
Contents

BRST Charges For Nonlinear Associative Algebras.................................................... 2
A.P.Isaev, S.O.Krivonos, O.V. Ogievetsky

Landau Problem On Supermanifolds .......................................................................... 4
E.A. Ivanov

M2 Branes And Chern-Simons-Matter Systems........................................................... 6
E.A. Ivanov, B.M. Zupnik

Full Integrability Of Supergravity Billiards: The Arrow Of Time, Asymptotic
States And Trapped Surfaces In The Cosmic Evolution............................................... 8

P. Fr�e and A.S. Sorin
Geometric Quantization And Algebraic Lagrangian Geometry.................................... 11

N. A. Tyurin
Vacuum Solutions In 4 + 1 And 5 + 1 Lovelock Gravity............................................... 15

P.V. Tretyakov
Hidden Symmetries Of N=4 Super Yang-Mills Theory................................................ 17

A.D. Popov
Integrability Of Vortex Equations................................................................................. 18

A.D. Popov
Reversing The Sign Of The Casimir Force Within Lifshitz Theory............................. 19

I.G. Pirozhenko
List of publications....................................................................................................... 21

1



BRST CHARGES FOR NONLINEAR ASSOCIATIVE
ALGEBRAS

A.P.Isaeva, S.O.Krivonosa, O.V. Ogievetskyb

aJoint Institute for Nuclear Research, 141980 Dubna, Russia

It is known that the quantum theory of gauge �elds (constrained Hamiltonian systems)
has an elegant formulation in the framework of the BRST theory. The main ingredient
in that formulation is the BRST charge Q. Its construction for linear (Lie) algebras of
constraints is well known. In the case of nonlinear algebras, despite the existence of quite
general results concerning the structure of the BRST charges, the general construction is
far from being fully understood. The main reason is the appearance of nonstandard terms
(forth and higher order in the ghost �elds) in Q. Due to the presence of these additional
terms the full structure of the BRST charges cannot be written immediately. Thus, the
explicit construction of the BRST charges for nonlinear algebras remains a challenge.

Among the quadratically nonlinear algebras there is a special class of so-called
quantum Lie algebras (QLA). Additional QLA restrictions help to construct [1] the
BRST charges explicitly, despite the nonlinear character of the basic relations. The main
ingredient of this construction is the modi�ed ghost-anti-ghost algebra which is also
quadratically nonlinear. Moreover, in general, the ghost-anti-ghosts do not commute with
the generators of the algebra. Unfortunately, the class of QLA's is not wide enough to
include many interesting algebras. Nevertheless, the idea (see [1]) to deform the ghost-
anti-ghost algebra in accordance with the structure of the algebra of constraints seems to
be valid not only in the case of QLA. In this report, we present some preliminary results
how to extend at least some elements of the construction of the BRST charge for QLA to
broader classes of quadratic algebras.

As the �rst example we considered in [2] a one-parametric family of quadratic algebras.
The construction of the BRST charge in this case goes straightforwardly, but two
nontrivial features arise. First, the BRST charge Q takes a conventional form after a
rede�nition of the canonical ghost-anti-ghost system. The algebra of modi�ed ghosts is
quadratic as for QLA's. Second, the family admits a nonlinear involution; it follows that
any algebra of the family has two di�erent bases with quadratic de�ning relations (two
"quadratic faces") and, therefore, two di�erent BRST charges. It turns out [2] that these
BRST charges anticommute and, thus, form a double BRST complex.

Thus, the idea to use the noncanonical ghost-anti-ghost �elds works perfectly in this
example. Next, in [3] we considered famous W3 and W

(2)
3 algebras. For these algebras we

also introduce the noncanonical ghosts and anti-ghosts which form a quadratic algebra of
ghosts. In terms of these ghosts the BRST charge acquires the conventional cubic form
(see [3]).

We note that in the BRST construction for nonlinear algebras of constraints (in
particular for quantum Lie algebras [1]) the algebra of ghosts forms a special nonlinear
associative algebra (called the Nichols - Woronowicz algebra) which was investigated by
many authors for the last few years. For these algebras the de�nition of the multiplications
uses special elements (shu�e elements) in the braid group ring. The associativity of the
multiplication follows from special features of the shu�e elements. In [4], the multiplicative
analogues of the shu�e elements in the braid group rings are obtained. In the R-matrix
representations they give rise to new graded associative algebras (b-shu�e algebras). In [4],
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we consider the case of the Hecke and BMW algebras in detail. The (anti)-symmetrizers
for these algebras can be expressed in terms of the highest multiplicative 1-shu�es and
in terms of the highest additive 1-shu�es (for the Hecke algebras only). Finally, we
examined [4] the spectra and multiplicities of eigenvalues of the multiplicative and additive
1-shu�es. It turns out [4] that these spectra possess a beautiful combinatorial structure.
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LANDAU PROBLEM ON SUPERMANIFOLDS
E.A. Ivanov

Joint Institute for Nuclear Research, 141980 Dubna, Russia

The famous Landau problem [1] treats a charged quantum particle moving on a plane
through which a constant uniform magnetic �ux passes. Its spherical generalization is the
Haldane model [2] describing a charged particle on a 2-sphere S2 ∼ SU(2)/U(1) in the
background of the Dirac monopole. These models constitute a theoretical basis of the
Quantum Hall E�ect (QHE) [3]. The corresponding d = 1 Lagrangians are

Lplan = |ż|2 − iκ (żz̄ − ˙̄zz) = |ż|2 + (Az ż + Az̄̄̇z) , Az = −iκz̄, Az̄ = iκz, (1)

Lsphere =
1

(1 + |z|2)2
|ż|2 − is

1

1 + |z|2 (żz̄ − ˙̄zz) . (2)

The second terms in (1) and (2) are Wess-Zumino (WZ) terms: in the S2 case it
is the standard WZ term on U(1) ⊂ SU(2), while in the planar case it is a WZ term
associated with the �central charge� 2κ appearing in the �magnetic translation� group
with the algebra [pz, pz̄] = 2κ which de�nes the symmetry of the planar model. The
quantum energy spectrum of the models (1) and (2) is given by

(1) : E` = κ(2` + 1); (2) : E` = `(` + 1) + 2s`, s ∈ 1

2
N , (3)

where `=0, 1, 2, . . . labels the Landau levels (LL). The common salient feature of the
Landau models is that the gap between the `=0 level (Lowest Landau Level, LLL) and
the higher levels is proportional to the magnetic �elds κ or s and, therefore, when the
latter becomes su�ciently strong, it is a good approximation to con�ne the consideration
to LLL only. The LLL limit corresponds to sending κ, s ⇒ ∞ in (1), (2) and so retaining
only WZ terms. The quantization of WZ terms gives rise to noncommutative coordinates,
so there arises a one-to-one correspondence between LLL and a noncommutative 2-plane
or fuzzy sphere [4] (in the S2 case). Thus, the Landau model and its generalizations
(including its superextensions) are worth studying not only from the physical point of
view as sound quantum-mechanical problems, but also from the mathematical point of
view due to their deep relation to the noncommutative (super)geometry.

Recently, there was activity in constructing and studying some minimal superextensions
of the S2 Landau model, such that their planar limits yield the appropriate superextensions
of the original Landau problem [5]- [9] (see also [11, 12]). The superextended S2 Landau
models constructed in [6, 10] are based on the supergroup SU(2|1) which extends SU(2)
and is de�ned by the anticommutation relations (i, k = 1, 2)

{Qi, Q̄k} = εikF + Jik , {Qi, Qk} = {Q̄i, Q̄k} = 0 . (4)

Here (F, J(ik)) generate the bosonic subgroup U(2) ⊂ SU(2|1) . The SU(2|1) Landau
models exist in the two variants: (i) the superspherical (SS) Landau model, the model
describing a particle on the supercoset SU(2|1)/U(1|1) which is just the supersphere
S(2|2) ∼ CP(1,1) and where U(1|1) ∼ (J3, F, Q2, Q̄

2); (ii) the super�ag (SF) Landau
model which describes a particle on the super�ag manifold SU(2|1)/[U(1) × U(1)]. The
corresponding d = 1 Lagrangians are extensions of (2) by some fermionic terms: the SS
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model deals with the (2|2) set of the target space world-line �elds (z, z̄, ζ, ζ̄) while in the
SF model one encounters an extended set (2|4) of such �elds, (z, z̄, ξi, ξ̄

i, i = 1, 2).
The quantization of the SS and SF models revealed interesting peculiarities. Their

spectrum is given, respectively, by

SS : E` = `(` + 2N) , SF : E` = `(` + 1) + 2N ′` , N,N ′ ∈ 1

2
Z , (5)

i.e., the SF model has the same spectrum as its bosonic S2 prototype. Though the
spectrum is real and positive, the full space of quantum states contains states with
negative norms, which is a signal of possible breaking of unitarity in these models. The
same phenomenon was found [7] in the planar limits of both the models, which correspond
to proper fermionic extensions of the Lagrangian (1). It was shown, however, that this
di�culty could be evaded by introducing a nontrivial �metric� operator on the space of
states, which amounts to modi�cation of the inner product on the relevant supermanifolds
[8]. With respect to the modi�ed inner product all norms become positive-de�nite (modulo
a subspace of unphysical zero-norm states). An interesting new phenomenon which is
manifested by passing to the new norms is the presence of hidden (super)symmetries in
the SS and SF models and their planar limits. In the latter case, it is the hidden world-
line N=2 supersymmetry [8,9], while in the SS and SF cases it is the dynamical SU(2|2)
symmetry [10]. It was also found that the SS model at N is quantum-equivalent to the
SF model at N ′=N − 1

2
. Indeed, the spectra in (5) are related just by this substitution.

Further analysis of the superextended SU(2|1) Landau models, as well as their
generalizations to the higher rank supergroups, is now under way. It is intended to clarify
their role in describing QEH and a spin generalization of the latter, as well as possible
relationships of these supersymmetric quantum-mechanical problems to the integrable
structures in the N=4 super Yang-Mills theory and string theory in the framework of
general Gauge/Gravity correspondence.
[1] L.D. Landau, Z. Phys. 64 (1930) 629.
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[3] �Quantum Hall E�ects: Field Theoretical Approach and Related Topics�, World
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[5] E. Ivanov, L. Mezincescu and P. K. Townsend, [arXiv:hep-th/0311159].
[6] E. Ivanov, L. Mezincescu and P. K. Townsend, [arXiv:hep-th/0404108].
[7] E. Ivanov, L. Mezincescu and P. K. Townsend, JHEP 0601 (2006) 143 [arXiv:hep-

th/0510019].
[8] T. Curtright, E. Ivanov, L. Mezincescu and P. K. Townsend, JHEP 0704 (2007) 020

[arXiv:hep-th/0612300].
[9] E. Ivanov, Theor. Math. Phys. 154 (2008) 349 [arXiv:0705.2249 [hep-th]].

[10] A. Beylin, T. Curtright, E. Ivanov, L. Mezincescu and P. K. Townsend, JHEP 0810
(2008) 069 [arXiv:0806.4716 [hep-th]].

[11] K. Hasebe and Y. Kimura, Nucl. Phys. B 709 (2005) 94 [arXiv:hep-th/0409230];
K. Hasebe, Phys. Rev. Lett. 94 (2005) 206802 [arXiv:hep-th/0411137].

[12] K. Hasebe, Phys. Rev. D 72 (2005) 105017 [arXiv:hep-th/0503162].
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M2 BRANES AND CHERN-SIMONS-MATTER SYSTEMS
E.A. Ivanov, B.M. Zupnik

Joint Institute for Nuclear Research, 141980 Dubna, Russia

During the last year there was impressive progress in constructing the actions of
multiple M2 branes and studying their properties. In the low-energy limit, multiple M2
branes can be e�ectively described by three-dimensional superconformal �eld theories,
which have the structure of the Chern-Simons-matter theory with N=8 supersymmetry
(Bagger-Lambert-Gustavson model [1]) or N=6 supersymmetry (Aharony-Bergman-
Ja�eris-Maldasena (ABJM) model [2]). The ABJM model plays the role of a �master�
model since many three-dimensional superconformal theories follow from it under
particular choices of the gauge group. The matter �elds in the ABJM model belong to the
bi-fundamental representation of the U(N) × U(N) gauge group while the gauge �elds
are governed by Chern-Simons (CS) actions of levels k and −k, respectively. Like in other
cases, it is important and useful to have a super�eld description of the ABJM models
with the maximal number of manifest and o�-shell supersymmetries. Until recently, only
N=1 and N=2 o�-shell super�eld formulations for these models were known.

In [3], we took the decisive step toward the above goal by constructing the classical
action of the ABJM model in the N=3, d=3 harmonic superspace. This type of harmonic
superspace [4] was worked out twenty years ago in [5] just for �nding out the N = 3
superextension of the CS term with and without matter as one of the basic motivations.
The free CS gauge action constructed in [5], after passing to the component �elds of the
vector N=3, d=3 supermultiplet, reads

SCS =
k

4π

∫
d3x

(
εmnpAm∂nAp + φklXkl +

i

2
λαλα − i

4
χα

klχ
kl
α

)
. (1)

Note that scalar and spinor �elds are auxiliary degrees of freedom in this N = 3
supersymmetric CS action (as well as in its non-Abelian variant).

The basic novelty of the ABJM model, while formulated in the N=3 harmonic
superspace, is the presence of two hypermultiplet actions besides the N=3 CS action.
Each analytic N=3 hypermultiplet super�eld q+

a (a is the isospinor index) contains 4
scalar and 8 spinor physical component �elds (total of 8 and 16 for two hypermultiplets)
combined with an in�nite tower of the auxiliary o�-shell �elds. Both q+ super�elds are in
the bi-fundamental representation of the gauge group UL(N)×UR(N) and are minimally
coupled to the analytic gauge super�elds V ++

L and V ++
R entering into the CS action. The

latter is a di�erence of the separate super�eld CS terms for the left and right gauge groups,
which ensures the full action to be even under the properly implemented P -parity. Such a
peculiar structure of the N=3 super�eld CS-matter action plays a key role in the existence
of the hidden N=6 and N=8 (in the special case of the gauge group SU(2) × SU(2))
supersymmetries in it, as well as the extended R-symmetry groups SO(6) or SO(8). In
the harmonic N=3 super�eld formulation three out of six (or eight) supersymmetries are
always realized o� shell and so are manifest, while the remaining ones close only on shell.

As distinct from the standard N=2, d=4 harmonic superspace or its straightforward
N=4, d=3 reduction, the N=3 harmonic superspace admits the neutral spinor derivative
D0

α preserving the Grassmann harmonic analyticity. This is the basic technical reason
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why one can de�ne additional extended supersymmetry transformations in the N=3 CS-
matter systems. On the free hypermultiplet three extra supersymmetries act as

δεq
+a = iεα (ab)D0

αq+
b , (2)

where εα (ab) is a triplet of the relevant d=3 spinor parameters. The full interaction theory
is invariant under the gauge-covariantized generalization of this transformation combined
with the proper nonlinear transformations of the gauge super�elds (they are bilinear in
the hypermultiplet super�elds q+a).

The conformal invariance plays the crucial role in the M2 brane interpretation
of the BLG and ABJM models within the AdS4/CFT3 correspondence. The N=3
superconformal invariance of the N=3 super�eld ABJM action allows only for a minimal
gauge interaction of the hypermultiplets, i.e., it forbids any built-in super�eld potential.
This is one of the most sound new features of the N=3 super�eld formulation as compared
to the N=1 and N=2 ones. Amazingly, the correct component sextic scalar potential of
ABJM emerges on shell after the simultaneous elimination of auxiliary �elds of the gauge
multiplets and hypermultiplets. Another nice feature of the N=3 harmonic description is
that the corresponding super�eld equations of motion are formulated solely in the analytic
subspace of the N=3 harmonic superspace and have a surprisingly simple form. We hope
that these merits of the N=3 harmonic formulation will manifest themselves in quantum
computations, e.g., of the relevant super�eld e�ective action. One more direction in which
our super�eld formulation could be developed is related to gaining further insights into
the intrinsic relationship between the M2 actions and the actions of multiple D2 branes
via a kind of Higgs phenomenon.

Besides the original U(N) × U(N) ABJM model, in [3] we also constructed N=3
super�eld formulations of some of its generalizations. In the SU(2)×SU(2) case we gave
a simple super�eld proof of its enhanced N=8 supersymmetry and SO(8) R-symmetry.

An o�-shell N=6 CS action without matter was also analyzed in the framework of
more involved N=5 harmonic superspaces which make use of di�erent types of harmonics
on the SO(5) group [6]. A possible relation of these extensions of the CS action to the
BLG or ABJM models is obscure for the time being.
[1] J. Bagger, N. Lambert, Phys. Rev. D 77 (2008) 065008, arXiv 0711.0955 [hep-th];

A. Gustavsson, Algebraic structures on parallel M2-branes, arXiv 0709.1260 [hep-th].
[2] O. Aharony, O. Bergman, D.L. Ja�eris, J. Maldacena, JHEP 0810 (2008) 091, arXiv

0806.1218 [hep-th].
[3] I.L. Buchbinder, E.A. Ivanov, O. Lechtenfeld, N.G. Pletnev, I.B. Samsonov, B.M.

Zupnik, ABJM models in N=3 harmonic superspace, Preprint ITP-UH-22/08, JINR-
E2-2008-175, arXiv 0811.4774 [hep-th].

[4] A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, E. Sokatchev, Class. Quant. Grav.
1 (1984) 469; A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky, E.S. Sokatchev, �Harmonic
Superspace�, CUP 2001, 306 p.

[5] B.M. Zupnik, D.V. Khetselius, Yad. Fiz. 47 (1988) 1147.
[6] B.M. Zupnik, Phys. Lett. B 660 (2008) 254, arXiv 0711.4680 [hep-th]; Teor. Mat.

Fiz. 157 (2008) 217, arXiv 0802.0801 [hep-th].
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FULL INTEGRABILITY OF SUPERGRAVITY BILLIARDS:
THE ARROW OF TIME, ASYMPTOTIC STATES AND
TRAPPED SURFACES IN THE COSMIC EVOLUTION

Pietro Fr�ea and Alexander S. Sorinb

a Dipartimento di Fisica Teorica, Universit�a di Torino, & INFN - Sezione di Torino, via
P. Giuria 1, I-10125 Torino, Italy

b Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia

Cosmological implications of superstring theory have been under attentive considerations
in the last decade from various viewpoints. In any case, the mathematical basis of any
application of superstring and p-brane physics to cosmology necessarily consists of the
classi�cation and of the study of possible time-evolving string backgrounds. This amounts
to the construction, the classi�cation and the analysis of supergravity solutions depending
only on time, or more generally, on a low number of coordinates including time. In
this context, a quite challenging phenomenon, potentially highly relevant to the overall
interpretation of extra-dimensions and string dynamics, was proposed, at the beginning
of this millenium, by a number of authors under the name of cosmic billiards. This
proposal was a development of the pioneering ideas of Belinskij, Lifshits and Khalatnikov,
based on the Kasner solution of Einstein's equations. The Kasner solution corresponds
to a regime, where the scale factors ai(t) (i = i . . . D − 1) associated with the various
dimensions (including time) of a D-dimensional universe have an exponential behaviour
log[ai(t)] ≡ hi(t) = pit. Einstein equations are simply solved by imposing quadratic
algebraic constraints on the coe�cients pi. An inspiring mechanical analogy is at the root
of the name billiards. Considering hi(t) as the coordinates of a �ctitious ball, in a Kasner
solution the ball is rolling on a straight line and pi are the components of its velocity. The
billiard proposal corresponded to the idea that hi(t) could be identi�ed with �elds in the
Cartan subalgebra of a Lie algebra G and one could introduce walls on which the cosmic
ball could bounce. These latter are obviously the hyperplanes orthogonal to the simple
roots and the billiard table becomes the Weyl chamber of G. Thus, the entire cosmic
evolution might be represented by a series of Kasner eras separated by bouncing of the
cosmic ball on the billiard walls that produce a re�ection of the velocity vector pi. In the
original proposal of the cosmic billiards it was advocated that the relevant Lie algebra
G could be identi�ed with the Lie algebra of U, namely, the Lie group of uni�ed duality
transformations relevant to the considered string model and to its low-energy e�ective
lagrangian. Notwithstanding the great appeal of this general picture no exact solution of
supergravity �eld equations was constructed before the years 2002-2003, which displayed
the features of a cosmic billiard, neither there was, to our knowledge, a general strategy
to �nd them. In the course of the �ve years 2003-2008, in a series of papers which partly
involved other collaborators we pursued a programme of investigations which clari�ed the
mathematical structure underlying supergravity bllliards, established a general method of
solution of the �eld equations, allowed their general classi�cation and last but not least
revealed new exciting properties of their moduli space topology and of their asymptotic
behaviour.

In particular, in the two years 2007-2008 we consolidated the following speci�c results:

1. The billiard phenomenon is not a peculiarity, rather it is the generic feature of all
exact solutions of supergravity restricted to time dependence.
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2. We were able to construct not only some exact solutions but all of them for all
supergravities restricted to time dependence with the condition that two of the
scale factors are equal. Indeed, under such a condition, by reducing supergravity
to D=3 dimensions and then restricting all the �elds to pure time dependence, we
could map its �eld equations into those of a one-dimensional sigma model de�ned
over the coset U/H, where H is the maximal compact subgroup of the D=3, non
compact U-duality group. For these sigma models we proved complete integrability.

3. Not only we proved integrability, but we established an explicit integration algorithm
which provides the general integral in terms of arbitrary integration constants.

4. We established the general dynamic mechanism governing the a�ne extension of
the U-duality algebra which occurs when we further reduce supergravity from D=3
to D=2 dimensions. This mechanism is of crucial relevance in order to enlarge the
space of exact solutions by removing the constraint that two scale factors should be
equal. The extension of our integration algorithm to the case where the U-algebra
is replaced by its a�ne or hyperbolic Kac Moody extension is the frontier of our
present research plans.

5. The essential role of the Tits Satake projection of non-compact Lie algebras was
clari�ed. The billiard table is not the Weyl chamber of the Lie algebra U, rather it
is the Weyl chamber of its Tits Satake subalgebra, namely UTS. Correspondingly,
the bouncing of the cosmic ball corresponds to a smooth realization of re�ections
pertaining to the Weyl group of UTS named WTS. Since several supergravity theories
have the same Tits Satake projection, it follows that, from the point of view
of cosmological evolution, supergravity theories fall into a restricted number of
universality classes. Within each universality class various elements are distinguished
by a di�erent compact group which we named the paint group Gpaint. It is responsible
for rotation among themselves o� various painted copies of the billiard walls located
at the same place.

6. We explored the general properties of the established general integral and we
discovered quite new and intriguiguing properties of its moduli space. This latter is
given by a suitable compact coset manifold H/Gpaint, further modded by the action
of the relevant Weyl group WTS.

7. We proved that in this moduli space there exist both trapped and (super)critical
surfaces. The available asymptotic states of the universe were by us shown to be in
one-to-one correspondence with the elements of the Weyl group WTS.

8. Furthermore, a quite intriguing general property of the time �ows was discovered.
The time �ow is always in the direction of increasing the disorder, this latter being
measured by the number of elementary transpositions that characterize each Weyl
group element. This property opens glimpses of a new cosmological entropy to
be possibly interpreted in terms of superstring microstates, as it happens for the
Bekenstein-Hawking entropy of black holes.
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GEOMETRIC QUANTIZATION AND ALGEBRAIC
LAGRANGIAN GEOMETRY

N. A. Tyurin
Joint Institute for Nuclear Research, 141980 Dubna, Russia

The paper [1] is a survey devoted to a new method of quantization.
Quantization itself is the main problem of theoretical physics. The need to introduce

and develop was dictated by the creators of the quantum theory. According to the
Copenhagen philosophy, the physical predictions of a quantum theory must be formulated
in terms of classical concepts. So in addition to the usual structures (Hilbert space, unitary
transformations, self adjoint operators..., ) any reasonable quantum theory has to admit an
appropriate passage to a classical limit such that the quantum observables are transfered
to the classical ones. However, as it was pointed out by Dirac at the beginning of the
quantum age, the correspondence between quantum theory and classical theory has to
be based not only on numerical coincidences taking place in the limit h → ∞ but on an
analogy between their mathematical structures. Classical theory does approximate the
quantum theory but it does do even more � it supplies a frame to some interpretation
of the quantum theory. Using this idea we can understand a quantization procedure in
general as a correspondence between classical theories and quantum theories. In this sense
quantization of the classical mechanical systems is the moving in one direction while
taking a quasi-classical limit we go in the opposite direction of this correspondence. More
abstractly: the moduli space of the quantum theories is an n - covering of the moduli space
of the classical ones (one supposes that n equals 2), and quantization is the structure of
this covering.

Quantization itself is a very popular subject. There is a number of di�erent approaches
to this problem. However, one of them is honoured as the �rst one in theoretical physics
and is named canonical quantization. In simple cases the correspondence comes with some
choice of �xed coordinates. If a classical observable is represented by a function f(pa, q

b)
in these coordinates then the corresponding quantum observable equals the operator

f(−ıh
∂

∂qa
, qa).

The canonical quantization of the harmonic oscillator is a standard computation in
theoretical physics: any alternative approach should be compared with it and if the answer
is su�ciently di�erent from the classical one, then this approach is rejected. However, this
formal substitution (when one puts some di�erential operators instead of coordinates pa)
introduces a lot of problems. Indeed, beyond the simple cases during this process the result
of the quantization depends on the order of p and q in the expression for the classical
observable f and, moreover, the result strongly depends on the coordinate choice and
it is not invariant under generic canonical transformations. Nevertheless, this canonical
quantization supplied by some physical intuition together with its various generalizations
takes the central part of modern theoretical physics.

One way to develop the canonical method and avoid the di�culty is provided by
geometric quantization. Geometric quantization has two slightly di�erent meanings as a
term. One could understand it either as a speci�c construction well known as the Souriau
- Kostant quantization or as a general approach to the problem based on the underlying
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geometry. Nowadays the problem of quantization is treated by quite di�erent methods:
algebraic approach includes deformation quantization, formal geometry, noncommutative
geometry, quantum groups; analytical approach consists of the theory of integral Fourier
operators, Toeplitz structures and other ones. All the methods mentioned above have
one mutual marking point � coming in these ways one almost completely forgets about
the structure of the given system (and the Dirac suggestion mentioned above), and the
"homecoming"turns to be absolutely impossible. At the same time, going in the geometric
quantization direction one at least tries to keep (at least in mind) the original system. The
corresponding symplectic manifold remains to be basic for all the constructions and takes
the real part in the de�nition of all auxiliary geometrical objects which give us the result
of the quantization. At the same time geometric quantization does not need any choice
of coordinates and this basic feature gives a possibility to deal with complicated systems
which do not admit any global coordinates at all. But starting with a given classical
phase space geometric quantization should give us a result which has to be comparable
with the canonical one for simple systems. Thus, in any case geometric quantization is a
generalization of the canonical quantization. To keep the relationship, one usually pays a
cost loosing generality of the construction: from the whole space of classical observables
one takes only a subclass of "quantizable"functions, and this subclass is su�ciently small.
To separate such quantizable objects, one should choose a polarization of given symplectic
manifold (= classical phase space), then these objects are distinguished by the condition
that their Hamiltonian vector �elds preserve the polarization.

The known schemes of geometric quantization are uni�ed by the fact that usually they
take the space of regular sections of a prequantization bundle as the Hilbert space (and
again one imposes some additional conditions on these sections to be regular in our sense).
In the original Souriau - Kostant construction one takes all smooth sections with bounded
L2 - norm (with respect to a given hermitian structure on the �bers of the prequantization
bundle weighted by the Liouville form). Further specializations come in di�erent ways:
Rawnsley - Berezin method uses only the sections which are holomorphic with respect to a
complex polarization (= �xed complex structure on M) as well as in the Toeplitz - Berezin
approach, while in the real polarization case one collects only such sections (weighted by
half weights) which are invariant with respect to in�nitesimal transformations tangent to
the �bers of a real polarization (= lagrangian �bration).

One should say that the introduction of an additional structure � complex polarization
� turns the subject of geometric quantization to the most developed region of modern
mathematics, namely, to algebraic geometry. As it was mentioned above, a number of
methods uses complex polarization. It imposes an additional condition that our symplectic
manifold (M,ω) admits a Kahler structure: there exists some complex structure J
compatible with ω which is integrable. Together these two structures ω, J give us the
corresponding riemannian metric g such that complex manifold M, J is endowed with a
hermitian metric, and since ω is closed by the de�nition, it gives us a Kahler structure
on M . Moreover, one has a usual for any quantization method requirement for ω to have
integer cohomology class:

[ω] ∈ H2(M,Z) ⊂ H2(M,R)

(the charge integrality condition). This implies that the Kahler metric described above is
of the Hodge type and, therefore, the Kahler manifold is an algebraic variety. So one can
quantize a symplectic manifold if it admits an algebro - geometric structure! It is not so
surprising if we take in mind the so-called geometric formulation of quantum mechanics.
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The basic idea is to replace the algebraic methods of quantum mechanics by algebro -
geometric methods. The author found all these ideas in a paper of Ashtekar and Schilling
but of course the original sources have existed, as one thinks, since the birth of quantum
theory itself. Roughly speaking, the starting point is that usually in quantum mechanics
one deals with a Hilbert space but the quantum states are represented by rays in the
space since two vectors ψ1, ψ2 represent the same state if they are proportional. Thus, it is
natural to consider the projectivization P(H) instead of H as the space of quantum states.
This �nite - or in�nite - dimensional complex manifold is automatically endowed with a
hermitian metric (Fubini - Study), so one can regard it as a real manifold with the Kahler
structure. This real manifold (�nite or in�nite dimensional) is endowed automatically
with the symplectic structure and riemannian metric. Quantum states are represented
just by points of this manifold. Quantum observables are represented by smooth real
functions of special type which one calls Berezin symbols. With respect to these ideas
one can generalize quantization problem in a non-linear manner, namely, instead of a
Hilbert space one could try to �nd (or to construct) some �nite or in�nite dimensional
Kahler manifold K together with a correspondence between smooth functions on a given
symplectic manifold (= classical observables on a given phase space) and Berezin symbols
on this Kahler manifold. This nonlinear generalization was called algebro - geometric
quantization. Following Ashtekar and Schilling we require for the construction of this
Kahler manifold to avoid, as an intermideate step, the introduction of Hilbert spaces
known from usual methods of geometric quantization.

The main aim of the paper is to present an example of successful algebro - geometric
quantization for compact simply connected symplectic manifolds. We call this method the
ALG(a) - quantization. Of course, it is an abbreviation. To decode it, we need to recall
some basic facts belonging to a new subject which was created just on the border between
algebraic and symplectic geometries (if such a border does exist).

One can say that di�erent subjects are mixed in modern mathematics. For example,
in connection with the mirror symmetry conjecture one accepts the idea that algebraic
geometry of a manifold X corresponds to symplectic geometry of its mirror partner X ′.
The ingredients of algberiac geometry over X (bundles, sheaves, divisors ...) are compared
with some derivations of symplectic geometry (Lagrangian submanifolds of special types).
For example, in the so-called homological mirror symmetry one compares two categories
that came from algebraic geometry and symplectic geometry, respectively, and in some
particular cases (elliptic curve) this approach gives the desired result. On the other hand,
one has a number of moduli spaces generated in the framework of algebraic geometry over
X and another way is to �nd a number of moduli spaces in the framework of symplectic
geometry. The development of this idea comes in di�erent ways and even now one could
report a number of promised results and ideas clarifying the original one. However, these
results are su�ciently far to be complete and to cover all the problems. However, the
main idea, which proclaims the creation of some new synthetic (or at least synergetic)
geometry unifying algebraic and symplectic ones, remains to be very attractive and seems
to be true.

One step in this way was done in 1999 when the moduli space of half weighted Bohr
- Sommerfeld Lagrangian cycles of �xed volume and topological type was proposed by
A.N. Tyurin and A.L. Gorodentsev. Starting with a simply connected compact symplectic
manifold with integer symplectic form (read "classical mechanical system with compact
simply connected phase space which satis�es the Dirac condition") the authors constructed
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a set of in�nite dimensional moduli spaces which were in�nite dimensional algebraic
manifolds depending on the choice of some topological �xing and a real number � the
volume of the half weighted cycles. Lagrangian geometry is mixed in the construction with
algebraic geometry and this construction itself belongs to some new synthetic geometry.
The authors called it ALAG � Abelian Lagrangian algebraic geometry (so it is wrong to
think that they took their initials and made a mistake). It was created as a step in some
new approach to mirror symmetry conjecture generalizing some notions from standard
geometric quantization (prequantization data, Bohr - Sommerfeld condition, etc.), so
it is not quite surprising that this construction plays an important role in geometric
quantization. I proved that these moduli spaces of half weighted Bohr - Sommerfeld
Lagrangian subcycles of �xed volume solve the problem of algebro - geometric quantization
stated above for simply connected compact symplectic manifolds. This method, proposed
there, was called the ALG(a) - quantization. This new method gives new results which are
nevertheless quite consistent with the old ones if an appropriate polarization on (M, ω) is
chosen. After papers [2], [3] were published, it was understood that ALG(a) - quantization
is the broadest generalization of the so - called Maslov correspondence which comes from
the semi classical quantization proposed by V.P. Maslov for the cotangent bundle of
an a�ne space and extended by M. V. Karasev to the case of the cotangent bundle of
any smooth manifold. The ALG(a) - quantization goes further � one takes any integral
symplectic manifold. Thus, the quantization problem can be reduced to a problem of
lagrangian geometry. And it is the starting point of an another long story, see [4]...

[1] N.A. Tyurin, Geometric quantization and algebraic lagrangian geometry, Surveys
in Geometry and Number theory, London Math. Soc., Lecture notes series, Vol 338
(2007) 279

[2] N.A. Tyurin, The correspondence principle in Abelian lagrangian geometry,
Izvetsiya RAN, ser. mat., 65: 4 (2001) 823.

[3] N.A. Tyurin, Dynamical correspondence in algebraic lagrangian geometry, Izvestiya
RAN, ser. mat., 66: 3 (2002) 611.

[4] N.A. Tyurin, Lagrangian tori in the projective plane, Theoretical and Mathematical
Physics 158 (1) (2009) 1.
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VACUUM SOLUTIONS IN 4 + 1 AND 5 + 1 LOVELOCK
GRAVITY

P.V. Tretyakov
Joint Institute for Nuclear Research, 141980 Dubna, Russia

Modi�ed theories of gravity are under active consideration at present in cosmology.
E�orts are being made to mimic late time acceleration from large scale modi�cation
of gravity without resorting to exotic forms of matter dubbed dark energy. The extra
dimensional e�ects can give rise to modi�cation of gravity; similar e�ects can be induced
by adding a generic function of Ricci scalar to Einstein-Hilbert action giving rise to
f(R) gravity. The quantum e�ects can also lead to higher order curvature corrections to
Einstein-Hilbert action. These corrections can be systematically computed in perturbative
regime of string theory.

The goal of the present paper is to study power-law solutions in vacuum Gauss-Bonnet
gravity, which replace Kasner solution near initial singularity in 5 + 1 dimensions, and to
investigate re-collapse possibility in 4+1 dimensional Gauss-Bonnet gravity. We chose the
corrections to Einstein-Hilbert action in the form of Gauss-Bonnet term for two reasons.
First, Gauss-Bonnet contribution appears in the string gravity corrections. Second, this
term is the next to Einstein term in Lovelock gravity. In the latter theory the equations of
motion are the second order derivative equations for the metrics coe�cients in all levels,
and the Lovelock gravity entered recently in a new stage of intense investigations, mainly
in the area of black hole solutions and related thermodynamical properties. It should be
noted that in 4 + 1 and 5 + 1 worlds, the action consisting of Einstein and Gauss-Bonnet
term is the exact action of Lovelock gravity.

We consider a multidimensional theory with the action

S =

∫ √−g (R + αGB) dNx, (1)

where GB is the Gauss-Bonnet term

GB = RiklmRiklm − 4RikRik + R2 (2)

on the �at anisotropic (Bianchi I) background

gik = diag (−1, a2
1(t), a

2
2(t), . . . , a

2
N−1(t)). (3)

The corresponding dynamical equations is bulky and we sent you to the original papers
[1,2], but there is one essential di�erence between 4 + 1 and 5 + 1 cases. In the Friedman
constraint there is only one additional term appearing due to GB in the 4 + 1 case
whereas in 5 + 1 case there are �ve one. Actually it mean that in 4 + 1 dimensions
there is some correction to Kasner vacuum solution signi�cant at high curvature, but this
correction can change dynamic dramatically. Unfortunately the analytical investigation
of this question is impossible and it was studied numerically. The numerical investigation
of this problem demonstrate that overwhelming majority of trajectories beginning from
the initial singularity (points with high curvature) lead to re-collapse or nonstandard
singularity (points with �nite Hubble parameters and in�nite its time derivatives) in
future. Actually only insigni�cant minority trajectories with very special initial condition
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lead to low energy Kasner regime and hence to probable normal cosmology [1]. The
analogous numerical investigation in 5+1 dimensions show that more then half trajectories
lead to low energy Kasner regime [3].

Another interesting thing concerning 5 + 1 dimensional case is existence of absolutely
new vacuum solution at high curvature. This new solution exist due to �ve additional
terms arising from GB correction. This new solution was found analytically and for the
metric ds2 = −dt2 +

∑
t2pidx2

i looks like [2]

5∑

i<j<k<l

pipjpkpl = 0,
5∑
i

pi(pi − 1)
5∑

i6=j,k;j<k

pjpk = 0. (4)

As it was already noted this solution usually (depending on initial conditions) relax to
generalized Kasner solution [3]

5∑
i=1

pi = 1,
5∑

i=1

p2
i = 1. (5)

[1] R. Chingangbam, M. Sami, P. V. Tretyakov, A.V. Toporensky, Phys. Lett. B 661,
162�166 (2008); arXiv:0711.2122[hep-th].

[2] A. Toporensky, P. Tretyakov, Grav. Cosmol. 13, 207�210 (2007); arXiv:0705.1346[gr-
qc].

[3] S. A. Pavluchenko, A. V. Toporensky, e-print arXiv:0811.0558[gr-qc].
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HIDDEN SYMMETRIES OF N=4 SUPER YANG-MILLS
THEORY
A.D. Popov

Joint Institute for Nuclear Research, 141980 Dubna, Russia

It was shown by Witten that B-type open topological string theory with the (5|6)-
dimensional quadric hypersurface Q5|6 in CP 3|3×CP 3|3 as a target space is equivalent to
holomorphic Chern-Simons (hCS) theory on Q5|6 [1]. Furthermore, he assumed that hCS
theory on Q5|6 was equivalent to N=4 super Yang-Mills (SYM) theory on Minkowski
space and this was proven in [2]. There, it was shown that one could bring Witten's form
of the hCS �eld equations to the well-known constraint equations on the supercurvature
�eld strength corresponding to full N=3 SYM theory on the superspace C4|12 or one of
its real subspaces. This theory is known to be equivalent to N=4 SYM theory, when
formulated on Minkowski space.

The above (twistor) correspondence between N=4 SYM theory and hCS theory on
the supermanifold Q5|6 was used for studying integrability properties of SYM theory in
[3], where an in�nite set of graded symmetries (double-loop type algebra) recursively
generated from supertranslations was constructed. Presumably, the existence of such
nonlocal symmetries underlies the observed integrable structures in quantum N=4 SYM
theory.

[1] E. Witten, Commun. Math. Phys. 252 (2004) 189.
[2] A.D. Popov, C. S�amann, Adv. Theor. Math. Phys. 9 (2005) 931.
[3] A.D. Popov, M. Wolf, Commun. Math. Phys. 275 (2007) 685.
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INTEGRABILITY OF VORTEX EQUATIONS
A.D. Popov

Joint Institute for Nuclear Research, 141980 Dubna, Russia

Coset space dimensional reduction [1, 2] was used for obtaining e�ective �eld theories
from compacti�cation of string theory on 6-dimensional coset spaces G/H, where H
is a closed subgroup of the Lie group G (see e.g. [3]). The standard reduction scheme
was generalized [4, 5] to a G-equivariant dimensional reduction of Yang-Mills theory
on manifolds of the form M × G/H, where M is a smooth manifold of dimension q
and G/H is a reductive coset space with topologically nontrivial internal �uxes. The
general formalism was developed in [4, 5] and was used to describe vortices as generalized
instantons of higher-dimensional Yang-Mills theory [5, 6, 7], as well as to construct
explicit SU(2)-equivariant monopole and dyon solutions of pure Yang-Mills theory in
four dimensions [8]. In particular, it was shown that for G/H = CP 1 and dimM=2
the instanton Yang-Mills equations reduced to M coincide with the ordinary (Abelian or
non-Abelian) vortex equations. The vortex equations were shown to be integrable when
M was a compact Riemann surface of genus g>1 [7]. Therefore, for g>1 the standard
methods of integrable systems can be applied for constructing their solutions. Topological
obstructions (inequalities for Chern numbers of gauge �elds) to the existence of solutions
to the vortex equations were derived as well [7].

[1] P. Forg�acs, N.S. Manton, Commun. Math. Phys. 72 (1980) 15;
C.H. Taubes, Commun. Math. Phys. 75 (1980) 207.

[2] D. Kapetanakis, G. Zoupanos, Phys. Rept. 219 (1992) 1.
[3] R. Blumenhagen, B. K�ors, D. L�ust, S. Stieberger, Phys. Rept. 445 (2007) 1.
[4] L. �Alvarez-C�onsul, O. Garc�ia-Prada, J. Reine Angew. Math. 556 (2003) 1;

Commun. Math. Phys. 238 (2003) 1.
[5] A.D. Popov, R.J. Szabo, J. Math. Phys. 47 (2006) 012306; O. Lechtenfeld,

A.D. Popov, R.J. Szabo, Progr. Theor. Phys. Suppl. 171 (2007) 258.
[6] O. Lechtenfeld, A.D. Popov, R.J. Szabo, JHEP 08 (2008) 093.
[7] A.D. Popov, arXiv: 0712.1756 [hep-th]; Lett. Math. Phys. 84 (2008) 139.
[8] A.D. Popov, Phys. Rev. D 77 (2008) 125026; Mod. Phys. Lett., in print,

arXiv: 0804.3845 [hep-th].
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REVERSING THE SIGN OF THE CASIMIR FORCE WITHIN
LIFSHITZ THEORY

I.G. Pirozhenko
Joint Institute for Nuclear Research, 141980 Dubna, Russia

The development of micro(nano) electromechanical machines and the precision
measurements of attractive Casimir force [1] have prompted a new interest in the Casimir
repulsion. Theoretically, �at mobile parts of any micro-electrical machine drawn apart
at 10 nm should experience an inward Casimir pressure of about 1 Atm. It may leave
to undesired stiction. Special choice of the materials may reduce the attraction or even
change the sign of the Casimir force. Furthermore, there are ideas of putting Casimir
repulsion into use [2].

>From Lifshtz theory [3] it follows that the force may become repulsive if one of
the parallel plates has nontrivial magnetic permeability, µ 6= 1. This possibility was not
seriously regarded since for "natural"materials, where the magnetization of the system is
due to the movement of the electrons in the atoms, µ(ω) = 1 at visible range. However in
composite materials if the inclusions are smaller than the wavelength, but larger than the
atomic size the e�ective dielectric and magnetic functions can be introduced as a result
of local �eld averaging. That is why the arti�cial materials [4] with magnetic response
arising from micro (nano) inclusions have recently become good candidates for observing
the Casimir repulsion. Starting from the Lifshitz formula one can establish the limits for
the Casimir force between plates with dispersion: −7/8 FC(L) ≤ F (L) ≤ FC(L), where
FC is the force between perfect conductors [5].

We consider [5,6] the Casimir force between a metal and a metamaterial. For describing
the meta-materials we use the e�ective media approach, considering anisotropic compound
material as a homogeneous media having e�ective dielectric and magnetic functions.
For the dielectric permittivity and magnetic permeability the frequency dependence is
well �tted by N-oscillator model

∑N
i Ciω

2
p,i/(ω

2 − ω2
0,i + iγiω). This approach is valid

for wavelengths longer than the ï¨�lattice constantï¨� of the meta-material. In other
words, the theoretical estimations for the force are trustable for plate separations large
in comparison with the ï¨�lattice constantï¨� of the meta-material. For more accurate
results optical data [7] in a wide frequency range and for di�erent incidence angles are
needed.

We show [6] that if one of the mirrors has a non-unity magnetic permeability the
force is positive at short distances provided the dielectric permittivity is non-unity as
well. At long and medium distances, L ≥ 2πc/ω0 this set-up yields repulsion if this
mirror is more magnetic than dielectric, ε(iω) < µ(iω). In the simpli�ed case when its
dielectric permittivity and magnetic permeability are described by a plasma model we
�nd the minimal ratio between magnetic and dielectric plasma frequencies required to get
repulsion, ωp,m/ωp,e ≈ 1.0255.

The Casimir force being weak and decreasing rapidly with distance, we conclude that
to get measurable repulsion the matamaterial should obey the inequality ε(iω) < µ(iω)
in a wide range of optical frequencies.

The research was conducted in the framework of the European project NANOCASE
"Nano-scale machines exploiting the Casimir Force Contract No. 12142 (NEST).
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