
1.2 Modern Mathematical Physics

Many aspects of Modern Mathematical Physics (MMP) are connected to Superstring The-
ory (SST). Being right or wrong, nobody can deny that SST is the most creative theory in mod-
ern physics, and most ambitious. In particular, SST has posed and is attempting to solve many
difficult problems in other domains of MMP (and even in pure mathematics). These include Su-
persymmetry (SUSY) and Supergravity (SUGRA), Quantum Gravity (QG) and Mathematical
Cosmology, Integrable Systems and Quantum Groups (or Noncommutative Theory). Recently,
SST generated new hopes for finding some new approaches to nonperturbative Yang - Mills
theory. Although significant results were obtained only in Supersymmetric Yang - Mills theo-
ries (SYM), the hopes gradually go stronger that SYM will teach us important lessons that will
finally be used in QCD. The hopes are based on recent successes of different dualities, the oldest
of which relate solitons that are strongly nonlinear (‘nonperturbative’) objects to simple parti-
cle states of a field theory. SST uncovered new solitons and soliton-like structures in rather an
unusual environment, like compactified higher dimensional supergravity theories. The idea that
some higher dimensions may lead to real physical, observable effects in gravity and cosmology
provokes curiosity of both theorists and experimentalists. From MMP point of view this is also
a challenge that requires developing mathematical concepts and tools adequate to new physical
and geometrical objects. On the other hand, the new solitons stimulated renewal of interest in
low - dimensional integrable models that, in fact, may describe complex higher - dimensional
phenomena. Of special interest in this connection are supersymmetric integrable hierarchies as
well as various multi-soliton states.

SST is one of the sources of noncommutative quantum field theories. Although big expec-
tations of this new development were not quite achieved, various aspects of noncommutative
physics and mathematics are still worth of pursuing and may eventually produce significant
progress in physics and mathematics. For example, there exist hopes that introducing non-
commutative coordinates may shed new light on the most difficult and persistent problem of
quantizing gravity. Even if these hopes will prove to be not justified, developing such non-
standard ideas is certainly useful. More generally, the present state of affairs in quantum gravity
and cosmology requires reconsidering many commonly accepted concepts and literally cries for
‘crazy’ ideas and methods. Our small community working in some of the mentioned directions
of MMP is trying to respond to challenges of new physics and mathematics as much as possible.

A.T. Filippov
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BRAID GROUP SYMMETRY IN NONCOMMUTATIVE GEOMETRY
AND IN INTEGRABLE MODELS

P.N. Pyatov

Discrete symmetries manifest themselves in many instances in modern physics (e.g., in
models with sets of identical objects, in crystals etc.) and mathematics (regular polytopes,
Weyl groups, theory of symmetric functions etc.). As a rule, they are suitably realized through
an action (of an appropriate quotient) of the braid group. The simplest but very important
example of such a realization is given by permutation matrices acting on either a set of objects
or tensor powers of vector space. A very deep and fruitful generalization of the permutation
matrix was elaborated during the last three decades in the framework of the Quantum Inverse
Scattering Method. This is a notion of an R-matrix. Nowadays the R-matrix formalism provides
a ”covariant” realization of the braid group symmetry in integrable models treated with QISM
and in the theory of Quantum Groups.

A principal aim of our research is to develop an R-matrix formalism in its full generality
using the last decade advances in a representation theory of finite dimensional quotients of the
braid group (such as Hecke and Birman-Murakami-Wenzl algebras). The final goal here is an
application of the formalism for investigation of specific integrable models and for construction
of noncommutative, quantum group covariant differential geometry.

Naturally enough, constructing the R-matrix formalism is going in parallel to understand-
ing an algebraic and geometric meaning of newly introduced notions. Thus, our strategy is
to develop the R-matrix techniques while investigatingstructure theory and spectral values of
quantum matrix algebras(joint research project with D.I. Gurevich, A.P. Isaev, O.V. Ogievet-
sky, and P.A. Saponov). This program of finding a general context for the notion of matrices,
their eigenvalues, matrix multiplication and their characteristic identities is further developed
in [1–3]. From the physical viewpoint this program is aimed at constructing a natural set of
commuting variables (q-matrix eigenvalues interpreted either as integrals of motion, or as angle
variables) for a family of models treated by means of the QISM.

In [1], the Cayley-Hamilton identities are derived for the quantum supermatrices ofGL(m|n)
type. In [2], a necessaryR-matrix technique is developed for the case of quantum orthogonal and
symplectic matrices. It is shown, in particular, that orthogonal/symplectic type R-matrices carry
information about invariant pairing on their corresponding vector spaces. In [3], a structure
theory of theGL(n)- type quantum matrices is applied for investigation of an algebra of zero
modes of the chiralSU(n) WZNW model.

Another but closely related direction of our research is understanding and exploiting ahid-
den braid group symmetry in statistical loop models, in the models of stochastically growing in-
terfaces, and in the open Heisenberg spin chains(joint research with J.de Gier and V.Rittenberg)
[4,5]. It is well known that the evolution operator of all three above-mentioned models can be
defined in terms of theGL(2)-type Drinfeld-Jimbo R-matrix. Our strategy is to go one level
higher: from the language of R-matrices up to the level of (appropriately extended) Temperley-
Lieb algebras which they represent. In this way, we can see a mathematical (but not physical!)
equivalence of all three models and adopt methods developed for each of these models to other
cases.

A unifying description for the open spin=1/2 XXZ chain and for a family of Raise and Peel
Models (RPM) of a one-dimensional fluctuating interface is developed in [4]. Combinatorial
properties of the stationary states of three particular RPM’s are analyzed and compared in de-
tail and explicit formulas for the weights of various stationary configurations for these models
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are given. It is shown that these weights satisfy a series of bilinear recurrent equalities – the
Pascal’s hexagon relations. Interestingly enough, Pascal’s hexagon also gives solutions to Hi-
rota’s difference equation. In [5], the Hamiltonian of the Temperley-Lieb loop model with open
boundaries is diagonalized using a coordinate Bethe Ansatz calculation. The spectrum of the
loop model contains that of the open spin-1/2 XXZ chain with nondiagonal boundary condi-
tions. Thus, a recently conjectured solution of the complete spectrum of this XXZ chain is
derived.
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TOWARDS HIGHER N SUPERSYMMETRIC QUANTUM MECHANICS

E. Ivanov, S. Krivonos

Supersymmetric quantum mechanics (SQM) [1] provides deep insights into supersymmetric
field theories in diverse dimensions, as well as into string theory. In particular, superconformal
quantum mechanics (SCQM) has profound implications in theAdS2/CFT1 and black holes
stuff. Taking into account these and some other uses, the construction and analysis of new
SQM and SCQM models is an urgent and interesting task. For the last two years, an essential
progress was achieved in understanding extended SQM models withN = 4 andN = 8, d = 1
supersymmetries [2]–[9]. Previously, only SQM models withN≤4 were basically explored
(e.g. in [10]).

In recent papers [2, 4, 5], an efficient method of deducingd=1 off-shell multiplets and rele-
vant superfields originally proposed in [11] was further advanced and applied toN = 4,8 SQM
models. It is based on nonlinear realizations of the finite-dimensional superconformal groups
in d=1. The irreducible superfields representing one or another off-shelld=1 supermultiplet
come out as the Goldstone superfields parametrizing one or another coset manifold of the proper
d=1 superconformal group. This method automatically specifies the superconformal properties
of the involved supermultiplets which is of importance when setting up the conformal SQM
models. The complementary method of constructing off-shell actions of variousN=4,d=1
multiplets was developed in [3] within theN=4,d=1 harmonic superspace formalism.

In [4], the full set of off-shellN=4 supermultiplets with4 physical fermions (and a finite
number of auxiliary fields) was deduced proceeding from nonlinear realizations of the most
generalN=4,d=1 superconformal groupD(2,1;α). The results obtained can be summarized
in the Table below.
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multiplet content R symmetry coset dilaton α superfield
“old tensor” (1,4,3) – yes any u
chiral (2,4,2) central charge yes 0,−1 φ , φ̄
nonlinear chiral (2,4,2) su(2)/u(1) no any Λ, Λ̄
tensor (3,4,1) su(2)/u(1) yes any V i j

nonlinear (3,4,1) su(2) no any Nia

hypermultiplet (4,4,0) su(2) yes any qia

The application of the same method to the so far unexplored case ofN=8,d=1 supersym-
metry was initiated in [5]. There, nonlinear realizations of theN=8,d=1 superconformal group
OSp(4?|4) in its two different cosets were constructed and it was shown that two interesting
N=8,d=1 multiplets, with the off-shell field contents (3, 8, 5) and (5, 8, 3), naturally come out
as the corresponding Goldstone multiplets. Superconformally invariant actions for these mul-
tiplets inN=4,d=1 superspace were constructed for all possible splittings of them in terms of
N=4 off-shell multiplets. Thus, the new models of superconformal quantum mechanics were
set up.

An exhaustive list of off-shellN=8 supermultiplets with 8 physical fermions and the rele-
vant constrainedN=8,d=1 superfields were derived in [6]. These findings can be considered
as preparatory to considering nonlinear realizations of all knownN=8 superconformal groups
in their various cosets and identifying variousN=8 multiplets with the relevant Goldstone su-
perfields, similarly to what has been done forN=4 supermultiplets in [2, 4]. In theN=8 case
this task is much more complicated in view of the existence of many nonequivalentN=8 super-
conformal groups (OSp(4?|4), OSp(8|2), F(4) andSU(1,1|4) with numerous coset manifolds.
The field contents oflinear off-shell multiplets ofN=8,d=1 supersymmetry with8 physical
fermions was found to range from (8, 8, 0) to (0, 8, 8) with the intermediate multiplets cor-
responding to all possible divisions of8 bosonic fields into physical and auxiliary ones. The
results obtained in [6] are summarized in the Table below.

Multiplet N=8 Superfields N=4 splittings
(0, 8, 8) ΨaA,Ξiα (0, 4, 4)⊕ (0, 4, 4)
(1, 8, 7) U (1, 4, 3)⊕ (0, 4, 4)

(2, 8, 6) U ,Φ (1, 4, 3)⊕ (1, 4, 3)
(2, 4, 2)⊕ (0, 4, 4)

(3, 8, 5) V i j (3, 4, 1)⊕ (0, 4, 4)
(1, 4, 3)⊕ (2, 4, 2)

(4, 8, 4) Qaα
(4, 4, 0)⊕ (0, 4, 4)
(3, 4, 1)⊕ (1, 4, 3)
(2, 4, 2)⊕ (2, 4, 2)

(5, 8, 3) U ,V aα (1, 4, 3)⊕ (4, 4, 0)
(3, 4, 1)⊕ (2, 4, 2)

(6, 8, 2) V i j ,W ab (3, 4, 1)⊕ (3, 4, 1)
(4, 4, 0)⊕ (2, 4, 2)

(7, 8, 1) V i j ,Qaα (3, 4, 1)⊕ (4, 4, 0)
(8, 8, 0) QaA,Φiα (4, 4, 0)⊕ (4, 4, 0)

These results consitute a basis for a more detailed study of theN=8 SQM models associated
with the supermultiplets considered. In particular, it would be interesting to explore a possible
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relation of the correspondingN=8 SCQM models to the physics of branes and black holes, e.g.
along the line pursued for theN=4 case in [12, 13], where the equivalence between theN=4
superparticles describing near-horizon geometry of the Reissner-Nordström black holes and
N=4 SCQM was proven. The intriguing questions are whether some dynamical models with
higherN>8,d=1 supersymmetry can be constructed by combining some of theN=8 multiplets
considered in [6] and how the latter are related to multiplets with an infinite number of auxiliary
fields, which naturally appear in various versions ofharmonicN=8,d=1 superspace (see e.g.
[14, 8]). Some important algebraic and geometric aspects of the SQM models associated with
the multiplet(4,8,4) and two closely related to each other multiplets(3,8,5) and(2,8,6) were
a subject of recent papers [7, 8, 9].
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NON - ANTICOMMUTATIVE SUPERSPACE

E.A. Ivanov, B.M. Zupnik

Recently it was discovered that certain string backgrounds in the low-energy limit give rise to
supersymmetric field theories living on superspaces with nonanticommuting Grassmann coor-
dinates. In particular, a specific four-dimensional compactification of the type IIB string in
the presence of a constant self-dual graviphoton backgroundFαβ yields superspace whose odd
coordinates obey the Clifford algebra

{θ α ,θ β}= α ′2Fαβ , (1)

rather than the standard Grassmann algebra [1]. This superspace and supersymmetry realized
in it must be of Euclidean signature since a real field strength cannot be self-dual in Minkowski
space. This deformation breaks the originalN=(1

2, 1
2) supersymmetry down toN=(1

2,0) but
preserves the important notion of chirality. The basic technical device of constructing the cor-
responding superfield theories is the Moyal-Weyl star product generalized to Grassmann coor-
dinates [2].

The main motivation for studying such nonanticommutative (or nilpotently deformed) su-
persymmetric field theories comes from the desire to better understand the symmetry and ge-
ometric structure of various effective low-energy limits of string theory. They can also have
phenomenological implications. In particular, such deformations could provide a new geomet-
ric mechanism of soft supersymmetry breaking.

A natural step beyond the analysis of non-anticommutativeN=(1
2, 1

2) superspace in [1] is
the study of analogous nilpotent chiral deformations of EuclideanN=(1,1) superfield theories.
This study was initiated in [3, 4] and then continued in our papers [5]-[8]. Both the D-type and
Q-type deformations were considered with either spinor covariant derivativesDi

α or supersym-
metry generatorsQi

α as the building blocks of the bi-differential Poisson operator specifying
the relevant star products.

The Q-deformations generically break theN=(1,1) supersymmetry by half, but preserve
both chirality and anti-chirality. The simplestN=(1,1) Q-deformation is the singlet one (‘QS-
deformation’) based on the Poisson operator

Ps =−I
←−
Q i

α
−→
Qα

i , with (Ps)5 = 0 , (2)

where I is a real parameter andQi
α are the left-handed supersymmetry generators. While

breaking half the supersymmetry, it preserves the internal SU(2)R×Spin(4) symmetry. The
QS-deformation can be given a stringy interpretation like the Q-deformation considered in [1].
Namely, such a non-anticommutativeN=(1,1) superspace naturally arises for theN=4 su-
perstring coupled to a complex axion background. The Q-deformations and their QS-subclass
preserve Grassmann harmonic analyticity which is the fundamental notion in theories with man-
ifest extended supersymmetry.

The detailed superfield and component structure of the QS-deformedN=(1,1) U(1) and
U(n) gauge theories was explored in [6]. In particular, an analog of the Seiberg-Witten (SW)
map to quantities with undeformed gauge and supersymmetry transformation laws was explic-
itly worked out. The component Lagrangian of the deformed U(1) gauge theory is related to
the standard undeformed freeN=(1,1) gauge theory Lagrangian by a simple field-dependent
rescaling [6]

Lg = (1+4I φ̄)2[−1
2

ϕ 2φ̄ +
1
4

f 2
mn+

1
8

εmnrsfmnfrs− iψα
k ∂αα̇ ψ̄ α̇k +

1
4
(dkl)2] , (3)
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where fmn = ∂man− ∂nam and ϕ, φ̄ ,am,ψα
k , ψ̄ α̇k and dkl are component fields of the vector

multiplet. In [6], we also gave an analogous deformed Lagrangian for a non-Abelian theory.
An important class ofN=(1,1) theories is that including matter hypermultiplets interact-

ing with themselves and with gauge multiplets. The theory of self-interacting hypermultiplets
yields, in the bosonic sector, Euclidean versions of hyper-Kähler sigma models. The hypermul-
tiplets coupled toN=(1,1) gauge multiplets could be of relevance from the phenomenological
point of view. The system of a gauge superfield minimally coupled to a hypermultiplet in the
adjoint representation of the gauge group provides an off-shellN=(1,1) superfield formulation
of N=(2,2) supersymmetric gauge theory which is the Euclidean analog of the renownedN=4
super Yang-Mills theory.

In [3], we gave general recipes of how to construct Q-deformations of the superfield hyper-
multiplet actions. In [7, 8], we considered QS-deformation of simple concrete actions with the
hypermultiplet and U(1) gauge superfields.

A notable feature of the two considered hypermultiplet models is that there are only two
inequivalent ways to realize the deformed U(1) gauge transformations on the hypermultiplet
superfields. Our first example is the coupled system of anN=(1,1) U(1) gauge superfield and
a neutral hypermultiplet. In terms of the undeformed fields related to the deformed ones by
a kind of SW-transform the action is radically simplified, though there remains a non-trivial
interaction between the fermionic fields of the hypermultiplet and the gauge field. Besides the
manifest unbrokenN=(1,0) supersymmetry, the resulting action possesses one more hidden
on-shellN=(1,0) supersymmetry and thus describes a QS-deformedN=(2,2) gauge theory
with the residualN=(2,0) supersymmetry.

We also analysed the QS-deformation of a charged hypermultiplet in the minimal interaction
with a U(1) gauge multiplet. In the undeformed case, this interacting system possesses no extra
supersymmetry besides the manifestN=(1,1) one. The QS-deformation breaks the latter down
to N=(1,0) . We analyzed the component action of this deformedN=(1,1) electrodynamics
and the corresponding scalar field potentials and mass terms. The relevant SW-transformation
to the undeformed fields was explicitly constructed.

There remain many open problems to be explored in this new area of research. It is
worth distinguishing among them a further analysis, at the classical and quantum levels, of
QS-deformations of gauge theory with extendedN=(2,2) supersymmetry in various super-
field formulations, the study of possible modifications of hyper-Kähler geometries of deformed
N=(1,1) supersymmetric sigma models, and generalization to the case of generic (nonsinglet)
Q-deformations. These and related studies are now under way.
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FERMIONIC TODA LATTICE HIERARCHIES

V.V. Gribanov, V.G. Kadyshevsky, and A.S. Sorin

The two-dimensional Toda Lattice (2DTL) hierarchy has far-reaching applications in mod-
ern mathematical physics. Its relevance to conformal and topological field theory and string
theory permanently stimulates a subsequent investigation of the 2DTL hierarchy from both
physical and mathematical aspects, including the formulation and study of its supersymmetric
extensions.

At present, two different nontrivial supersymmetric extensions of the 2DTL hierarchy are
known - theN = (2|2) andN = (0|2) supersymmetric Toda lattice hierarchies. Actually, besides
a different number of supersymmetries they have different bosonic limits which are decoupled
systems of two infinite bosonic Toda lattice hierarchies and single infinite bosonic Toda lattice
hierarchy, respectively.

In [1], the Sato equations of theN = (2|2) supersymmetric Toda lattice hierarchy were ex-
tended by two new infinite series of fermionic flows, and it was demonstrated that the algebra of
the flows of the extended hierarchy is the Borel subalgebra of theN = (2|2) loop superalgebra.

In [2], starting with the zero-curvature representation

[∂1 +L−,∂2−L+] = 0, (L−)i, j = ρiδi, j+1 +diδi, j+2, (L+)i, j = δi, j−2 + γiδi, j−1 +ciδi, j

we introduced the 2D generalized fermionic Toda lattice equations and investigated their sym-
metries and reductions for different boundary conditions. Two reductions related with the
N = (2|2) andN = (0|2) supersymmetric Toda lattice equations were described. At the reduc-
tion to the 1D space the zero-curvature representation can identically be rewritten in the form
of the Lax-pair representation. The bi-Hamiltonian structure of the 1D generalized fermionic
Toda lattice hierarchy was constructed and its bosonic and fermionic Hamiltonians were found
as supertraces of the Lax operators.

In [2], we also considered the 1D N=4 and N=2 supersymmetric Toda lattice hierarchies
and constructed their bi-Hamiltonian structures, investigated their fermionic symmetries, and
studied a transition to the canonical basis which spoils a number of supersymmetries.

The supersymmetric Toda lattice hierarchies with periodic boundary conditions were con-
sidered in [2, 3]. The(2m×2m)-matrix zero-curvature representation with the spectral parame-
ter was constructed for the2m-periodic 2D generalized fermionic Toda lattice hierarchy and the
bi-Hamiltonian structure of its one-dimensional reduction was obtained. It was shown that in
1D space this hierarchy had an alternative description in terms of the(4×4)-supermatrix Lax
operators ∂L j(λ ) = U j+1(λ )L j(λ )−L j(λ )U j(λ ),

L j(λ ) =




−γ j −ρ j λ −c j −d j

0 0 1 0
1 0 0 0
0 1 0 0


 , U j(λ ) =




0 −d j+1 −ρ j+1 0
1 c j−1−λ γ j−1 0
0 −ρ j 0 −d j

0 γ j−2 1 c j−2−λ




which allowed one to investigate its integrability properties. Thus, its r-matrix and monodromy
matrix were calculated and analyzed, and their spectral curves were constructed. The periodic
1D N = 2 Toda lattice hierarchy which has the (3×3)-supermatrix Lax pair representation was
discussed in the same approach.
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In [4], using the generalized graded bracket introduced in [5] we proposed a new 2D
fermionic(K,M)-TL hierarchy in terms of the Lax-pair representation

D±s Lα
Ωα =∓α(−1)sΩα Ω±

[(((L±Ω±)s
∗)−α)∗(Ω

α ),Lα
Ωα}, α = +,−, Ω+ = K, Ω− = M,

(LΩα )2s
∗ ≡ (L∗(Ω

α )
Ωα LΩα )s, (LΩα )2s+1

∗ ≡ LΩα (LΩα )2s
∗ , s∈ N,

L+
K =

∞

∑
k=0

uk,ie
(K−k)∂ , L−M =

∞

∑
k=0

vk,ie
(k−M)∂

and constructed the algebra of its flows. All known up to now 2D TL equations can be derived
from this hierarchy as subsystems. The reduction of the 2D fermionic(K,M)-TL hierarchy to
the 1D space reproduces the 1D generalized fermionic TL equations [2] as the first flow of the
reduced hierarchy with additional constraint imposed.

Although the Hamiltonian representations of different 1D Toda hierarchies have been known
for a long time, the problem of constructing the Hamiltonian structures for the bosonic 2D Toda
lattice hierarchy was solved only quite recently. It was carried out in the framework of theR-
matrix method. In [4], this method was generalized to the case ofZ2-graded operators in order
to derive the bi-Hamiltonian structure of the 2D fermionic(K,M)-TL hierarchy. Defining the
R-matrix on the associative algebrag of the Z2-graded difference operatorsO and using the
generalized graded bracket we constructed two Poisson brackets for the functionals ong† = g.

{ f ,g}1(O) = 1/2 < (−1)d∇gdOR(∇g)∗(dO)[O∗(d∇g),(∇ f )∗(d∇g)}− [O,∇g}R((∇ f )∗(d∇g)) >,

{ f ,g}2(OB) = −1/4 < [OB,∇g}R((∇ f )∗(d∇g)O∗(d∇ f +d∇g)
B +O∗(d∇g)

B (∇ f )∗(d∇g))

− R(∇gO∗(d∇g)
B +OB∇g)[O∗(d∇g)

B ,(∇ f )∗(d∇g)}> .

The properties of the Poisson brackets are provided by the properties of the generalized graded
bracket. ForZ2-graded difference operators of odd (even) parity this bracket defines odd (even)
first Poisson structures.

In this approach, the Hamiltonian description of the 1D and 2D fermionic(K,M)-TL hier-
archies was constructed [4]

D±s

(
un,i

vn,i

)
= {

(
un,i

vn,i

)
,H±

s+1}1 = {
(

un,i

vn,i

)
,H±

s }2, H+
s =

1
s
str(L+

N)s
∗, H−

s =
1
s
str(L−M)s

∗.

Applying theR-matrix which acts nontrivially on the space of the direct sum of two difference
operators we derived two different Hamiltonian structures of the 2D fermionic(K,M)-TL hi-
erarchy. The first Hamiltonian structure was obtained for both even and odd values of(K,M)
while the second one was established for even values of(K,M) only.
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INTEGRABLE LOW DIMENSIONAL MODELS FOR BLACK HOLES
AND COSMOLOGIES

A.T. Filippov

It is well known that 1+1 dimensional dilaton gravity coupled to scalar matter fields is a reli-
able model for some aspects of high dimensional black holes, cosmological models and branes.
The connection between high and low dimensions has been demonstrated in different contexts
of gravity and string theory and in some cases allowed one to find a general solution or spe-
cial classes of solutions in high dimensional theories. These solutions may describe interesting
physical objects - spherical static black holes, simplest cosmologies, etc. However, when the
scalar fields, which presumably play a significant cosmological role, are not constant, a few ex-
act solutions of high dimensional theories are known. Correspondingly, the two - dimensional
models of dilaton gravity coupled to scalar matter are usually not integrable in any sense.

In 2001-2002 we proposed a class of integrable models of 1+1 and 1-dimensional dilaton
gravity coupled to scalar fields. The models can be derived from high dimensional supergravity
theories by dimensional reductions. The equations of motion of these models reduce to systems
of the Liouville equations endowed with energy and momentum constraints which constitute the
most difficult part of the problem. In 2003–2004 we constructed the explicit general solution
of the 1+1 dimensional problem in terms of chiral moduli fields and established its simple
reduction to static black holes (dimension 0+1), and cosmological models (dimension 1+0). In
addition, we have recently found wave - type solutions that describe scalar matter waves that
may be localized in space. These new solutions may be of importance for understanding both
the evolution of black holes and cosmology.

The three basic types of solutions of the gravity coupled to matter (static states, cosmological
models, and gravity - matter waves) are usually treated quite differently. We argued that there
existed an approach to dimensional reduction in which they could be naturally related. This
relation was studied in some detail for static states and cosmologies and can be considered as
a sort of ‘static–cosmology’ duality (SC-duality). In the integrable models transitions between
static and cosmological states are possible and, moreover, the waves play a significant role in
these transitions. This observation, which does not actually require integrability, may open a
way to study real physical connections between these apparently diverse objects.

The results are published in [1], [3], [2]

[1] V. de Alfaro and A.T. Filippov, Integrable Low Dimensional Models for Black Holes and
Cosmologies from High Dimensional Theories, hep-th/0504101.

[2] A.T. Filippov, Integrable Models of 1+1 Dimensional Dilaton Gravity Coupled to Scalar
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BLACK HOLE PHYSICS:
QUANTUM AND CLASSICAL ASPECTS

D.V. Fursaev

It is a common belief now that the explanation of the microscopic origin of the Bekenstein-
Hawking entropy of black holes should be available in quantum gravity theory, whatever this
theory will finally look like. Calculations of the entropy of certain black holes in string theory
do support this point of view. In the last few years there is also much hope that an understanding
of black hole entropy may be possible even without knowing the details of quantum gravity. The
thermodynamics of black holes is a low-energy phenomenon, so only a few general features of
the fundamental theory may be really important. The review [1] describes some of the proposals
in this direction and the results obtained.

One of such proposals is related to induced gravity models. In [2], a derivation of the
entropy of black holes in induced gravity models was given on the basis of conformal properties
of induced gravity constituents near the horizon. The four-dimensional (4D) theory was first
reduced to a tower of two-dimensional (2D) gravities such that each 2D theory is induced by
fields with certain momentump along the horizon. It was demonstrated that in the vicinity of
the horizon constituents of the 2D induced gravities are described by conformal field theories
(CFT) with specific central charges depending on spin and nonminimal couplings and with
specific correlation lengths depending on the masses of fields and on the momentump. This
enabled one to use CFT methods to count partial entropiess(p) in each 2D sector. The sum
of partial entropies correctly reproduced the Bekenstein-Hawking entropy of the 4D induced
gravity theory. The results of [2] indicate that earlier attempts at the derivation of the entropy
of black holes based on a near-horizon CFT may have a microscopic realization.

The most dramatic predictions of scenarios with large extra dimensions is a possibility of
creation of mini black holes in future collider experimenters. In the general case, such black
holes are rotating. When bulk gravitons are emitted, the black holes also acquire an angular
momentum in the bi-plane not lying within the brane. Classical interaction of rotating higher
dimensional black holes with a brane in space-times with large extra dimensions was studied in
[3],[4]. It was shown that a rotating black hole attached to a brane can lose bulk components
of its angular momenta. A stationary black hole can have only those components of the angu-
lar momenta which are connected with Killing vectors generating transformations preserving a
position of the brane. It was proved that in a final stationary state the null Killing vector gen-
erating the black hole horizon is tangent to the brane. The characteristic time when a rotating
black hole with the gravitational radiusr0 reaches this final stationary state isT ∼ r p−1

0 /(Gσ),
whereG is the higher dimensional gravitational coupling constant,σ is the brane tension, and
p is the number of extra dimensions.
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HAMILTONIAN DESCRIPTION OF LAGRANGE SYSTEMS
WITH GIVEN CONSTRAINTS

B.M. Barbashov

The Dirac method [1] of constructing the Hamiltonian formalism for degenerate Lagrange
systems is well known and it is widely used in elementary particle physics and quantum field
theory. This method involves a quite cumbersome procedure of classifying the Hamiltonian
constraints as the primary and secondary constraints and, at the same time, as the first and the
second class constraints with substituting the Poisson brackets by the Dirac brackets. At a sight,
one could infer that this method is probably the only possible way for treating the constrained
systems. However, there are situations where the Dirac method does not work at least in the
straightforward way. The simplest example of such dynamical systems is the standard electro-
dynamics with the Lorentz gauge condition. In this case, one cannot replace all the velocities
involved in the gauge condition by the respective canonical momenta because the Lagrangian is
singular. Such constraints are referred to as ‘noncanonical constraints’. Recently, Faddeev and
Jackiw [2] have proposed a clear and convenient method for treating the constrained systems,
the so-called ‘first order formalism’ which is close to the Dirac formalism.

Less known is another way for constructing the Hamiltonian description of constrained sys-
tems that may involve constraints following from the initial singular Lagrangian as well as the
constraints given ‘by hand’ from the very beginning. The method was proposed in 1974 by
F.A. Berezin [3]; however, this paper did not become well known among physicists. The de-
velopment of the Berezin approach and its application to a series of models was accomplished
in paper [4]. The starting point of this approach is the construction of the generalized La-
grange function which includes the initial one and the given constraints with the respective
Lagrange multipliers. By making use of this Lagrangian the generalized canonical momenta
are introduced in the standard way. Further, the velocities and the Lagrange multipliers should
be expressed in terms of the canonical momenta and canonical coordinates by making use of
the initial constraints and the definition of the canonical momenta. In this framework, the fol-
lowing systems are considered: a special Lagrangian linear in velocities, relativistic particle in
proper time gauge, relativistic string in orthonormal gauge, Maxwell field and vector massive
field in the Lorentz gauge. An appealing feature of this approach is, in particular, a nonvanish-
ing identically canonical Hamiltonian in the case of singular Lagrangians. The relation of this
approach to the Dirac method is elucidated and the problems that should be investigated here
are revealed.

[1] P.A.M. Dirac,Lectures on Quantum Mechanics(Yeshiva Press, New York, 1964).
[2] L.D. Faddeev and R. Jackiw,Hamiltonian reduction of unconstrained and constrained

systems, Phys. Rev. Lett.60, 1692 (1988).
[3] F.A. Berezin,Hamiltonian formalism for a general Lagrange problem, Uspekhi Mat.

Nauk,29, No. 3(177), 183 (1974).
[4] B.M. Barbashov,Hamiltonian formalism for Lagrange systems with given constraints,

Particles & Nuclei,34, 5 (2003) /in Russian/.
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INTEGRAL EQUATIONS FOR HEAT KERNEL IN COMPOUND MEDIA

I.G. Pirozhenko, V.V. Nesterenko, and M. Bordag1

(1 ITP University of Leipzig, Germany)

The heat kernel technique [1, 2] is widely used for constructing quantum field theory in he
gravitational background and with allowance for nontrivial boundary conditions. Of particular
interest is the asymptotic expansion of the heat kernel it terms of the evolution parameter for its
small positive values. The coefficients of this expansion pertain to divergences and anomalies in
the relevant quantum field theory models. Proceeding with this one can develop, in particular,
the renormalization procedure needed. However, there are no universal methods for construct-
ing the heat kernel and its asymptotic expansion. The development of different approaches to
this problem is the subject of many works (see, for example, the reviews [1, 2, 3] and references
therein).

The initial definition of the heat kernel is the Green function of the heat-conduction equa-
tion with an elliptic operator under study. In many physical problems it is worth going from
the differential equation, defining the solution to be found or the relevant Green function, to
the equivalent integral equation. In the dynamical evolution problems the integral equations
manifestly show the reason-consequence relations governing the physical process under study.
Reducing the problem to the integral equation, as a rule, allows one to develop the method of
successive approximations(perturbation theory).

On analogy with the Laplace equation the potential theory was also developed for the heat
conduction equation in classical mathematical physics (A.N. Tikhonov and his school). How-
ever, the heat potential technique is not well known among physicists unlike the Newtonian
potentials. In paper [4], by making use of the potentials of the heat conduction equation, the
integral equations are derived which determine the heat kernel for the Laplace operator−a2∆ in
the case of compound media. In each of the media the parametera2 acquires a certain constant
value. At the interface of the media the conditions are imposed which demand the continuity of
the ‘temperature’ and the ‘heat flows’. The integration in the equations is spread out only over
the interface of the media. As a result the dimension of the initial problem is reduced to 1. In
the case of compound media the standard methods for the investigation of heat kernel do not
work because in this case the principal part of the elliptic operator in question is not smooth.

The perturbation series for the integral equations derived are nothing else but the multiple
scattering expansions for the relevant heat kernels. Thus, a rigorous derivation of these expan-
sions is given. In the one-dimensional case the integral equations at hand are solved explicitly
(Abel equations) and the exact expressions for the regarding heat kernels are obtained for di-
verse matching conditions. Derivation of the asymptotic expansion of the integrated heat kernel
for compound media is considered by making use of the perturbation series for the integral
equations obtained. The method proposed is also applicable to the configurations when the
same medium is divided by a smooth compact surface into internal and external regions, or
when only the region inside (or outside) this surface is considered with appropriate boundary
conditions.

[1] M. Bordag, U. Mohideen, and V.M. Mostepanenko,Phys. Rep.351, 1 (2001).
[2] D.V. Vassilevich,Phys. Rep.388, 279 (2003).
[3] V.V. Nesterenko, I.G. Pirozhenko, J. Dittrich,Class. Quantum Grav.20, 431 (2003).
[4] I.G. Pirozhenko, V.V. Nesterenko and M. Bordag,e-print Archive: hep-th/0409289.
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THEORY OF ELLIPTIC HYPERGEOMETRIC FUNCTIONS

V.P. Spiridonov

Elliptic hypergeometric functions represent a radically new class of special functions of
mathematical physics. Such functions first appeared in the form of a very peculiar series of
hypergeometric type describing elliptic solutions of the Yang-Baxter equation (I.B. Frenkel and
V.G. Turaev, 1997) and particular solutions of the Lax pair equations for a new discrete-time
integrable chain (V.P. Spiridonov and A.S. Zhedanov, 1999). The next important development
consisted in the discovery of the one dimensional elliptic beta integral depending on two basic
variablesq and p (V.P. Spiridonov, 2000). This integral and its multivariable generalizations
to theCn root system (J.F. van Diejen and V.P. Spiridonov, 2001) were the first representatives
of a new class of exactly computable contour integrals. During the last two years these results
were extended further on and analysis of many aspects of the general theory of the elliptic
hypergeometric functions were completed.

In [2], a general theory of theta hypergeometric integrals was developed. Under some re-
strictions connected with the double periodicity property of elliptic functions, these integrals
reduce to elliptic hypergeometric integrals with the elliptic beta integrals being their very spe-
cial subcases. In particular, theta functional and elliptic analogs of the Meijer functions were
built in this way (a new type of theq-Meijer functions was introduced as well). Another impor-
tant result of [2] consists in the discovery of the modified elliptic gamma function which is well
defined when one of the basic parameters lies on the unit circle, say|q| = 1, in contrast to the
standard elliptic gamma function.

The set of elliptic beta integrals was extended to a large extent. In [2], a new suchCn integral
related to the Warnaar’s determinant was proved. Also there were introduced two different types
of such integrals associated with theAn root system reducing in thep→ 0 limit to a Gustafson
and Gustafson-Rakha integrals. In [7], anAn elliptic beta integral was found which appeared to
be new even at theq- and plain hypergeometric levels. In [1, 5], the modified versions of most
known elliptic beta integrals valid for|q| ≤ 1 was described. Thep→ 0 limit in modified elliptic
beta integrals leads to newq-beta integrals expressed in terms of the double sine function. In
[3], an integral analog of the Bailey chains was built for the first time and an infinite binary tree
of identities for elliptic hypergeometric integrals of different multiplicities was derived.

In [2], a full description is given of biorthogonal functions on elliptic grids expressed in
terms of elliptic hypergeometric series and having an absolutely continuous part of measure
determined by the univariate elliptic beta integral. These functions generalize Askey-Wilson
orthogonal polynomials and Rahman-Wilson biorthogonal rational functions and have vari-
ous properties of classical special functions: difference equation, three term recurrence rela-
tion, self-duality, etc. They have also intrinsically new features like two-index biorthogonality.
Poisson algebras for the corresponding generalized eigenvalue problems were discussed in [9].
Some new results in the general theory of biorthogonal rational functions were derived in [8],
where the most general known terminating continued fraction expressible in terms of hyperge-
ometric type functions was derived as well. In [4], an attempt was made to generalize elliptic
results to Riemann surfaces of arbitrary genus. However, only a relatively simple elliptic sum-
mation formula appeared to be generalizable so far. The most important results in the theory of
elliptic hypergeometric functions were summarized in the habilitation thesis [6]. In particular,
there it was indicated how elliptic hypergeometric integrals appear in the theory of relativistic
Calogero-Moser type equations with elliptic potentials. All elliptic beta integrals are expected
to lead to some elliptic integrable systems, and so far only one of them (associated with theBCn

root system) has been investigated in detail.
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