,∇P q|). (9)

The explicit form of the function F can be fixed by two additional requirements

1. The action (9) should have a proper bosonic limit, which is known in almost all
interesting cases.

2. The action (9) in the linear limit should possess a linear version of unbroken
supersymmetry, i.e. it should be just a sum of the kinetic terms for all bosonic
and fermionic components with the relative coefficients fixed by unbroken su-
persymmetry.

These conditions completely fix the component action.

The main results, obtained in this paper by using a method of nonlinear realizations,
are the construction of the component actions for N = 1, D = 4 supermembrane and
for supersymmetric D2 brane which are written in terms of geometric objects such
as det(E) and covariant derivatives. In the first case the component action reads

S =

∫
d3x

[
2− det(E)

(
1 +

√
1− 1

2
∇abq∇abq

)]
, (10)

where the explicit expression for det(E) has the from

det(E) = 1 +
1

2
ψa∇abψ

b − 1

16
ψdψd ∇abψc∇abψc. (11)

In the case of supersymmetric D2 brane one obtains

S = 2

∫
d3x

[
1− det(E)

1

1− 2λ2

]
=

∫
d3x

[
2− det(E)

(
1 +

√
1 + 8F̃ 2

)]
(12)

where the field strength F̃ ab = λab
1−2λ2

is introduced, and has at the bosonic limit the
structure of the standard Born-Infeld action for D2 brane.

It should be clear that the extremely simple form of the component actions is achieved
due to the quite special choice of the physical components: all of them are fields of
the nonlinear realization. This is in a dramatic contrast with the superfield approach,
in which the main objects are the (super)fields of the linearly realized broken super-
symmetry [6, 8, 9]. Of course, it is preferable to have the superfield actions, but
their very nice superspace forms become very complicated after passing to the com-
ponents. Moreover, in such component actions it is a very nontrivial task to select
some geometric objects and structures. In this respect, our construction looks as an
alternative one, and the component form and on-shell character of our actions is the
price we have to pay for their simplicity and clear geometric meaning.
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VECTOR FIELDS IN COSMOLOGY

E.A. Davydov

The modern challenge in cosmology is to find the mechanism for the inflation and for
the present accelerated expansion. This almost implies the fundamental modification
of gravity theory, or particle physics, or both. For example, one can introduce new
(usually scalar) fields, sometimes with rather specific properties, or consider the
modified gravity: theories with higher order curvature corrections, F (R) gravity,
non-minimal coupling, affine theory of gravity e.t.c. But the ocean of models can
hardly be verified with our observational facilities. That’s why one should focus
either on the models which just slightly modify the existing theories, or choose the
most fundamental ones, which can provide a new insight.

The theories with scalar fields allow one to construct simple and useful models,
but they often imply a significant modification of particle physics, and are usually
introduced ‘ad hoc’, without the fundamental reasoning. It may appear that the
vector fields, which are very well studied in particle physics, may play their role in
cosmology as well, but this possibility is studied very poorly up to now. Also we would
like to mention that the fundamental modifications of gravity may also provide the
effective theory with new vector degrees of freedom, not scalar ones. The well-known
example of the Kaluza–Klein dimensional reduction may be supplemented by the
affine generalization of gravity.

The vector models in cosmology have to solve the problem of diluting of the vector
component whose amplitude is scaled out as 1/a with large and/or rapidly growing a,
being the scale factor of the universe. This usually implies the construction of some
dynamical ‘scalars’ within the vector theory. The corresponding vector-to-scalar effec-
tive lagrangians often inherit a specific coupling of these scalars to metric functions.
And the naive Abelian vector model does not provide the isotropic configuration,
and the conformal symmetry provides only the equation of state p = ε/3.

In [1], we based our vector model on the well-known fact that Yang–Mills configu-
ration with the SU(2) gauge symmetry has three vector potentials Aaµ which in the
case of the FRW metrics allow the homogeneous and isotropic configuration. Indeed,
in the Abelian case, the anisotropy comes from the stress-energy tensor components,
proportional to EiEj, BiBj, where Ei, Bi are the ‘electric’ and ‘magnetic’ parts of
the field tensor. But in the non-Abelian case, one has to take traces which vanish for
the anisotropic components.

Next we considered the pure YM theory described by the action S =
∫
L
√
−gd4x,

where the lagrangian L(F ,G) depends arbitrarily on two YM invariants

F = −F a
µνF

aµν/2, G = −F̃ aµνF a
µν/4, F̃ aµν =

εµνλτF a
λτ

2
√
−g

. (1)

We focused on the dependence of the lagrangian on the pseudoscalar G. In gauge
theories the linear in G term is induced by instantons and is called theta-term. We
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assumed, however, a more general dependence of L on G, motivated, e.g. by vacuum
polarization. The contribution coming from G was found to produce the energy den-
sity and pressure with the ratio w = ε/p = −1, except the linear case, which does
not contribute to the Friedmann equations.

The next task was to choose the model in which the standard linear F -term, does
not overwhelm the contribution of the non-linear, hence higher order G-term which
decreases faster in the inflationary scenario. We found that it is sufficient to choose
the configuration which is linear in energy density of G-term, while the Lagrangian
remains non-linear:

L =
F
2
− θ G lnG. (2)

The logarithmic dependence of this kind may come from the quantum corrections.

The slow-roll approximation ensures that the inflationary dynamics is allowed for the
universe filled by both electric and magnetic fields slightly below Plank values. The
inflation ends when the magnetic field increases up to the Plank value and dominates
in the universe. The sufficient number of e-folds gained during the inflation is above
sixty, as it follows from the current observational data. In this model, it can be
achieved for the value of parameter θ being of the order of ten.

The high energy physics does not suit as well for the explanation of the dark energy
problem. The answer can come from the geometry. In [2], we explored the effec-
tive models in the context of the affine generalization of gravity. For a simplified
three-dimensional case we found that the effective theory may contain a non-trivial
interaction of the Kaluza-Klein and affine ‘vecton’ degrees of freedom. Moreover, it
allows the scalar representation of the Higgs-like doublet (φ, ψ) with the non-linear
four-order potential:

V = 2Λeγ +
[
λ2Λφ2 +m2ψ2 + e−2γ(Z + ψφ)2

]
e−γ, (3)

where γ is a dilaton field coming from the dimensional reduction and λ,Λ,m, Z are
the parameters of the theory. As is known, this kind of potentials may be used to
model the accelerating expansion as well, and the parameters of the model come form
the geometry, not from the particle physics, hence they may explain the ‘smallness’
of the present acceleration expressed via the effective Λ-term.

We would like to emphasize that due to the space-time symmetries arising in most
practical cases, vector models can be treated, as a matter of fact, as some scalar-
dilaton theories. This should allow one to work out a universal approach to the
investigation of both vector and scalar theories. The physically motivated theories
containing vector fields, supported by the well-developed methods within the scope
of scalar models, should provide, as we hope, the answers to the open questions in
cosmology, like the inflation and present accelerated expansion.
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EXOPLANETARY SEARCHES WITH GRAVITATIONAL

MICROLENSING

A.F. Zakharov

In paper [1], the discovery potential for exoplanet searches with gravitational mi-
crolensing was represented. It was pointed out that the technique gives an oppor-
tunity to discover light exoplanets at great distances from host stars, for instance
exoplanets with a solid surface the near the so-called ”snow line” where there is an
opportunity to have water in a liquid phase.

In paper [2], polarization signatures of exoplanet existence in gravitational microlens
systems were considered. Gravitational microlensing, when finite size source effects
are relevant, provides a unique tool for the study of the source star stellar atmo-
spheres through an enhancement of a characteristic polarization signal. This is due
to the differential magnification induced during the crossing of the source star. A spe-
cific set of reported highly magnified, both single and binary exoplanetary systems,
microlensing events towards the Galactic bulge was considered and the expected po-
larization signal was evaluated. To this purpose, several polarization models were
considered which apply to different types of source stars: hot, late type main se-
quence and cool giants. As a result, the polarization signal P was computed, which
goes up to P=0.04 percent for late type stars and up to a few per cent for cool giants,
depending on the underlying physical polarization processes and atmosphere model
parameters. Given a I band magnitude at maximum magnification of about 12, and
a typical duration of the polarization signal up to 1 day, it was concluded that the
currently available technology, in particular the polarimeter in FORS2 on the VLT,
potentially may allow the detection of such signals. This observational programme
may take advantage of the currently available surveys plus follow up strategy al-
ready routinely used for microlensing monitoring towards the Galactic bulge (aimed
at the detection of exoplanets). In particular, this allows one to predict in advance
for which events and at which exact time the observing resources may be focused to
make intensive polarization measurements.

[1] A.F. Zakharov, Exoplanet searches with gravitational microlensing, Physics –
Uspekhi, 54 (10), 17 (2011).

[2] G. Ingrosso, S. Calchi Novati, F. de Paolis, P. Jetzer, A.A. Nucita, F. Strafella,
A. Zakharov, Polarization in microlensing towards the Galactic bulge, Monthly
Notices of Royal Astronomical Society, 426, 1496 (2012).
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TESTS OF GRAVITATIONAL THEORIES AND

ASTROPHYSICS
A.F. Zakharov

In paper [1], some possible observational signatures of Rn gravity at Galactic scales
and how these signatures could be used for constraining this type of Rn gravity were
studied. For that purpose, two body simulations in the Rn gravity potential were
performed and the obtained trajectories of S2-like stars around the Galactic center, as
well as the resulting parameter space of the Rn gravity potential were analyzed. The
constraints on Rn gravity were discussed which can be obtained from the observations
of orbits of S2-like stars with the present and next generations of large telescopes.
Comparisons between the theoretical results and observations were made. The results
show that the most probable value for the parameter rc in the Rn gravity potential
in the case of S2-like stars is around 100 AU, while the universal parameter β is close
to 0.01. Also, the gravity potential induces the precession of S2-like star orbits in
the opposite direction with respect to general relativity; therefore, such a behavior
of orbits is qualitatively similar to the behavior of Newtonian orbits with a bulk
distribution of matter (including a stellar cluster and dark matter distributions).

In paper [2], ASTROD I is based on the 2010 proposal submitted for the ESA call
for class-M mission proposals, and is a sequel and an update to the previous paper
[Experimental Astronomy 23 (2009) 491-527; designated as Paper I] which was based
on our last proposal submitted for the 2007 ESA call. In this paper, we present our
orbit selection with one Venus swing-by together with orbit simulation. In Paper I, the
orbit choice is with two Venus swing-bys. The present choice takes shorter time (about
250 days) to reach the opposite side of the Sun. A preliminary design of the optical
bench was also presented and elaborated on the solar physics goals with the radiation
monitor payload. Telescope size, trade-offs of drag-free sensitivities, thermal issues
was discussed and an outlook was presented. ASTROD I is a planned interplanetary
space mission with multiple goals. The primary aims are: to test General Relativity
with an improvement in sensitivity of over 3 orders of magnitude, improving our
understanding of gravity and aiding the development of a new quantum gravity
theory; to measure key solar system parameters with increased accuracy, advancing
solar physics and our knowledge of the solar system; and to measure the time rate of
change of the gravitational constant with an order of magnitude improvement and
the anomalous Pioneer acceleration, thereby probing dark matter and dark energy
gravitationally. It is envisaged as the first in a series of ASTROD missions. ASTROD
I will consist of one spacecraft carrying a telescope, four lasers, two event timers
and a clock. Two-way, two-wavelength laser pulse ranging will be used between the
spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the
ASTROD I goals.

In paper [3], shadow formation around supermassive black holes were simulated.
Due to enormous progress in observational facilities and techniques of data analysis
researchers approach an opportunity to measure shapes and sizes of the shadows at
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least for the closest supermassive black hole at the Galactic Center. Measurements of
the shadow sizes around the black holes can help to evaluate parameters of black hole
metric. Theories with extra dimensions (RandallSundrum II braneworld approach, for
instance) admit astrophysical objects (supermassive black holes, in particular) which
are rather different from the standard ones. Different tests were proposed to discover
signatures of extra dimensions in supermassive black holes since the gravitational field
may be different from the standard one in the general relativity (GR) approach. In
particular, gravitational lensing features are different for alternative gravity theories
with extra dimensions and general relativity. Therefore, there is an opportunity to
find signatures of extra dimensions in supermassive black holes. It was shown how
measurements of the shadow sizes can put constraints on parameters of black hole in
spacetime with extra dimensions.

In paper [4] a formation of holes in gravitationally lensed systems is given. Enormous
progress is made in developing observational facilities. As a result, there are new
opportunities to observe structures at sub-mas resolution. To explore gravitationally
lensed systems, we simulate radio-lobe images distorted by microlensing. We show
that the positions of holes in lensed images may indicate the positions of microlens
groups or overdensities.

[1] D. Borka, P. Jovanovic, V. Borka Jovanovic and A. F. Zakharov, Constraints
on Rn gravity from precession of orbits of S2-like stars, Physical Reviews D, 85,
124004 (2012).

[2] C. Braxmaier, H. Dittus, B. Foulon, E. Goklu, C. Grimani, J. Guo, S. Herrmann,
C. Lammerzahl, W.-T. Ni, A. Peters, B. Rievers, E. Samain, H. Selig, D. Shaul,
D. Svehla, P. Touboul, G. Wang, A.-M. Wu, A. F. Zakharov, Astrodynamical
Space Test of Relativity using Optical Devices I (ASTROD I) - A class-M fun-
damental physics mission proposal for Cosmic Vision 2015-2025: 2010 Update,
Experimental Astronomy, 34, 181 (2012).

[3] A. F. Zakharov, F. de Paolis, G. Ingrosso, A.A. Nucita, Shadows as a tool to
evaluate black hole parameters and a dimension of spacetime, New Astronomy
Reviews, 56, 64 (2012).

[4] A. F. Zakharov, S. Simić, L. Č. Popović, and P. Jovanović, Evaluation of mi-
crolens distributions in gravitationally lensed systems based on accurate radio
observations, in Advancing the Physics of Cosmic Distances Proceedings IAU
Symposium No. 289, 2012 Richard de Grijs, ed., Cambridge University Press, p.
437, (2013).
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LIFSHITZ FORMULA BY A SPECTRAL SUMMATION

METHOD

V.V. Nesterenko and I.G. Pirozhenko

The Lifshitz formula was derived by making use of the spectral summation method,
which is a mathematically rigorous simultaneous application of both the mode-
by-mode summation technique and scattering formalism. The contributions to the
Casimir energy of electromagnetic excitations of different types (surface modes,
waveguide modes, and photonic modes) were clearly retraced. A correct transition
to imaginary frequencies was accomplished with allowance for all the peculiarities of
the frequency equations, and pertinent scattering data in the complex ω plane was
solved completely. Some subtleties and vague points in previous derivations of the
Lifshitz formula were elucidated.

1. V. V. Nesterenko, I. G. Pirozhenko, “Lifshitz formula by a spectral summation
method” Phys. Rev. A 86, 5, 052503, 2012.

29



LIST OF PUBLICATIONS

JOURNAL PUBLICATIONS

1. R. Aouane, V.G. Bornyakov, E.M. Ilgenfritz, V.K. Mitrjushkin, M. Muller-Preussker
and A. Sternbeck, “Landau gauge gluon and ghost propagators at finite temperature
from quenched lattice QCD” Phys. Rev. D85, 034501 (2012).

2. A. B. Arbuzov, B. M. Barbashov, V. N. Pervushin, A. Borowiec, A. F. Zakharov,
Strong Gravitation Waves in Terms of Maurer - Cartan Forms, Physics of Atomic
Nuclei, 74, 832 (2011).

3. A. B. Arbuzov, B. M. Barbashov, R. G. Nazmitdinov, V. N. Pervushin, A. Borowiec,
K. N. Pichugin, and A. F. Zakharov, Universe as a Representation of Affine and
Conformal Symmetries, Physics of Particles and Nuclei Letters, 8, 187 (2011).

4. S. Belliard, S. Pakuliak, E. Ragoucy and N.A. Slavnov “Highest coefficient of scalar
products in SU(3)-invariant integrable models“
J. Stat. Mech. (2012) P09003.

5. S. Bellucci, N. Kozyrev, S. Krivonos, A. Sutulin, “N=4 Chiral Supermultiplet Inter-
acting with A Magnetic Field”, Phys. Rev. D 85 (2012) 065024 (e-Print Archive:
arXiv:1112.0763 [hep-th]).

6. S. Bellucci, S. Krivonos, A. Sutulin, “SU(2) reductions in N=4 multidimensional
supersymmetric mechanics”, J. Phys. A 45 (2012) 125402 (e-Print Archive:
arXiv:1006.0376 [hep-th]).

7. S. Bellucci, S. Krivonos, A. Sutulin, “N=4, d=1 Supersymmetric Hyper-Kaehler
Sigma Models with Isospin Variables”, JHEP 1102 (2011) 038 (e-Print Archive:
arXiv:1012.2250 [hep-th]).

8. S. Bellucci, S. Krivonos, A. Sutulin, “N=4, d=1 Supersymmetric Hyper-Kaehler
Sigma Models and Non-Abelian Monopole Background”, Acta Polytechnica 51
(2011) 13 (e-Print Archive: arXiv:1006.4770 [hep-th]).

9. S. Bellucci, S. Krivonos, “N=2 supersymmetric particle near extreme Kerr throat”,
JHEP 1110 (2011) 014 (e-Print Archive: arXiv:1106.4453 [hep-th]).

10. S. Bellucci, S. Krivonos, A. Sutulin, “CP n supersymmetric mechanics in U(n)
background gauge fields”, Phys. Rev. D84 (2011) 065033 (e-Print Archive:
arXiv:1106.2435 [hep-th]).

11. V.G. Bornyakov, V.K. Mitrjushkin, “SU(2) lattice gluon propagators at finite tem-
peratures in the deep infrared region and Gribov copy effects” Phys.Rev. D84 (2011)
094503.

12. V.G. Bornyakov, V.K. Mitrjushkin and R.N. Rogalyov, “Gluon Propagators in 3D
SU(2) Theory and Effects of Gribov Copies” Phys.Rev. D86 (2012) 114503.

30



13. V.G. Bornyakov, V.K. Mitrjushkin, “Lattice QCD gluon propagators near transition
temperature” Int. J. Mod. Phys. A27, 1250050 (2012).

14. D. Borka, P. Jovanovic, V. Borka Jovanovic and A. F. Zakharov, Constraints on Rn

gravity from precession of orbits of S2-like stars, Physical Reviews D, 85, 124004
(2012).

15. C. Braxmaier, H. Dittus, B. Foulon, E. Goklu, C. Grimani, J. Guo, S. Herrmann,
C. Lammerzahl, W.-T. Ni, A. Peters, B. Rievers, E. Samain, H. Selig, D. Shaul, D.
Svehla, P. Touboul, G. Wang, A.-M. Wu, A. F. Zakharov, Astrodynamical Space
Test of Relativity using Optical Devices I (ASTROD I) - A class-M fundamental
physics mission proposal for Cosmic Vision 2015-2025: 2010 Update, Experimental
Astronomy, 34, 181 (2012).

16. I.L. Buchbinder, E.A. Ivanov, I.B. Samsonov, “Superconformal N=3 SYM Low-
Energy Effective Action”, JHEP 1201 (2012) 001 (e-Print Archive: arXiv:1111.4145
[hep-th]).

17. V. Bychkov, E. Ivanov, “N=4 Supersymmetric Landau Models”, Nucl. Phys. B 863
(2012) 33 (e-print Archive: arXiv:1202.4984 [hep-th]).

18. D.J. Cirilo-Lombardo, “On unified field theories, dynamical torsion and geometrical
models: II”, Phys. Part. Nucl. Lett. 8 (2011) 507.

19. D.J. Cirilo-Lombardo, “Unified field theoretical models from generalized affine ge-
ometries II”, Int. J. Theor. Phys. 50 (2011) 1699.

20. F. Delduc, E. Ivanov, “Geometry and Harmonic Superspace: Some Recent
Progress”, Phys. Part. Nucl. 43 (2012) 562 (e-Print Archive: arXiv:1201.3794
[hep-th]).

21. F. Delduc, E. Ivanov, “N = 4 mechanics of general (4, 4, 0) multiplets”, Nucl. Phys.
B855 (2012) 815 (e-Print Archive: arXiv:1107.1429 [hep-th]).

22. E. A. Davydov, “Vector fields in cosmology,” AIP Conf.Proc. 1444 (2011) 125
[arXiv:1112.3289 [hep-th]].

23. M. Goykhman, E. Ivanov, S. Sidorov, “Super Landau Models on Odd Cosets”, Phys.
Rev. D87 (2013) 025026, JINR-E2-2012-89 (e-Print Archive: arXiv:1208.3418 [hep-
th]).

24. M. Goykhman, E. Ivanov, “Worldsheet supersymmetry in pohlmeyer-reduced su-
perstrings”, J. Phys. Conf. Ser. 343 (2012) 012047.

25. M. Goykhman, E. Ivanov, “Worldsheet Supersymmetry of Pohlmeyer-Reduced
AdSn×Sn Superstrings”, JHEP 1109 (2011) 078 (e-Print Archive: arXiv:1104.0706
[hep-th]).

26. M. Goykhman, E. Ivanov, “Hidden supersymmetry in Pohlmeyer-reduced form of
AdS(n) x S(n) superstrings”, Int. J. Mod. Phys. Conf. Ser. 13 (2012) 98.

31



27. S. Fedoruk, E. Ivanov, O. Lechtenfeld, “Nahm equations in supersymmetric me-
chanics”, JHEP 1206 (2012) 147 (e-Print Archive: arXiv:1204.4474 [hep-th]).

28. S.A. Fedoruk, E.A. Ivanov, A.V. Smilga, “Real and complex supersymmetric d=1
sigma models with torsions”, Int. J. Mod. Phys. A 27 (2012) 1250146 (e-Print
Archive: arXiv:1204.4105 [hep-th]).

29. S. Fedoruk, E. Ivanov, O. Lechtenfeld, “Superconformal Mechanics”, J.Phys. A45
(2012) 173001 (e-Print Archive: arXiv:1112.1947 [hep-th]).

30. S. Fedoruk, P. Kosinski, J. Lukierski, P. Maslanka, “Nonrelativistic counterparts
of twistors and the realizations of Galilean conformal algebra”, Phys. Lett. B699
(2011) 129 (e-Print Archive: arXiv:1012.0480 [hep-th]).

31. S. Fedoruk, J. Lukierski, “The algebraic structure of Galilean superconformal sym-
metries”, Phys. Rev. D84 (2011) 065002 (e-Print Archive: arXiv:1105.3444 [math-
ph]).

32. S. Fedoruk, J. Lukierski, “New particle model in extended space-time and covari-
antization of planar Landau dynamics” Phys. Lett. B 718 (2012) 646 (e-Print
Archive: arXiv:1207.5683 [hep-th]).

33. F. Ferrari, M. Piatek, “On a singular Fredholm-type integral equation arising in
N=2 super Yang-Mills theories”, Phys.Lett. B 718 (2013) 1142 (e-Print Archive:
arXiv:1202.5135 [hep-th]).

34. F. Ferrari, M. Piatek, “Liouville theory, N=2 gauge theories and accessory param-
eters”, JHEP 1205 (2012) 025 (e-Print Archive: arXiv:1202.2149 [hep-th]).

35. F. Ferrari, J. Paturej, M. Piatek, T.A. Vilgis, “Dynamics of two topologically entan-
gled chains”, J. Math. Phys. 52 (2011) 043301 (e-Print Archive: arXiv:1103.3359
[cond-mat.stat-mech]).

36. P.P. Fiziev, D.R. Staicova, “Solving Systems of Transcendental Equations Involving
the Heun Functions”
American Journal of Computational Mathematics, 2012, 2, 95-105.

37. P.P. Fiziev, D.V. Shirkov, “The (2 + 1)-dimensional axial universessolutions tothe
Einstein equations, dimensional reduction pointsand KleinFockGordon waves”
J. Phys. A: Math. Theor. 45 (2012) 055205 (15pp)

38. P. Fre and A. S. Sorin, Extremal Multicenter Black Holes: Nilpotent Orbits and Tits
Satake Universality Classes, JHEP 1301 (2013) 003 [arXiv:1205.1233 [hep-th]].

39. P. Fre, A. S. Sorin and M. Trigiante, Integrability of Supergravity Black Holes
and New Tensor Classifiers of Regular and Nilpotent Orbits, JHEP 1204 (2012)
015[arXiv:1103.0848 [hep-th]].

40. D. V. Gal’tsov and E. A. Davydov,“Yang-Mills condensates in cosmology,” Int. J.
Mod. Phys. Conf. Ser. 14, (2012) 316 [arXiv:1112.2943 [hep-th]].

32



41. E.A. Ivanov, “Harmonic Superfields in N=4 Supersymmetric Quantum Mechanics”,
SIGMA 7 (2011) 015 (e-Print Archive: arXiv:1102.2288 [hep-th]).

42. S. Fedoruk, E. Ivanov, J. Lukierski, “Galilean Conformal Mechanics from Nonlinear
Realizations”, Phys. Rev. D83 (2011) 085013 (e-Print Archive: arXiv:1101.1658
[hep-th]).

43. E.A. Ivanov, “Generalized Landau models with N=2 worldline supersymmetry”,
Phys. Atom. Nucl. 75 (2012) 1227-1233.

44. E. Ivanov, “N=4 supersymmetric quantum mechanics and harmonics”, Int. J.
Geom. Meth. Mod. Phys. 09 (2012) 1261006.

45. E.A. Ivanov, A.V. Smilga, “Dirac Operator on Complex Manifolds and Supersym-
metric Quantum Mechanics”, Int. J. Mod. Phys. A 27 (2012) 1230024 (e-Print
Archive: arXiv:1012.2069 [hep-th]).

46. G. Ingrosso, S. Calchi Novati, F. de Paolis, P. Jetzer, A.A. Nucita, F. Strafella, A.
Zakharov, Polarization in microlensing towards the Galactic bulge, Monthly Notices
of Royal Astronomical Society, 426, 1496 (2012).

47. S. Krivonos, O. Lechtenfeld, “Many-particle mechanics with D(2,1:alpha) super-
conformal symmetry”, JHEP 1102 (2011) 042 (e-Print Archive: arXiv:1012.4639
[hep-th]).

48. V. V. Nesterenko and I. G. Pirozhenko, “Vacuum energy in conical space with
additional boundary conditions” Classical and Quantum Gravity, ISSN:0264-9381,
eISSN:1361-6382, :IOP Publishing Limited, 28, 17, 175020 (1-26), 2011.

49. V. V. Nesterenko, I. G. Pirozhenko, “Lifshitz formula by a spectral summation
method” Phys. Rev. A 86, 5, 052503, 2012.

50. V. V. Nesterenko, I. G. Pirozhenko, “Conic Singularity of the Space-Time and
Cosmic Censorship Hypothesis”, JINR News, 2, 9-10, ISSN:0134-4811, 2012.

51. P. Tretyakov. Scaling Solutions in Galileon Cosmology. Grav. Cosmol. 18 (1),
93-95 (2012).

52. V. N. Pervushin, A. F. Zakharov, Supernovae Type Ia and Cosmological Models,
JINR News, 2012, N 1, p. 10.

53. V. N. Pervushin, A. B. Arbuzov, B. M. Barbashov, R. G. Nazmitdinov, A. Borowiec,
K. N. Pichugin, and A. F. Zakharov, The General Relativity with Conformal Units,
Physics of Particles and Nuclei, 43, (5), 682 (2012).

54. V. N. Pervushin, A. B. Arbuzov, B.M. Barbashov, R.G. Nazmitdinov, A. Borowiec,
K. N. Pichugin, A. F. Zakharov, Conformal and affine Hamiltonian dynamics of
general relativity, General Relativity and Gravitation, 44, 2745 (2012).

33



55. G. Torricelli, I. Pirozhenko, S. Thornton, A. Lambrecht, and C. Binns, “Casimir
force between a metal and a semimetal” Europhysics Letters (IOP Publishing),
ISSN:0295-5075, eISSN:1286-4854, :IOP Publishing Limited, 93, 51001, 2011.

56. M. Piatek, “Classical conformal blocks from TBA for the elliptic Calogero-Moser
system”, JHEP 1106 (2011) 050 (e-Print Archive: arXiv:1102.5403 [hep-th]).

57. A. R. Pietrykowski, “Interacting Scalar Fields in the Context of Effective Quantum
Gravity”, Phys. Rev. D 87 (2013) 024026 (e-Print Archive: arXiv:1210.0507 [hep-
th]).

58. N.A.Tyurin, “The Chekanov tori and pseudotoric structures”, Russian Mathemati-
cal Surveys, 66:1.

59. N.A.Tyurin, “Lagrangian fibration construction on the flag variety F3”, Theor.
math. phys.,166:2.

60. N.A.Tyurin, “Nonstandard Lagrangian tori and pseudotoric structures”, Theoretical
and Mathematical Physics(2012), 171:2.

61. N.A.Tyurin, S.A.Belev, “Lifts of Lagrangian tori”, Mathematical Notes, 2012, 91:5.

62. A.F. Zakharov, Exoplanet searches with gravitational microlensing, Physics – Us-
pekhi, 54 (10), 17 (2011).

63. A.F. Zakharov, V.N. Pervushin, Conformal cosmological model and SNe Ia data,
Physics of Atomic Nuclei, 75, 1418 (2012).

64. A. F. Zakharov, F. de Paolis, G. Ingrosso, A.A. Nucita, Shadows as a tool to evaluate
black hole parameters and a dimension of spacetime, New Astronomy Reviews, 56,
64 (2012).

PREPRINTS AND DATA BASES

1. S. Bellucci, N. Kozyrev, S. Krivonos, A. Sutulin, “Symmetries of N=4 supersym-
metric CP(n) mechanics”, e-Print Archive: arXiv:1206.0175 [hep-th].

2. S. Bellucci, S. Krivonos, A. Shcherbakov, A. Sutulin, “On the road to N=2 super-
symmetric Born-Infeld action”, e-Print Archive: arXiv:1212.1902 [hep-th].

3. S. Bellucci, S. Krivonos, A. Nersessian, V. Yeghikyan, “Isospin particle systems on
quaternionic projective spaces”, e-Print Archive: arXiv:1212.1663 [hep-th].

4. Yu.B. Chernyakov, G.I. Sharygin, A.S. Sorin, ”Bruhat Order in Full Symmetric
Toda System”, arXiv:1212.4803.

5. S. Fedoruk, J. Lukierski, “New spinorial particle model in tensorial space-time and
interacting higher spin fields”, e-Print Archive: arXiv:1210.1506 [hep-th].

34



6. F. Ferrari, M. Piatek, “On a path integral representation of the Nekrasov in-
stanton partition function and its Nekrasov–Shatashvili limit”, e-Print Archive:
arXiv:1212.6787 [hep-th].

7. P. Fiziev, “Withholding Potentials, Absence of Ghosts and Relationshipbetween
Minimal Dilatonic Gravity and f(R) Theories“ arXiv:1209.2695.

8. P. Fre, A.S. Sorin, M. Trigiante, ”Black Hole Nilpotent Orbits and Tits Satake
Universality Classes”, arXiv:1107.5986 [hep-th], pgs. 1 - 65 (2011).

9. E.A. Ivanov, B.M. Zupnik, “Bispinor Auxiliary Fields in Duality-Invariant Electro-
dynamics Revisited”, e-Print Archive: arXiv:1212.6637 [hep-th].

10. N. Kozyrev, S. Krivonos, O. Lechtenfeld, “N=2 supersymmetric S2− > CP 3− > S4

fibration viewed as superparticle mechanics”, e-Print Archive: arXiv:1210.4587 [hep-
th].

11. I. B. Pestov, ”Geometrical theory of Fundamental Interactions. Foundations of
Unified Physics”, Communication of JINR, P2-2012-140, Dubna (2012).

12. I. B. Pestov, ”Geometrical theory of Fundamental Interactions. Gravidynamics”,
Communication of JINR, P2-2012-141, Dubna (2012).

13. I. B. Pestov, ”Geometrical theory of Fundamental Interactions. Spinstatics and
Spindynamics”, Communication of JINR, P2-2012-142, Dubna (2012).

14. I. B. Pestov, ”Geometrical theory of Fundamental Interactions. Generalized Elec-
tromagnetic Field”, Communication of JINR, P2-2012-143, Dubna (2012).

15. V. V. Nesterenko, I. G. Pirozhenko, ”Lifshitz formula by spectral summation
method”, arXiv:1112.2599 [quant-ph].

16. I. Pirozhenko, M. Bordag, “On the Casimir repulsion in sphere-plate geometry”,
arXiv:1302.5290 [quant-ph

17. D.Staicova, P. Fiziev, “New results for electromagnetic quasinormal modes of black
holes” arXiv:1112.0310.

II. PARTICIPATION IN CONFERENCES

• “N=4 supersymmetric quantum mechanics with semi-dynamical supermultiplets”,
S. Fedoruk, Invited Talk at The International Workshop “Supersymmetry in Inte-
grable Systems - SIS’11”, 01-04 August 2011, Hannover, Germany.

• “Abelian lagrangian geometry: from geometric quantization to mirror symme-
try”,N.A. Tyurin Proceedings of 36th National conference on Theor. Physics,
Vietnham, 36 (2011).

35



• “Galilean conformal and superconformal symmetries: algebraic structures and dy-
namical realizations”, S. Fedoruk, Invited Talk at The Seventh International Con-
ference “Quantum Theory and Symmetries (QTS-7)”, 7-13 August, 2011, Prague,
Czech Republic.

• “2dCFT/Gauge/Bethe correspondence”, M. Piatek, Invited Talk at The Interna-
tional Workshop “Supersymmetries and Quantum Symmetries (SQS?2011)”, July
18-23, 2011, Dubna, Russia.

• “Classical limit of Liouville Theory, N=2 Gauge Theories and Calogero-Moser sys-
tems”, M. Piatek, Invited Talk at The International Workshop “Stringtheory/2011”,
April 15-17, 2011, Warsaw, Poland.

• “Classical Conformal Blocks, Twisted Superpotentials, Yang’s Functionals and Uni-
formization of the 4-punctured Sphere”, M. Piatek, Invited Talk at the Workshop
“Branes and Bethe Ansatz in Supersymmetric Gauge Theories”, March 21-25, 2011,
Simons Center for Geometry And Physics, Stony Brook State University of New
York, USA.

• “General N=4 superfield mechanics of the (4,4,0) multiplet”, E. Ivanov, Invited Talk
at The International Workshop “Supersymmetry in Integrable Systems - SIS’11”,
01-04 August 2011, Hannover, Germany.

• “Worldsheet supersymmetry in Pohlmeyer-reduced superstrings”, E. Ivanov, Invited
Talk at The Seventh International Conference “Quantum Theory and Symmetries
(QTS-7)”, 7-13 August, 2011, Prague, Czech Republic.

• “N=4 supersymmetric mechanics: harmonic superspace as the universal tool of
model-building”, E. Ivanov, Invited Talk at The XV International Conference “Sym-
metry Methods in Physics (SYMPHYS-XV)”, Dedicated to memory of A.N. Sis-
sakian, July 12-29, 2011, Dubna & Yerevan, Russia & Armenia.

• “CP(n) supersymmetric mechanics in U(n) background gauge fields”, A. Sutulin,
Invited Talk at The International Workshop “Supersymmetry in Integrable Systems
- SIS’11”, 01-04 August 2011, Hannover, Germany.

• “Generalized nonlinear chiral supermultiplets”, A. Sutulin, Invited Talk at The
Seventh International Conference “Quantum Theory and Symmetries (QTS-7)”, 7-
13 August, 2011, Prague, Czech Republic.

• “Many-particle mechanics with D(2,1;alpha) superconformal symmetry”, S. Krivonos,
Invited Talk at The International Workshop “Supersymmetry in Integrable Systems
- SIS’11”, 01-04 August 2011, Hannover, Germany.

• “CP(n) supersymmetric mechanics”, S. Krivonos, Invited Talk at The Seventh In-
ternational Conference “Quantum Theory and Symmetries (QTS-7)”, 7-13 August,
2011, Prague, Czech Republic.

36



• “CP(n) supersymmetric mechanics in U(n) background gauge fields”, S. Krivonos,
Invited Talk at The XV International Conference “Symmetry Methods in Physics
(SYMPHYS-XV)”, Dedicated to memory of A.N. Sissakian, July 12-29, 2011, Dubna
& Yerevan, Russia & Armenia.

• “Supersymmetric mechanics with non-Abelian gauge fields”, S. Krivonos, Invited
Talk at The International Conference “Recent Advances in Quantum Field and
String Theory”, September 26-30, 2011, Tbilisi, Georgia.

• “CP(n) Supersymmetric Mechanics in U(n) Background Gauge Fields”, S. Krivonos,
Invited Talk at The International Conference “Advances of Quantum Field Theory”,
October 4-7, 2011, Dubna, Russia.

• “Spin, confinement, localization and supersymmetry”, “Bargmann-Wigner general-
izations of the relativistic wave equations, arbitrary spin and the interaction prob-
lem”, “On generalized affine geometries, dynamical torsion and spin”, D.-J. Cirilo
Lombardo, Talks at the A.I. Akhiezer Memorial Conference: “QED and Statistical
Physics”, August 29 September 02, 2011, Kharkov, Ukraina.

• “Noncommutative structures from generalized affine geometries”, D.-J. Cirilo Lom-
bardo, Invited Talk at The Seventh International Conference “Quantum Theory and
Symmetries (QTS-7)”, 7-13 August, 2011, Prague, Czech Republic.

• “N=4 mechanics with spin variables and Nahm equations”, S. Fedoruk, Invited Talk
at XX International Colloquium ”Integrable Systems and Quantum Symmetries”
June 17 - 23, 2012, Prague, Czech Republic.

• “Gauged N=4 supersymmetric mechanics with spin supermultiplets”, S. Fedoruk,
Invited Talk at the XXIX International Colloquium on Group-Theoretical Methods
in Physics, August 20-26, 2012, Chern Institute of Mathematics, Tianjin, China.

• “N=4 supersymmetric mechanics and Nahm equations”, S. Fedoruk, Invited Talk at
the Armenia-Dubna Workshop on Problems of integrable (supersymmetric) systems
December 24 - 25, Dubna, Russia.

• “N=2 supersymmetric S2− > CP 3− > S4 fibration viewed as superparticle mechan-
ics”, S. Krivonos, Invited Talk at the XX-th International Conference on Integrable
Systems and quantum symmetries Prague, Chech Rep., June 17-23, 2012.

• “HP(n) sigma-model and instanton”, S. Krivonos, Invited Talk at 3rd workshop on
Supersymmetry in Integrable Systems Yerevan, Armenia, August 27-30, 2012.

• “On the road to N=2 supersymmetric Born-Infeld theory”, S. Krivonos, Talk at
the Round Table 5, France - Italy - Russia “Frontiers of Mathematical Physics”,
December 16-18, 2012, Dubna.

• “N=2 supersymmetric fibration viewed as supersymmetric mechanics”, N. Kozyrev,
Invited Talk at 3rd workshop on Supersymmetry in Integrable Systems Yerevan,
Armenia, August 27-30, 2012.

37



• “N=2 Supersymmetric mechanics on HP(n) with Sp(n+1) symmetry”, N. Kozyrev,
Invited Talk at the Armenia-Dubna Workshop on Problems of integrable (super-
symmetric) systems, December 24 - 25, Dubna, Russia.

• “N=4 Supersymmetric mechanics on CP(n) and its symmetries”, A. Sutulin, Invited
Talk at XX International Colloquium ”Integrable Systems and Quantum Symme-
tries” June 17 - 23, 2012, Prague, Czech Republic.

• “Symmetries of N=4 supersymmetric CP(n) mechanics”, A. Sutulin, Invited Talk at
3rd workshop on Supersymmetry in Integrable Systems Yerevan, Armenia, August
27-30, 2012.

• “On the road to N=2 supersymmetric Born-Infeld theory”, A. Sutulin, Talk at
the Round Table 5, France - Italy - Russia “Frontiers of Mathematical Physics”,
December 16-18, 2012, Dubna.

• “Superfield methods in three-dimensional supergravities”, B. Zupnik, Invited Talk
at the Ginzburg conference, Moscow, FIAN, May 28 - June 2, 2012.

• “Nonabelian duality as a symmetry of auxiliary interaction”, B. Zupnik, Invited
Talk at the Round Table 5, France - Italy - Russia “Frontiers of Mathematical
Physics”, December 16-18, 2012, Dubna.

• “Super Landau Models on odd cosets”, S. Sidorov, Invited Talk at the Armenia-
Dubna Workshop on Problems of integrable (supersymmetric) systems, December
24 - 25, Dubna, Russia.

• “Bispinor auxiliary fields in duality invariant electrodynamics”, E. Ivanov, Invited
Talk at the Round Table 5, France - Italy - Russia “Frontiers of Mathematical
Physics”, December 16-18, 2012, Dubna.

• “One-dimensional models from harmonic superspace”, E. Ivanov, Invited Talk at
the Armenia-Dubna Workshop on Problems of integrable (supersymmetric) systems,
December 24 - 25, Dubna, Russia.

• “Supersymmetric Mechanics with Spin Multiplets and Nahm Equations”, E. Ivanov,
Invited Talk at the Ginzburg conference, Moscow, FIAN, May 28 - June 2, 2012.

• “Super Landau models with both world-line and target supersymmetries: N=2 and
N=4 examples”, E. Ivanov, Invited Talk at the conference “Quantum Field Theory
and Gravity (QFTG-12)”, Tomsk, July 31 August 4, 2012.

• “N=4 supersymmetric Landau model”, E. Ivanov, Invited Talk at the workshop
“Classical and Quantum Integrable Systems”, Dubna, January 23-27, 2012.

• “Landau-type models with worldline N=4 supersymmetry”, E. Ivanov, Invited Talk
at the 17th International Seminar on High Energy Physics “Quarks-2012”, Yaroslavl,
Russia, 4-10 June, 2012.

38



• “Liouville theory, N=2 gauge theories and accessory parameters”, M. Piatek, Invited
Talk at II Workshop on Geometric Correspondences of Gauge Theories, September
17-21, 2012, SISSA-Trieste, Italy.

• “Liouville theory, N=2 gauge theories and accessory parameters”, M. Piatek, In-
vited Talk at XXXI Workshop on Geometric Methods in Physics, June 24-30, 2012,
Bialowieza, Poland.

• I.B. Pestov, “Mathematical Principles Unifying General Relativity and Quantum
Mechanics.” Proceedings of the XX International Baldin Seminar on High Energy
Physics Problems. Relativistic Nuclear Physics and Quantum Chromodynamics.
V.I, p.47-52, E1,2-2011-121, Dubna, 2011.

• I.B.Pestov, ”The Unified Geometrical Theory of Microworld and Macroworld.”
XLVIII All-Russia Conference on Problems of Physics of Particles, Physics of Plasma
and the Condensed Matter,Optoelectronics. Dedicated to the 100th anniversary of
Professor Ya.P. Terletsky. People’s Frendship University Press, 2012, p.159-162.
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