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TWO-DIMENSIONAL SPANNING WEBS AS (1,2)
LOGARITHMIC MINIMAL MODEL

J.G. Brankov, S.Y. Grigorev, V.B. Priezzhev, I.Y. Tipunin
Bogoliubov Lab. of Theoretical Physics, JINR, 141980 Dubna, Russia

An example of exactly solvable logarithmic models with conformal boundary conditions
has recently been given by Pearce and Rasmussen [1]. They considered critical dense
polymers with certain types of defects on a strip and reproduced the conformal weights
in the �rst column of the extended Kac table.

The model we study is a generalization of the spanning tree model on a �nite square
lattice wrapped on a cylinder. We consider spanning webs in which noncontractible cycles
are allowed. In the case of closed boundaries at both edges of the cylinder, the tree
branches must be attached to the noncontractible cycles, while an open boundary allows
for trees rooted at the sites of this boundary as well. The model is similar in many aspects
to the model of critical dense polymers studied in [1]. The entries of the Kac table for the
latter model are labeled by the number of defect lines under �xed boundary conditions
at both sides of the strip. We show that the cycles in the spanning webs play the role of
pairs of defect lines in the model of dense polymers, see Fig. 1.
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Ðèñ. 1: Correspondence between spanning webs and dense polymers. (a) The cycle x− x
is surrounded by two polymers, 1 − 1 and 2 − 2, and the cycle y − y by another two
polymers, 3 − 3 and 4 − 4 which are considered as defect lines in the classi�cation of
[1, 2]. (b) Besides the four defect polymer lines, there is a �fth line 5 − 5 separating the
boundary trees from the rest of the lattice.

The spanning web model di�ers from that of the dense polymers in several essential
aspects. The cylinder geometry admits parametrization of the web con�gurations by the
number of noncontractible cycles which are well de�ned `quantum numbers'. The �nite-
size partition function of our model is calculated by using an extension of the Kirchho�
theorem and evaluation of standard determinant expressions for the free fermion model.
The most important result is the perfect coincidence of the universal part of the partition
function for all the di�erent combinations of closed and open boundaries with the �nitized
characters of symplectic fermions under periodic or antiperiodic boundary conditions.

The exact analytical expression for the partition function of the spanning web model
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on a cylinder with perimeter M and length N is given by:

Z
(µ,ν)
NM =

N−1∏
p=0

[Q
(µ,ν)
N (p)]2M

{
1 + (ω + ω−1)[Q

(µ,ν)
N (p)]−2M + [Q

(µ,ν)
N (p)]−4M

}
. (1)

Here,

Q ≡ Q
(µ,ν)
N (p) =

√
1 + sin2 φ

(µ,ν)
N (p) + sin φ

(µ,ν)
N (p), (2)

φ
(0,0)
N (p) =

πp

2N
, φ

(0,1)
N (p) = φ

(1,0)
N (p) =

π(2p + 1)

2(2N + 1)
, φ

(1,1)
N (p) =

π(p + 1)

2(N + 1)
,

the parameter ω is the weight of a cycle encircling the cylinder in the positive direction, and
ω−1 is the corresponding weight for the opposite direction. The superscripts µ, ν = 0, 1,
�x the type of boundary conditions at the top and bottom edges of the cylinder: µ = 0
stays for closed and µ = 1 for open boundary. The asymptotic form of the free energy,
as N →∞ and M →∞, so that N/M remains �xed, separates into terms including the
bulk and surface contributions,

F
(µ,ν)
MN =

4G

π
MN + M

[
2G

π
(µ + ν)− ln(1 +

√
2)

]
, (3)

and the universal part :

ln Z̄
(µ,ν)
N (q, ω) = ln

(
q

1
12
− 1

8
(µ−ν)2

N−1∏
j=0

[
1 + (ω + ω−1)qj+ 1

2
(µ+ν) + q2j+µ+ν

] )
. (4)

Here G is Catalan's constant and q = exp(−πM/N). Expression (4) follows from the
approximation Q

(µ,ν)
N (p) ' 1 + φ

(µ,ν)
N (p).

In the absence of cycles, the �nite-size e�ects in the spanning tree model, particularly
the Casimir e�ect, show that it corresponds to a logarithmic minimal model with central
charge c = −2 [3]. The presence of cycles changes the Casimir e�ect in accordance with
the conformal weights which appear in the Kac table [2]. Moreover, the partition function
(4) can be interpreted in terms of symplectic fermions [5]. The symplectic fermions are
fermionic �elds θ±(z) with operator product expansion

θ+(z)θ−(w) ∼ log(z − w). (5)

These �elds admit periodic and antiperiodic boundary conditions under which they
decompose with integer θ±n , n ∈ Z, and half-integer θ±n , n ∈ Z + 1

2
, modes, respectively.

These modes satisfy the anticommutation relations

[θ+
n , θ−m]+ = nδn+m,0. (6)

Let A(2) denote this in�nite dimensional Cli�ord algebra. The algebra A(2) has two
irreducible modules X1 and X2 (see details in [4, 6]). In addition, the algebra A(2) has two
projective modules P1 and P2 = X2. The module P1 contains 4 irreducible subquotients
isomorphic to X1 [6]. The character of X1 is

χ(1,1)(q, ω) =
q

1
12∏∞

n=1(1− qn)

∑

r∈N

r∑
j=0

ωr−2jq
r(r−1)

2 (1− qr). (7)
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The character of X2 is

χ(0,1)(q, ω) =
q−

1
24∏∞

n=1(1− qn)

∑

r∈N

r∑
j=0

ωr−2jq
(r−1)2

2 (1− q2r). (8)

The character of P1 is

χ(0,0)(q, ω) = (2 + ω + ω−1)χ(1,1)(q, ω). (9)

We �x the subalgebra A(2)[N ] of A(2) for N ∈ N

A(2)[N ] =

{
{θ±−n, n ≥ N} periodic b. c.

{θ±−n− 1
2

, n ≥ N} antiperiodic b. c. (10)

and consider the characters χ(1,1)[N ](q, ω), χ(0,1)[N ](q, ω) and χ(0,0)[N ](q, ω) of coinvariants
with respect to A(2)[N ] in the modules X1, X2 and P1, respectively. The series expansion
in ω of the product in the universal part of the partition function (4) has the same form
as Eqs. (7) - (9). Moreover, the following equality for the �nitized characters holds:

χ(µ,ν)[N ](q, ω) = Z̄
(µ,ν)
N (q, ω). (11)

Thus, universal part of the partition function Z̄
(µ,ν)
N (q, ω) for the spanning web model

under di�erent combinations of closed and open boundary conditions coincides with the
�nitized characters of the symplectic fermions. This allows us to interpret the simplectic
fermion model as a conformal �eld theory of spanning webs on a cylinder.
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SELF-CONSISTENT RENORMALIZATION THEORY OF
SPIN FLUCTUATIONS IN THE METALLIC SPINEL LiV2O4

V.Yu.Yushankhai
Bogoliubov Lab. of Theoretical Physics, JINR, 141980 Dubna, Russia

1. In the family of transition metal oxides the spinel compound LiV2O4 is a rare
metallic system showing heavy fermion behavior. In particular, an anomalously large
speci�c heat coe�cient γ = C/T and strongly enhanced magnetic susceptibility χs were
detected in the low temperature limit, T < 30K. Despite continuous activity in the last
years, there is currently no consensus on the mechanism for formation of heavy fermion
quasiparticles in LiV2O4, and the issue is still under debate. Recently, we have suggested [1,
2, 3] our own route for explaining unusual properties of this material.

LiV2O4 has the cubic spinel structure with the magnetic vanadium ions (in the
mixed valence state V3.5+) occupying the pyrochlore lattice sites. At low temperatures,
T < 30 K, the spin system of LiV2O4 exhibits pronounced short-range antiferromagnetic
(AFM) correlations, but no long-range magnetic ordering was detected at any measured
temperatures. The geometrical frustration of the pyrochlore lattice is likely to be a
crucial aspect of the problem. The frustration may suppress at any T a long-range
ordering of strongly correlated itinerant electrons, but instead, the system is placed near
a magnetic instability. The emergence of largely degenerate low-lying spin excitations in
the ground state of LiV2O4 is expected to be responsible for low-T properties of this
material, including its heavy fermion behaviour. This appealing picture was developed [1]
and further examined [2, 3] by comparing theoretical results with experimental data
obtained by di�erent techniques, like the inelastic neutron scattering (INS) and the nuclear
magnetic resonance (NMR), probing low frequency spin �uctuations.

2. Recalling that LiV2O4 is found to be a paramagnet down to very low temperatures,
we assumed that the system remains spin disordered at all temperatures and calculated the
dynamic spin susceptibility χ (q, ω) in the ground state at T = 0. The calculations were
performed with the use of the electronic band structure obtained for LiV2O4 in the local
density approximation (LDA) and e�ects of strong electron correlations were treated in the
random phase approximation (RPA). We found [1] that in the low-ω limit the calculated
χRPA (q, ω → 0) was picked at the wave vectors of length |q| ∼ |Qc| ∼0.6 �A−1, i.e., at
the same position where INS intensity exhibits the maximum of a broad distribution.
This remarkable coincidence indicates that the location in q-space and the multiplicity
of "critical"wave vectors Qc are produced by speci�c properties of the electronic band
structure and the topology of the many sheet Fermi surface in LiV2O4.

3. To extend the theory for T > 0, one step beyond the RPA was made and a self-
consistent renormalization (SCR) theory of spin �uctuations in LiV2O4 was developed [2].
The SCR theory o�ers a phenomenological description for "critical"spin �uctuations
in nearly antiferromagnetic itinerant electron systems by taking into account e�ects
of mode-mode coupling between spin �uctuations at |q| ∼ |Qc|. In this theory, the
temperature dependent inverse static susceptibility at |q| = |Qc| de�ned as yQ (T ) =
[2TAχ (Qc, ω = 0; T )]−1 is of principal importance.

First, we derived [2] that the inverse susceptibility yQ (t), where t = T/T0 was the
reduced temperature, obeyed the following integral equation:
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yQ (t) = yQ (0) + gQ

∫ zc

0

dz
φ ([yQ (t) + z2] /t)− φ ([yQ (t) + z2 + bxc] /t)

bxc/t
, (1)

with

φ (u) = ln Γ (u)−
(

u− 1

2

)
ln u + u− 1

2
ln 2π, (2)

where Γ (u) was the gamma function.

Ðèñ. 1: (a) The solution of Eq.(1) for
the inverse static spin susceptibility at
q = Qc as a function of the reduced
temperature t = T/T0; the full set of
�t parameters is given in the text; (b)
Static spin susceptibilities at q = Qc

(solid circles) and q = 0 (open circles) as
functions of temperature observed in INS
and magnetic measurements on LiV2O4.
The solid line is a �t to χ (Qc; T ) using the
same solution as in (a); (c) Spin relaxation
rate ΓQc (T ) at q = Qc as a function of
temperature observed in INS experiment.
The solid line is a �t using again the
solution of (a). The INS data are taken
from S.-H. Lee.et al [4].

In the present form, the SCR theory is parametrized with �ve parameters which are
now denoted as yQ (0), TA, T0, gQ and bxc. The parameters TA and T0 characterize, as
T → 0, the momentum and frequency spread of "critical"spin �uctuations, gQ is the
e�ective mode-mode coupling constant and bxc is a measure of the anisotropy of the spin
�uctuation dispersion in q-space. At the �nal stage, we put the theory on a quantitative
ground by adjusting the parameter values when comparing the calculated model results
with the available experimental data, including INS and magnetic measurements for the
spin susceptibility in LiV2O4.

The best overall �t to experimental data is achieved with the following parameters:
T0 ' 60K, TA ' 220K, gQ = 0.16, bxc = 0.01 and yQ (0) ' 0.044. As shown, for instance,
in Fig.1, the experimental INS data are well represented by our theory. As expected, a
better agreement between the theory and experiment is reached in the low temperature
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region, T < 40K. Actually, for higher temperatures the AFM �uctuations at |q| ' Qc

are suppressed and no more distinguished from those at other wave vectors; the system
enters gradually a spin localized regime compatible with the Curie-Weiss behavior of
χ(q = 0, ω = 0) observed in LiV2O4 for T > 60 K.

4. The NMR measurements of the spin-lattice relaxation rate 1/T1 as a function of
temperature and external pressure is another experimental method for studying spin
dynamics in LiV2O4. Based on the SCR theory, our estimate [3] for the contribution
of the "critical"spin �uctuation to the spin-lattice relaxation rate is as follows:

(
1

T1T

)

q∼Qc

=
3γ2

n~|AQc|2
πkBT0TA

(
Qc

qB

)2
1

bxc

{
1√

yQ(T )
tan−1 zc√

yQ(T )

− 1√
yQ(T ) + bxc

tan−1 zc√
yQ(T ) + bxc

}
, (3)

where AQc is the hyper�ne coupling constant and the reduced inverse susceptibility yQ (t)
obeys the integral equation (1). We consider yQ (0) to be the only pressure-dependent
parameter, assuming that yQ (0) → 0 as the system approaches a quantum critical point
with increasing pressure.

The experimental data [5] for (1/T1T ) measured for di�erent applied pressures together
with theoretical curves [3] �tting these data are depicted in Figure 2. A good agreement
between the theoretical results and the available experimental data is found at least down
to 1 K.
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Ðèñ. 2: Temperature dependence of 1/T1T
obtained from 7Li-NMR measurements on
powder samples of LiV2O4 under di�erent
applied pressure; the data are taken from
K. Fujiwara et al, [5]. Di�erent curves
together with the corresponding values
of the �t parameter yQ (0) represent the
calculations based on the SCR theory.

The SCR theory fails, however, in giving a quantitative description of the low-T upturn
of 1/T1T detected below 0.6 K under the highest applied pressure of 4.74 GPa. The
discrepancy can be clearly explained by taking into account that a certain amount of
crystal defects and/or magnetic impurities that are unavoidably present in the measured
powder samples of LiV2O4 may contribute to the nuclear spin relaxation as well. Actually,
when approaching a magnetic instability and softening of largely degenerate low lying
spin �uctuations, the system becomes very susceptible to weak perturbations including,
for instance, magnetic defects.
[1] V. Yushankhai, A. Yaresko, P. Fulde, and P. Thalmeier, Phys. Rev. B 76, 085111

(2007)
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APPROXIMATE EXPRESSION FOR THE DYNAMIC
STRUCTURE FACTOR IN THE LIEB-LINIGER MODEL

A. Yu. Chernya, J. Brandb

aBogoliubov Lab. of Theoretical Physics, JINR, 141980 Dubna, Russia
bCentre for Theoretical Chemistry and Physics and Institute of Fundamental Sciences,

Massey University, Private Bag 102 904, NSMC, Auckland, New Zealand

Cigar-shaped traps with cold alkali atoms have recently been used to obtain a quasi-
1D quantum degenerate Bose gas, where atomic motion in the transverse dimensions is
con�ned to zero-point quantum oscillations, in weak and strong interaction regimes [1].
Theoretically, we can describe this system as a one-dimensional gas where interactions
of bosonic atoms can be described well by e�ective δ-function interactions [2]. Thus, the
Lieb-Liniger model is applicable. Being exactly solvable in the uniform case, the model,
however, does not admit complete analytic solutions for the correlation functions. Up
to now, this has been a challenging and still unsolved problem in 1D physics. Here, we
propose an approximate formula for the DSF of the Lieb-Liniger gas that is consistent
with the known results in accessible limits and power laws.

Dynamical density-density correlations, which can be measured by the two-photon
Bragg scattering [3], are described by the dynamic structure factor (DSF)

S(q, ω) = L

∫
δtδx

2π~
ei(ωt−qx)〈0|δρ̂(x, t)δρ̂(0, 0)|0〉. (1)

Here, we introduce the density �uctuations δρ̂(x, t) ≡ ρ̂(x, t) − n and the equilibrium
density of particles n = N/L. We consider the case of zero temperature, where 〈0| . . . |0〉
denotes the ground-state average.

The Lieb-Liniger model represents a uniform 1D system of spinless bosons of mass m,
interacting with pairwise point interactions V (x) = gBδ(x); the interaction strength gB

is assumed to be positive. The strength of interactions can be measured in terms of the
dimensionless Lieb-Liniger parameter γ ≡ mgB/(~2n). Within the Lieb-Liniger model,
the DSF has the following well-established properties.

i) Luttinger liquid theory predicts a power-law behaviour of the DSF at low energies
in the vicinity of the momenta k = 0, 2πn, 4πn . . . and yields universal values of the
exponents [4]. In particular, one can show [4] that in the vicinity of �umklapp"point
(k = 2πn, ω = 0), S(k, ω) ∼ (ω2 − ω2

−)K−1, where K ≡ ~πn/(mc) and c is the sound
velocity. Furthermore, within the Luttinger-liquid theory, the dispersion is linear in the
vicinity of the umklapp point: ω−(k) ' c|k − 2πn|. This relation leads to the exponent
2(K − 1) precisely at the umklapp point and K − 1 outside of it.

ii) By using in a nontrivial manner the Bose-Fermi mapping in 1D, the authors
developed the time-dependent Hartree-Fock scheme [5] in the strong-coupling regime with
a small parameter 1/γ. The scheme guarantees the validity of the DSF expansion [5]

S(k, ω)
εF

N
=

kF

4k

(
1 +

8

γ

)
+

1

2γ
ln

ω2 − ω2
−

ω2
+ − ω2

+ O

(
1

γ2

)
, (2)

for ω− 6 ω 6 ω+, and zero otherwise. Here ω±(k) are the limiting dispersions that bound
quasiparticle-quasihole excitations in the linear response theory. In the strong-coupling
regime, they are given by ω±(k) = ~|2kFk ± k2|(1− 4/γ)/(2m) + O (γ−2). By de�nition,
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kF ≡ πn and εF ≡ ~2k2
F/(2m) are the Fermi wave vector and energy of a noninteracting

Fermi gas, respectively.
iii) As was shown by Imambekov and Glazman [6], in the Lieb-Liniger model the DSF

exhibits a power-law behaviour near the borders ω±(k)

S(k, ω) ∼ |ω − ω±(k)|∓µ±(k). (3)

The positive exponents µ± are related to the quasiparticle scattering phase and can be
easily evaluated by solving a system of a few integral equations in the thermodynamic
limit. The exact relation µ−(2πn−0) = 2

√
K(
√

K−1) can be obtained [6], which obviously
di�ers from the Luttinger liquid exponent 2(K−1) for k 6= 2πn. However, the Imambekov
and Glazman result is correct in the immediate vicinity of ω± provided that the �nite
curvature of ω−(k) is taken into account. Thus, the di�erence in the exponents can be
treated [6] as an artifact of the linear spectrum approximation in the Luttinger liquid
theory. Note, however, that the thin �strip"in the ω-k plane where the exponents are
di�erent vanishes at the point k = 2πn; hence, the Luttinger exponent 2(K − 1) should
be exact here.

iv) The DSF can be calculated numerically with the algebraic Bethe ansatz [7].
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Ðèñ. 1: DSF in the thermodynamic limit. The proposed approximation (4) (line) is compared to
numerical data [7] (open dots). The dashed (red) line represents the data of Eq. (4) convoluted in
frequency with a Gaussian of width 0.07εF/~ in order to simulate smearing that was used in Ref. [7]
while generating the numerical results. The numerical data [7] suggest that contributions from multi-
particle excitations for ω > ω+ (sharp line in parts a and b) are very small. Such contributions are not
accounted for by the formula (4). Insert: DSF at the umklapp point in logarithmic scale. The graph shows
that the DSF behaves as predicted by the Luttinger liquid theory with the exponent 2(K − 1), where
K = 1.402 . . . at γ = 10.

We suggest a phenomenological expression [8] which is consistent with all of the above-
mentioned results. It reads

S(k, ω) = C
(ωα − ωα

−)µ−

(ωα
+ − ωα)µ+

(4)

for ω−(k) 6 ω 6 ω+(k), and zero otherwise. Here C is a normalization constant, µ+(k)
and µ−(k) are the exponents of Eq. (3), and α ≡ 1 + 1/

√
K. The normalization constant

depends on the momentum but not the frequency and can be determined from the f -sum
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rule
∫ +∞
−∞ δω ωS(q, ω) = Nq2/(2m). We assume that in Eq. (4) the value of the exponent

µ−(2πn) coincides with its limiting value µ−(2πn− 0) = 2
√

K(
√

K − 1).
Now it can be easily seen from Eq. (4) that the exponent equals 2(K−1) at the umklapp

point and µ−(k) outside of it. Thus, the suggested formula is consistent with both the
Luttinger liquid behaviour at the umklapp point and the Imambekov and Glazman power-
law behaviour in the vicinity of it, as it should be. In the strong-coupling regime, Eq. (4)
correctly yields the �rst order expansion (2). Besides, comparison with numerical data
by Caux and Calabrese [7] (Fig. 1) shows that the suggested formula nicely works in the
regimes of both the weak and the strong coupling.

[1] T. Kinoshita, T. Wenger, and D.S. Weiss, Science 305, 1125 (2004); Bel�en Paredes
et al., Nature 429, 277 (2004).

[2] M. Olshanii,Phys. Rev. Lett. 81, 938 (1998); A.Yu. Cherny and J. Brand, Phys. Rev.
A 70, 043622 (2004).

[3] R. Ozeri et al., Rev. Mod. Phys. 77, 187 (2005).

[4] F.D.M. Haldane, Phys. Rev. Lett. 47, 1840 (1981); G.E. Astrakharchik and L.P.
Pitaevskii, Phys. Rev. A 70, 013608 (2004).

[5] J. Brand and A.Yu. Cherny, Phys. Rev. A 72, 033619 (2005); ibid. 73, 023612 (2006).
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ENTANGLEMENT IN COUPLED BOSON SYSTEMS
A. Chizhov

Bogoliubov Lab. of Theoretical Physics, JINR, 141980 Dubna, Russia

There is currently an enormous e�ort underway to understand the rich dynamics of
interacting Bose systems. Among various problems are the properties of Bose-Einstein
condensate (BEC) in external �elds [1], the Bose coherent e�ects of excitons and
polaritons in semiconductor microcavities [2], and the production of scattered radiation
due to interaction of the incident laser beam with vibrational modes of a medium (the
Raman e�ect). The generic feature of interacting Bose systems is the formation of Bose-
�eld collective states with nonclassical (squeezed, sub-Poissonian, etc.) statistical and
�uctuation properties. Another prominent feature is an entanglement produced by the
interaction between di�erent system constituents, which is one of the most subtle and
intriguing phenomena in nature (see for a recent review [3]). Nowadays, there is explosive
activity in the study of the entanglement due to its potential usefulness in quantum
teleportation, quantum cryptography, and, in general, in quantum information theory.

The dynamical interplay between quantum entanglement and nonclassical properties of
various Bose systems can be traced within a model of two-coupled harmonic oscillators.
This model has been applied in nuclear physics and for a rotating BEC. In condensed
matter physics this sort of a Hamiltonian is used: i) to study the interaction between an
atom and a radiative �eld; ii) as a starting point for analysis of electronic properties of
two-dimensional quantum dots in a perpendicular magnetic �eld. The dynamics of two-
component Bose condensate trapped in a double-well potential can also be mapped on
the time-evolution of two coupled-harmonic oscillators in the low excitation regime. In the
simplest case, the model describes two levels of the condensed atoms which are coupled
owing to the classical �eld of radiation. The dynamic interplay between the strength of the
interaction, entanglement and squeezing dynamics of the system was analyzed in [4] in the
general case assuming that at the initial stage of the time evolution the �elds were found in
the superposition of coherent and chaotic states. It can correspond to the Bose condensate
of �cold"atoms being described by a coherent state at a nonzero temperature which spoils
the plain coherence and brings the decoherence e�ects. The Gaussian character of the
system state allows one to calculate analytically the measure of entanglement between
the �elds in the form of the logarithmic negativity via the symplectic spectrum of the
partial transpose of the covariance matrix. It is shown that the interaction with equal
coupling constants produces the entangled system state (see Fig. 1a) when the degree
of entanglement displays an oscillatory character with the distinctive alteration of the
entanglement maxima and minima that can be considered to be revivals and collapses.
Thermal �uctuations are expected to attenuate the entanglement. In particular, when
both the �elds are initially in chaotic states, the degree of their entanglement in the regime
of equal coupling constants becomes very small (see Fig. 1b). Moreover, there is a critical
temperature above which the entanglement disappears and the system becomes separable.
Thus, the considered two-mode boson model demonstrates that the entanglement can be
controlled in time by a appropriate choice of the interaction at di�erent temperature
regimes. The obtained results show that this plain system exhibited a rich dynamics from
the view point of the quantum information theory and its possible physical applications.

Another process for generation of quantum correlations is the Raman scattering. The
Stokes and anti-Stokes �elds in the Raman scattering, which indirectly interact via a
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Ðèñ. 1: Entanglement between the modes being initially in (a) coherent states and
(b) chaotic states for the interaction with equal coupling constants.

bath of phonons, can be modelled by two nondegenerate boson �elds coupled through a
reservoir. The appearance of quantum entanglement between these �elds with regard to
initial states of the �elds and the phonon bath state was analyzed in [5]. It was shown that
there occurred a phenomenon of entanglement between the Stokes and anti-Stokes �elds
due to their correlation through the phonon bath in the case of stimulating scattering,
when these �elds are initially found in superpositions of coherent and chaotic states, and
the phonon bath is in a chaotic state. The beginning of entanglement for initial coherent
states of the �elds is revealed to arise from the very outset of the interaction. The strength
of entanglement monotonously increases in time approaching its asymptotic value. In the
case of initial chaotic states, the entanglement can arise only after a certain interaction
time. The noise of the phonon reservoir appeared to work for destruction of entanglement
tending to reduce its strength. Moreover, if the phonon noise is large enough, then the
entanglement might not happen between the �elds at all. Therefore, the phonon bath in
the model comes to be a source of both quantum correlations and their decoherence.

Summarizing, the peculiar pattern of entanglement between the boson �elds found out
in systems under consideration is expected to have promising applications in quantum
communication and quantum information processing.
[1] L. Pitaevskii and S. Stringari. Bose-Einstein Condensation. Clarendon, Oxford, 2003.

[2] A. Kavokin and G. Malpeuch. Cavity Polaritons. Elsevier, Amsterdam, 2003.

[3] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. 80, 517 (2008).

[4] A. V. Chizhov and R. G. Nazmitdinov, Phys. Rev. A 78, 064302 (2008).

[5] A. V. Chizhov, JETP Letters, Vol. 85, No. 1, 94-97 (2007).
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THE GEOMETRY-INDUCED EFFECTS CAUSED BY
POSITIVE AND NEGATIVE DISCLINATIONS IN CARBON

NANOSTRUCTURES
D.V. Kolesnikov, V.A. Osipov

Bogoliubov Lab. of Theoretical Physics, JINR, 141980 Dubna, Russia
The two main features of carbon nanostructures are their e�ective two-dimensional

behaviour and topological defects (namely-disclinations) included in it. Our model [1]
includes both disclinations and curvature of the surface describing the electronic properties
of carbon nanostructures within the �eld-theoretic approach.

The electronic states of capped semi-in�nite nanotubes are studied in our work
[2] within the phenomenological gauge �eld-theory model. A single manifold for the
description of both the nanotube and the cap region (considered as nearly a half of
either Ih or I fullerene) is suggested. For the cap region, the gauge �elds which take
into account six disclinations are taken from the previously studied model for spherical
fullerenes [3]. The wavefunctions and the density of states (DoS) are numerically calculated
for both metallic and semiconducting nanotubes. The smoothing of van Hove singularities
is found (see Fig.1) and proven analytically. The e�ect of smoothing itself is a very
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Ðèñ. 1: Local density of states (average units) on the cap (bottom), near the cap and far
from the cap (top), for metallic (left) and semiconducting (right) nanotubes. The energy
E is measured in units of ~VF /Rt, where VF - Fermi speed, Rt- nanotube radius.

interesting phenomenon, appearing usually as a result of electron-electron or electron-
phonon interaction. Within our model, however, this e�ect appears as a result of purely
geometrical factors (i.e., the change of the nanotube radius).

In [4], we studied the electronic structure of graphene in the presence of either
sevenfolds or eightfolds by using a gauge �eld-theoretic model. The graphene sheet with
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topological defects is considered as a "negative cone surface"with an in�nite Gaussian
curvature at the center (see Fig.2); the surface is supposed to be free to bend but
impossible to stretch. The density of electronic states is calculated for a single seven-

Ðèñ. 2: A surface of the graphene sheet with a single sevenfold inserted in it.

and eightfold as well as for a pair of sevenfolds with di�erent morphology. Because of
the non-Abelian character of the gauge �eld, the gauge �eld for two closely positioned
sevenfolds is not equal to the �eld of one eightfold, as it is in the usual elasticity theory.
The translational factor M should be taken into account. The density of states at the
Fermi level is found to be zero in all cases except two sevenfolds with translational factor
M 6=0.

[1] V.A.Osipov and D.V.Kolesnikov, Romanian Journal of Physics, 50 p.457 (2005)
[2] D.V.Kolesnikov and V.A.Osipov, EPL 78 47002 (2007)
[3] D.V.Kolesnikov and V.A.Osipov, European Physical Journal B 49, 465 (2006)
[4] D.V.Kolesnikov and V.A.Osipov, JETP Letters 87, p. 419 (2008)
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ELLIPTIC HYPERGEOMETRIC FUNCTIONS AND
SUPERCONFORMAL INDICES

V. P. Spiridonov and G. S. Vartanov
Bogoliubov Lab. of Theoretical Physics, JINR, 141980 Dubna, Russia

One of the important recent achievements of mathematical physics consists in the
discovery of elliptic hypergeometric functions � a principally new class of special functions
of hypergeometric type (see [1] for a survey of the corresponding results and relevant
literature). These functions have found applications in the theory of Yang-Baxter equation,
integrable discrete time chains, elliptic Calogero-Sutherland type models and so on.
Although connection with the classical root systems has been explicitly traced in the
structure of many elliptic hypergeometric functions, their group theoretical content
remained obscure by large.

In recent papers, R�omelsberger [2] has described topological indices for four dimensional
supersymmetric conformal �eld theories. Following [2], Dolan and Osborn [3] connected
superconformal indices of a number of N = 1 supersymmetric �eld theories with certain
elliptic hypergeometric integrals. The corresponding Seiberg dual theories [4] appeared to
have the same indices due to nontrivial identities for these integrals [1].

Seiberg duality is a fundamental concept of modern quantum �eld theory [4, 5].
We have performed a systematic comparison of superconformal indices of known dual
supersymmetric theories and elliptic hypergeometric integrals. In [6], we considered
N = 1 theory with SP (2N) gauge group and �xed rank �avor groups SU(8) or
SU(4) × SU(4) × U(1)B. For N = 1 we obtained indices for multiple dual theories
considered by Cs�aki et al [5]. For N > 1 we came to new multiple duality theories.

We start from the electric theory with the overall symmetry group

SP (2N)× SU(8)× U(1)× U(1)R.

The �eld content for the electric theory is given in the table

SP (2N) SU(8) U(1) U(1)R

Q f f N − 1 2RQ = 1
2

V adj 1 0 1
X TA 1 -4 0

Following the R�omelsberger algorithm, we �nd that the superconformal index in
electric theory is given by the integral

IE =
(p; p)N

∞(q; q)N
∞

2NN !
Γ((pq)s; p, q)N−1

∫

TN

∏
1≤i<j≤N

Γ((pq)sz±1
i z±1

j ; p, q)

Γ(z±1
i z±1

j ; p, q)
(1)

×
N∏

j=1

∏
1≤i≤8 Γ((pq)rQyiz

±1
j ; p, q)

Γ(z±2
j ; p, q)

N∏
j=1

dzj

2πizj

,

where
Γ(z; p, q) =

∞∏

j,k=0

1− z−1pj+1qk+1

1− zpjqk
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is the elliptic gamma function, s is an arbitrary parameter, rQ = RQ − (N − 1)s/4, and
the balancing condition has the form

∏8
j=1 yj = 1.

We skip consideration of the N = 1 case, which appears to be related to the E7-
group symmetry transformation for an elliptic analogue of the Gauss hypergeometric
function discovered by the �rst author [1]. As shown in [6], for N > 1 one can construct
several dual magnetic theories for the initial electric theory applying the Rains symmetry
transformation discussed in [1] for integral (1). The �rst magnetic theory has the overall
symmetry group

SP (2N)× SU(4)× SU(4)× U(1)B × U(1)× U(1)R

with the following spectral content of the �elds:

SP (2N) SU(4) SU(4) U(1)B U(1) U(1)R

q f f 1 −1 N − 1 1
2

q̃ f 1 f 1 N − 1 1
2

Ṽ adj 1 1 0 0 1
Y TA 1 1 0 -4 0

Mj, j = 0, . . . , N − 1 1 TA 1 2 2N − 2− 4j 1
M̃j, j = 0, . . . , N − 1 1 1 TA −2 2N − 2− 4j 1

The index in the magnetic theory is then

I
(1)
M =

N−1∏

l=0

∏
1≤i<j≤4

Γ((pq)rMlyiyj; p, q)
∏

5≤i<j≤8

Γ((pq)
r
M̃l yiyj; p, q) (2)

×(p; p)N
∞(q; q)N

∞
2NN !

Γ((pq)s; p, q)N−1

∫

TN

∏
1≤i<j≤N

Γ((pq)sz±1
i z±1

j ; p, q)

Γ(z±1
i z±1

j ; p, q)

×
N∏

j=1

∏
1≤i≤4 Γ((pq)rqyiz

±1
j ; p, q)

∏
5≤i≤8 Γ((pq)r̃qyiz

±1
j ; p, q)

Γ(z±2
j ; p, q)

N∏
j=1

dzj

2πizj

.

Using the Rains transformation one more time we come to the second magnetic dual
theory which has the same overall group as in the previous case but di�erent representation
content

SP (2N) SU(4) SU(4) U(1)B U(1) U(1)R

q f f 1 1 N − 1 2Rq = 1
2

q̃ f 1 f −1 N − 1 2R̃q = 1
2

Ṽ adj 1 1 0 0 1
Y TA 1 1 0 -4 0

Mj, j = 0, . . . , N − 1 1 f f 0 2N − 2− 4j 1

The index for the described magnetic theory equals

I
(2)
M =

(p; p)N
∞(q; q)N

∞
2NN !

Γ((pq)s; p, q)N−1

N−1∏

l=0

∏
1≤i≤4
5≤j≤8

Γ((pq)rMlyiyj; p, q)
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×
∫

TN

∏
1≤i<j≤N

Γ((pq)sz±1
i z±1

j ; p, q)

Γ(z±1
i z±1

j ; p, q)
(3)

×
N∏

j=1

∏
1≤i≤4 Γ((pq)rqy−1

i z±1
j ; p, q)

∏
5≤i≤8 Γ((pq)r̃qy−1

i z±1
j ; p, q)

Γ(z±2
j ; p, q)

N∏
j=1

dzj

2πizj

.

Finally, the third magnetic theory has the overall symmetry group
SP (2N)× SU(8)× U(1)× U(1)R.

The �eld content is
SP (2N) SU(8) U(1) U(1)R

q f f N − 1 1
2

Ṽ adj 1 0 1
Y TA 1 -4 0

Mj, j = 0, . . . , N − 1 1 TA 2N − 2− 4j 1
The magnetic index is now

I
(3)
M =

(p; p)N
∞(q; q)N

∞
2NN !

Γ((pq)s; p, q)N−1

N−1∏

l=0

∏
1≤i<j≤8

Γ((pq)rMl yiyj; p, q) (4)

×
∫

TN

∏
1≤i<j≤N

Γ((pq)sz±1
i z±1

j ; p, q)

Γ(z±1
i z±1

j ; p, q)

N∏
j=1

∏
1≤i≤8 Γ((pq)r̃y−1

i z±1
j ; p, q)

Γ(z±2
j ; p, q)

N∏
j=1

dzj

2πizj

.

So we have obtained three dual magnetic theories for a �xed N = 1 electric
supersymmetric theory with the SP (2N) gauge group and a �xed number of �avors.
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